# On the chromatic number of wheel-free graphs with no large bipartite graphs

Nicolas Bousquet<sup>1,2</sup> and Stéphan Thomassé \*<sup>3</sup>

<sup>1</sup>Department of Mathematics and Statistics, Mcgill University, Montréal <sup>2</sup>GERAD (Groupe détudes et de recherche en analyse des décisions), Montréal

<sup>3</sup>LIP, École Normale Suprieure de Lyon, France

March 16, 2015

#### Abstract

A wheel is an induced cycle C plus a vertex connected to at least three vertices of C. Trotignon [14] asked if the class of wheel-free graphs is  $\chi$ -bounded, *i.e.* if the chromatic number of every graph with no induced copy of a wheel is bounded by a function of its maximal clique. In this paper, we prove a weaker statement: for every  $\ell$ , the class of graphs with no induced wheel and no induced  $K_{\ell,\ell}$  is  $\chi$ -bounded.

Moreover, we show that the chromatic number of every triangle-free graph with no  $K_{\ell,\ell}$  and no k-wheel (a cycle C plus a vertex incident to at least k vertices of C) is bounded. We also give some applications of these results on the chromatic number of graphs with no cycle with a fixed number of chords.

# 1 Introduction

All along this paper, we consider classes of graphs closed under induced subgraphs. For standard notations and definitions on graphs, the reader is referred to [6]. Let H be a graph. We say that a graph G is H-free is G does not contain H as an induced subgraph. The *chromatic number*  $\chi(G)$  of a graph G is the minimum number of colors needed to color the vertices of G in such a way two incident vertices receive distinct colors (for standard notations and definitions on graphs, the reader is referred to [6]). The *clique number*  $\omega(G)$  of G is the maximum size of a clique of G. In this paper, we investigate the gap between the chromatic number of G and clique number of G. The inequality  $\omega(G) \geq \chi(G)$  always holds since any pair of vertices of a clique are incident and then receive distinct colors. In general, the converse of this inequality is not satisfied. Erdős proved that there exist triangle-free graphs with arbitrarily large chromatic number [8].

Chudnovsky et al. [5] characterized the class of graphs (closed by induced subgraphs) satisfying  $\chi(G) = \omega(G)$ , a problem open for more than fifty years (this result is known as the Strong Perfect Graph Theorem). In 1987, Gyárfás introduced the concept of  $\chi$ -bounded classes [9]. A class  $\mathcal{C}$  of graphs is  $\chi$ -bounded if there exists a function f such that any graph  $G \in \mathcal{C}$  satisfies  $\chi(G) \leq f(\omega(G))$ . In its seminal paper, Gyárfás proved that the class of graphs with no induced long path is  $\chi$ -bounded. Since,  $\chi$ -bounded classes have received a lot of attention.

<sup>\*</sup>Partially supported by ANR Project STINT under Contract ANR-13-BS02-0007.



Figure 1: The graph R(3,5). It is a wheel-free graph satisfying  $\omega = 2$  and  $\chi = 4$ . Note that  $\chi(R(3,5)) \ge 4$  since R(3,5) has 13 vertices and has no stable set of size 5.

A *k*-wheel is an induced cycle C plus a vertex v connected to at least k vertices of C. Edges between v and C are called the *rays*. A *wheel* is a 3-wheel and a *propeller* is a 2-wheel. Wheels play a central role in the proof of the Strong Perfect Graph Theorem. Actually, more than 50 pages of the proof are devoted to treat wheels. It raises a natural question, first asked by Trotignon (e.g. in [4, 14]): do things become simpler (from a coloring point of view) when we consider wheel-free graphs? In particular, we can ask the following question:

#### **Conjecture 1** (Trotignon [14]). The class of (induced) wheel-free graphs is $\chi$ -bounded.

Conjecture 1 is open even for triangle-free graphs. So far, the best lower bound on the chromatic number of (triangle, wheel)-free graphs is due to Esperet and Stehlík who noted that there exists (triangle, wheel)-free graph of chromatic number is at least 4, using a construction of Zykov [16]. Aboulker et *al.* noticed in [4] that it can also be deduced from the Ramsey graph R(3,5) represented in Figure 1.

While the structure of graphs with no wheel as a subgraph is well-known [13], there are few structural results on induced wheel-free graphs. In this paper, we focus on induced-free graphs. Chudnovsky proved that every non-empty induced wheel-free graph contains a vertex whose neighborhood is a disjoint union of cliques (a proof can be found in [2]). More recently, Aboulker et *al.* proposed a decomposition theorem for 3-connected planar wheel-free graphs [3]. Though, in general the structure of wheel-free graphs is complex since Diot et al. [7] proved that recognizing wheel-free graphs is NP-complete.

**Our contribution.** In this paper, we prove that every graph of large chromatic number contains either a triangle or a large complete bipartite graph or a wheel as an induced subgraph. All along this paper, by "contains" we mean "contains as an induced subgraph" and by "free" we mean "induced free".

**Theorem 2.** There exists a function f such that every graph G of chromatic number at least  $f(k, \ell)$  contains a triangle, or a k-wheel or a a  $K_{\ell,\ell}$  (as induced subgraphs).

The case  $\ell = 2$  can be also stated as follows:

**Corollary 3.** For every k, there exists a constant  $c_k$  such that every k-wheel-free graph of girth at least 5 has chromatic number at most  $c_k$ .

So k-wheels cannot be avoided if we want to construct graphs with large chromatic number and large girth. In the case of wheels instead of k-wheels, we can extend this result for any clique size. In other words, we show:

**Theorem 4.** For every integer  $\ell$ , the class of (wheel,  $K_{\ell,\ell}$ )-free graphs is  $\chi$ -bounded (where the function depends on  $\ell$ ).

**Related work.** Kühn and Osthus proved [11] that every graph of large connectivity contains an induced 1-subdivision of a graph of an arbitrarily large degree or a large complete bipartite graph as a subgraph. In some sense, it means that the complexity of a graph of large degree relies on the existence of complete bipartite graphs or of induced subdivisions of graphs of large degree. Theorem 4 is a result of the same flavor: every graph of large chromatic number number contains either a large complete bipartite graph or a wheel.

The class of k-wheel-free graphs is also related to the class of graphs with no cycle with a fixed number of chords. Let  $C = x_1, \ldots, x_m$  be a (not necessarily induced) cycle of G. A chord of C is an edge  $x_i x_j$  such that  $|i - j| \neq 1$  modulo m. A k-cycle is a cycle with exactly k chords. Trotignon and Vušković proved in [15] that the class of graphs with no 1-cycle is  $\chi$ -bounded. This result was extended to the class of graphs with no 2-cycle and the class of graphs with no 3-cycle by Aboulker and Bousquet in [1]. For graphs with no 3-cycle, a large (and technical) part of the proof consists in proving that the chromatic number of (3-cycle, triangle)-free graphs is bounded. Let us show that this result can be derived from Theorem 2.

Let G be a triangle-free graph. Theorem 2 with  $\ell = 3$  and k = 5 asserts that if the chromatic number of G is at least f(3,5) then the graph contains a triangle or a  $K_{3,3}$  or a 5-wheel. Since G is triangle-free, one of the last two cases holds. If G contains a  $K_{3,3}$  then G contains a cycle with exactly 3-chords ( $K_{3,3}$  is a cycle on six vertices with 3 chords). Now assume that G admits a 5-wheel as an induced subgraph. Let x be the center of the wheel and  $y_1, \ldots, y_5$ be 5 consecutive neighbors of x on the induced cycle. There exists an induced path P from  $y_1$  to  $y_5$  passing through  $y_2, y_3$  and  $y_4$ . Moreover  $y_1$  and  $y_5$  are not incident since otherwise  $x, y_1, y_5$  would be a triangle. Thus xPx is a cycle with precisely 3 chords:  $xy_2, xy_3$  and  $xy_4$ . Note nevertheless that the bound obtained in [1] ( $\chi \leq 24$ ) is better than the one provided by Theorem 2.

This argument can be generalized to other cases. The graph  $K_{\ell,\ell}$  is a cycle with  $\ell(\ell-2)$  chords. So the previous argument can be immediately generalized to prove the following:

**Corollary 5.** Let  $\ell$  be an integer. There exists a constant  $c_{\ell}$  such that every triangle-free graph with no  $\ell(\ell-2)$ -cycle has chromatic number at most  $c_{\ell}$ .

So far, this result was known only for  $\ell \leq 3$  [1, 15]. Thus Corollary 5 gives the first infinite collection of integers for which this property holds.

**Organization of the paper.** In Section 2, we give notations and definitions related to extractions and subdivisions of a graph. In Section 3, we present the main ingredients of the proof of Theorems 2 and 4. Section 4 is devoted to prove the technical lemmas stated in Section 3.

# 2 Preliminaries

Let G = (V, E) be a graph and let A, B be two disjoint subsets of vertices of G. The sets A and B are *incident* if there exists an edge with one endpoint in A and one endpoint in B. Two sets which are not incident are *independent*.

**Extractions.** A path P is a sequence of vertices  $x_0, \ldots, x_k$  such that for every  $i \leq k-1$ ,  $x_i x_{i+1}$  is an edge. The *endpoints* of P are the vertices  $x_0$  and  $x_k$ . The other vertices are called *internal vertices*. The *length* of a path is its number of edges. The *interior* of P is the path  $x_1 x_2 \ldots x_{k-1}$ , *i.e.* the path P without its endpoints. Given two vertices x and y, the *distance between* x and y is the length of a minimum path between x and y.



Figure 2: The graph  $G_2$  is a 2-extracted graph of the graph  $G_0$ .

Let z be a vertex. The set of vertices at distance exactly  $\ell$  from z is called the  $\ell$ -th neighborhood of z and is denoted by  $N_{\ell}(z, G)$ . We denote by  $G[N_{\ell}(z)]$  the subgraph of G induced by the vertices  $N_{\ell}(z, G)$ . A father (for z) of a vertex  $x \in N_{\ell}(z, G)$  is a vertex of  $N_{\ell-1}(z, G)$  incident to x (it is a "father" of x if G is rooted in z). For every pair x, y of vertices in  $N_{\ell}(z, G)$ , it is easy to see that there exists an induced xy-path Q with internal vertices in  $z \cup N_1(z, G) \cup \cdots \cup N_{\ell-1}(z, G)$ such that only the endpoints of the interior of Q are in  $N_{\ell-1}(z, G)$  (it suffices to take the concatenation of a minimum xz-path and a zy-path and shortcut it if it is not induced). Since there is no edge between non-consecutive levels, vertices of Q with neighbors in  $N_{\ell}(z, G)$  are either endpoints of Q or endpoints of the interior path of Q. Such paths are called unimodal paths and are essential to find subdivided induced structures (see [1] for instance). Note that the interior of a unimodal path may contain only one vertex. In the remaining of the paper, we will not justify anymore the existence of unimodal paths between vertices of  $N_{\ell}(z, G)$  and the capital letter Q is devoted to denote unimodal paths.

**Observation 6.** Let G be a graph and z be an integer. There exists an integer  $\ell$  such that  $\chi(G[N_{\ell}(z)]) \geq \lceil \frac{\chi(G)}{2} \rceil$ .

*Proof.* There is no edge between vertices of non consecutive neighborhoods of z. Indeed if there is an edge between a vertex u of  $N_i(z, G)$  and a vertex v of  $N_j(z, G)$  with i < j, then there is a path of length at most (i + 1) from z to v, *i.e.* j = i + 1. So neighborhoods at even distance from z can be colored with the same set of colors. By symmetry, the same holds for vertices at odd distance from z. Thus if for every  $\ell$  the  $\ell$ -th neighborhood of z can be colored with at most  $(\lceil \frac{\chi}{2} \rceil - 1)$  colors, then G can be colored with at most  $\chi - 1$  colors, a contradiction.  $\Box$ 

A (1-)extracted graph G' is an induced subgraph of G of chromatic number at least  $\frac{\chi(G)}{2}$  such that there exists a vertex z and an integer  $\ell$  satisfying  $G' = G[N_{\ell}(z)]$ . Observation 6 ensures that every graph has an extracted graph. For every  $p \geq 2$ , a p-extracted graph G' of G is an extracted graph of a (p-1)-extracted graph of G (see Figure 2). In the following we denote by  $G_0, G_1, G_2, \ldots, G_p$  a sequence of extracted graphs where  $G_0 = G$  and for every  $i \geq 1$ , the graph  $G_i$  is an extracted graph of  $G_{i-1}$ . We denote by  $(z_i, \ell_i)$  a pair satisfying  $G_i = G_{i-1}[N_{\ell_i}(z_i)]$ . Observation 6 ensures that  $\chi(G_i) \geq \lceil \frac{\chi}{2^i} \rceil$  for every  $i \leq p$ . An *i*-father of  $x \in G_p$  is a father of x (for  $z_i$ ) in  $G_{i-1}$ . An *i*-unimodal path between x and y in  $G_i$  is a unimodal path between x and y in  $G_i$  is a unimodal path.

Induced and non-induced bipartite graphs. In this paper, we consider forbidden induced structures. However, for some particular graphs, prohibiting induced and non induced structures are essentially equivalent. For instance, if G does not contain a clique  $K_p$  as a subgraph, then G does not contain  $K_p$  as an induced subgraph. The same kind of results can be obtained for complete bipartite graphs.

The Ramsey number  $R(k_1, k_2)$  is the maximum integer such that there exists a graph on  $R(k_1, k_2)$  vertices with no clique of size  $k_1$  nor stable set of size  $k_2$ . Ramsey numbers can be



Figure 3: At the right, a 1-subdivision of  $K_4$ . Important vertices are vertices of the left hand side and subdivided vertices are vertices of the right hand side.

generalized as follows:  $R(k_1, \ldots, k_p)$  is the maximum integer such that there exists an edge *p*-coloring of the clique on  $R(k_1, \ldots, k_p)$  vertices with no monochromatic clique of size  $k_i$  and of color *i* for every  $i \leq p$ .<sup>1</sup> Let us first prove the following observation.

**Observation 7.** Every  $(K_{\omega}, K_{\ell,\ell})$ -free graph has no  $K_{R(\omega,\ell)+1,R(\omega,\ell)+1}$  as a subgraph.

*Proof.* By contradiction. Let (A, B) be a complete bipartite graph where  $|A| = |B| = R(\omega, \ell) + 1$ . By definition of  $R(\omega, \ell)$ , the set A contains either a clique on  $\omega$  vertices or a stable set on  $\ell$  vertices. The same holds for B. If A or B have a clique of size  $\omega$ , the graph contains a clique of size  $\omega + 1$  (this clique plus any vertex of the other part), a contradiction. If both A and B have stable sets of size  $\ell$ , their union induces a  $K_{\ell,\ell}$ , a contradiction.

In the following we will denote by L the integer  $R(\omega, \ell) + 1$ . We have to keep in mind that if G is  $K_{\ell,\ell}$ -free then G does not contain  $K_{L,L}$  as a subgraph.<sup>2</sup>

**Subdivisions.** A 1-subdivision of a graph H = (A, B) is a graph  $H_s$  with vertex set  $A \cup B$  where there is an edge between  $a \in A$  and  $b \in B$  if a is an endpoint of the edge b in H (see Figure 3). Equivalently the graph  $H_s$  is the adjacency bipartite graph of H. Vertices of A are *important vertices* and they "represent" the vertices of H while vertices of B are subdivided vertices and they "represent" the edges of H.

The following statement is a direct corollary of a result of Kühn and Osthus [11].

**Theorem 8** (Kühn, Osthus [11]). Let  $\ell$ , k be two integers. Every  $K_{L,L}$ -free graph with chromatic number at least d(k, L) has an induced 1-subdivision of a k-connected graph.

*Proof.* Kühn and Osthus proved in [11] that for every k, L, there exists a function d'(4k, L) such that every graph of average degree degree at least d'(4k, L) with no  $K_{L,L}$  as a subgraph contains an induced 1-subdivision of a graph H of average degree at least 4k.

Now, let G be a graph satisfying  $\chi(G) \geq d'(4k, L)$ . The deletion of the vertices of degree at most d'(4k, L) - 1 does not modify the chromatic number. So the graph G has an induced subgraph of average degree at least d'(4k, L). By [11], G contains a 1-subdivision of a graph of average degree at least 4k. Mader proved that every graph with average degree at least 4k has a k-connected subgraph (see [6] for a proof). So G contains a 1-subdivision of a k-connected graph.

<sup>&</sup>lt;sup>1</sup>When there are two colors, we usually consider that color 1 corresponds to an edge and color 2 to a non-edge. <sup>2</sup>Note that, for triangle-free graphs, we have  $R(2, \ell) = \ell - 1$ . Thus for Theorem 2 and Corollary 3, we have

 $L = \ell.$ 



Figure 4: The vertex x. The set Y is a subset of vertices incident to x. The extended neighbor of  $y_i$  is the unique neighbor of  $y_i$  distinct from x in  $H_s$ . A collection of  $\alpha$ -good unimodal path see at most an  $\alpha$  fraction of the gray vertices.

# 3 Structure of the proofs of Theorems 2 and 4

In this section, we give the main steps of the proofs of Theorems 2 and 4. The proofs of technical lemmas are deferred to Section 4. Since both proofs follow the same scheme, we present simultaneously a proof of both results. We will mention the places where slight modifications have to be considered.

Let f, ext be two large enough functions<sup>3</sup>. Assume by contradiction that there exists a  $(K_{L,L}, k$ -wheel, triangle)-free graph G (resp.  $(K_{L,L}, wheel)$ -free graph of clique number  $\omega$ ) of chromatic number at least  $2^{\text{ext}(k,L)} \cdot d(4 \cdot f(k,L),L)$ . Remind that L depends on  $\omega$ .

Let  $G_{\text{ext}(k,L)}$  be an ext(k,L)-extracted graph of G. Observation 6 ensures that the chromatic number of  $G_{\text{ext}(k,L)}$  is at least  $\frac{\chi(G)}{2^{\text{ext}(k,L)}}$  and then we have  $\chi(G_{\text{ext}(k,L)}) \ge d(4 \cdot f(k,L),L)$ . Theorem 8 ensures that  $G_{\text{ext}(k,L)}$  contains as an induced subgraph a 1-subdivision  $H_s$  of a f(k,L)-connected graph H.

Let x be an important vertex of  $H_s$  and  $Y = \{y_1, \ldots, y_{f(k,L)}\}$  be a subset of neighbors of x in  $H_s$ . The set Y exists since the degree of any important vertex of  $H_s$  is at least the connectivity of H. The extended neighbor  $z_i$  of  $y_i$  is the unique neighbor of  $y_i$  distinct from x in  $H_s$  (informally  $y_i$  is "the edge"  $xz_i$ ) (see Figure 4).

Our goal consists in building a wheel of center x. Let us briefly explain how we will proceed. Since H has large connectivity, we can find vertex-disjoint paths Q between the extended neighbors of Y. Since  $H_s$  is a 1-subdivision of H, paths of Q are independent in  $H_s$ .<sup>4</sup> The paths of Q can be completed into independent paths between vertices of Y using edges between the vertices of Y and their extended neighbors. Since x is incident to all the vertices of Y, if we can transform this collection of paths into an induced cycle, we obtain a wheel. However, vertices of Y only have two neighbors in  $H_s$ ; one of them is x (we want x to be the center of the wheel, so it cannot be on the cycle) and the other neighbor already is in a path of Q. Thus we need to leave  $H_s$  in order to transform Q into a cycle. Actually, we will close this collection of paths into a cycle using unimodal paths. These unimodal paths have to be pairwise independent and "independent enough" with  $H_s$  to obtain an induced cycle. Actually, we need the following.

Let  $\alpha$  be a positive constant. A collection of unimodal paths  $\mathcal{Q}$  with endpoints in  $Y' \subseteq Y$  is  $\alpha$ -good if the following holds:

<sup>&</sup>lt;sup>3</sup>We will not explicit functions f and ext. Though, in the statement of each lemma, we give the conditions on f and ext we need to prove it. Thus, if the reader is interested on these functions, he can compute them by combining these conditions. Note however that f and ext are exponential functions.

<sup>&</sup>lt;sup>4</sup>By abuse of notation, we will consider that paths of H are paths of  $H_s$  since there is a natural function transforming paths of H into paths in  $H_s$ .



Figure 5: (a) The path Q does not satisfy (1). (b) The path Q does not satisfy (2). (c) Since both endpoints of the bold edge are fathers of endpoints of y, (3) is not satisfied.

- (1) For every  $y \in Y'$ , the unimodal path  $Q \in \mathcal{Q}$  with endpoint y is the unique path of  $\mathcal{Q}$  incident to y.
- (2) For every  $y \in Y'$ , no vertex of  $Q \in Q$  is incident to the extended neighbor of y (except y).
- (3) For every  $Q, Q' \in \mathcal{Q}$ , any father of an endpoint of Q is not incident to any father of an endpoint of Q'.
- (4) For every  $y \in Y'$  and every path  $Q \in Q$ , the set Q is incident to at most  $\alpha \cdot |N(z, H_s)|$  vertices of  $N(z, H_s)$  where z is the extended neighbor of y.

Points (1), (2) and (3) are illustrated in Figure 5. A collection  $\mathcal{Q}$  of unimodal  $\alpha$ -good paths is *independent* if for every  $Q, Q' \in \mathcal{Q}$ , the sets Q and Q' are independent. To avoid cumbersome notations, we will omit  $H_s$  in the definition of the neighborhoods when no confusion is possible. The most technical part of this paper consists in proving the following lemma.

**Lemma 9.** If f(k, L) and ext(k, L) are large enough, then every (triangle, k-wheel)-graph and every wheel-free graph contains

- A complete bipartite graph  $K_{L,L}$  as a subgraph.
- Or a collection of  $\lceil \frac{k}{2} \rceil$  independent  $\frac{1}{4k}$ -good unimodal paths with endpoints in Y.

Section 4 is devoted to prove Lemma 9. Actually, in Section 4.1, we show that we can extract a large collection of  $\frac{1}{8k}$ -good unimodal paths and in Section 4.2, we will show that we can transform it into a collection of  $k \frac{1}{4k}$ -good independent unimodal paths.

Two vertices u, v of  $H_s$  are *locally disjoint* if  $N(u) \cap N(v)$  does not contain an important vertex. Informally it means that if u is an important vertex then v is not a subdivided vertex incident to u and if both u and v are subdivided vertices then the "edges" u and v of H do not share an endpoint. A vertex  $u \in V(G) \setminus H_s$  has k *locally disjoint neighbors* if there are kpairwise locally disjoint vertices in  $N(u) \cap H_s$ . Let us now recall the Linkage Theorem.

**Theorem 10** (Linkage [12]). Let  $k \ge 0$ . Let G be a 10k-connected graph. For every set of (non necessarily disjoint) vertices  $x_1, \ldots, x_k, y_1, \ldots, y_k$ , there exist interior vertex-disjoint paths  $P_1, \ldots, P_k$  such that for every  $i \le k$ ,  $P_i$  is a path from  $x_i$  to  $y_i$ .

**Lemma 11.** Assume that H is 10k-connected. If a vertex  $u \notin G \setminus H_s$  has k locally disjoint neighbors in  $H_s$  then G has a k-wheel.

*Proof.* Assume that a vertex  $u \notin H_s$  has k locally disjoint neighbors  $u_1, \ldots, u_k$ . Let X and Y be two subsets of vertices of H defined as follows: if  $u_i$  is an important vertex, we set  $x_i = u_i$  and  $y_{i-1} = u_i$  (in order to simplify notations we denote in the same way vertices of H and important vertices of  $H_s$ ). If  $u_i$  is a subdivided vertex then  $x_i$  and  $y_{i-1}$  are the two important vertices incident to  $u_i$  in  $H_s$ . Indices have to be understood modulo k.

Since H is 10k-connected, Theorem 10 ensures that there exists a collection  $P_i$  of interior vertex-disjoint paths in H between  $x_i$  and  $y_i$  for every  $i \leq k$ . The concatenation of these paths can be transformed into a cycle of H (we just have to add the edges  $y_{i-1}x_i$  if  $y_{i-1} \neq x_i$ ). Any cycle of H can be transformed into an induced cycle of  $H_s$  (where each edge is subdivided once). So there exists an induced cycle of  $H_s$  passing through all the vertices  $u_1, \ldots, u_k$ . The vertex u has at least k vertices on that cycle, which provides a k-wheel.

We now have all the ingredients to conclude.

**Lemma 12.** Assume that H is  $(4k^2 + 10k)$ -connected and  $k \ge 3$ . Let x be an important vertex of  $H_s$ . If there are  $\lceil \frac{k}{2} \rceil$  independent  $\frac{1}{2k}$ -good unimodal paths Q with endpoints in N(x), the graph G has a k-wheel.

*Proof.* Let  $\mathcal{Q} = \{Q_1, \dots, Q_{\lceil \frac{k}{2} \rceil}\}$  be a collection of independent  $\frac{1}{2k}$ -good unimodal paths with endpoints in N(x). For every  $i \leq \lceil \frac{k}{2} \rceil$ , we denote by  $y_{2i-1}$  and  $y_{2i}$  the endpoints of  $Q_i$  and by  $f_{2i-1}$  and  $f_{2i}$  their respective fathers in  $Q_i$ .

Since  $Q_i$  is unimodal, if  $u \in Q_i$  is incident to  $H_s$  then u is either  $f_{2i-1}$  or  $f_{2i}$ . Thus at most  $2\lceil \frac{k}{2}\rceil \leq k+1$  vertices of Q have neighbors in  $H_s$ . Lemma 11 ensures that if there exists i such that  $f_i$  has at least k locally disjoint neighbors in  $H_s$ , then G contains a k-wheel. So we can assume that, for every i, the vertex  $f_i$  has less than k locally disjoint neighbors in  $H_s$ . Let  $F_i$  be a set of locally disjoint neighbors of  $f_i$  of maximum size. Let  $W_i$  defined as follows: if  $z \in F_i$  is an important vertex, add z in  $W_i$ . If z is a subdivided vertex, add both neighbors of z in  $W_i$ . Let  $W = \bigcup_{i=1}^{2\lceil \frac{k}{2}\rceil} W_i$ . Since  $|W_i| < 2k$ , we have  $|W| < 2k^2 + 2k$ . Let  $H^1$  be the subgraph of H where the vertices of W have been deleted (since W only contain important vertices, it corresponds to vertices of H). We denote by  $H_s^1$  the subgraph of  $H_s$  induced by the vertices and the edges of  $H^1$ .

## Claim 1. No vertex of $Q_i$ is incident to $H_s^1$ .

*Proof.* Assume by contradiction that  $f_i$  is incident to  $u \in H_s^1$ . Let  $u_i \in F_i$ . Let us prove that u is not incident to  $u_i$ . Indeed, if  $u_i$  is a subdivided vertex, both neighbors of  $u_i$  have been deleted in  $H^1$  and then in  $H_s^1$ . If  $u_i$  is an important vertex, then  $u_i$  has been deleted from H, and then also are the edges incident to  $u_i$ , *i.e.* the neighbors of  $u_i$  in  $H_s$ . Thus  $N(u) \cap N(u_i)$  is empty for every i, and then u can be added in  $F_i$ , contradicting the maximality of  $F_i$ .

For every *i*, let  $z_i$  be the extended neighbor of  $y_i$ . Since  $\mathcal{Q}$  is  $\frac{1}{2k}$ -good, at most  $\frac{|N(z_i)|}{2k}$  vertices of  $N(z_i)$  are in the neighborhood of  $Q_j$  for every  $j \leq \lceil \frac{k}{2} \rceil$ . Let *u* be a vertex of  $N_2(z_i)$ . The vertex *u* is *hit* if there exists *j* such that the subdivided vertex between *z* and *u* is in  $N(Q_j)$ . Otherwise *u* is *safe*. The number of vertices of  $N_2(z_i)$  hit by  $Q_j$  is at most  $\frac{|N(z_i)|}{2k}$  since  $\mathcal{Q}$  is  $\frac{1}{2k}$ -good. Since  $\mathcal{Q}$  contains less than *k* paths, at least a half of the vertices of  $N_2(z_i)$  are safe. Since *H* is  $4k^2 + 10k$  connected, there are at least  $2k^2 + 5k$  safe vertices in  $N_2(z_i)$  denoted by  $Z_i$ .

Delete from  $H^1$  the vertices  $Y \cup \{x\}$  and denote by H' the resulting graph. Since at most  $(2k^2 + 3k + 3)$  vertices of H have been deleted, at least 2k - 3 vertices of  $Z_i$  are in H'. For every i, let  $s_i$  be a vertex of  $Z_i \cap H'$  such that  $s_i \neq s_j$  for every  $i \neq j$  (since  $i \leq k+2$ , such a collection of vertices exists).



Figure 6: The path  $Q_1$  is not self  $\alpha$ -good for two reasons. First a vertex of  $Q_1$  is incident to z (the bold edge). Secondly, the vertices of  $Q_1$  are incident to more than  $\alpha |N(z)|$  neighbors of z.

Since at most  $(2k^2 + 3k + 3)$  vertices of H have been deleted in H', the graph H' is at least  $(2k^2 + 7k - 3)$ -connected. By Theorem 10, there is a collection of interior vertex-disjoint paths  $P_i$  between  $s_{2i}$  and  $s_{2i+1}$  (modulo  $2\lceil \frac{k}{2} \rceil$ ) for every  $i \leq \lceil \frac{k}{2} \rceil$ . The path  $P_i$  can be completed into a  $y_{2i}y_{2i+1}$ -path  $R_i$ . Indeed, for every  $j \leq 2\lceil \frac{k}{2} \rceil$ , we just add the vertices  $y_j, z_j$  and the subdivided vertex incident to both  $z_j$  and  $s_j$  to obtain the desired paths.

Note that  $C = Q_1 R_1 Q_2 \dots R_{\lceil \frac{k}{2} \rceil}$  is a cycle. Let us prove that this cycle is induced. First note that, by assumption, the paths  $Q_i$  are independent since Q is a collection of independent paths. Since  $H_s$  is a 1-subdivision of H, the paths  $P_i$  are independent. Since  $s_i \neq s_j$  for  $i \neq j$ , the paths  $R_i$  are also vertex-disjoint and independent. So we just have to show that there is no edge between  $Q_i$  and  $R_j$ . Since Q is  $\frac{1}{2k}$ -good, no vertex of  $Q_i$  is incident to  $y_j$  for any jby (1) (except the path with endpoint  $y_j$ ). Moreover, no  $Q_i$  is incident to  $z_j$  for any j by (2). Since  $s_j$  is safe, no vertex of  $Q_i$  is incident to the subdivided vertex incident to  $z_j$  and  $s_j$ . Since  $P_j$  is a path included in  $H_s^1$ , Claim 1 ensures that no vertex of  $Q_i$  is incident to  $P_j$ . Thus Cis an induced cycle and the vertex x has at least k neighbors on C, *i.e.*, the graph contains a k-wheel.

## 4 Extracting good unimodal paths

This section is devoted to prove Lemma 9. Before proving it, let us first recall a well-known result of extremal graph theory.

**Theorem 13** (Kövári, Sós, Turán [10]). Let  $\ell$  be an integer.

- [Bipartite version] There exists a function  $T_1$  such that for every  $\ell$ ,  $\epsilon$ , every  $K_{\ell,\ell}$ -free bipartite graph ((A, B), E) where both A, B have size at least  $T_1(\ell, \epsilon)$  has less than  $\epsilon \cdot |A| \cdot |B|$  edges.
- [Graph version] There exists a function  $T_2$  such that for every  $\ell$ ,  $\epsilon$  and every graph with  $|V| = n \ge T_2(\ell, \epsilon)$  with no  $K_{\ell,\ell}$  as a subgraph has less than  $\epsilon \cdot \binom{n}{2}$  edges.

#### 4.1 Good unimodal paths

Let  $f(k, \ell)$  and  $ext(k, \ell)$  be two functions detailed later. All along this section we assume that we are in the following setting:

Let G be a graph. In an ext(k, L)-extracted subgraph of G, there exists a subgraph  $H_s$  such that  $H_s$  is an induced 1-subdivision of a f(k, L)-connected graph H. Let x be an important vertex of  $H_s$  and Y be a subset of  $N(x) \cap H_s$  of size f(k, L).

A path Q is self  $\alpha$ -good if  $Q = \{Q\}$  satisfies points (1), (2) and (4) of the definition of  $\alpha$ -good paths. A collection of paths Q is self  $\alpha$ -good if every path of Q is self  $\alpha$ -good. Note that any collection of  $\alpha$ -good paths is self  $\alpha$ -good.

**Lemma 14.** Let  $i \leq \text{ext}(k, L)$ . Let  $f(k, L) \geq 20$ . If G is a wheel-free graph, at most one vertex y of Y has a father  $y^i$  incident to its extended neighbor z.

*Proof.* Let y be a vertex of Y and z be the extended neighbor of y. Assume that a *i*th father  $y^i$  of y is incident to both y and z. First assume that  $y^i$  has another neighbor w in  $H_s$ . If w is a subdivided vertex, we denote by  $w_1$  and  $w_2$  the two neighbors of w. Otherwise we set  $w_1 = w$  and  $w_2 = w$ . Since H is at least 20-connected, Theorem 10 ensures that there are two vertex-disjoint paths  $P_1, P_2$  in H such that  $P_1$  is an  $xw_1$ -path and  $P_2$  is a  $w_2z$ -path. Thus  $P_1wP_2$  provides an induced xz-path in  $H_s$ . The addition of y to this path provides an induced cycle in  $H_s$ . Since  $y^i$  is incident to at least three vertices on it, the graph contains a wheel. So we can assume that  $N(y^i) \cap H_s = \{y, z\}$ .

Assume now that  $y_2 \in Y$  with  $y_2 \neq y$  has a father  $y_2^i$  incident to its extended neighbor  $z_2$ . The previous paragraph ensures that  $N(y_2^i) \cap H_s = \{y_2, z_2\}$ . Let Q be a unimodal path path between z and  $y_2$  passing through  $y^i$  and  $y_2^i$ . Remind that, by definition of unimodal paths,  $y^i$ and  $y_2^i$  are the only vertices of Q incident to  $H_s$ . Let P be a path in  $H_s \setminus \{z_2, y\}$  between x and z(it exists since  $H \setminus \{z_2, y\}$  is 18-connected). Since  $N(y^i) \cap H_s = \{y, z\}$  and  $N(y_2^i) \cap H_s = \{y_2, z_2\}$ , the concatenation of P and Q (plus the edge  $y_2x$ ) provides an induced cycle. Moreover, the vertex y is incident to 3 vertices on it, *i.e.*, G contains a wheel, a contradiction.

Note that, for triangle-free graphs, the vertex  $y^i$  cannot be incident to both y and z and then Lemma 14 can be avoided. Lemma 14 is the unique lemma where we specifically need to forbid (3)-wheels and not k-wheels. In the remaining steps, we can prove the existence of a  $K_{L,L}$  as a subgraph or of an induced k-wheel except in the following lemma where we need to apply Lemma 14.

**Lemma 15.** Let G be a (triangle,  $K_{\ell,\ell}$ )-free or a (wheel,  $K_{\ell,\ell}$ )-free graph and p an integer. Let

$$f(k,L) \ge 2\left(R\left(\frac{1}{3} \cdot T_2(L,\frac{1}{10}), 2 \cdot T_1(L,\alpha)\right) + 2p + 2\right) \quad \text{and} \quad \exp(k,L) \ge p + 2 \cdot T_1(L,\alpha)$$

then there exists a collection of p endpoint-disjoint self  $2\alpha$ -good unimodal paths of distinct indices with endpoints in Y.

*Proof.* Let  $i \leq \text{ext}(k, L)$ . Let  $y^i$  be a *i*th father of  $y \in Y$  and z be the extended neighbor of y. The vertex y is a *candidate for* i if  $y^i$  is incident to at most  $\alpha \cdot |N(z)|$  vertices of N(z) (for simplicity we omit  $\cap H_s$ ).

**Claim 2.** For every  $y \in Y$ , there are at most  $T_1(L, \alpha)$  integers i for which y is not a candidate.

Proof. Let  $y \in Y$ . Assume by contradiction that there are  $T_1(L, \alpha) + 1$  integers *i* for which *y* is not a candidate. Let  $F = \{y^i \mid y \text{ is not a candidate for } i\}$  and let  $Z_y$  be the set of neighbors of the extended neighbor of *y*. For every *i* such that *y* is not a candidate for *i*, the vertex  $y^i$  has at least  $\alpha |Z_y|$  neighbors in  $Z_y$ . Thus the bipartite graph on vertex set  $(Z_y, F)$  has at least  $\alpha \cdot |F| \cdot |Z_y|$  edges. Since  $|Z_y| \ge f(k, L) > T_1(L, \alpha)$  and  $|F| > T_1(L, \alpha)$ , Theorem 13 ensures that *G* has a  $K_{L,L}$ , a contradiction.

By Claim 2, the number of indices i such that at least half of the vertices of Y are not candidate for i is at most  $2 \cdot T_1(L, \alpha)$ . Since  $ext(k, L) \ge 2 \cdot T_1(L, \alpha) + p$ , it means that there are at least p integers I such that, for every  $i \in I$ , at least half of the vertices of Y are candidates for i. Let  $Y_i$  be the subset of Y such that  $y \in Y_i$  if y is a candidate for i. We have

$$|Y_i| \ge \frac{f(k,L)}{2} \ge R\left(\frac{1}{3} \cdot T_2(L,\frac{1}{10}), 2 \cdot T_1(L,\alpha)\right) + 2p + 2.$$

**Claim 3.** Let  $i \in I$ . Let Y' be a subset of  $Y_i$  where at most 2p vertices have been deleted. There exists a self  $2\alpha$ -good unimodal path of index i with endpoints in Y'.

*Proof.* If G is a triangle-free graph then no vertex if incident to both y and its extended neighbor. If G is a wheel-free graph then Lemma 14 ensures that there exists at most one vertex  $y \in Y'$  such that the *i*th father  $y^i$  of y is incident to the extended neighbor of y. So, for both assumptions of Lemma 15, free to delete at most one vertex of Y', we can assume that for every  $y \in Y'$ , the vertex  $y^i$  is not incident to the extended neighbor of y. Note that

$$|Y'| \ge R\left(\frac{1}{3} \cdot T_2(L, \frac{1}{10}), 2 \cdot T_1(L, \alpha)\right) + 1.$$

For every  $y \in Y'$ , we denote by z the extended neighbor of y. We create an auxiliary graph H on vertex set Y'. We color the edges of H with 3 colors. Let  $a, b \in Y'$ :

- If  $y_a^i$  is incident to  $\{y_b, z_b\}$  or  $y_b^i$  is incident to  $\{y_a, z_a\}$  then we color ab with color 1.
- If  $y_a^i$  is incident to at least  $\alpha |N(z_b)|$  vertices of  $N(z_b)$  or  $y_b^i$  is incident to at least  $\alpha |N(z_a)|$  vertices of  $N(z_a)$ , we color ab with color 2.
- Otherwise, we color *ab* with color 3.

(remind that two sets are incident if there is at least one edge between them). Our goal consists in showing that there is an edge of color 3. Since  $|Y'| > R(\frac{1}{3} \cdot T_2(L, \frac{1}{10}), 2 \cdot T_1(L, \alpha))$ , Ramsey's theorem ensures that there is an edge of color 3 or there is a clique of color 1 of size  $\frac{1}{3} \cdot T_2(L, \frac{1}{10}) + 1$  or there is a clique of color 2 of size  $T_1(L, \alpha) + 1$ .

Assume first that H has a monochromatic clique K of color 1 of size  $\frac{1}{3} \cdot T_2(L, \frac{1}{10}) + 1$ . Consider the restriction of G to the vertices  $\bigcup_{b \in K} \{y_b, z_b, y_b^i\}$ . By construction, for every  $a, b \in K$ , there is an edge between  $\{y_a, z_a, y_a^i\}$  and  $\{y_b, z_b, y_b^i\}$ . Thus this graph contains 3|K| vertices and at least  $\binom{|K|}{2}$  edges (plus 2|K| edges since  $\{y_b, z_b, y_b^i\}$  induces 2 edges for every  $b \in K$ ). Thus there are at least  $\frac{1}{9} \cdot \binom{3|K|}{2}$  edges. Since  $3|K| > T_2(L, \frac{1}{9})$ , the graph contains a  $K_{L,L}$  as a subgraph by Theorem 13, a contradiction.

Assume now that H has a monochromatic clique K of color 2 of size  $2 \cdot T_1(L, \alpha) + 1$ . For every  $a, b \in K$ , either  $y_b^i$  is incident to at least  $\alpha |N(z_a)|$  vertices of  $N(z_a)$  or  $y_a^i$  is incident to at least  $\alpha |N(z_b)|$  vertices of  $N(z_b)$ . Thus there exist  $a \in K$  and  $K' \subseteq K$  of size at least  $\frac{|K|-1}{2}$ such that for every  $b \in K'$ , the vertex  $y_b^i$  is incident to at least  $\alpha |N(z_a)|$  vertices of  $N(z_a)$ . Let  $F = \{y_b^i \text{ with } b \in K'\}$  and  $Z_a = N(z_a)$ . The bipartite graph induced by  $F \cup Z_a$  has at least  $\alpha |F| \cdot |N(z_a)|$  edges. Moreover,  $|K'| \geq T_1(L, \alpha)$  and  $|Z_a| \geq f(k, L) > T_1(L, \alpha)$ . Thus Theorem 13 ensures that G contains a  $K_{L,L}$  as a subgraph, a contradiction.

So there is an edge ab of color 3. Let  $Q_i$  be an *i*-unimodal path between  $y_a$  and  $y_b$  passing though  $y_a^i$  and  $y_b^i$ . Remind that only  $y_a^i$  and  $y_b^i$  can be incident to vertices in  $H_s$ . Since the edge has color 3,  $y_a^i$  is not incident to  $\{y_b, z_b\}$ . Moreover  $y_b^i$  is not incident to  $z_b$  (at most one vertex of  $Y_i$  can satisfy this by Lemma 14 and it has been deleted from Y'). Moreover the vertex  $y_a^i$  is incident to at most  $\alpha \cdot |N(z_b)|$  vertices of  $N(z_b)$  since the edge has color 3. Since  $y_b$  is a candidate for  $i, y_b^i$  is incident to at most  $\alpha \cdot |N(z_b)|$  vertices of  $N(z_b)$ . Thus there are at most  $2\alpha \cdot |N(z_b)|$ edges from  $Q_i$  to  $N(z_b)$ . By symmetry, the same holds for  $z_a$ . So  $Q_i$  is self  $2\alpha$ -good. To conclude, we apply iteratively Claim 3. Initially we set  $Y'_i = Y_i$  for every  $i \in I$ . When we find a self  $2\alpha$ -good unimodal path  $Q_i$  of index i, we delete the endpoints of  $Q_i$  from  $Y'_j$  for every  $j \neq i$ . We repeat this operation p times for p distinct values of  $i \in I$ . At any step, the size of  $Y'_i$  is at least  $|Y_i| - 2p$  and then Claim 3 ensures that there is a self  $2\alpha$ -good path of index i, which concludes the proof.

Let us now show that we can extract from any collection of self  $\alpha$ -good paths a collection  $\alpha$ -good paths. The proof is similar to the one of Lemma 15 but is slightly simpler.

**Lemma 16.** Assume that  $f(k,L) > T_1(L,\frac{\alpha}{2})$ . Let G be a  $K_{\ell,\ell}$ -free graph. Any collection  $\mathcal{Q}$  of  $h(p) := R\left(\frac{1}{6} \cdot T_2(L,\frac{1}{36}), 2 \cdot T_1(L,\frac{\alpha}{2}), p-1\right) + 1$  self  $\alpha$ -good-unimodal paths has a sub-collection of p  $\alpha$ -good increasing unimodal paths.

*Proof.* Let us denote by  $Q_1, \ldots, Q_{h(p)}$  the paths of  $\mathcal{Q}$ . For every  $i \leq h(p)$ , we denote by  $y_{i,1}$  and  $y_{i,2}$  the endpoints of  $Q_i$ , by  $y_{i,1}^i$  and  $y_{i,2}^i$  their respective fathers in  $Q_i$  and by  $z_{i,1}$  and  $z_{i,2}$  their respective extended neighbors. We denote by  $F_i$  the set  $\{y_{i,1}, y_{i,2}, y_{i,1}^i, y_{i,2}^i, z_{i,1}, z_{i,2}\}$ . We create an auxiliary graph H on vertex set  $\{1, \ldots, h(p)\}$ . We color the edges of H with 3 colors. For every a, b:

- If there is an edge between the sets  $F_a$  and  $F_b$ , then we color ab with color 1.
- If  $Q_a$  is incident to at least  $\alpha |N(z_{b,j})|$  vertices of  $N(z_{b,j})$  for some  $j \in \{1,2\}$  or  $Q_b$  is incident to at least  $\alpha |N(z_{a,j})|$  vertices of  $N(z_{a,j})$  for some  $j \in \{1,2\}$ , then we color ab with color 2.
- Otherwise, we color *ab* with color 3.

Since  $h(p) > R(\frac{1}{6} \cdot T_2(L, \frac{1}{36}), 2 \cdot T_1(L, \frac{\alpha}{2}), p-1)$ , Ramsey's theorem ensures that H contains a clique of color 1 of size  $\frac{1}{6} \cdot T_2(L, \frac{1}{36}) + 1$  or a clique of color 2 of size  $2 \cdot T_1(L, \frac{\alpha}{2}) + 1$  or a clique of color 3 of size p.

Assume that H has a monochromatic clique K of color 1 of size  $\frac{1}{6} \cdot T_2(L, \frac{1}{36}) + 1$ . The proof holds as in Lemma 15. Let G' be the subgraph of G induced by  $\bigcup_{a \in K} F_a$ . The graph G' has  $6|K| > T_2(L, \frac{1}{36})$  vertices and at least  $\binom{|K|}{2} + 4|K|$  edges. Thus the density of edges is at least  $\frac{1}{36}$ , and then the graph contains a  $K_{L,L}$  as a subgraph by Theorem 13, a contradiction.

Assume now that H has a monochromatic clique K of color 2 of size  $2 \cdot T_1(L, \frac{\alpha}{2}) + 1$ . Let  $j \in \{1, 2\}$  and  $a, b \in K$ . The vertex  $b \in H$  is (a, j)-dense if  $Q_b$  is incident to at least  $\alpha |N(z_{a,j})|$  vertices of  $N(z_{a,j})$ . The vertex b is a-dense if it is (a, 1)-dense or (a, 2)-dense. For every pair  $a, b \in K$ , a is b-dense or b is a-dense since ab is colored with 2. Thus there exist  $a \in K$  and  $K' \subseteq K$  of size at least  $\frac{|K|-1}{2} \ge T_1(L, \frac{\alpha}{2})$  such that for every  $b \in K$ , b is a-dense. So there are an integer  $j \in \{1, 2\}$  and a subset  $K^*$  of size |K'|/2 such that, for every  $b \in K^*$ , b is (a, j)-dense. Let  $F = \{y_{b,d}^b | b \in K^*, d \in \{1, 2\}\}$ . Note that  $|F| = 2|K^*| \ge T_1(L, \frac{\alpha}{2})$ . Moreover  $N(z_{a,j})$  has size at least  $f(k, L) > T_1(L, \frac{\alpha}{2})$ . Consider the bipartite graph with vertex set  $F \cup N(z_{a,j})$ . It induces at least  $\alpha \cdot |K^*| \cdot |N(z_{a,j})| = \alpha/2 \cdot |F| \cdot |N(z_{a,j})|$  edges. Thus G contains a  $K_{L,L}$  as a subgraph by Theorem 13, a contradiction.

Thus there is a clique K of color 3 of size p. Since Q is self  $\alpha$ -good, (1), (2) and (4) are satisfied for the paths of K themselves. Since there is no edge of color 1 in K, (1), (2) and (3) are satisfied. And since there is no edge of color 2 in K, point (4) is satisfied. Thus the collection  $\{Q_i \mid i \in K\}$  is a collection of  $\alpha$ -good paths, which concludes the proof.  $\Box$ 

## 4.2 Independent unimodal paths

We set  $p := 8k^3(32k + 2)$ .

**Lemma 17.** Let G be a  $(K_{\ell,\ell}, k\text{-wheel})$ -free graph. If there is a collection  $\mathcal{Q}$  of size at least  $R\left(2 \cdot T_1(L, \frac{1}{2p}), k-1\right) + 1$  of  $\alpha$ -good unimodal paths of pairwise distinct indices with endpoints in Y, there are k independent  $2\alpha$ -good unimodal paths with endpoints in Y.

Proof. Construct an auxiliary graph H on  $|\mathcal{Q}|$  vertices where ij is an edge if the paths  $Q_i$  and  $Q_j$  are incident. Since  $|\mathcal{Q}| > R(2 \cdot T_1(L, \frac{1}{2p}), k-1)$ , Ramsey's theorem ensures that H contains a clique of size  $2 \cdot T_1(L, \frac{1}{2p}) + 1$  or a stable set of size k. If there is a stable set S of size k, then the set  $\{Q_i \mid i \in S\}$  provides a collection of k independent  $\alpha$ -good unimodal paths and then the conclusion holds. Thus we may assume that H contains a clique K of size  $2 \cdot T_1(L, \frac{1}{2p}) + 1$ , *i.e.*, there exist  $2 \cdot T_1(L, \frac{1}{2p}) + 1$  paths of  $\mathcal{Q}$  which are pairwise incident. We denote them  $Q_1, \ldots, Q_{2 \cdot T_1(L, \frac{1}{2p}) + 1$ . Without loss of generality, we may assume that  $Q_i$  is a unimodal path with index i.

By definition of unimodal paths of index i, the path  $Q_i$  is contained in the (i-1)th extracted graph. Moreover only endpoints of  $Q_i$  and their fathers may be incident to vertices contained in the *i*th extracted graph. Thus, for every i < j, any edge between  $Q_i$  and  $Q_j$  intersects the endpoints of  $Q_i$  or their fathers. Since Q is  $\alpha$ -good, there is no edge between an endpoint of  $Q_i$  and a vertex of  $Q_j$  by (1). Thus every edge between  $Q_i$  and  $Q_j$  intersects the father of an endpoint of  $Q_i$ .

We set  $Q_1 = \{Q_1, \ldots, Q_{T_1(L, \frac{1}{2p})}\}$  and  $Q_2 = \{Q_{T_1(L, \frac{1}{2p})+1}, \ldots, Q_{2:T_1(L, \frac{1}{2p})+1}\}$ . The exterior vertices of  $Q_j \in Q_2$  are the vertices v of  $Q_j$  incident to a vertex u of  $Q' \in Q_1$ . We denote by  $F_j$  the set of exterior vertices of  $Q_j \in Q_2$ .

**Claim 4.** At most  $T_1(L, \frac{1}{2n})$  paths of  $\mathcal{Q}_2$  have at most p exterior vertices.

Proof. Let B the union of the  $F_j$  for every  $j \in Q_2$  satisfying  $|F_j| \leq p$ . Assume by contradiction the size of B is at least  $T_1(L, \frac{1}{2p})$  (note that the size of B is at least the number of paths of  $Q_2$  satisfying  $|F_j| \leq p$ ). Let  $A = \{f : f \text{ is a father of an endpoint of } Q \in Q_1\}$ . We have  $|A| = 2|Q_1| > T_1(L, \frac{1}{2p})$ . Remind that, as we already noticed, every edge from  $Q_1$  to  $Q_2$ intersects a vertex of A. Since there is an edge between every pair of paths, the number of edges of the bipartite graph on vertex set  $A \cup B$  is at least  $\frac{1}{2p}|A| \cdot |B|$ . Theorem 13 ensures that G contains a  $K_{L,L}$  as subgyraph, a contradiction.

Since  $Q_2$  contains  $T_1(L, \frac{1}{2p}) + 1$  paths, Claim 4 ensures that there exists  $Q \in Q_2$  such that Q has more than p exterior vertices. We set an arbitrary order on Q (from an endpoint to the other). Let  $X = \{x_1, \ldots, x_p\}$  be the first p exterior vertices of Q in increasing order. Note that  $x_1$  and  $x_p$  are not endpoints of Q. Indeed, by point (1), no vertex of  $Q_1 \in Q_1$  is incident to an endpoint y of Q, *i.e.* y is not an exterior vertex. Moreover  $x_1$  and  $x_p$  are not fathers of endpoints of Q. Indeed, by point (3), no vertex of  $Q_1 \in Q_1$  is incident to the father of an endpoint of Q.

Every vertex  $v \notin (Q \cup \{x\})$  has less than k neighbors in Q. Indeed, the path Q plus the vertex x is an induced cycle (if a father of an endpoint of Q is incident to x, we shortcut the cycle in order to obtain an induced cycle). Since G does not contain a k-wheel, v is incident to at most k - 1 vertices of Q. Let  $Q_1 \in Q_1$ . Since at most 2 vertices of  $Q_1$  may be incident to Q (the fathers of the endpoints of  $Q_1$ ), there are at most 2k - 2 edges from  $Q_1$  to X.

We create the following auxiliary graph H'. The vertex set of H' is  $A \cup B$  where  $A = |Q_1|$ and  $|B| = \frac{p}{2k} \ge 4k^2(32k+2)$ . We put an edge between  $a_i$  and  $b_j$  if the path  $Q_i \in Q_1$  is incident



Figure 7: Let T = (a, b, a') be a triplet of  $\mathcal{T}$ . The bold path is the path  $Q_T$ .

to  $X_j = \{x_{2kj+1}, \ldots, x_{2k(j+1)-1}\}$ . Since every path  $Q_i \in Q_1$  is incident to at most 2k-2 vertices of X, every vertex of A has degree at most 2k-2 in B. Moreover, since  $X_j$  has size 2k-1and every vertex of X is incident to some  $Q_i \in Q_1$ , every vertex of B is incident to at least 2 vertices of A. Indeed, all the vertices of  $X_j$  cannot be incident to the same  $Q_i$  since  $Q_i$  is incident to at most 2k-2 vertices of X. Let us prove the following claim.

**Claim 5.** There are k pairwise disjoint triplets  $(a_1, b, a_2) \in A \times B \times A$  of H' which are independent in H'.

Proof. Remind that  $|B| \ge 4k^2(32k+2)$ . Let  $\mathcal{T}_0$  be a collection of triplets (not necessarily independent) initialized to the empty set. Let b be a vertex of B. Since b has degree at least 2, let  $a_1, a_2$  be two neighbors of b. We add  $(a_1, b, a_2)$  in  $\mathcal{T}_0$ . Then, we delete  $a_1$  and  $a_2$  from A and  $N(a_1) \cup N(a_2)$  from B. Since the degree of both  $a_1$  and  $a_2$  is at most 2k, at most 4k vertices of B have been deleted. We repeat this procedure until B is empty. Since at most 4k vertices are deleted from B at each step, the final size of  $\mathcal{T}_0$  is at least  $32k^2 + 2k$ .

By construction, the triplets of  $\mathcal{T}_0$  are pairwise disjoint. Let us show that  $\mathcal{T}_0$  admits k independent triplets. We construct a directed graph D on vertex set  $\mathcal{T}_0$  where there is an arc from  $T_1$  to  $T_2$  if a vertex of  $T_1 \cap A$  is incident to the vertex of  $T_2 \cap B$ . Every vertex of  $T \cap A$  is incident to at most 2k vertices of B. Thus each vertex of  $T \cap A$  "creates" at most 2k out-arcs. Since  $|T \cap A| = 2$ , the out-degree of T is at most 4k. Thus D has at most  $4k|\mathcal{T}_0|$  arcs.

We now need the following remark: every graph on n vertices with  $\beta n$  edges has at least n/2 vertices of degree at most  $4\beta$ . Indeed, assume by contradiction that more than n/2 vertices have degree at least  $4\beta$ . Then the sum of the degrees of the vertices of the graph is more than  $(4\beta) \cdot \frac{n}{2} = 2\beta n$ . Thus the graph has more than  $\beta n$  edges, a contradiction.

Applying this remark to D ensures that at least  $\frac{|\mathcal{T}_0|}{2} \ge 16k^2 + k$  vertices of  $\mathcal{T}_0$  have degree at most 16k in D. Thus D has a stable set of size at least  $\frac{16k^2+k}{16k+1} \ge k$  (we just peel the graph by selecting any vertex of degree at most 16k and deleting its neighborhood). This stable set gives the desired collection of triplets.  $\Box$ 

Let  $\mathcal{T}$  be a collection of triplets of the bipartite graph H' satisfying the conclusion of Claim 5. Let T = (a, b, a') be a triplet of  $\mathcal{T}$ . Let us define the path  $Q_T$  as follows (see Figure 7 for an illustration). By definition of H', there exist vertices  $y_a^i$  and  $y_{a'}^j$  which are respectively fathers of endpoints of  $Q_a$  and  $Q_{a'}$ , denoted by  $y_a$  and  $y_{a'}$ , such that both  $y_a^i$  and  $y_{a'}^j$  are incident to at least one vertex in  $\{x_{2kb+1}, \ldots, x_{2k(b+1)-1}\}$ . Let  $x_a$  be a neighbor of  $y_a^i$  in  $\{x_{2kb+1}, \ldots, x_{2k(b+1)-1}\}$ . And let  $x_{a'}$  be a neighbor of  $y_{a'}^j$  in  $\{x_{2kb+1}, \ldots, x_{2k(b+1)-1}\}$ . them is incident to a vertex of the  $x_a x_{a'}$ -subpath of Q (*i.e.*,  $x_a$  and  $x'_a$  are chosen as close as possible). Note that we may have  $x_a = x_{a'}$ . We denote by  $Q_{x_a x_{a'}}$  the  $x_a x_{a'}$ -subpath of Q. Let  $Q_T$  be the following path between  $y_a$  and  $y_{a'}$ :  $y_a y_a^i x_a Q_{x_a x_{a'}} x_{a'} y_{a'}^j y_{a'}$ .

Note that any endpoint y of  $Q_T$  is an endpoint of a path  $Q_i \in \mathcal{Q}_1$ . Moreover the father of yin  $Q_T$  is the father of y in  $Q_i$ . Note moreover that if y, y' are endpoints of respectively  $Q_T$  and  $Q_{T'}$  with  $y \neq y'$ , then y and y' are in distinct paths of  $\mathcal{Q}_1$ . Let us now prove that the collection  $\mathcal{P}$  of paths  $Q_T$  for every triplet  $T \in \mathcal{T}$  is a collection of independent  $2\alpha$ -good unimodal paths.

Unimodal paths. For every triplet T = (a, b, a'), the path  $Q_T$  is unimodal. To prove it, we just have to show that  $Q_{x_a x_{a'}}$  is not incident to  $H_s$ . As we already observed,  $x_1$  and  $x_p$  (and then all the vertices of X) are neither endpoints of Q or fathers of endpoints of Q. Thus,  $Q_{x_a x_{a'}}$  is not incident to any vertex of  $H_s$  since Q is a unimodal path. Thus  $Q_T$  is unimodal.

Points (1), (2) and (3). Let  $Q_{T_1} \in \mathcal{P}$ . Let y be an endpoint of  $Q_{T_1}$  and  $y^i$  be its father in  $Q_{T_1}$ and z be the extended neighbor of y. Now let f be the father of an endpoint of  $Q_{T_2}$  with  $T_2 \in \mathcal{P}$ with  $f \neq y^i$ . Let us prove that f is not incident to  $\{y, z, y^i\}$  which will prove (1), (2) and (3). There exists  $Q_1, Q_2 \in \mathcal{Q}_1$  with  $Q_1 \neq Q_2$  such that f is a father of an endpoint of  $Q_1$  and y is an endpoint of  $Q_2$ . Remind moreover that  $y^i$  is the father of y in  $Q_2$ . By (1) for  $\mathcal{Q}$ , fy is not an edge. By (2) for  $\mathcal{Q}$ , fz is not an edge and by (3) for  $\mathcal{Q}$ ,  $fy^i$  is not an edge. Since it holds for any endpoint y and and father f of an endpoint of  $Q_T \in \mathcal{Q}$ , all of (1), (2) and (3) hold.

Point (4). Let  $Q_T \in \mathcal{P}$ . Let y be an endpoint of a path of  $\mathcal{P}$  and z be its extended neighbor. As we already observed, the path  $Q_T$  is unimodal, thus at most two vertices of  $Q_T$  can be incident to N(z), the two fathers  $f_1, f_2$  of the endpoints of  $Q_T$ . Moreover,  $f_1, f_2$  are fathers of endpoints of respectively  $Q_1, Q_2 \in \mathcal{Q}$  and z is an extended neighbor of an endpoint y of  $Q_3 \in \mathcal{Q}$ . Thus, by (4) for  $\mathcal{Q}, f_1$  is incident to at most  $\alpha |N(z)|$  vertices of N(z) and the same holds for  $f_2$ . Thus the path  $Q_T$  is incident to at most  $2\alpha |N(z)|$  vertices of N(z), which proves (4).

Independence of paths of  $\mathcal{P}$ . Let us finally show that for every  $T_1, T_2 \in \mathcal{T}$ , the paths  $Q_{T_1}$ and  $Q_{T_2}$  are independent. Let  $T = (a_1, b_1, a'_1)$  and  $T_2 = (a_2, b_2, a'_2)$ . Remind that  $b_1 \neq b_2$  by Claim 5. Without loss of generality we have  $b_1 < b_2$ . Let us denote by  $Q_1$  and  $Q_2$  the subpath of Q included in respectively  $Q_T$  and  $Q_{T'}$ .

Let us first show that there is no edge between  $Q_1$  and  $Q_2$ . Since  $b_1 \neq b_2$ ,  $Q_1$  and  $Q_2$  do not intersect. Since  $Q_1$  is a  $x_{2kb_1+1}x_{2k(b_1+1)-1}$ -subpath of Q and  $Q_2$  is a  $x_{2kb_2+1}x_{2k(b_2+1)-1}$ -subpath of Q (and since Q is induced), there is no edge between  $Q_1$  and  $Q_2$ . Indeed, the vertex  $x_{2k(b_1+1)}$ is between  $Q_1$  and  $Q_2$  in the path Q, so these paths are not adjacent.

Since (1) and (3) hold, an edge between  $Q_{T_1}$  and  $Q_{T_2}$  must have one endpoint in  $Q_1$  or in  $Q_2$  (or both). By symmetry, we may assume that an edge has an endpoint in  $Q_1$ . Since  $T_1$  and  $T_2$  are not adjacent in H', there is no edge between between the fathers of the endpoints of  $T_2$  and the set  $\{x_{2kb_1+1}, \ldots, x_{2k(b_1+1)-1}\}$ . By definition of X, it means that the fathers of the endpoints of  $T_2$  have no neighbors on  $Q_1$ . Thus the paths  $Q_{T_1}$  and  $Q_{T_2}$  are independent.

The combination of Lemmas 15, 16 and 17 ensures that if f(k, L) and ext(k, L) are large enough, then there exists a collection of  $k \frac{1}{4k}$ -good independent unimodal paths with endpoints in N(x). This precisely provides the conclusion of Lemma 9.

### References

 P. Aboulker and N. Bousquet. Excluding cycles with a fixed number of chords. Discrete Applied Mathematics, 180:11–24, 2015.

- [2] P. Aboulker, P. Charbit, N. Trotignon, and K. Vuskovic. Vertex elimination orderings for hereditary graph classes. *Discrete Math.*, In press, 2014.
- [3] P. Aboulker, M. Chudnovsky, P. Seymour, and N. Trotignon. Wheel-free planar graphs. Technical report, arxiv.org/abs/1309.7120, 2013.
- [4] P. Aboulker, F. Havet, and N. Trotignon. On wheel-free graphs. Technical report, arxiv.org/abs/1309.2113, 2013.
- [5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Mathematics, 164:51–229, 2006.
- [6] R. Diestel. Graph Theory. 2010.
- [7] E. Diot, S. Tavenas, and N. Trotignon. Detecting wheels. Applicable Analysis and Discrete Mathematics, 8:111–122, 2014.
- [8] P. Erdős. Graph theory and probability. Canad. J. Math, pages 34–38, 1959.
- [9] A. Gyárfás. Problems from the world surrounding perfect graphs. Zastos. Mat., pages 413–441, 1987.
- [10] T. Kővári, V. Sós, and P. Turán. On a problem of k. zarankiewicz. Colloq. Math., 3:50–57, 1954.
- [11] D. Kühn and D. Osthus. Induced subdivisions in  $K_{s, s}$ -free graphs of large average degree. Combinatorica, 24(2):287–304, 2004.
- [12] R. Thomas and P. Wollan. An improved linear edge bound for graph linkages. Eur. J. Comb., 26(3-4):309–324, April 2005.
- [13] C. Thomassen. On the presence of disjoint subgraphs of a specified type. Journal of Graph Theory, 12(1):101–111, 1988.
- [14] N. Trotignon. Perfect graphs: a survey. Technical report, arxiv.org/abs/1301.5149, 2013.
- [15] N. Trotignon and K. Vušković. A structure theorem for graphs with no cycle with a unique chord and its consequences. *Journal of Graph Theory*, 63(1):31–67, 2010.
- [16] A. Zykov. On some properties of linear complexes (in russian). Math. Sbornik., 24:163–188, 1949.