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Abstract

A wheel is an induced cycle C plus a vertex connected to at least three vertices of C.
Trotignon [14] asked if the class of wheel-free graphs is χ-bounded, i.e. if the chromatic
number of every graph with no induced copy of a wheel is bounded by a function of its
maximal clique. In this paper, we prove a weaker statement: for every `, the class of graphs
with no induced wheel and no induced K`,` is χ-bounded.

Moreover, we show that the chromatic number of every triangle-free graph with no K`,`

and no k-wheel (a cycle C plus a vertex incident to at least k vertices of C) is bounded.
We also give some applications of these results on the chromatic number of graphs with no
cycle with a fixed number of chords.

1 Introduction

All along this paper, we consider classes of graphs closed under induced subgraphs. For standard
notations and definitions on graphs, the reader is referred to [6]. Let H be a graph. We say that
a graph G is H-free is G does not contain H as an induced subgraph. The chromatic number
χ(G) of a graph G is the minimum number of colors needed to color the vertices of G in such
a way two incident vertices receive distinct colors (for standard notations and definitions on
graphs, the reader is referred to [6]). The clique number ω(G) of G is the maximum size of
a clique of G. In this paper, we investigate the gap between the chromatic number of G and
clique number of G. The inequality ω(G) ≥ χ(G) always holds since any pair of vertices of a
clique are incident and then receive distinct colors. In general, the converse of this inequality is
not satisfied. Erdős proved that there exist triangle-free graphs with arbitrarily large chromatic
number [8].

Chudnovsky et al. [5] characterized the class of graphs (closed by induced subgraphs) satis-
fying χ(G) = ω(G), a problem open for more than fifty years (this result is known as the Strong
Perfect Graph Theorem). In 1987, Gyárfás introduced the concept of χ-bounded classes [9]. A
class C of graphs is χ-bounded if there exists a function f such that any graph G ∈ C satisfies
χ(G) ≤ f(ω(G)). In its seminal paper, Gyárfás proved that the class of graphs with no induced
long path is χ-bounded. Since, χ-bounded classes have received a lot of attention.

∗Partially supported by ANR Project STINT under Contract ANR-13-BS02-0007.
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Figure 1: The graph R(3, 5). It is a wheel-free graph satisfying ω = 2 and χ = 4. Note that
χ(R(3, 5)) ≥ 4 since R(3, 5) has 13 vertices and has no stable set of size 5.

A k-wheel is an induced cycle C plus a vertex v connected to at least k vertices of C. Edges
between v and C are called the rays. A wheel is a 3-wheel and a propeller is a 2-wheel. Wheels
play a central role in the proof of the Strong Perfect Graph Theorem. Actually, more than
50 pages of the proof are devoted to treat wheels. It raises a natural question, first asked by
Trotignon (e.g. in [4, 14]): do things become simpler (from a coloring point of view) when we
consider wheel-free graphs? In particular, we can ask the following question:

Conjecture 1 (Trotignon [14]). The class of (induced) wheel-free graphs is χ-bounded.

Conjecture 1 is open even for triangle-free graphs. So far, the best lower bound on the
chromatic number of (triangle,wheel)-free graphs is due to Esperet and Stehĺık who noted that
there exists (triangle, wheel)-free graph of chromatic number is at least 4, using a construction
of Zykov [16]. Aboulker et al. noticed in [4] that it can also be deduced from the Ramsey graph
R(3, 5) represented in Figure 1.

While the structure of graphs with no wheel as a subgraph is well-known [13], there are
few structural results on induced wheel-free graphs. In this paper, we focus on induced-free
graphs. Chudnovsky proved that every non-empty induced wheel-free graph contains a vertex
whose neighborhood is a disjoint union of cliques (a proof can be found in [2]). More recently,
Aboulker et al. proposed a decomposition theorem for 3-connected planar wheel-free graphs [3].
Though, in general the structure of wheel-free graphs is complex since Diot et al. [7] proved
that recognizing wheel-free graphs is NP-complete.

Our contribution. In this paper, we prove that every graph of large chromatic number
contains either a triangle or a large complete bipartite graph or a wheel as an induced subgraph.
All along this paper, by “contains” we mean “contains as an induced subgraph” and by “free”
we mean “induced free”.

Theorem 2. There exists a function f such that every graph G of chromatic number at least
f(k, `) contains a triangle, or a k-wheel or a a K`,` (as induced subgraphs).

The case ` = 2 can be also stated as follows:

Corollary 3. For every k, there exists a constant ck such that every k-wheel-free graph of girth
at least 5 has chromatic number at most ck.

So k-wheels cannot be avoided if we want to construct graphs with large chromatic number
and large girth. In the case of wheels instead of k-wheels, we can extend this result for any
clique size. In other words, we show:

Theorem 4. For every integer `, the class of (wheel, K`,`)-free graphs is χ-bounded (where the
function depends on `).
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Related work. Kühn and Osthus proved [11] that every graph of large connectivity contains
an induced 1-subdivision of a graph of an arbitrarily large degree or a large complete bipartite
graph as a subgraph. In some sense, it means that the complexity of a graph of large degree
relies on the existence of complete bipartite graphs or of induced subdivisions of graphs of large
degree. Theorem 4 is a result of the same flavor: every graph of large chromatic number number
contains either a large complete bipartite graph or a wheel.

The class of k-wheel-free graphs is also related to the class of graphs with no cycle with a
fixed number of chords. Let C = x1, . . . , xm be a (not necessarily induced) cycle of G. A chord
of C is an edge xixj such that |i− j| 6= 1 modulo m. A k-cycle is a cycle with exactly k chords.
Trotignon and Vušković proved in [15] that the class of graphs with no 1-cycle is χ-bounded.
This result was extended to the class of graphs with no 2-cycle and the class of graphs with no
3-cycle by Aboulker and Bousquet in [1]. For graphs with no 3-cycle, a large (and technical)
part of the proof consists in proving that the chromatic number of (3-cycle, triangle)-free graphs
is bounded. Let us show that this result can be derived from Theorem 2.

Let G be a triangle-free graph. Theorem 2 with ` = 3 and k = 5 asserts that if the chromatic
number of G is at least f(3, 5) then the graph contains a triangle or a K3,3 or a 5-wheel. Since
G is triangle-free, one of the last two cases holds. If G contains a K3,3 then G contains a
cycle with exactly 3-chords (K3,3 is a cycle on six vertices with 3 chords). Now assume that
G admits a 5-wheel as an induced subgraph. Let x be the center of the wheel and y1, . . . , y5
be 5 consecutive neighbors of x on the induced cycle. There exists an induced path P from
y1 to y5 passing through y2, y3 and y4. Moreover y1 and y5 are not incident since otherwise
x, y1, y5 would be a triangle. Thus xPx is a cycle with precisely 3 chords: xy2, xy3 and xy4.
Note nevertheless that the bound obtained in [1] (χ ≤ 24) is better than the one provided by
Theorem 2.

This argument can be generalized to other cases. The graph K`,` is a cycle with `(` − 2)
chords. So the previous argument can be immediately generalized to prove the following:

Corollary 5. Let ` be an integer. There exists a constant c` such that every triangle-free graph
with no `(`− 2)-cycle has chromatic number at most c`.

So far, this result was known only for ` ≤ 3 [1, 15]. Thus Corollary 5 gives the first infinite
collection of integers for which this property holds.

Organization of the paper. In Section 2, we give notations and definitions related to ex-
tractions and subdivisions of a graph. In Section 3, we present the main ingredients of the proof
of Theorems 2 and 4. Section 4 is devoted to prove the technical lemmas stated in Section 3.

2 Preliminaries

Let G = (V,E) be a graph and let A,B be two disjoint subsets of vertices of G. The sets A
and B are incident if there exists an edge with one endpoint in A and one endpoint in B. Two
sets which are not incident are independent.

Extractions. A path P is a sequence of vertices x0, . . . , xk such that for every i ≤ k − 1,
xixi+1 is an edge. The endpoints of P are the vertices x0 and xk. The other vertices are called
internal vertices. The length of a path is its number of edges. The interior of P is the path
x1x2 . . . xk−1, i.e. the path P without its endpoints. Given two vertices x and y, the distance
between x and y is the length of a minimum path between x and y.
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Figure 2: The graph G2 is a 2-extracted graph of the graph G0.

Let z be a vertex. The set of vertices at distance exactly ` from z is called the `-th neighbor-
hood of z and is denoted by N`(z,G). We denote by G[N`(z)] the subgraph of G induced by the
vertices N`(z,G). A father (for z) of a vertex x ∈ N`(z,G) is a vertex of N`−1(z,G) incident to
x (it is a “father” of x if G is rooted in z). For every pair x, y of vertices in N`(z,G), it is easy to
see that there exists an induced xy-path Q with internal vertices in z∪N1(z,G)∪· · ·∪N`−1(z,G)
such that only the endpoints of the interior of Q are in N`−1(z,G) (it suffices to take the con-
catenation of a minimum xz-path and a zy-path and shortcut it if it is not induced). Since
there is no edge between non-consecutive levels, vertices of Q with neighbors in N`(z,G) are
either endpoints of Q or endpoints of the interior path of Q. Such paths are called unimodal
paths and are essential to find subdivided induced structures (see [1] for instance). Note that
the interior of a unimodal path may contain only one vertex. In the remaining of the paper, we
will not justify anymore the existence of unimodal paths between vertices of N`(z,G) and the
capital letter Q is devoted to denote unimodal paths.

Observation 6. Let G be a graph and z be an integer. There exists an integer ` such that
χ(G[N`(z)]) ≥ dχ(G)

2 e.

Proof. There is no edge between vertices of non consecutive neighborhoods of z. Indeed if there
is an edge between a vertex u of Ni(z,G) and a vertex v of Nj(z,G) with i < j, then there is
a path of length at most (i+ 1) from z to v, i.e. j = i+ 1. So neighborhoods at even distance
from z can be colored with the same set of colors. By symmetry, the same holds for vertices
at odd distance from z. Thus if for every ` the `-th neighborhood of z can be colored with at
most (dχ2 e − 1) colors, then G can be colored with at most χ− 1 colors, a contradiction.

A (1-)extracted graph G′ is an induced subgraph of G of chromatic number at least χ(G)
2 such

that there exists a vertex z and an integer ` satisfying G′ = G[N`(z)]. Observation 6 ensures
that every graph has an extracted graph. For every p ≥ 2, a p-extracted graph G′ of G is an
extracted graph of a (p− 1)-extracted graph of G (see Figure 2). In the following we denote by
G0, G1, G2, . . . , Gp a sequence of extracted graphs where G0 = G and for every i ≥ 1, the graph
Gi is an extracted graph of Gi−1. We denote by (zi, `i) a pair satisfying Gi = Gi−1[N`i(zi)].
Observation 6 ensures that χ(Gi) ≥ d χ2i e for every i ≤ p. An i-father of x ∈ Gp is a father of x
(for zi) in Gi−1. An i-unimodal path between x and y in Gi is a unimodal path between x and
y in Gi−1 for zi. The integer i is the index of the unimodal path.

Induced and non-induced bipartite graphs. In this paper, we consider forbidden induced
structures. However, for some particular graphs, prohibiting induced and non induced structures
are essentially equivalent. For instance, if G does not contain a clique Kp as a subgraph, then
G does not contain Kp as an induced subgraph. The same kind of results can be obtained for
complete bipartite graphs.

The Ramsey number R(k1, k2) is the maximum integer such that there exists a graph on
R(k1, k2) vertices with no clique of size k1 nor stable set of size k2. Ramsey numbers can be
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Figure 3: At the right, a 1-subdivision of K4. Important vertices are vertices of the left hand
side and subdivided vertices are vertices of the right hand side.

generalized as follows: R(k1, . . . , kp) is the maximum integer such that there exists an edge
p-coloring of the clique on R(k1, . . . , kp) vertices with no monochromatic clique of size ki and
of color i for every i ≤ p.1 Let us first prove the following observation.

Observation 7. Every (Kω,K`,`)-free graph has no KR(ω,`)+1,R(ω,`)+1 as a subgraph.

Proof. By contradiction. Let (A,B) be a complete bipartite graph where |A| = |B| = R(ω, `)+1.
By definition of R(ω, `), the set A contains either a clique on ω vertices or a stable set on `
vertices. The same holds for B. If A or B have a clique of size ω, the graph contains a clique
of size ω + 1 (this clique plus any vertex of the other part), a contradiction. If both A and B
have stable sets of size `, their union induces a K`,`, a contradiction.

In the following we will denote by L the integer R(ω, `) + 1. We have to keep in mind that
if G is K`,`-free then G does not contain KL,L as a subgraph.2

Subdivisions. A 1-subdivision of a graph H = (A,B) is a graph Hs with vertex set A ∪ B
where there is an edge between a ∈ A and b ∈ B if a is an endpoint of the edge b in H (see
Figure 3). Equivalently the graph Hs is the adjacency bipartite graph of H. Vertices of A are
important vertices and they “represent” the vertices of H while vertices of B are subdivided
vertices and they “represent” the edges of H.

The following statement is a direct corollary of a result of Kühn and Osthus [11].

Theorem 8 (Kühn, Osthus [11]). Let `, k be two integers. Every KL,L-free graph with chromatic
number at least d(k, L) has an induced 1-subdivision of a k-connected graph.

Proof. Kühn and Osthus proved in [11] that for every k, L, there exists a function d′(4k, L)
such that every graph of average degree degree at least d′(4k, L) with no KL,L as a subgraph
contains an induced 1-subdivision of a graph H of average degree at least 4k.

Now, let G be a graph satisfying χ(G) ≥ d′(4k, L). The deletion of the vertices of degree
at most d′(4k, L) − 1 does not modify the chromatic number. So the graph G has an induced
subgraph of average degree at least d′(4k, L). By [11], G contains a 1-subdivision of a graph of
average degree at least 4k. Mader proved that every graph with average degree at least 4k has
a k-connected subgraph (see [6] for a proof). So G contains a 1-subdivision of a k-connected
graph.

1When there are two colors, we usually consider that color 1 corresponds to an edge and color 2 to a non-edge.
2Note that, for triangle-free graphs, we have R(2, `) = ` − 1. Thus for Theorem 2 and Corollary 3, we have

L = `.
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Figure 4: The vertex x. The set Y is a subset of vertices incident to x. The extended neighbor
of yi is the unique neighbor of yi distinct from x in Hs. A collection of α-good unimodal path
see at most an α fraction of the gray vertices.

3 Structure of the proofs of Theorems 2 and 4

In this section, we give the main steps of the proofs of Theorems 2 and 4. The proofs of
technical lemmas are deferred to Section 4. Since both proofs follow the same scheme, we present
simultaneously a proof of both results. We will mention the places where slight modifications
have to be considered.

Let f, ext be two large enough functions3. Assume by contradiction that there exists a
(KL,L, k-wheel, triangle)-free graph G (resp. (KL,L, wheel)-free graph of clique number ω) of
chromatic number at least 2ext(k,L) · d(4 · f(k, L), L). Remind that L depends on ω.

Let Gext(k,L) be an ext(k, L)-extracted graph of G. Observation 6 ensures that the chro-

matic number of Gext(k,L) is at least χ(G)

2ext(k,L) and then we have χ(Gext(k,L)) ≥ d(4 · f(k, L), L).
Theorem 8 ensures that Gext(k,L) contains as an induced subgraph a 1-subdivision Hs of a
f(k, L)-connected graph H.

Let x be an important vertex of Hs and Y = {y1, . . . , yf(k,L)} be a subset of neighbors
of x in Hs. The set Y exists since the degree of any important vertex of Hs is at least the
connectivity of H. The extended neighbor zi of yi is the unique neighbor of yi distinct from x
in Hs (informally yi is “the edge” xzi) (see Figure 4).

Our goal consists in building a wheel of center x. Let us briefly explain how we will proceed.
Since H has large connectivity, we can find vertex-disjoint paths Q between the extended
neighbors of Y . Since Hs is a 1-subdivision of H, paths of Q are independent in Hs.

4 The paths
of Q can be completed into independent paths between vertices of Y using edges between the
vertices of Y and their extended neighbors. Since x is incident to all the vertices of Y , if we can
transform this collection of paths into an induced cycle, we obtain a wheel. However, vertices
of Y only have two neighbors in Hs; one of them is x (we want x to be the center of the wheel,
so it cannot be on the cycle) and the other neighbor already is in a path of Q. Thus we need
to leave Hs in order to transform Q into a cycle. Actually, we will close this collection of paths
into a cycle using unimodal paths. These unimodal paths have to be pairwise independent and
“independent enough” with Hs to obtain an induced cycle. Actually, we need the following.

Let α be a positive constant. A collection of unimodal paths Q with endpoints in Y ′ ⊆ Y
is α-good if the following holds:

3We will not explicit functions f and ext. Though, in the statement of each lemma, we give the conditions
on f and ext we need to prove it. Thus, if the reader is interested on these functions, he can compute them by
combining these conditions. Note however that f and ext are exponential functions.

4By abuse of notation, we will consider that paths of H are paths of Hs since there is a natural function
transforming paths of H into paths in Hs.
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Figure 5: (a) The path Q does not satisfy (1). (b) The path Q does not satisfy (2). (c) Since
both endpoints of the bold edge are fathers of endpoints of y, (3) is not satisfied.

(1) For every y ∈ Y ′, the unimodal path Q ∈ Q with endpoint y is the unique path of Q
incident to y.

(2) For every y ∈ Y ′, no vertex of Q ∈ Q is incident to the extended neighbor of y (except y).

(3) For every Q,Q′ ∈ Q, any father of an endpoint of Q is not incident to any father of an
endpoint of Q′.

(4) For every y ∈ Y ′ and every path Q ∈ Q, the set Q is incident to at most α · |N(z,Hs)|
vertices of N(z,Hs) where z is the extended neighbor of y.

Points (1), (2) and (3) are illustrated in Figure 5. A collection Q of unimodal α-good paths is
independent if for every Q,Q′ ∈ Q, the sets Q and Q′ are independent. To avoid cumbersome
notations, we will omit Hs in the definition of the neighborhoods when no confusion is possible.
The most technical part of this paper consists in proving the following lemma.

Lemma 9. If f(k, L) and ext(k, L) are large enough, then every (triangle, k-wheel)-graph and
every wheel-free graph contains

• A complete bipartite graph KL,L as a subgraph.

• Or a collection of dk2e independent 1
4k -good unimodal paths with endpoints in Y .

Section 4 is devoted to prove Lemma 9. Actually, in Section 4.1, we show that we can
extract a large collection of 1

8k -good unimodal paths and in Section 4.2, we will show that we
can transform it into a collection of k 1

4k -good independent unimodal paths.
Two vertices u, v of Hs are locally disjoint if N(u) ∩ N(v) does not contain an important

vertex. Informally it means that if u is an important vertex then v is not a subdivided vertex
incident to u and if both u and v are subdivided vertices then the “edges” u and v of H do
not share an endpoint. A vertex u ∈ V (G) \Hs has k locally disjoint neighbors if there are k
pairwise locally disjoint vertices in N(u) ∩Hs. Let us now recall the Linkage Theorem.

Theorem 10 (Linkage [12]). Let k ≥ 0. Let G be a 10k-connected graph. For every set of
(non necessarily disjoint) vertices x1, . . . , xk, y1, . . . yk, there exist interior vertex-disjoint paths
P1, . . . , Pk such that for every i ≤ k, Pi is a path from xi to yi.

Lemma 11. Assume that H is 10k-connected. If a vertex u /∈ G \ Hs has k locally disjoint
neighbors in Hs then G has a k-wheel.
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Proof. Assume that a vertex u /∈ Hs has k locally disjoint neighbors u1, . . . , uk. Let X and Y
be two subsets of vertices of H defined as follows: if ui is an important vertex, we set xi = ui
and yi−1 = ui (in order to simplify notations we denote in the same way vertices of H and
important vertices of Hs). If ui is a subdivided vertex then xi and yi−1 are the two important
vertices incident to ui in Hs. Indices have to be understood modulo k.

Since H is 10k-connected, Theorem 10 ensures that there exists a collection Pi of interior
vertex-disjoint paths in H between xi and yi for every i ≤ k. The concatenation of these paths
can be transformed into a cycle of H (we just have to add the edges yi−1xi if yi−1 6= xi). Any
cycle of H can be transformed into an induced cycle of Hs (where each edge is subdivided once).
So there exists an induced cycle of Hs passing through all the vertices u1, . . . , uk. The vertex u
has at least k vertices on that cycle, which provides a k-wheel.

We now have all the ingredients to conclude.

Lemma 12. Assume that H is (4k2 + 10k)-connected and k ≥ 3. Let x be an important vertex
of Hs. If there are dk2e independent 1

2k -good unimodal paths Q with endpoints in N(x), the
graph G has a k-wheel.

Proof. Let Q = {Q1, · · · , Qd k
2
e} be a collection of independent 1

2k -good unimodal paths with

endpoints in N(x). For every i ≤ dk2e, we denote by y2i−1 and y2i the endpoints of Qi and by
f2i−1 and f2i their respective fathers in Qi.

Since Qi is unimodal, if u ∈ Qi is incident to Hs then u is either f2i−1 or f2i. Thus at most
2dk2e ≤ k + 1 vertices of Q have neighbors in Hs. Lemma 11 ensures that if there exists i such
that fi has at least k locally disjoint neighbors in Hs, then G contains a k-wheel. So we can
assume that, for every i, the vertex fi has less than k locally disjoint neighbors in Hs. Let Fi
be a set of locally disjoint neighbors of fi of maximum size. Let Wi defined as follows: if z ∈ Fi
is an important vertex, add z in Wi. If z is a subdivided vertex, add both neighbors of z in

Wi. Let W =
⋃2d k

2
e

i=1 Wi. Since |Wi| < 2k, we have |W | < 2k2 + 2k. Let H1 be the subgraph
of H where the vertices of W have been deleted (since W only contain important vertices, it
corresponds to vertices of H). We denote by H1

s the subgraph of Hs induced by the vertices
and the edges of H1.

Claim 1. No vertex of Qi is incident to H1
s .

Proof. Assume by contradiction that fi is incident to u ∈ H1
s . Let ui ∈ Fi. Let us prove that

u is not incident to ui. Indeed, if ui is a subdivided vertex, both neighbors of ui have been
deleted in H1 and then in H1

s . If ui is an important vertex, then ui has been deleted from H,
and then also are the edges incident to ui, i.e. the neighbors of ui in Hs. Thus N(u) ∩N(ui)
is empty for every i, and then u can be added in Fi, contradicting the maximality of Fi.

For every i, let zi be the extended neighbor of yi. Since Q is 1
2k -good, at most |N(zi)|

2k vertices

of N(zi) are in the neighborhood of Qj for every j ≤ dk2e. Let u be a vertex of N2(zi). The
vertex u is hit if there exists j such that the subdivided vertex between z and u is in N(Qj).

Otherwise u is safe. The number of vertices of N2(zi) hit by Qj is at most |N(zi)|
2k since Q is

1
2k -good. Since Q contains less than k paths, at least a half of the vertices of N2(zi) are safe.
Since H is 4k2 + 10k connected, there are at least 2k2 + 5k safe vertices in N2(zi) denoted by
Zi.

Delete from H1 the vertices Y ∪ {x} and denote by H ′ the resulting graph. Since at most
(2k2 + 3k + 3) vertices of H have been deleted, at least 2k − 3 vertices of Zi are in H ′. For
every i, let si be a vertex of Zi ∩H ′ such that si 6= sj for every i 6= j (since i ≤ k + 2, such a
collection of vertices exists).
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Figure 6: The path Q1 is not self α-good for two reasons. First a vertex of Q1 is incident to z
(the bold edge). Secondly, the vertices of Q1 are incident to more than α|N(z)| neighbors of z.

Since at most (2k2 + 3k+ 3) vertices of H have been deleted in H ′, the graph H ′ is at least
(2k2 + 7k− 3)-connected. By Theorem 10, there is a collection of interior vertex-disjoint paths
Pi between s2i and s2i+1 (modulo 2dk2e) for every i ≤ dk2e. The path Pi can be completed into a

y2iy2i+1-path Ri. Indeed, for every j ≤ 2dk2e, we just add the vertices yj , zj and the subdivided
vertex incident to both zj and sj to obtain the desired paths.

Note that C = Q1R1Q2 . . . Rd k
2
e is a cycle. Let us prove that this cycle is induced. First

note that, by assumption, the paths Qi are independent since Q is a collection of independent
paths. Since Hs is a 1-subdivision of H, the paths Pi are independent. Since si 6= sj for i 6= j,
the paths Ri are also vertex-disjoint and independent. So we just have to show that there is
no edge between Qi and Rj . Since Q is 1

2k -good, no vertex of Qi is incident to yj for any j
by (1) (except the path with endpoint yj). Moreover, no Qi is incident to zj for any j by (2).
Since sj is safe, no vertex of Qi is incident to the subdivided vertex incident to zj and sj . Since
Pj is a path included in H1

s , Claim 1 ensures that no vertex of Qi is incident to Pj . Thus C
is an induced cycle and the vertex x has at least k neighbors on C, i.e., the graph contains a
k-wheel.

4 Extracting good unimodal paths

This section is devoted to prove Lemma 9. Before proving it, let us first recall a well-known
result of extremal graph theory.

Theorem 13 (Kövári, Sós, Turán [10]). Let ` be an integer.

• [Bipartite version] There exists a function T1 such that for every `, ε, every K`,`-free
bipartite graph ((A,B), E) where both A,B have size at least T1(`, ε) has less than ε·|A|·|B|
edges.

• [Graph version] There exists a function T2 such that for every `, ε and every graph with
|V | = n ≥ T2(`, ε) with no K`,` as a subgraph has less than ε ·

(
n
2

)
edges.

4.1 Good unimodal paths

Let f(k, `) and ext(k, `) be two functions detailed later. All along this section we assume that
we are in the following setting:
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Let G be a graph. In an ext(k, L)-extracted subgraph of G, there exists a subgraph
Hs such that Hs is an induced 1-subdivision of a f(k, L)-connected graph H. Let x
be an important vertex of Hs and Y be a subset of N(x) ∩Hs of size f(k, L).

A path Q is self α-good if Q = {Q} satisfies points (1), (2) and (4) of the definition of α-good
paths. A collection of paths Q is self α-good if every path of Q is self α-good. Note that any
collection of α-good paths is self α-good.

Lemma 14. Let i ≤ ext(k, L). Let f(k, L) ≥ 20. If G is a wheel-free graph, at most one vertex
y of Y has a father yi incident to its extended neighbor z.

Proof. Let y be a vertex of Y and z be the extended neighbor of y. Assume that a ith father
yi of y is incident to both y and z. First assume that yi has another neighbor w in Hs. If
w is a subdivided vertex, we denote by w1 and w2 the two neighbors of w. Otherwise we set
w1 = w and w2 = w. Since H is at least 20-connected, Theorem 10 ensures that there are
two vertex-disjoint paths P1, P2 in H such that P1 is an xw1-path and P2 is a w2z-path. Thus
P1wP2 provides an induced xz-path in Hs. The addition of y to this path provides an induced
cycle in Hs. Since yi is incident to at least three vertices on it, the graph contains a wheel. So
we can assume that N(yi) ∩Hs = {y, z}.

Assume now that y2 ∈ Y with y2 6= y has a father yi2 incident to its extended neighbor z2.
The previous paragraph ensures that N(yi2) ∩Hs = {y2, z2}. Let Q be a unimodal path path
between z and y2 passing through yi and yi2. Remind that, by definition of unimodal paths, yi

and yi2 are the only vertices of Q incident to Hs. Let P be a path in Hs\{z2, y} between x and z
(it exists since H \{z2, y} is 18-connected). Since N(yi)∩Hs = {y, z} and N(yi2)∩Hs = {y2, z2},
the concatenation of P and Q (plus the edge y2x) provides an induced cycle. Moreover, the
vertex y is incident to 3 vertices on it, i.e., G contains a wheel, a contradiction.

Note that, for triangle-free graphs, the vertex yi cannot be incident to both y and z and
then Lemma 14 can be avoided. Lemma 14 is the unique lemma where we specifically need
to forbid (3)-wheels and not k-wheels. In the remaining steps, we can prove the existence of a
KL,L as a subgraph or of an induced k-wheel except in the following lemma where we need to
apply Lemma 14.

Lemma 15. Let G be a (triangle, K`,`)-free or a (wheel, K`,`)-free graph and p an integer. Let

f(k, L) ≥ 2
(
R
(1

3
· T2(L,

1

10
), 2 · T1(L,α)

)
+ 2p+ 2

)
and ext(k, L) ≥ p+ 2 · T1(L,α)

then there exists a collection of p endpoint-disjoint self 2α-good unimodal paths of distinct indices
with endpoints in Y .

Proof. Let i ≤ ext(k, L). Let yi be a ith father of y ∈ Y and z be the extended neighbor of
y. The vertex y is a candidate for i if yi is incident to at most α · |N(z)| vertices of N(z) (for
simplicity we omit ∩Hs).

Claim 2. For every y ∈ Y , there are at most T1(L,α) integers i for which y is not a candidate.

Proof. Let y ∈ Y . Assume by contradiction that there are T1(L,α) + 1 integers i for which y
is not a candidate. Let F = {yi | y is not a candidate for i} and let Zy be the set of neighbors
of the extended neighbor of y. For every i such that y is not a candidate for i, the vertex yi

has at least α|Zy| neighbors in Zy. Thus the bipartite graph on vertex set (Zy, F ) has at least
α · |F | · |Zy| edges. Since |Zy| ≥ f(k, L) > T1(L,α) and |F | > T1(L,α), Theorem 13 ensures
that G has a KL,L, a contradiction.
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By Claim 2, the number of indices i such that at least half of the vertices of Y are not
candidate for i is at most 2 ·T1(L,α). Since ext(k, L) ≥ 2 ·T1(L,α) + p, it means that there are
at least p integers I such that, for every i ∈ I, at least half of the vertices of Y are candidates
for i. Let i ∈ I. Let Yi be the subset of Y such that y ∈ Yi if y is a candidate for i. We have

|Yi| ≥
f(k, L)

2
≥ R

(1

3
· T2(L,

1

10
), 2 · T1(L,α)

)
+ 2p+ 2.

Claim 3. Let i ∈ I. Let Y ′ be a subset of Yi where at most 2p vertices have been deleted. There
exists a self 2α-good unimodal path of index i with endpoints in Y ′.

Proof. If G is a triangle-free graph then no vertex if incident to both y and its extended neighbor.
If G is a wheel-free graph then Lemma 14 ensures that there exists at most one vertex y ∈ Y ′
such that the ith father yi of y is incident to the extended neighbor of y. So, for both assumptions
of Lemma 15, free to delete at most one vertex of Y ′, we can assume that for every y ∈ Y ′, the
vertex yi is not incident to the extended neighbor of y. Note that

|Y ′| ≥ R
(1

3
· T2(L,

1

10
), 2 · T1(L,α)

)
+ 1.

For every y ∈ Y ′, we denote by z the extended neighbor of y. We create an auxiliary graph H
on vertex set Y ′. We color the edges of H with 3 colors. Let a, b ∈ Y ′:
• If yia is incident to {yb, zb} or yib is incident to {ya, za} then we color ab with color 1.

• If yia is incident to at least α|N(zb)| vertices of N(zb) or yib is incident to at least α|N(za)|
vertices of N(za), we color ab with color 2.

• Otherwise, we color ab with color 3.

(remind that two sets are incident if there is at least one edge between them). Our goal
consists in showing that there is an edge of color 3. Since |Y ′| > R(13 · T2(L, 1

10), 2 · T1(L,α)),
Ramsey’s theorem ensures that there is an edge of color 3 or there is a clique of color 1 of size
1
3 · T2(L, 1

10) + 1 or there is a clique of color 2 of size T1(L,α) + 1.
Assume first that H has a monochromatic clique K of color 1 of size 1

3 ·T2(L, 1
10)+1. Consider

the restriction of G to the vertices ∪b∈K{yb, zb, yib}. By construction, for every a, b ∈ K, there
is an edge between {ya, za, yia} and {yb, zb, yib}. Thus this graph contains 3|K| vertices and at

least
(|K|

2

)
edges (plus 2|K| edges since {yb, zb, yib} induces 2 edges for every b ∈ K). Thus there

are at least 1
9 ·
(
3|K|
2

)
edges. Since 3|K| > T2(L,

1
9), the graph contains a KL,L as a subgraph by

Theorem 13, a contradiction.
Assume now that H has a monochromatic clique K of color 2 of size 2 · T1(L,α) + 1. For

every a, b ∈ K, either yib is incident to at least α|N(za)| vertices of N(za) or yia is incident to

at least α|N(zb)| vertices of N(zb). Thus there exist a ∈ K and K ′ ⊆ K of size at least |K|−12
such that for every b ∈ K ′, the vertex yib is incident to at least α|N(za)| vertices of N(za).
Let F = {yib with b ∈ K ′} and Za = N(za). The bipartite graph induced by F ∪ Za has at
least α|F | · |N(za)| edges. Moreover, |K ′| ≥ T1(L,α) and |Za| ≥ f(k, L) > T1(L,α). Thus
Theorem 13 ensures that G contains a KL,L as a subgraph, a contradiction.

So there is an edge ab of color 3. Let Qi be an i-unimodal path between ya and yb passing
though yia and yib. Remind that only yia and yib can be incident to vertices in Hs. Since the edge
has color 3, yia is not incident to {yb, zb}. Moreover yib is not incident to zb (at most one vertex
of Yi can satisfy this by Lemma 14 and it has been deleted from Y ′). Moreover the vertex yia is
incident to at most α·|N(zb)| vertices of N(zb) since the edge has color 3. Since yb is a candidate
for i, yib is incident to at most α · |N(zb)| vertices of N(zb). Thus there are at most 2α · |N(zb)|
edges from Qi to N(zb). By symmetry, the same holds for za. So Qi is self 2α-good.
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To conclude, we apply iteratively Claim 3. Initially we set Y ′i = Yi for every i ∈ I. When
we find a self 2α-good unimodal path Qi of index i, we delete the endpoints of Qi from Y ′j for
every j 6= i. We repeat this operation p times for p distinct values of i ∈ I. At any step, the size
of Y ′i is at least |Yi| − 2p and then Claim 3 ensures that there is a self 2α-good path of index i,
which concludes the proof.

Let us now show that we can extract from any collection of self α-good paths a collection
α-good paths. The proof is similar to the one of Lemma 15 but is slightly simpler.

Lemma 16. Assume that f(k, L) > T1(L,
α
2 ). Let G be a K`,`-free graph. Any collection Q of

h(p) := R
(
1
6 · T2(L, 1

36), 2 · T1(L, α2 ), p− 1
)

+ 1 self α-good-unimodal paths has a sub-collection

of p α-good increasing unimodal paths.

Proof. Let us denote by Q1, . . . , Qh(p) the paths of Q. For every i ≤ h(p), we denote by yi,1
and yi,2 the endpoints of Qi, by yii,1 and yii,2 their respective fathers in Qi and by zi,1 and zi,2
their respective extended neighbors. We denote by Fi the set {yi,1, yi,2, yii,1, yii,2, zi,1, zi,2}. We
create an auxiliary graph H on vertex set {1, . . . , h(p)}. We color the edges of H with 3 colors.
For every a, b:

• If there is an edge between the sets Fa and Fb, then we color ab with color 1.

• If Qa is incident to at least α|N(zb,j)| vertices of N(zb,j) for some j ∈ {1, 2} or Qb is
incident to at least α|N(za,j)| vertices of N(za,j) for some j ∈ {1, 2}, then we color ab
with color 2.

• Otherwise, we color ab with color 3.

Since h(p) > R(16 · T2(L, 1
36), 2 · T1(L, α2 ), p− 1), Ramsey’s theorem ensures that H contains

a clique of color 1 of size 1
6 ·T2(L, 1

36) + 1 or a clique of color 2 of size 2 ·T1(L, α2 ) + 1 or a clique
of color 3 of size p.

Assume that H has a monochromatic clique K of color 1 of size 1
6 ·T2(L, 1

36) + 1. The proof
holds as in Lemma 15. Let G′ be the subgraph of G induced by ∪a∈KFa. The graph G′ has
6|K| > T2(L,

1
36) vertices and at least

(|K|
2

)
+ 4|K| edges. Thus the density of edges is at least

1
36 , and then the graph contains a KL,L as a subgraph by Theorem 13, a contradiction.

Assume now that H has a monochromatic clique K of color 2 of size 2 · T1(L, α2 ) + 1. Let
j ∈ {1, 2} and a, b ∈ K. The vertex b ∈ H is (a, j)-dense if Qb is incident to at least α|N(za,j)|
vertices of N(za,j). The vertex b is a-dense if it is (a, 1)-dense or (a, 2)-dense. For every pair
a, b ∈ K, a is b-dense or b is a-dense since ab is colored with 2. Thus there exist a ∈ K and
K ′ ⊆ K of size at least |K|−12 ≥ T1(L, α2 ) such that for every b ∈ K, b is a-dense. So there are an
integer j ∈ {1, 2} and a subset K∗ of size |K ′|/2 such that, for every b ∈ K∗, b is (a, j)-dense.
Let F = {ybb,d|b ∈ K∗, d ∈ {1, 2}}. Note that |F | = 2|K∗| ≥ T1(L,

α
2 ). Moreover N(za,j) has

size at least f(k, L) > T1(L,
α
2 ). Consider the bipartite graph with vertex set F ∪ N(za,j). It

induces at least α · |K∗| · |N(za,j)| = α/2 · |F | · |N(za,j)| edges. Thus G contains a KL,L as a
subgraph by Theorem 13, a contradiction.

Thus there is a clique K of color 3 of size p. Since Q is self α-good, (1), (2) and (4) are
satisfied for the paths of K themselves. Since there is no edge of color 1 in K, (1), (2) and
(3) are satisfied. And since there is no edge of color 2 in K, point (4) is satisfied. Thus the
collection {Qi | i ∈ K} is a collection of α-good paths, which concludes the proof.
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4.2 Independent unimodal paths

We set p := 8k3(32k + 2).

Lemma 17. Let G be a (K`,`, k-wheel)-free graph. If there is a collection Q of size at least

R
(

2 · T1(L, 1
2p), k − 1

)
+ 1 of α-good unimodal paths of pairwise distinct indices with endpoints

in Y , there are k independent 2α-good unimodal paths with endpoints in Y .

Proof. Construct an auxiliary graph H on |Q| vertices where ij is an edge if the paths Qi and
Qj are incident. Since |Q| > R(2 · T1(L, 1

2p), k− 1), Ramsey’s theorem ensures that H contains

a clique of size 2 · T1(L, 1
2p) + 1 or a stable set of size k. If there is a stable set S of size k, then

the set {Qi | i ∈ S} provides a collection of k independent α-good unimodal paths and then
the conclusion holds. Thus we may assume that H contains a clique K of size 2 · T1(L, 1

2p) + 1,

i.e., there exist 2 · T1(L, 1
2p) + 1 paths of Q which are pairwise incident. We denote them

Q1, . . . , Q2·T1(L, 1
2p

)+1. Without loss of generality, we may assume that Qi is a unimodal path

with index i.
By definition of unimodal paths of index i, the path Qi is contained in the (i−1)th extracted

graph. Moreover only endpoints of Qi and their fathers may be incident to vertices contained
in the ith extracted graph. Thus, for every i < j, any edge between Qi and Qj intersects the
endpoints of Qi or their fathers. Since Q is α-good, there is no edge between an endpoint of
Qi and a vertex of Qj by (1). Thus every edge between Qi and Qj intersects the father of an
endpoint of Qi.

We set Q1 = {Q1, . . . , QT1(L, 1
2p

)} and Q2 = {QT1(L, 1
2p

)+1, . . . , Q2·T1(L, 1
2p

)+1}. The exterior

vertices of Qj ∈ Q2 are the vertices v of Qj incident to a vertex u of Q′ ∈ Q1. We denote by
Fj the set of exterior vertices of Qj ∈ Q2.

Claim 4. At most T1(L,
1
2p) paths of Q2 have at most p exterior vertices.

Proof. Let B the union of the Fj for every j ∈ Q2 satisfying |Fj | ≤ p. Assume by contradiction
the size of B is at least T1(L,

1
2p) (note that the size of B is at least the number of paths

of Q2 satisfying |Fj | ≤ p). Let A = {f : f is a father of an endpoint of Q ∈ Q1}. We
have |A| = 2|Q1| > T1(L,

1
2p). Remind that, as we already noticed, every edge from Q1 to Q2

intersects a vertex of A. Since there is an edge between every pair of paths, the number of edges
of the bipartite graph on vertex set A ∪ B is at least 1

2p |A| · |B|. Theorem 13 ensures that G
contains a KL,L as subgyraph, a contradiction.

Since Q2 contains T1(L,
1
2p) + 1 paths, Claim 4 ensures that there exists Q ∈ Q2 such that

Q has more than p exterior vertices. We set an arbitrary order on Q (from an endpoint to the
other). Let X = {x1, . . . , xp} be the first p exterior vertices of Q in increasing order. Note
that x1 and xp are not endpoints of Q. Indeed, by point (1), no vertex of Q1 ∈ Q1 is incident
to an endpoint y of Q, i.e. y is not an exterior vertex. Moreover x1 and xp are not fathers
of endpoints of Q. Indeed, by point (3), no vertex of Q1 ∈ Q1 is incident to the father of an
endpoint of Q.

Every vertex v /∈ (Q ∪ {x}) has less than k neighbors in Q. Indeed, the path Q plus the
vertex x is an induced cycle (if a father of an endpoint of Q is incident to x, we shortcut the
cycle in order to obtain an induced cycle). Since G does not contain a k-wheel, v is incident to
at most k − 1 vertices of Q. Let Q1 ∈ Q1. Since at most 2 vertices of Q1 may be incident to Q
(the fathers of the endpoints of Q1), there are at most 2k − 2 edges from Q1 to X.

We create the following auxiliary graph H ′. The vertex set of H ′ is A ∪ B where A = |Q1|
and |B| = p

2k ≥ 4k2(32k+ 2). We put an edge between ai and bj if the path Qi ∈ Q1 is incident
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Figure 7: Let T = (a, b, a′) be a triplet of T . The bold path is the path QT .

to Xj = {x2kj+1, . . . , x2k(j+1)−1}. Since every path Qi ∈ Q1 is incident to at most 2k−2 vertices
of X, every vertex of A has degree at most 2k − 2 in B. Moreover, since Xj has size 2k − 1
and every vertex of X is incident to some Qi ∈ Q1, every vertex of B is incident to at least
2 vertices of A. Indeed, all the vertices of Xj cannot be incident to the same Qi since Qi is
incident to at most 2k − 2 vertices of X. Let us prove the following claim.

Claim 5. There are k pairwise disjoint triplets (a1, b, a2) ∈ A × B × A of H ′ which are inde-
pendent in H ′.

Proof. Remind that |B| ≥ 4k2(32k + 2). Let T0 be a collection of triplets (not necessarily
independent) initialized to the empty set. Let b be a vertex of B. Since b has degree at least 2,
let a1, a2 be two neighbors of b. We add (a1, b, a2) in T0. Then, we delete a1 and a2 from A and
N(a1) ∪N(a2) from B. Since the degree of both a1 and a2 is at most 2k, at most 4k vertices
of B have been deleted. We repeat this procedure until B is empty. Since at most 4k vertices
are deleted from B at each step, the final size of T0 is at least 32k2 + 2k.

By construction, the triplets of T0 are pairwise disjoint. Let us show that T0 admits k
independent triplets. We construct a directed graph D on vertex set T0 where there is an arc
from T1 to T2 if a vertex of T1 ∩A is incident to the vertex of T2 ∩B. Every vertex of T ∩A is
incident to at most 2k vertices of B. Thus each vertex of T ∩A “creates” at most 2k out-arcs.
Since |T ∩A| = 2, the out-degree of T is at most 4k. Thus D has at most 4k|T0| arcs.

We now need the following remark: every graph on n vertices with βn edges has at least
n/2 vertices of degree at most 4β. Indeed, assume by contradiction that more than n/2 vertices
have degree at least 4β. Then the sum of the degrees of the vertices of the graph is more than
(4β) · n2 = 2βn. Thus the graph has more than βn edges, a contradiction.

Applying this remark to D ensures that at least |T0|2 ≥ 16k2 + k vertices of T0 have degree

at most 16k in D. Thus D has a stable set of size at least 16k2+k
16k+1 ≥ k (we just peel the graph

by selecting any vertex of degree at most 16k and deleting its neighborhood). This stable set
gives the desired collection of triplets.

Let T be a collection of triplets of the bipartite graph H ′ satisfying the conclusion of Claim 5.
Let T = (a, b, a′) be a triplet of T . Let us define the path QT as follows (see Figure 7 for an
illustration). By definition of H ′, there exist vertices yia and yja′ which are respectively fathers of

endpoints of Qa and Qa′ , denoted by ya and ya′ , such that both yia and yja′ are incident to at least
one vertex in {x2kb+1, . . . , x2k(b+1)−1}. Let xa be a neighbor of yia in {x2kb+1, . . . , x2k(b+1)−1}.
And let xa′ be a neighbor of yja′ in {x2kb+1, . . . , x2k(b+1)−1}. Assume moreover that none of
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them is incident to a vertex of the xaxa′-subpath of Q (i.e., xa and x′a are chosen as close as
possible). Note that we may have xa = xa′ . We denote by Qxaxa′ the xaxa′-subpath of Q. Let

QT be the following path between ya and ya′ : yay
i
axaQxaxa′xa′y

j
a′ya′ .

Note that any endpoint y of QT is an endpoint of a path Qi ∈ Q1. Moreover the father of y
in QT is the father of y in Qi. Note moreover that if y, y′ are endpoints of respectively QT and
QT ′ with y 6= y′, then y and y′ are in distinct paths of Q1. Let us now prove that the collection
P of paths QT for every triplet T ∈ T is a collection of independent 2α-good unimodal paths.

Unimodal paths. For every triplet T = (a, b, a′), the path QT is unimodal. To prove it, we just
have to show that Qxaxa′ is not incident to Hs. As we already observed, x1 and xp (and then
all the vertices of X) are neither endpoints of Q or fathers of endpoints of Q. Thus, Qxaxa′ is
not incident to any vertex of Hs since Q is a unimodal path. Thus QT is unimodal.

Points (1), (2) and (3). Let QT1 ∈ P. Let y be an endpoint of QT1 and yi be its father in QT1
and z be the extended neighbor of y. Now let f be the father of an endpoint of QT2 with T2 ∈ P
with f 6= yi. Let us prove that f is not incident to {y, z, yi} which will prove (1), (2) and (3).
There exists Q1, Q2 ∈ Q1 with Q1 6= Q2 such that f is a father of an endpoint of Q1 and y is
an endpoint of Q2. Remind moreover that yi is the father of y in Q2. By (1) for Q, fy is not
an edge. By (2) for Q, fz is not an edge and by (3) for Q, fyi is not an edge. Since it holds
for any endpoint y and and father f of an endpoint of QT ∈ Q, all of (1), (2) and (3) hold.

Point (4). Let QT ∈ P. Let y be an endpoint of a path of P and z be its extended neighbor. As
we already observed, the path QT is unimodal, thus at most two vertices of QT can be incident
to N(z), the two fathers f1, f2 of the endpoints of QT . Moreover, f1, f2 are fathers of endpoints
of respectively Q1, Q2 ∈ Q and z is an extended neighbor of an endpoint y of Q3 ∈ Q. Thus, by
(4) for Q, f1 is incident to at most α|N(z)| vertices of N(z) and the same holds for f2. Thus
the path QT is incident to at most 2α|N(z)| vertices of N(z), which proves (4).

Independence of paths of P. Let us finally show that for every T1, T2 ∈ T , the paths QT1
and QT2 are independent. Let T = (a1, b1, a

′
1) and T2 = (a2, b2, a

′
2). Remind that b1 6= b2 by

Claim 5. Without loss of generality we have b1 < b2. Let us denote by Q1 and Q2 the subpath
of Q included in respectively QT and QT ′ .

Let us first show that there is no edge between Q1 and Q2. Since b1 6= b2, Q1 and Q2 do not
intersect. Since Q1 is a x2kb1+1x2k(b1+1)−1-subpath of Q and Q2 is a x2kb2+1x2k(b2+1)−1-subpath
of Q (and since Q is induced), there is no edge between Q1 and Q2. Indeed, the vertex x2k(b1+1)

is between Q1 and Q2 in the path Q, so these paths are not adjacent.
Since (1) and (3) hold, an edge between QT1 and QT2 must have one endpoint in Q1 or in

Q2 (or both). By symmetry, we may assume that an edge has an endpoint in Q1. Since T1
and T2 are not adjacent in H ′, there is no edge between between the fathers of the endpoints of
T2 and the set {x2kb1+1, . . . , x2k(b1+1)−1}. By definition of X, it means that the fathers of the
endpoints of T2 have no neighbors on Q1. Thus the paths QT1 and QT2 are independent.

The combination of Lemmas 15, 16 and 17 ensures that if f(k, L) and ext(k, L) are large
enough, then there exists a collection of k 1

4k -good independent unimodal paths with endpoints
in N(x). This precisely provides the conclusion of Lemma 9.
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[8] P. Erdős. Graph theory and probability. Canad. J. Math, pages 34–38, 1959.
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