Mathematical methods for Image Synthesis

Nicolas Bonneel Julie Digne

Lighting simulation

Monte-Carlo Simulation Materials description

Monte-Carlo methods for 3d rendering

Raytracing (physically-based rendering)

× ×									
	x	x	×	X	×	×	×	x	×
	x	x	×	×	X	x	×	×	>
	x	x	х	×	×	×	×	×	
	x	х	х	x	×	×	×	×	
	X	х	х	х	х	×	×	×	
	X	X	X	х	х	х	×	×	
	X	×	X	X	X	х	х	×	
	x	X	X	×	×	X	×	X	
								1112 68	AVAI

X

X

X X X

Rasterization (OpenGL, DirectX)

Raytracing (physically-based rendering)

```
procedure drawTriangle(T)
  T' = Project(T)
  Rect = bounding box(T')
  for each pixel p in Rect
    if p inside T'
       if depth(p) < z buffer(p)
          p = color
          z_buffer(p) = depth(p)
End procedure
```

Rasterization (OpenGL, DirectX)

Raytracing (physically-based rendering)

```
procedure drawTriangle(T)
  T' = Project(T)
  Rect = bounding_box(T')
  for each pixel p in Rect
    if p inside T'
       if depth(p) < z buffer(p)
          p = color
          z_buffer(p) = depth(p)
End procedure
```

Rasterization (OpenGL, DirectX)

L = Line(origin, p) $S = \emptyset$ for each primitive T $S = S \cup intersect(L, T)$ S = sort(S)if $S \neq \emptyset$ p = colorEnd procedure

procedure drawPixel(p)

Raytracing (physically-based rendering)

Rasterization (OpenGL, DirectX)

Raytracing (physically-based rendering)

Why realism can be important ?

Uncanny Valley

Uncanny Valley

Polar Express

Tintin

What is realism ?

Functional Realism

Physical Realism

- full simulation
- useful in scientific computing
- e.g., architecture

Photo-realism

- motivated by perception
- HDR, faster rendering

"Three Varieties of Realism in Computer Graphics", Ferwerda

Limits of realism

Non-Photorealistic Rendering

Non physically realistic

Non realistic

Function $f: S^2 \times S^2 (\times \mathbb{R}) \to \mathbb{R}$

Describes the appearance of materials

Such that:

- $f(\omega_i, \omega_o) = f(\omega_o, \omega_i)$ (Helmoltz's reciprocity)
- $f(\omega_i, \omega_o) \ge 0$
- $\int_{\Omega} f(\omega_i, \omega_o) \, \omega_i^{\mathcal{Y}} d\omega_i \leq 1$

Diffuse (Lambertian) BRDF. $f(\omega_i, \omega_o) = \frac{\rho}{\pi}$

Specular BRDF. $f(\omega_i, \omega_o) = \delta(R - \omega_o)$

Glossy BRDF $f(\omega_i, \omega_o) = \cdots$ many options

 $4\pi\alpha^2\sqrt{\langle \vec{n},\omega_0\rangle\langle \vec{n},\omega_i\rangle}$

- Analytical models
 - Phenomenological/Experimental models :
 - Phong $f(\omega_i, \omega_o) = \langle \omega_o, R \rangle^{\alpha}$
 - Blinn $f(\omega_i, \omega_o) = \langle \vec{n}, H \rangle^{\alpha}$
 - Ward $f(\omega_i, \omega_o) = \frac{\exp\left(-\tan^2\left(\frac{\vec{n}, H}{\alpha^2}\right)\right)}{2}$
 - Lafortune, Minnaert, Strauss, Lewis, Schlick,

Distribution of normals (~Gaussian)

Shadowing and masking Analytical models Fresnel (can be related to D) • Physical models (microfacets): $\frac{F(\beta)}{\pi} \frac{D(H)G(\omega_i, \omega_o)}{\cos(\omega_o) \cos(\omega_i)}$ • Ashikhmin-Shirley $f(\omega_i, \omega_o) =$ Cook-Torrance • Poulin-Fournier, Torrance-Sparrow, Oren-Nayar, Kajiya, ... π Cook-Torrance macrosurface microsurface Poulin Fournier

• Empirical models

Empirical models

- Other / generalizations
 - BSDF
 - Scattering / Phase functions
 - BSSRDF
 - SVBRDF

Murky Mie phase function (a) True function (b) Approximation with r = 0.19, k = -0.65, k' = -0.91

- Parenthesis: BRDF printing
 - Zoematrope

L. Miyashita, K. Ishihara, Y. Watanabe and M. Ishikawa ZoeMatrope: A System for Physical Material Design (SIGGRAPH 2016)

$$L_o(x, \overrightarrow{\omega_o}) = L_e(x, \overrightarrow{\omega_o}) + \int_{\Omega} f(\overrightarrow{\omega_i}, \overrightarrow{\omega_o}) L_i(x, \overrightarrow{\omega_i}) \langle \overrightarrow{\omega_i}, \overrightarrow{n} \rangle d\overrightarrow{\omega_i}$$

- Assumptions:
 - Geometric optics
 - No subsurface scattering, fluorescence, transparency, polarization

$$L_{o}(x, \overrightarrow{\omega_{o}}) = L_{e}(x, \overrightarrow{\omega_{o}}) + \int_{\Omega} f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}) L_{i}(x, \overrightarrow{\omega_{i}}) \langle \overrightarrow{\omega_{i}}, \overrightarrow{n} \rangle d\overrightarrow{\omega_{i}}$$

$$*$$

First idea: Using Helmoltz's reciprocity

Idea behind Backward Raytracing / path tracing

The rendering equation

$$L_{o}(x, \overrightarrow{\omega_{o}}) = L_{e}(x, \overrightarrow{\omega_{o}}) + \int_{\Omega} f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}) L_{i}(x, \overrightarrow{\omega_{i}}) \langle \overrightarrow{\omega_{i}}, \overrightarrow{n} \rangle d\overrightarrow{\omega_{i}}$$
At each bounce, new integral
$$L_{o}(x, \overrightarrow{\omega_{o}}) = L_{e}(x, \overrightarrow{\omega_{o}}) + \int_{\Omega} f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}) \left[L_{e}(x', \overrightarrow{\omega_{i}}) + \int_{\Omega} f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{i}}) L_{i}(x', \overrightarrow{\omega_{i}}) \langle \overrightarrow{\omega_{i}}, \overrightarrow{n'} \rangle d\overrightarrow{\omega_{i}} \right] \langle \overrightarrow{\omega_{i}}, \overrightarrow{n} \rangle d\overrightarrow{\omega_{i}}$$

 $\overrightarrow{\omega_i}$

 \vec{n}

 $\overrightarrow{\omega_o}$

Fredholm equation of the second kind

_

$$L_o(x, \overrightarrow{\omega_o}) = L_e(x, \overrightarrow{\omega_o}) + \int_{\Omega} f(\overrightarrow{\omega_i}, \overrightarrow{\omega_o}) L_i(x, \overrightarrow{\omega_i}) \langle \overrightarrow{\omega_i}, \overrightarrow{n} \rangle d\overrightarrow{\omega_i}$$

At each bounce, new integral

$$L_{o}(x, \overrightarrow{\omega_{o}}) = L_{e} + \int_{\Omega} \int_{\Omega} \int_{\Omega} \int_{\Omega} \dots \int_{\Omega} F(x, x', x'', x''', \dots, x'''', \omega_{i}, \omega_{i}, \omega_{i}, \dots, \omega_{i}'''', \omega_{o}, \omega_{o}, \dots, \omega_{o}'''') d\omega d\omega' \dots d\omega''''$$

- In fact, additional dimensions for the camera model
 - Anti-Aliasing (+2D)
 - Depth-of-Field (+2D)
 - Motion blur (+1D)
 - Multispectral (+1D)

Second idea: integration

Method of rectangles, error in 1/N($1/N^2$ for mid-point method – and better schemes exist)

Second idea: integration

In 2D:

Second idea: integration

- Instead, Monte-Carlo integration
- Example: Buffon's needle to estimate Pi
 - Probability for a needle to cross a line: $P = \frac{2l}{t\pi}$

• So,
$$\pi = \frac{2l}{tP}$$

Monte-Carlo Integration

• Why not using uniform random variables ?

Problem for specular or glossy BRDFs

Monte Carlo Integration

• Other example

$$\int_{x=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{y=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{x=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{w=-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos^{50}(x * y * z * w) \quad dw \, dz \, dy \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\cos^{50}(x_i * y_i * z_i * w_i)}{\frac{1}{(\sigma\sqrt{2\pi})^4} \exp\left(-\frac{(x_i^2 + y_i^2 + z_i^2 + w_i^2)}{2\sigma^2}\right)}$$
Where $x_i, y_i, z_i, w_i \sim \mathcal{N}(0, \sigma^2)$

• Unlike rectangle integration, STILL a single sum

• Property

• If
$$f(x) = \alpha p(x)$$
, we have $\int f(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} = \frac{1}{N} \sum_{i=1}^{N} \alpha = \alpha$ for all N

- ... So there is equality, and you can take a single sample: N = 1, or even 0 sample!
- ...so $\int f(x)dx = \alpha$
-but if you know α , this means you already knew how to integrate f
- So this NEVER happens: you always have p "similar" to f but not equal

Sampling

Independent random sampling

Following material from: Fourier Analysis of Numerical Integration in Monte Carlo Rendering: Theory and Practice Kartic Subr, Gurprit Singh, Wojciech Jarosz

Sampling

Independent random sampling

Sampling

Independent random sampling

Regular sampling

Jittered/stratified sampling

Poisson Disk

Frequency analysis

Uniform sampling

Jittered sampling

Frequency analysis

Poisson Disk

Frequency analysis

CCVT

Monte Carlo Integration

- Convergence rate : Depends on frequency of samples
 - Random: variance in 1/N
 - Jitter : variance in $1/N^{1.5}$
 - Poisson Disk : variance in 1/N
 - CCVT: variance in $1/N^{1.5}$
- With error = $\sqrt{\text{variance}}$
- So, using standard random numbers, 4x more samples for 2x accuracy
- using jittered sampling, 2.5x more samples for 2x accuracy

•
$$Var(I_N) = \frac{\mu(T^d)^2 \mu(S^{d-1})^2}{N} \int_0^\infty \rho^{d-1} \breve{P}_S(\rho) \breve{P}_F(\rho) d\rho$$

• With $\mu(S^{d-1}) = \frac{N}{\Gamma(\frac{d}{2})}$ and $\mu(T^d) = 1$

Third idea: Change of variables

$$L_{o}(x,\overrightarrow{\omega_{o}}) = L_{e}(x,\overrightarrow{\omega_{o}}) + \int_{\Omega} f(\overrightarrow{\omega_{i}},\overrightarrow{\omega_{o}})L_{i}(x,\overrightarrow{\omega_{i}})\langle\overrightarrow{\omega_{i}},\overrightarrow{n}\rangle d\overrightarrow{\omega_{i}}$$

$$\Leftrightarrow$$
$$L_{o}(x,\overrightarrow{\omega_{o}}) = L_{e}(x,\overrightarrow{\omega_{o}}) + \int_{P} f(\overrightarrow{\omega_{i}},\overrightarrow{\omega_{o}})L_{i}(x,\overrightarrow{\omega_{i}})\langle\overrightarrow{\omega_{i}},\overrightarrow{n}\rangle \frac{V(x,x')|\langle\overrightarrow{\omega_{i}},\overrightarrow{n'}\rangle|}{||x-x'||^{2}} dP$$

Path Tracing

- How to generate a random ray
 - With a probability similar to BRDF ?
 - Mostly easy: for diffuse BRDFs and some BRDF models e.g., diffuse: $p(\theta) = \frac{\cos \theta}{\pi}$ and $(x, y, z) = (\cos 2\pi r_1 \sqrt{1 - r_2}, \sin 2\pi r_1 \sqrt{1 - r_2}, \sqrt{r_2})$
 - See Global Illumination Compendium (Philip Dutré)
 - With a probability similar to incoming Light ?
 - More difficult in general
 - Easy for point lights
 - Both ?
 - "Multiple Importance Sampling"

- Rejection method
 - Suppose you know how to sample g, with $\frac{f}{a} \le c$
 - Do
 - Sample y with density g
 - Generate a uniform random number $u \sim U(0,1)$
 - While $u > \frac{f(y)}{c g(y)}$
 - Keep y

Average number of iteration = c

- Inverse transform sampling (1-d)
 - Compute the inverse cumulative distribution function F^{-1}
 - $F(x) = \int_{-\infty}^{x} f(t) dt$ (may use numerical integration)
 - $F^{-1}(y) = \min \{x \mid y = f(x)\}$ (may use numerical solvers)
 - Take a random uniform $u \sim U(0,1)$
 - Use $F^{-1}(u)$
- Proof
 - $P(F^{-1}(u) \le x) = P(u \le F(x)) = F(x)$

- Example
 - $f(x) = \lambda e^{-\lambda x}$ $x \ge 0$
 - $F(x) = 1 e^{-\lambda x}$
 - $F^{-1}(y) = -\frac{\log(1-y)}{\lambda}$
 - We take $u \sim U(0,1)$ and compute $v = -\frac{\log(u)}{\lambda}$

- Inverse transform sampling (images)
 - First option: concatenate image rows => 1d case
 - Second option:
 - Compute $m(x) = \int_0^1 f(x, y) dy$ the marginal density function of f
 - Then $M(y) = \int_0^y m(x) dx \rightarrow \text{allows to determine y}$
 - Then use the conditional $c(x \mid y) = \frac{f(x,y)}{M(y)}$ and its cumulative C to determine x

[Secord et al. 2002] "Fast Primitive Distribution for Illustration »

Other tricks

- Multiple Importance Sampling
 - Used for integrating with multiple strategies
 - Given estimates $\{I_k\}_{k=1..n}$ of an integral $\int f(x) dx$ using pdf $\{p_k\}_{k=1..n}$

•
$$I = \sum_{k=1}^{n} w_k I_k$$
 with $\sum_{k=1}^{n} w_k = 1$ (naïve)
• $I = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \frac{f(x_{ij})}{\sum_{k=1}^{n} n_k p_k(x_{ij})}$ (balanced heuristic) : optimal*

- Control Variates
 - Used for integrating when the integral H of a proxy h is known

•
$$I \approx \frac{1}{n} \sum_{i} \left(f(x_i) - h(x_i) \right) + H \implies Var(I) = \frac{1}{n} Var(f - h)$$

• Better:
$$I \approx \frac{1}{n} \sum_{i} (f(x_i) - \beta h(x_i)) + \beta H \text{ with } \beta = \frac{Cov(f,h)}{Var(h)}$$

*Assuming a convex sum. See [Kondapaneni et al. 2019] "Optimal Multiple Importance Sampling" for better, possibly negative, weights

Metropolis-Hastings

Probability P of accepting a new path p'

•
$$P = \min(1, \frac{\pi(p')}{\pi(p)})$$

- Results in a sequence of paths following the distribution π
- Ideal when paths are hard to find
 - Specular paths
 - Refraction / caustics
 - Small holes letting light pass

A Simple and Robust Mutation Strategy for the Metropolis Light Transport

Faster Photon Map Global Illumination, PH Christensen

(only non purely specular objects receive photons)

Final gathering step (irradiance)

- Density estimation
 - Fix a radius, count the number of photons inside
 - Fix a number of photons to get, look at the radius
 - Goal: obtain a number of photon per unit area
 - Can weigh photons with distance
- Bottleneck : Retrieving nearest neighbors
 - Acceleration structures (kd-trees, octrees...)
- Biased estimate
 - For a finite # photons, the expected value is not the true value
 - Due to the gathering of nearby (and incorrect) values
 - E.g., next to a shadow, a pixel is systematically darker

Final gathering step (radiance)

Noisy. Idea: do it just for indirect

Purely direct lighting

Sum

Precomputed Radiance Transfer

$$L_o(x, \overrightarrow{\omega_o}) = L_e(x, \overrightarrow{\omega_o}) + \int_{\Omega} f(\overrightarrow{\omega_i}, \overrightarrow{\omega_o}) L_i(x, \overrightarrow{\omega_i}) \langle \overrightarrow{\omega_i}, \overrightarrow{n} \rangle d\overrightarrow{\omega_i}$$

- Decompose $f(\overrightarrow{\omega_i}, \overrightarrow{\omega_o}) \langle \overrightarrow{\omega_i}, \overrightarrow{n} \rangle$ and $L_i(\overrightarrow{\omega_i})$ on orthonormal bases
- Use a scalar product $\langle f, g \rangle = \int f(x)g(x)dx$
- If $f(x) = \sum \alpha_i S_i(x)$ and $g(x) = \sum \beta_j S_j(x)$ and $\{S_i\}$ is orthonormal

$$\langle f,g\rangle = \langle \alpha,\beta\rangle$$

(proof by bilinearity of scalar product)

Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments, PP Sloan et al.

Precomputed Radiance Transfer

6

m # # # # # m

: * * * * * * * *

- For instance:
 - $f_{\overrightarrow{\omega_o}}(\overrightarrow{\omega_i})\langle \overrightarrow{\omega_i}, \overrightarrow{n} \rangle = \sum_k \alpha_k Y_k(\overrightarrow{\omega_i})$
 - $L_i(\overrightarrow{\omega_i}) = \sum_k \beta_k Y_k(\overrightarrow{\omega_i})$
 - With $Y_k(\overrightarrow{\omega_i})$ spherical harmonics

Precomputed Radiance Transfer

- $Y_k(\overrightarrow{\omega_i}) = \alpha P_l^m(\cos\theta)e^{im\phi}$
 - With $P_l^m(x)$ the associated Legendre polynomial of order m (related to the m'th derivative of P_l)
 - Eigenfunctions of the Δ operator on the sphere
 - Equivalent to Fourier basis on the sphere
 - Fast computation via 2D Fast Fourier Transforms
- The frequency content of the result is bounded by the minimum frequency content between the BRDF and illumination !
 - E.g. : a diffuse object under high frequency lighting looks the same as a metal ball under diffuse (constant) lighting
- Other bases have been used: Spherical Wavelets, Zonal Harmonics, ...

Wavelets

• Haar wavelet

•
$$\psi_{n,k}(t) = 2^{n/2} \psi(2^n t - k)$$

with $\psi(t) = 1_{t \in [0,\frac{1}{2}]} - 1_{t \in [\frac{1}{2},1]}$
and $k, n \in Z$

• Orthogonal:

•
$$\int_{R} \psi_{k_1,n_1}(t) \psi_{k_2,n_2}(t) dt = \delta_{k_1,k_2} \delta_{n_1,n_2}$$

Wavelets

- Wavelet transform
 - $X(k,n) = \int_R \psi_{k,n}(t) x(t) dt$
 - Various translations k => convolution
 - In fact: $X_n(k) = 2^{n/2} \int_R \psi(2^n t - k) \ x(t) dt$
- Haar scaling function
 - $\phi(t) = 1_{t \in [0,1]}$
 - Expresses residual low frequencies

Wavelets

- In fact, recursive formulation of Haar wavelets:
 - Scaling function : $\phi(t) = \phi(2t) + \phi(2t 1)$
 - $\psi(t) = \phi(2t) \phi(2t 1) \quad (\text{no typo!})$ • Wavelet:

• Given
$$\chi(k,n) = 2^{n/2} \int_R x(t)\phi(2^n t - k)dt$$

and $X(k,n) = 2^{n/2} \int_R x(t)\psi(2^n t - k)dt$

We recursively obtain:

$$\chi(k,n) = 2^{-\frac{1}{2}} (\chi(2k,n+1) + \chi(2k+1,n+1))$$

$$X(k,n) = 2^{-\frac{1}{2}} (\chi(2k,n+1) - \chi(2k+1,n+1))$$

Box filter
Finite difference

e

Example at:

https://www.eecis.udel.edu/~amer/CISC651/Haar.wavelets.paper.bv.Mulcahv.pdf

Only depends on scaling function!

Spherical Wavelets

- Same concept on the sphere
- Scaling function defined as piecewise constant on tessellated spheres

Images from Gabriel Peyre's "Numerical Tours" : check these tours out!

- Extinction coefficient σ_t
 - density of the medium
 - Optical depth: $\tau(d) = \int_0^d \sigma_t(x t\omega_i) dt$
 - Transmittance: $T(d) = exp(-\tau(d))$ defines how much light is absorbed or scattered out

x'

d

 $L_i / \overrightarrow{\omega_i}$

х

- Scattering coefficient $\sigma_{\!s}$
- Absorption coefficient σ_a
- $\sigma_t = \sigma_s + \sigma_a$

•
$$L_i(x, \omega_i) = L_i(x', \omega_i)$$
. T(d)
+ $\int_0^d \int_{\Omega^+} T(t) f(\omega_i, \omega_o) L_i(x_t, \omega_o) \sigma_s(x_t) d\omega_o dt$
With $x_t = x - \omega_o t$

(loose notations)

- We merely added 3 dimensions to the integration domain
 - Absorb the incoming light
 - Add in-scattered radiance by
 - Sampling one position
 - Sampling one direction
 - Adding the contribution $T(t)f(\omega_i, \omega_o)L_i(x_t, \omega_o)\sigma_s(x_t)$

Tutorial : http://liris.cnrs.fr/~nbonneel/teaching.html

Radiosity

$$Form factor:$$

$$G(x, x')$$

$$L_{o}(x, \overrightarrow{\omega_{o}}) = L_{e}(x, \overrightarrow{\omega_{o}}) + \int_{P} f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}) L_{i}(x, \overrightarrow{\omega_{i}}) \sqrt{\frac{V(x, x')|\langle \overrightarrow{\omega_{i}}, \overrightarrow{n'} \rangle|}{\|x - x'\|^{2}}} dP$$
• Under diffuse reflectance, we have $f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}) = \frac{\rho}{\pi}$

- And omnidirectional emissivity
- So :

$$L_o(x) = L_e(x) + \frac{\rho(x)}{\pi} \int_{\mathcal{P}} L_i(x, \overline{\omega_i}) G(x, x') dP$$

$$L_o(x) = L_e(x) + \frac{\rho(x)}{\pi} \int_{\mathbf{P}} L_i(x, \overline{\omega_i}) G(x, x') dP$$

• Now, discretizing and assuming constant values per triangle k:

$$L^{k} = L^{k}_{e} + \frac{\rho^{k}}{\pi} \sum_{l} L^{l} G^{k,l}$$

(could also take any orthogonal basis function over triangles instead)

• Can be written in matrix form. Consider a vector L and matrix G : $L = L_e + diag \frac{\rho}{\pi} \; G \; L$

 $L^{k} = L^{k}_{e} + \frac{\rho^{k}}{\pi} \sum_{r} L^{l} G^{k,l}$

Re-arranging terms:

$$L = \left(Id - diag \frac{\rho}{\pi} G \right)^{-1} L_e$$
$$M$$

Can be solved numerically quite easily

• Instead of a full direct linear solve, use Jacobi iterations $L_{i} = \frac{1}{M_{ii}} \left(L_{e}^{i} - \sum_{\substack{j=1\\j\neq i}}^{n} M_{ij} L_{j} \right)$

One iteration:

• Each iteration corresponds to 1 light bounce:

 $\forall i$

- Unfortunately, now mostly abandoned
 - Has been generalized to non-diffuse scenes
 - To (near) realtime settings^{*}
 - But nice meshing is difficult
 - Conceptually simpler methods exist (e.g., photon maps)

* Implicit Visibility and Antiradiance for Interactive Global Illumination, Dachsbacher et al.

Physically-based rendering meets realtime

• Instant radiosity

- Essentially unrelated to radiosity, but more related to photon mapping
- Sends "Virtual Point Lights" from light sources, use them as new light sources

Distant illumination models

• Environment maps

Distant illumination models

- Analytic Sky Model [Preetham et al. 1999] : parametric sky model
 - Turbidity: optical thickness of atmosphere including haze / optical thickness of atmosphere without haze

Distant illumination models

- Analytic Sky Model [Preetham et al. 1999] : parametric sky model
 - Skylight luminance from Perez et al.

•
$$F(\theta, \gamma) = (1 + Ae^{-\frac{B}{\cos \theta}})(1 + Ce^{D\gamma} + E\cos^2 \gamma)$$

• Skylight chrominance

•
$$x = x_z \frac{F(\theta, \gamma)}{F(0, \theta_s)}$$
 $y = y_z \frac{F(\theta, \gamma)}{F(0, \theta_s)}$

- Parameters different for x and y
- Fitted from measurements

Results

Figure 9: The new model looking west at different times (left morning and right evening) and different turbidities (2, 3, and 6 top to bottom).

Prefiltered environment maps

$$L_{o}(x, \overrightarrow{\omega_{o}}) = L_{e}(x, \overrightarrow{\omega_{o}}) + \int_{\Omega} f(\overrightarrow{\omega_{i}}, \overrightarrow{\omega_{o}}) L_{i}(x, \overrightarrow{\omega_{i}}) \langle \overrightarrow{\omega_{i}}, \overrightarrow{n} \rangle d\overrightarrow{\omega_{i}}$$

Spherical convolution between $f(., \overrightarrow{\omega_{o}}) \langle ., \overrightarrow{n} \rangle$ and L_{i}

When the incident illumination is distant:

A Unified Approach to Prefiltered Environment Maps, Kautz et al.

Prefiltered environment maps

- Precomputing convolutions between environment map and BRDF for various ω_o
- Easy for some BRDF : Gaussian blur
- Just a lookup when rendering:

Ambient occlusion

- Idea: precompute occlusion as
 - $0 = \frac{1}{\pi} \int_{\Omega} V(\omega) < \omega, n > d\omega$
 - Does not depend on the illumination
 - Often computed per object
 - Does not require raytracing the entire scene
 - Can be used for animated objects
 - Another option: screen space ambient occlusion
 - Does not trace rays in the scene: samples a sphere around fragments
 - More for realtime rendering

Original model

With ambient occlusion

Extracted ambient occlusion map

Tone Mapping

[Reinhard et al. 2002] « Photographic Tone Reproduction for Digital Images »

Tone Mapping

- Scene key: $\overline{L} = \frac{1}{N} \exp(\sum \log(\delta + I))$
- Adjusting image values: $L = \frac{0.18}{\overline{L}} I$

• Compressing highlights:
$$L_d = L \frac{1 + \frac{1}{L_W^2}}{1 + L}$$

- If not sufficient, perform local adjustments:
 - Estimate contrast via difference of gaussian convolution at different scales

 $1 \perp L$

- Locally find the smallest scale that produces low contrast
- Adjust highlight compression step accordingly

Camera models

• Depth of field

Camera models

• Depth of field

Image-based rendering

- Further from physically-based rendering
- Essentially interpolates between photographs
 - Lightfields / Lumigraph : dense array of photographs
 - Multi-view : sparse set
- Restricted to real-life scenes

Depth Synthesis and Local Warps for Plausible Image-based Navigation, Chaurasia et al.

Light-fields

- The plenoptic function
 - $L(x, \omega)$
- Light-fields
- Display

By Gordon Wetzstein

Holography & Computational holography

• If time permits...

Holography & Computational holography

Holography & Computational holography

Computational holography

- Simulates wavefront propagation from 3D scene
 - Tight time constraints Gigapixels
 - Fourier optics

State-of-the-Art

• Fake or Photo ?

https://area.autodesk.com/fakeorfoto/

• Graphics Turing Test

