Mathematical methods for Image Synthesis

Nicolas Bonneel
Julie Digne

Lighting simulation

Monte-Carlo methods for 3d rendering

Projection

Rasterization
(OpenGL, DirectX)

Raytracing
(physically-based rendering)

Raytracing

| x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x |
| x |
| x |
| x |
| x |
| x |
| x |

(physically-based rendering)

Rasterization
(OpenGL, DirectX)

procedure drawTriangle(T) T' = Project(T)
 Rect = bounding_box(T^{\prime}) for each pixel p in Rect if p inside T^{\prime}
 if depth(p) < z_buffer(p)
 $p=$ color
 z_buffer(p) = depth(p)
 End procedure

procedure drawTriangle(T) $\mathrm{T}^{\prime}=\operatorname{Project}(\mathrm{T})$
Rect = bounding_box(T^{\prime}) for each pixel p in Rect if p inside T^{\prime}
if depth (p) < z_buffer(p)
$\mathrm{p}=$ color
z_buffer(p) $=\operatorname{depth}(p)$
End procedure
procedure drawPixel(p)
L = Line(origin, p)
$S=\varnothing$
for each primitive T $S=S U$ intersect (L, T)
S = sort(S)
if $S \neq \varnothing$
p = color
End procedure

Rasterization
(OpenGL, DirectX)

Raytracing (physically-based rendering)

Why realism can be important ?

Uncanny Valley

Uncanny Valley

Polar Express

Tintin

What is realism ?

Functional Realism

Physical Realism

- full simulation
- useful in scientific computing
- e.g., architecture

Photo-realism

- motivated by perception
- HDR, faster rendering

Non-Photorealistic Rendering

Non realistic

The rendering equation

Bidirectional Reflectance Distribution Functions (BRDF)

Function $f: S^{2} \times S^{2}(\times \mathbb{R}) \rightarrow \mathbb{R}$
Describes the appearance of materials
Such that:

- $f\left(\omega_{i}, \omega_{o}\right)=f\left(\omega_{o}, \omega_{i}\right) \quad$ (Helmoltz's reciprocity)
- $f\left(\omega_{i}, \omega_{o}\right) \geq 0$
- $\int_{\Omega} f\left(\omega_{i}, \omega_{o}\right) \omega_{i}^{y} d \omega_{i} \leq 1$

Bidirectional Reflectance Distribution Functions (BRDF)

Diffuse (Lambertian) BRDF.

$$
f\left(\omega_{i}, \omega_{o}\right)=\frac{\rho}{\pi}
$$

Specular BRDF.

$$
f\left(\omega_{i}, \omega_{o}\right)=\delta\left(R-\omega_{o}\right)
$$

Bidirectional Reflectance Distribution Functions (BRDF)

Glossy BRDF
$f\left(\omega_{i}, \omega_{o}\right)=\cdots$ many options

Bidirectional Reflectance Distribution Functions (BRDF)

- Analytical models
- Phenomenological/Experimental models :
- Phong $f\left(\omega_{i}, \omega_{o}\right)=\left\langle\omega_{o}, R\right\rangle^{\alpha}$
- Blinn $f\left(\omega_{i}, \omega_{o}\right)=\langle\vec{n}, H\rangle^{\alpha}$
- Ward $f\left(\omega_{i}, \omega_{o}\right)=\exp \left(-\tan \frac{2(\vec{n}, H)}{\alpha^{2}}\right) / 4 \pi \alpha^{2} \sqrt{\left.\left(\vec{n}, \omega_{o}\right) \backslash \vec{n}, \omega_{i}\right\rangle}$
- Lafortune, Minnaert, Strauss, Lewis, Schlick,

Bidirectional Reflectance Distribution Functions (BRDF)

Distribution of normals (\sim Gaussian)

- Analytical models
- Physical models (microfacets):
- Ashikhmin-Shirley
- Cook-Torrance

Shadowing and masking (can be related to D)
Fresnel

$$
\begin{aligned}
& \text { - Ashikhmin-Shirley } \\
& \text { - Cook-Torrance } \\
& \text { - Poulin-Fournier, Torrance-Sparrow, Oren-Nayar, Kajiya, ... } \\
& \pi
\end{aligned}\left(\omega_{i}, \omega_{o}\right)=\frac{F(\beta)}{\cos \left(\omega_{o}\right) \cos \left(\omega_{i}\right)}
$$

Bidirectional Reflectance Distribution Functions (BRDF)

- Empirical models

Bidirectional Reflectance Distribution Functions

Empirical models

Bidirectional Reflectance Distribution Functions

Bidirectional Reflectance Distribution Functions (BRDF)

- Other / generalizations
- BSDF
- Scattering / Phase functions
- BSSRDF
- SVBRDF

Bidirectional Reflectance Distribution Functions (BRDF)

- Parenthesis: BRDF printing
- Zoematrope

L. Miyashita, K. Ishihara, Y. Watanabe and M. Ishikawa ZoeMatrope: A System for Physical Material Design (SIGGRAPH 2016)

The rendering equation

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

- Assumptions:
- Geometric optics
- No subsurface scattering, fluorescence, transparency, polarization

The rendering equation

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

The rendering equation

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

The rendering equation

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

The rendering equation

The rendering equation

First idea: Using Helmoltz's reciprocity

Idea behind Backward Raytracing / path tracing

The rendering equation

$$
\left.L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\right)\left(\overrightarrow{\omega_{i}}, \vec{n}\right) d \overrightarrow{\omega_{i}}
$$

At each bounce, new integral

$$
\begin{aligned}
& L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right)\left[L_{e}\left(x^{\prime}, \overrightarrow{\omega_{i}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i \prime}}, \overrightarrow{\omega_{i}}\right) L_{i}\left(x^{\prime}, \overrightarrow{\omega_{i \prime}}\right)\left\langle\overrightarrow{\omega_{i \prime}}, \overrightarrow{n^{\prime}}\right\rangle d \overrightarrow{\omega_{i \prime}}\right]\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}} \\
& \text { Fredholm equation of the second kind }
\end{aligned}
$$

The rendering equation

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

At each bounce, new integral
$L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}+\int_{\Omega} \int_{\Omega} \int_{\Omega} \int_{\Omega} \ldots \int_{\Omega} F\left(x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots, x^{\prime \prime \prime \prime}, \omega_{i}, \omega_{i}^{\prime}, \ldots, \omega_{i}^{\prime \prime \prime \prime}, \omega_{o}, \omega_{o}^{\prime}, \ldots, \omega_{o}^{\prime \prime \prime \prime}\right) d \omega d \omega^{\prime} \ldots d \omega^{\prime \prime \prime \prime}$

The rendering equation

- In fact, additional dimensions for the camera model
- Anti-Aliasing (+2D)
- Depth-of-Field (+2D)
- Motion blur (+1D)
- Multispectral (+1D)

Second idea: integration

Method of rectangles, error in $1 / \mathrm{N}$
($1 / N^{2}$ for mid-point method - and better schemes exist)

Second idea: integration

$\ln 2 \mathrm{D}$:

In 3D:

Second idea: integration

- Instead, Monte-Carlo integration
- Example: Buffon's needle to estimate Pi
- Probability for a needle to cross a line: $\mathrm{P}=\frac{2 l}{t \pi}$

- So, $\pi=\frac{2 l}{t P}$

Monte-Carlo Integration

- Why not using uniform random variables ?

Problem for specular or glossy BRDFs

Monte-Carlo Integration

- General formula:

$$
\int f(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Where $x_{i} \sim \mathcal{L}$

- Example

$$
\int_{x=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos ^{50} x d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\cos ^{50} x_{i}}{\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x_{i}^{2}}{2 \sigma^{2}}\right)}
$$

Where $x_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Monte Carlo Integration

- Other example
$\int_{x=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{y=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{z=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{w=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos ^{50}(x * y * z * w) d w d z d y d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\cos ^{50}\left(x_{i} * y_{i} * z_{i} * w_{i}\right)}{\frac{1}{(\sigma \sqrt{2 \pi})^{4}} \exp \left(-\frac{\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}\right)}{2 \sigma^{2}}\right)}$
Where $x_{i}, y_{i}, z_{i}, w_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- Unlike rectangle integration, STILL a single sum
- Property
- If $\mathrm{f}(x)=\alpha p(x)$, we have $\int f(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} \alpha=\alpha$ for all N
- ... So there is equality, and you can take a single sample: $N=1$, or even 0 sample!
- ...so $\int f(x) d x=\alpha$
-but if you know α, this means you already knew how to integrate f
- So this NEVER happens: you always have p "similar" to f but not equal

Sampling

Following material from:
Independent random sampling
Fourier Analysis of Numerical Integration in Monte Carlo Rendering: Theory and Practice Kartic Subr, Gurprit Singh, Wojciech Jarosz

Sampling

Independent random sampling

Sampling

Independent rañdom sampling
Reference

$\bullet \bullet$	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet			\bullet
\bullet	\bullet	\bullet	\bullet

Regular sampling

Jittered/stratified sampling
Jittered

Poisson Disk

Frequency analysis

Uniform sampling

Frequency analysis

Jittered sampling

Frequency analysis

Poisson Disk

Frequency analysis

CCVT

Monte Carlo Integration

- Convergence rate : Depends on frequency of samples
- Random: variance in $1 / N$
- Jitter : variance in $1 / N^{1.5}$
- Poisson Disk : variance in $1 / N$
- CCVT: variance in $1 / N^{1.5}$
- With error $=\sqrt{\text { variance }}$
- So, using standard random numbers, $4 x$ more samples for $2 x$ accuracy
- using jittered sampling, $2.5 x$ more samples for $2 x$ accuracy
- $\operatorname{Var}\left(I_{N}\right)=\frac{\mu\left(T^{d}\right)^{2} \mu\left(S^{d-1}\right)^{2}}{N} \int_{0}^{\infty} \rho^{d-1} \breve{P}_{S}(\rho) \breve{P}_{F}(\rho) \mathrm{d} \rho$
- With $\mu\left(S^{d-1}\right)=\frac{N \sqrt{\pi^{d}}}{\Gamma\left(\frac{d}{2}\right)}$ and $\mu\left(T^{d}\right)=1$

Third idea: Change of variables

$$
\begin{gathered}
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}} \\
\Leftrightarrow \\
\left.L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\mathrm{P}} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle \frac{V\left(x, x^{\prime}\right) \mid\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right.}{}{ }^{\prime}\right\rangle \mid \\
\left\|x-x^{\prime}\right\|^{2}
\end{gathered} P
$$

Path Tracing

Path Tracing

- How to generate a random ray
- With a probability similar to BRDF ?
- Mostly easy: for diffuse BRDFs and some BRDF models
e.g., diffuse: $p(\theta)=\frac{\cos \theta}{\pi}$ and $(x, y, z)=\left(\cos 2 \pi r_{1} \sqrt{1-r_{2}}, \sin 2 \pi r_{1} \sqrt{1-r 2}, \sqrt{r_{2}}\right)$
- See Global Illumination Compendium (Philip Dutré)
- With a probability similar to incoming Light ?
- More difficult in general
- Easy for point lights
- Both ?
- "Multiple Importance Sampling"

How to generate samples according to a distribution f?

- Rejection method
- Suppose you know how to sample g, with $\frac{f}{g} \leq c$
- Do
- Sample y with density g
- Generate a uniform random number $u \sim U(0,1)$
- While $u>\frac{f(y)}{c g(y)}$
- Keep y

Average number of iteration $=c$

How to generate samples according to a distribution f?

- Inverse transform sampling (1-d)
- Compute the inverse cumulative distribution function F^{-1}
- $F(x)=\int_{-\infty}^{x} f(t) d t \quad$ (may use numerical integration)
- $F^{-1}(y)=\min \{x \mid y=f(x)\} \quad$ (may use numerical solvers)
- Take a random uniform $u \sim U(0,1)$
- Use $F^{-1}(u)$
- Proof
- $P\left(F^{-1}(u) \leq x\right)=P(u \leq F(x))=F(x)$

How to generate samples according to a distribution f?

- Example
- $f(x)=\lambda e^{-\lambda x} \quad x \geq 0$
- $F(x)=1-e^{-\lambda x}$
- $F^{-1}(y)=-\frac{\log (1-y)}{\lambda}$
- We take $u \sim U(0,1)$ and compute $v=-\frac{\log (u)}{\lambda}$

How to generate samples according to a distribution f?

- Inverse transform sampling (images)
- First option: concatenate image rows => 1d case
- Second option:
- Compute $m(x)=\int_{0}^{1} f(x, y) d y$ the marginal density function of f
- Then $M(y)=\int_{0}^{y} m(x) d x$-> allows to determine y
- Then use the conditional $c(x \mid y)=\frac{f(x, y)}{M(y)}$ and its cumulative C to determine x

Other tricks

- Multiple Importance Sampling
- Used for integrating with multiple strategies
- Given estimates $\left\{I_{k}\right\}_{k=1 . . n}$ of an integral $\int f(x) d x$ using pdf $\left\{p_{k}\right\}_{k=1 . . n}$
- $I=\sum_{k=1}^{n} w_{k} I_{k}$ with $\sum_{k=1}^{n} w_{k}=1$ (naïve)
- $I=\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \frac{f\left(x_{i j}\right)}{\sum_{k=1}^{n} n_{k} p_{k}\left(x_{i j}\right)}$ (balanced heuristic) : optimal ${ }^{*}$
- Control Variates
- Used for integrating when the integral H of a proxy h is known
- $I \approx \frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-h\left(x_{i}\right)\right)+H \Rightarrow \operatorname{Var}(I)=\frac{1}{n} \operatorname{Var}(f-h)$
- Better : $I \approx \frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-\beta h\left(x_{i}\right)\right)+\beta H$ with $\beta=\frac{\operatorname{Cov}(f, h)}{\operatorname{Var}(h)}$

Bidirectional Path Tracing

Metropolis-Hastings

Metropolis-Hastings

- Probability P of accepting a new path p^{\prime}
- $P=\min \left(1, \frac{\pi\left(p^{\prime}\right)}{\pi(p)}\right)$
- Results in a sequence of paths following the distribution π
- Ideal when paths are hard to find
- Specular paths
- Refraction / caustics
- Small holes letting light pass

Photon mapping

Photon mapping

Photon mapping

Photon mapping

Final gathering step (irradiance)

Photon mapping

- Density estimation
- Fix a radius, count the number of photons inside
- Fix a number of photons to get, look at the radius
- Goal: obtain a number of photon per unit area
- Can weigh photons with distance
- Bottleneck : Retrieving nearest neighbors
- Acceleration structures (kd-trees, octrees...)
- Biased estimate
- For a finite \# photons, the expected value is not the true value
- Due to the gathering of nearby (and incorrect) values
- E.g., next to a shadow, a pixel is systematically darker

Photon mapping

Final gathering step (radiance)

Noisy. Idea: do it just for indirect

Photon mapping

Purely direct lighting

Photon mapping

Sum

Precomputed Radiance Transfer

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

- Decompose $f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle$ and $L_{i}\left(\overrightarrow{\omega_{i}}\right)$ on orthonormal bases
- Use a scalar product $\langle f, g\rangle=\int f(x) g(x) d x$
- If $f(x)=\sum \alpha_{i} S_{i}(x)$ and $g(x)=\sum \beta_{j} S_{j}(x)$ and $\left\{S_{i}\right\}$ is orthonormal

$$
\langle f, g\rangle=\langle\alpha, \beta\rangle
$$

(proof by bilinearity of scalar product)

Precomputed Radiance Transfer

- For instance:
- $f_{\overrightarrow{\omega_{o}}}\left(\overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle=\sum_{k} \alpha_{k} Y_{k}\left(\overrightarrow{\omega_{i}}\right)$
- $L_{i}\left(\overrightarrow{\omega_{i}}\right)=\sum_{k} \beta_{k} Y_{k}\left(\overrightarrow{\omega_{i}}\right)$
- With $Y_{k}\left(\overrightarrow{\omega_{i}}\right)$ spherical harmonics
dis

Precomputed Radiance Transfer

- $Y_{k}\left(\overrightarrow{\omega_{i}}\right)=\alpha P_{l}^{m}(\cos \theta) e^{i m \phi}$
- With $P_{l}^{m}(x)$ the associated Legendre polynomial of order m (related to the m^{\prime} th derivative of P_{l})
- Eigenfunctions of the Δ operator on the sphere
- Equivalent to Fourier basis on the sphere
- Fast computation via 2D Fast Fourier Transforms
- The frequency content of the result is bounded by the minimum frequency content between the BRDF and illumination !
- E.g. : a diffuse object under high frequency lighting looks the same as a metal ball under diffuse (constant) lighting
- Other bases have been used: Spherical Wavelets, Zonal Harmonics, ...

Wavelets

- Haar wavelet
- $\psi_{n, k}(t)=2^{n / 2} \psi\left(2^{n} t-k\right)$
with $\psi(t)=1_{t \in\left[0, \frac{1}{2}\right]}-1_{t \in\left[\frac{1}{2}, 1\right]}$
and $k, n \in Z$
- Orthogonal:
- $\int_{R} \psi_{k_{1}, n_{1}}(t) \psi_{k_{2}, n_{2}}(t) d t=\delta_{k_{1}, k_{2}} \delta_{n_{1}, n_{2}}$

Wavelets

- Wavelet transform
- $X(k, n)=\int_{R} \psi_{k, n}(t) x(t) d t$
- Various translations $\mathrm{k}=>$ convolution
- In fact:
$X_{n}(k)=2^{n / 2} \int_{R} \psi\left(2^{n} t-k\right) x(t) d t$
- Haar scaling function
- $\phi(t)=1_{t \in[0,1]}$
- Expresses residual low frequencies

Wavelets

- In fact, recursive formulation of Haar wavelets:
- Scaling function : $\phi(t)=\phi(2 t)+\phi(2 t-1)$
- Wavelet: $\quad \psi(t)=\phi(2 t)-\phi(2 t-1) \quad$ (no typo!)
- Given $\chi(k, n)=2^{n / 2} \int_{R} x(t) \phi\left(2^{n} t-k\right) d t$
and $\quad X(k, n)=2^{n / 2} \int_{R} x(t) \psi\left(2^{n} t-k\right) d t$
We recursively obtain:

$$
\begin{aligned}
& \chi(k, n)=2^{-\frac{1}{2}}(\chi(2 k, n+1)+\chi(2 k+1, n+1)) \\
& X(k, n)=2^{-\frac{1}{2}}(\chi(2 k, n+1)-\chi(2 k+1, n+1))
\end{aligned}
$$

Box filter
Finite difference

Spherical Wavelets

- Same concept on the sphere
- Scaling function defined as piecewise constant on tessellated spheres

Back to path tracing: Participating Media

- Phase function $f\left(\omega_{i}, \omega_{o}\right)$

Back to path tracing: Participating Media

- Extinction coefficient σ_{t}
- density of the medium
- Optical depth: $\tau(d)=\int_{0}^{d} \sigma_{t}\left(x-t \omega_{i}\right) d t$
- Transmittance: T(d) $=\exp (-\tau(d))$ defines how much light is absorbed or scattered out

Back to path tracing: Participating Media

- Scattering coefficient σ_{s}
- Absorption coefficient σ_{a}
- $\sigma_{t}=\sigma_{s}+\sigma_{a}$
- $L_{i}\left(x, \omega_{i}\right)=L_{i}\left(x^{\prime}, \omega_{i}\right) . \mathrm{T}(\mathrm{d})$

$$
+\int_{0}^{d} \int_{\Omega^{+}}^{d} T(t) f\left(\omega_{i}, \omega_{o}\right) L_{i}\left(x_{t}, \omega_{o}\right) \sigma_{s}\left(x_{t}\right) d \omega_{o} d t
$$

With $x_{t}=x-\omega_{o} t$
(loose notations)

Back to path tracing: Participating Media

- We merely added 3 dimensions to the integration domain
- Absorb the incoming light
- Add in-scattered radiance by
- Sampling one position
- Sampling one direction
- Adding the contribution $T(t) f\left(\omega_{i}, \omega_{o}\right) L_{i}\left(x_{t}, \omega_{o}\right) \sigma_{s}\left(x_{t}\right)$

Back to path tracing: Participating Media

Radiosity

$$
G\left(x, x^{\prime}\right)
$$

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\mathrm{P}} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle \frac{V\left(x, x^{\prime}\right) \mid\left\langle\overrightarrow{\omega_{i}}, \vec{n} '\right\rangle}{\left\|x-x^{\prime}\right\|^{2}} d P
$$

- Under diffuse reflectance, we have $f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right)=\frac{\rho}{\pi}$
- And omnidirectional emissivity
- So :

$$
L_{o}(x)=L_{e}(x)+\frac{\rho(x)}{\pi} \int_{\mathrm{P}} L_{i}\left(x, \overrightarrow{\omega_{i}}\right) G\left(x, x^{\prime}\right) d P
$$

Radiosity

$$
L_{o}(x)=L_{e}(x)+\frac{\rho(x)}{\pi} \int_{\mathrm{P}} L_{i}\left(x, \overrightarrow{\omega_{i}}\right) G\left(x, x^{\prime}\right) d P
$$

- Now, discretizing and assuming constant values per triangle k :

$$
L^{k}=L_{e}^{k}+\frac{\rho^{k}}{\pi} \sum_{l} L^{l} G^{k, l}
$$

(could also take any orthogonal basis function over triangles instead)

Radiosity

$$
L^{k}=L_{e}^{k}+\frac{\rho^{k}}{\pi} \sum_{l} L^{l} G^{k, l}
$$

- Can be written in matrix form. Consider a vector L and matrix G :

$$
L=L_{e}+\operatorname{diag} \frac{\rho}{\pi} G L
$$

Re-arranging terms:

$$
L=\frac{\left(I d-\operatorname{diag} \frac{\rho}{\pi} G\right)}{M}{ }^{-1} L_{e}
$$

Can be solved numerically quite easily

Radiosity

- Instead of a full direct linear solve, use Jacobi iterations

$$
\text { One iteration: } \quad L_{i}=\frac{1}{M_{i i}}\left(L_{e}^{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} M_{i j} L_{j}\right) \quad \forall i
$$

- Each iteration corresponds to 1 light bounce:

Radiosity

- Unfortunately, now mostly abandoned
- Has been generalized to non-diffuse scenes
- To (near) realtime settings*
- But nice meshing is difficult
- Conceptually simpler methods exist (e.g., photon maps)

Physically-based rendering meets realtime

- Instant radiosity
- Essentially unrelated to radiosity, but more related to photon mapping
- Sends "Virtual Point Lights" from light sources, use them as new light sources

Distant illumination models

- Environment maps

Distant illumination models

- Analytic Sky Model [Preetham et al. 1999] : parametric sky model
- Turbidity: optical thickness of atmosphere including haze / optical thickness of atmosphere without haze

Distant illumination models

- Analytic Sky Model [Preetham et al. 1999] : parametric sky model
- Skylight luminance from Perez et al.
- $F(\theta, \gamma)=\left(1+A e^{-\frac{B}{\cos \theta}}\right)\left(1+C e^{D \gamma}+E \cos ^{2} \gamma\right)$
- Skylight chrominance
- $x=x_{z} \frac{F(\theta, \gamma)}{F\left(0, \theta_{s}\right)} \quad y=y_{z} \frac{F(\theta, \gamma)}{F\left(0, \theta_{s}\right)}$
- Parameters different for x and y
- Fitted from measurements

Results

Figure 9: The new model looking west at different times (left morning and right evening) and different turbidities (2, 3, and 6 top to bottom).

Prefiltered environment maps

$$
L_{o}\left(x, \overrightarrow{\omega_{o}}\right)=L_{e}\left(x, \overrightarrow{\omega_{o}}\right)+\int_{\Omega} f\left(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}\right) L_{i}\left(x, \overrightarrow{\omega_{i}}\right)\left\langle\overrightarrow{\omega_{i}}, \vec{n}\right\rangle d \overrightarrow{\omega_{i}}
$$

Spherical convolution between $f\left(., \overrightarrow{\omega_{o}}\right)\langle., \vec{n}\rangle$ and L_{i}

When the incident illumination is distant:

Prefiltered environment maps

- Precomputing convolutions between environment map and BRDF for various ω_{o}
- Easy for some BRDF : Gaussian blur
- Just a lookup when rendering:

Ambient occlusion

- Idea: precompute occlusion as
- $O=\frac{1}{\pi} \int_{\Omega} V(\omega) .<\omega, n>d \omega$

Extracted ambient occlusion map

- Does not depend on the illumination
- Often computed per object
- Does not require raytracing the entire scene
- Can be used for animated objects
- Another option: screen space ambient occlusion
- Does not trace rays in the scene: samples a sphere around fragments
- More for realtime rendering

Tone Mapping

[Reinhard et al. 2002] « Photographic Tone Reproduction for Digital Images »

Tone Mapping

- Scene key: $\bar{L}=\frac{1}{N} \exp \left(\sum \log (\delta+I)\right)$
- Adjusting image values: $L=\frac{0,18}{\bar{L}} I$
- Compressing highlights: $L_{d}=L \frac{1+\frac{L}{L_{w}^{2}}}{1+L}$
- If not sufficient, perform local adjustments:
- Estimate contrast via difference of gaussian convolution at different scales
- Locally find the smallest scale that produces low contrast
- Adjust highlight compression step accordingly

Camera models

- Depth of field

Camera models

- Depth of field

Camera models

- Depth of field

Image-based rendering

- Further from physically-based rendering
- Essentially interpolates between photographs

- Lightfields / Lumigraph : dense array of photographs
- Multi-view : sparse set
- Restricted to real-life scenes

Light-fields

- The plenoptic function
- $L(x, \omega)$
- Light-fields
- Display

By Gordon Wetzstein

Holography \& Computational holography

- If time permits...

Holography \& Computational holography

Holography \& Computational holography

Computational holography

- Simulates wavefront propagation from 3D scene
- Tight time constraints - Gigapixels
- Fourier optics

State-of-the-Art

- Fake or Photo ?
https://area.autodesk.com/fakeorfoto/
- Graphics Turing Test

