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Introduction

• Optimal Transport (OT) theory allows for the definition of a distance on all
measures of a given set.

• In the discrete case, most data can be recast as histograms, i.e. discrete
measures.

• By definition, OT distances capture the warping between two histograms.
• A new method, analogous to dictionary Learning, but making full use of the OT

geometry, is introduced to obtain a non-linear representation of data that exploits
the attractive properties of OT.

Optimal Transport distances

Overview

Graphical representation of the mass transportation problem: find the optimal way
of moving a heap of sand µ into a hole ν knowing the cost of moving grains of sand
to and from any position.
Wasserstein distance

• In the discrete case, histograms µ and ν are vectors in RN and the cost function
can be contained within a matrix C ∈ RN×N .

• The solution to the mass transportation problem defines an OT distance:

W (µ, ν) := minT∈Π(µ,ν)〈T,C〉.
• Π(µ, ν) is the set of admissible transport plans, the discrete equivalent of bivariate

measures with marginals µ, ν:

Π(µ, ν) :=
{
T ∈ RN×N

+ , T1N = µ, T>1N = ν
}
.

• In the particular case where C corresponds to a metric on the grid, W is called
Wasserstein distance.

Numerical Optimal Transport

• Despite its simple formulation, practical computation of Wasserstein distances
quickly reached a prohibitive cost until the recent introduction of numerical
approximations.

• In particular, the addition of an entropic penalty term [Cuturi (2013)] to the
definition of the Wasserstein distance yields:

Wγ(µ, ν) := minT∈Π(µ,ν)〈T,C〉 + γH(T ),

where H(T ) := ∑
i,j Tij log(Tij − 1).

• This makes the problem strictly convex and allows the use of the Sinkhorn
algorithm [Sinkhorn (1967)] for linear convergence to Wγ by simple iterative matrix
scalings.

Wasserstein barycenter

Definition
• By analogy with the Euclidean barycenter, for any input histograms d1, . . . , dS and

weights λ1, . . . , λS, define [Agueh & Carlier (2011)] the Wasserstein barycenter as:

P (D,λ) = argmin
u

S∑
s=1

λsW (u, ds)

• When using the entropic penalty within that definition, a generalization of the
Sinkhorn algorithm allows for fast computation of these barycenters by iterative
scalings [Benamou et al. (2015)].

Illustration

(a) Euclidean simplex (b) Wasserstein simplex

Wasserstein Dictionary Learning

Rationale
• Usual dictionary learning aims at representing data X using a dictionary, D, and a

set of codes Λ so that X ≈ DΛ.
• Adding constraints on either or both of these components can give the learned

representation desirable properties: sparsity, positivity (NMF), etc.
• Ultimately, the relationship between the reconstructed data and the dictionary

atoms remains linear.
• Our method breaks free from this constraint by replacing the matrix dot-product

with the Wasserstein barycenter operator, i.e. we learn a representation such that
X ≈ P (D,Λ).

• This not only allows for a non-linear dictionary learning method, but also one that
leverages the natural OT property of accounting for the warping of histograms.

Automatic Differentiation
• The learning stage is performed using a descent method to minimize some

arbitrary similarity criterion.
• The gradients in dictionary and atoms are obtained through automatic

differentiation [Griewank & Walther (2008)].
• The algorithm is differentiated instead of the actual barycenter operator, allowing

for computation by repeated applications of the chain rule.
• This approach in our case is very close to backward propagation, as made popular

by deep learning.

Application

• Dataset consists of translated, discretized 1D Gaussians on a small grid.
• PCA, NMF and our approach are applied to learn only 2 components/atoms.

• Our method reconstructs Gaussians, as opposed to the linear approaches wherein
neither the atoms nor the reconstructions are histograms.

Conclusion

• We introduce a new unsupervised method, analogous to dictionary learning.
• Because we learn our representation using the OT geometry (in particular,

Wasserstein barycenters), our approach is non-linear and captures the warping
between datapoints.
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