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Rasterization
(OpenGL, DirectX)
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procedure drawTriangle(T)
T’ = Project(T)
Rect = bounding_box(T’)
for each pixel p in Rect

if p inside T’
if depth(p) < z_buffer(p)

p = color
z_buffer(p) = depth(p)

End procedure
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(physically-based rendering)



procedure drawTriangle(T)
T’ = Project(T)
Rect = bounding_box(T’)
for each pixel p in Rect

if p inside T’
if depth(p) < z_buffer(p)

p = color
z_buffer(p) = depth(p)

End procedure

Rasterization
(OpenGL, DirectX)

Raytracing
(physically-based rendering)

procedure drawPixel(p)
L = Line(origin, p)
S = ∅
for each primitive T

S = S ∪ intersect(L, T)

S = sort(S)
if S ≠ ∅

p = color

End procedure



Rasterization
(OpenGL, DirectX)

Raytracing
(physically-based rendering)



Why realism can be important ?

Uncanny Valley



Uncanny Valley

Polar Express Tintin



What is realism ?

“Three Varieties of Realism in Computer Graphics”, Ferwerda

Functional Realism

Photo-realism
- motivated by perception
- HDR, faster rendering

Physical Realism
- full simulation
- useful in scientific computing
- e.g., architecture



Limits of realism

Non-Photorealistic Rendering

Non physically realistic Non realistic 



The rendering equation



Bidirectional Reflectance Distribution Functions (BRDF)

*Function  𝑓 ∶ 𝑆2 × 𝑆2 (× ℝ) → ℝ

Describes the appearance of materials

Such that:
• 𝑓 𝜔𝑖 , 𝜔𝑜 = 𝑓 𝜔𝑜, 𝜔𝑖 (Helmoltz’s reciprocity)
• 𝑓 𝜔𝑖 , 𝜔𝑜 ≥ 0

• Ω
𝑓 𝜔𝑖 , 𝜔𝑜 𝜔𝑖

𝑦
𝑑𝜔𝑖 ≤ 1

𝜔𝑖



Bidirectional Reflectance Distribution Functions (BRDF)

Diffuse (Lambertian) BRDF.  

𝑓 𝜔𝑖 , 𝜔𝑜 =
𝜌

𝜋

Specular BRDF.  
𝑓 𝜔𝑖 , 𝜔𝑜 = 𝛿(𝑅 − 𝜔𝑜)



Bidirectional Reflectance Distribution Functions (BRDF)

Glossy BRDF
𝑓 𝜔𝑖 , 𝜔𝑜 = ⋯ many options



• Analytical models
• Phenomenological/Experimental models :

• Phong 𝑓 𝜔𝑖 , 𝜔𝑜 = ൻ𝜔𝑜, ۧ𝑅 𝛼

• Blinn 𝑓 𝜔𝑖 , 𝜔𝑜 = ൻ𝑛, ۧ𝐻 𝛼

• Ward    𝑓 𝜔𝑖 , 𝜔𝑜 = ൘
exp − tan2ۦ𝑛,𝐻ۧ

𝛼2

4𝜋𝛼2 𝑛,𝜔𝑖ۧۦ𝑛,𝜔𝑜ۧۦ

• Lafortune, Minnaert, Strauss, Lewis, Schlick, ....

Bidirectional Reflectance Distribution Functions (BRDF)

*
𝑛

𝜔𝑖

𝜔𝑜

𝑅

Phong

𝐻



Bidirectional Reflectance Distribution Functions (BRDF)

• Analytical models
• Physical models (microfacets):

• Ashikhmin-Shirley

• Cook-Torrance

• Poulin-Fournier,  Torrance-Sparrow, Oren-Nayar, Kajiya, ...

𝑓 𝜔𝑖 , 𝜔𝑜 =
𝐹 𝛽

𝜋

𝐷 𝐻 𝐺(𝜔𝑖 , 𝜔𝑜)

cos 𝜔𝑜 cos(𝜔𝑖)

Distribution of normals (~Gaussian)

Shadowing and masking
(can be related to D)

Fresnel

Poulin Fournier

Cook-Torrance



Bidirectional Reflectance Distribution Functions (BRDF)

• Empirical models



Bidirectional Reflectance Distribution Functions

Empirical models



Bidirectional Reflectance Distribution Functions



Bidirectional Reflectance Distribution Functions (BRDF)

• Other / generalizations
• BSDF

• Scattering / Phase functions

• BSSRDF

• SVBRDF



Bidirectional Reflectance Distribution Functions (BRDF)

• Parenthesis: BRDF printing
• Zoematrope

L. Miyashita, K. Ishihara, Y. Watanabe and M. Ishikawa 
ZoeMatrope: A System for Physical Material Design  (SIGGRAPH 2016)



The rendering equation

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

• Assumptions: 
• Geometric optics

• No subsurface scattering, fluorescence, transparency, polarization

*
𝑛

𝜔𝑜

𝜔𝑖

𝐿𝑒 (?)

𝐿𝑖

𝐿𝑜



The rendering equation
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*
𝑛

*
*
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The rendering equation
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*
𝑛

*
*



The rendering equation



The rendering equation



First idea: Using Helmoltz’s reciprocity

*
𝑛

*
*

Idea behind Backward Raytracing / path tracing



The rendering equation

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

At each bounce, new integral

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑒 𝑥′, 𝜔𝑖 + න
Ω

𝑓(𝜔𝑖′, 𝜔𝑖)𝐿𝑖 𝑥′, 𝜔𝑖′ ൻ𝜔𝑖′, 𝑛′ 𝑑𝜔𝑖′ ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

Fredholm equation of the second kind

𝑥

𝑥′

𝜔𝑜

𝜔𝑖

𝜔𝑖′

𝑛

𝑛′



The rendering equation

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

At each bounce, new integral

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 + න
Ω

න
Ω

න
Ω

න
Ω

… න
Ω

𝐹 𝑥, 𝑥′, 𝑥′′, 𝑥′′′, . . , 𝑥′′′′, 𝜔𝑖 , 𝜔𝑖
′, … , 𝜔𝑖

′′′′, 𝜔𝑜, 𝜔𝑜
′ , … , 𝜔𝑜

′′′′ 𝑑𝜔𝑑𝜔′ … 𝑑𝜔′′′′

𝑥

𝑥′

𝜔𝑜

𝜔𝑖

𝜔𝑖′

𝑛

𝑛′



The rendering equation

• In fact, additional dimensions for the camera model
• Anti-Aliasing (+2D)

• Depth-of-Field (+2D)

• Motion blur (+1D)

• Multispectral (+1D)



Second idea: integration

Method of rectangles, error in 1/N
(1/𝑁2 for mid-point method – and better schemes exist)



Second idea: integration

In 2D:
In 3D:



Second idea: integration

• Instead, Monte-Carlo integration

• Example: Buffon’s needle to estimate Pi

• Probability for a needle to cross a line: P =
2𝑙

𝑡𝜋

• So, 𝜋 =
2𝑙

𝑡𝑃



Monte-Carlo Integration

• Why not using uniform random variables ?

x xx x x x x x x x x x
Problem for specular or glossy BRDFs



Monte-Carlo Integration

• General formula:

න 𝑓 𝑥 𝑑𝑥 ≈
1

𝑁


𝑖=1

𝑁
𝑓 𝑥𝑖

𝑝 𝑥𝑖

Where 𝑥𝑖~ℒ

• Example

න
𝑥=−

𝜋
2

+
𝜋
2

cos50 𝑥 𝑑𝑥 ≈
1

𝑁


𝑖=1

𝑁
cos50 𝑥𝑖

1

𝜎 2𝜋
exp −

𝑥𝑖
2

2𝜎2

Where 𝑥𝑖~𝒩(0, 𝜎2)

𝜎 =
1

5



Monte Carlo Integration

• Other example

න
𝑥=−

𝜋
2

+
𝜋
2

න
𝑦=−

𝜋
2

+
𝜋
2

න
𝑧=−

𝜋
2

+
𝜋
2

න
𝑤=−

𝜋
2

+
𝜋
2

cos50(𝑥 ∗ 𝑦 ∗ 𝑧 ∗ 𝑤) 𝑑𝑤 𝑑𝑧 𝑑𝑦 𝑑𝑥 ≈
1

𝑁


𝑖=1

𝑁
cos50(𝑥𝑖∗ 𝑦𝑖 ∗ 𝑧𝑖 ∗ 𝑤𝑖)

1

𝜎 2𝜋
4 exp −

(𝑥𝑖
2+𝑦𝑖

2 + 𝑧𝑖
2 + 𝑤𝑖

2)
2𝜎2

Where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑤𝑖~𝒩(0, 𝜎2)

• Unlike rectangle integration, STILL a single sum

• Property
• If f 𝑥 = 𝛼 𝑝(𝑥), we have   𝑓 𝑥 𝑑𝑥 ≈

1

𝑁
σ𝑖=1

𝑁 𝑓 𝑥𝑖

𝑝 𝑥𝑖
=

1

𝑁
σ𝑖=1

𝑁 𝛼 = 𝛼 for all 𝑁

• ... So there is equality, and you can take a single sample: 𝑁 = 1, or even 0 sample!
• ...so    𝑓 𝑥 𝑑𝑥 = 𝛼
• ....but if you know 𝛼, this means you already knew how to integrate 𝑓
• So this NEVER happens: you always have 𝑝 “similar” to 𝑓 but not equal



Sampling

Independent random samplingFollowing material from:

Fourier Analysis of Numerical Integration in Monte Carlo Rendering: Theory and Practice

Kartic Subr, Gurprit Singh, Wojciech Jarosz



Sampling

Independent random sampling



Sampling

Independent random sampling Regular sampling Jittered/stratified sampling

Poisson Disk

CCVT

Reference Random Jittered



Frequency analysis

Uniform sampling



Frequency analysis

Jittered sampling



Frequency analysis

Poisson Disk



Frequency analysis

CCVT



Monte Carlo Integration

• Convergence rate : Depends on frequency of samples
• Random: variance in 1/𝑁
• Jitter : variance in 1/𝑁1.5

• Poisson Disk : variance in 1/𝑁
• CCVT: variance in 1/𝑁1.5

• With   error = variance
• So, using standard random numbers, 4x more samples for 2x accuracy
• using jittered sampling, 2.5x more samples for 2x accuracy

• 𝑉𝑎𝑟 𝐼𝑁 =
𝜇 𝑇𝑑 2

𝜇 𝑆𝑑−1 2

𝑁
0

∞
𝜌𝑑−1 𝑃𝑆 𝜌 𝑃𝐹 𝜌 d𝜌

• With 𝜇 𝑆𝑑−1 =
2 𝜋𝑑

Γ
𝑑

2

and 𝜇 𝑇𝑑 = 1



Third idea: Change of variables

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
P

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛
𝑉 𝑥, 𝑥′ ൻ𝜔𝑖 , ۧ𝑛′

𝑥 − 𝑥′ 2
𝑑𝑃

⇔

𝑛

𝑛′

𝑥

𝑥′

𝑉 = 0

𝜔𝑖

𝜔𝑜



Path Tracing

*
𝑛

*
*

Random ray

Random ray

Random ray



Path Tracing

• How to generate a random ray
• With a probability similar to BRDF ?

• Mostly easy: for diffuse BRDFs and some BRDF models

e.g., diffuse: 𝑝 𝜃 =
cos 𝜃

𝜋
and 𝑥, 𝑦, 𝑧 = cos 2𝜋𝑟1 1 − 𝑟2, sin 2 𝜋𝑟1 1 − 𝑟2, 𝑟2

• See Global Illumination Compendium (Philip Dutré)

• With a probability similar to incoming Light ?
• More difficult in general

• Easy for point lights

• Both ? 
• “Multiple Importance Sampling”



How to generate samples according to a 
distribution f ?
• Rejection method

• Suppose you know how to sample g, with 
𝑓

𝑔
≤ 𝑐

• Do
• Sample y with density g

• Generate a uniform random number 𝑢 ~ 𝑈(0,1)

• While 𝑢 >
𝑓 𝑦

𝑐 𝑔(𝑦)

• Keep y

Average number of iteration = c

𝑓

𝑐 𝑔



How to generate samples according to a 
distribution f ?
• Inverse transform sampling (1-d)

• Compute the inverse cumulative distribution function 𝐹−1

• 𝐹 𝑥 = ∞−

𝑥
𝑓 𝑡 𝑑𝑡 (may use numerical integration)

• 𝐹−1 𝑦 = min 𝑥 𝑦 = 𝑓 𝑥 } (may use numerical solvers)

• Take a random uniform 𝑢~𝑈(0,1)

• Use 𝐹−1(𝑢)

• Proof
• 𝑃 𝐹−1 𝑢 ≤ 𝑥 = 𝑃 𝑢 ≤ 𝐹 𝑥 = 𝐹(𝑥)



How to generate samples according to a 
distribution f ?
• Example

• 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 𝑥 ≥ 0

• 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥

• 𝐹−1 𝑦 = −
log 1−𝑦

𝜆

• We take 𝑢~𝑈(0,1) and compute 𝑣 = −
log 𝑢

𝜆



How to generate samples according to a 
distribution f ?
• Inverse transform sampling (images)

• First option: concatenate image rows => 1d case

• Second option: 

• Compute 𝑚 𝑥 = 0

1
𝑓 𝑥, 𝑦 𝑑𝑦 the marginal density function of f

• Then  𝑀 𝑦 = 0

𝑦
𝑚 𝑥 𝑑𝑥 -> allows to determine y

• Then use the conditional 𝑐 𝑥 𝑦) =
𝑓 𝑥,𝑦

𝑀 𝑦
and its cumulative C to determine x

[Secord et al. 2002] “Fast Primitive Distribution for Illustration »



Other tricks

• Multiple Importance Sampling
• Used for integrating with multiple strategies

• Given estimates 𝐼𝑘 𝑘=1..𝑛 of an integral  𝑓 𝑥 𝑑𝑥 using pdf 𝑝𝑘 𝑘=1..𝑛

• 𝐼 = σ𝑘=1
𝑛 𝑤𝑘𝐼𝑘 with σ𝑘=1

𝑛 𝑤𝑘 = 1 (naïve)

• 𝐼 = σ𝑖=1
𝑛 σ𝑗=1

𝑛𝑖 𝑓(𝑥𝑖𝑗)

σ𝑘=1
𝑛 𝑛𝑘 𝑝𝑘(𝑥𝑖𝑗)

(balanced heuristic) : optimal*

• Control Variates
• Used for integrating when the integral H of a proxy h is known

• 𝐼 ≈
1

𝑛
σ𝑖 𝑓 𝑥𝑖 − ℎ 𝑥𝑖 + 𝐻 ⇒ 𝑉𝑎𝑟 𝐼 =

1

𝑛
𝑉𝑎𝑟(𝑓 − ℎ)

• Better : 𝐼 ≈
1

𝑛
σ𝑖 𝑓 𝑥𝑖 − 𝛽ℎ 𝑥𝑖 + 𝛽𝐻 with 𝛽 =

𝐶𝑜𝑣(𝑓,ℎ)

𝑉𝑎𝑟(ℎ)

*Assuming a convex sum. See [Kondapaneni et al. 2019] “Optimal Multiple Importance Sampling” for better, possibly negative, weights



Bidirectional Path Tracing

𝑛

*



Metropolis-Hastings

𝑛

*



Metropolis-Hastings

• Probability P of accepting a new path p’

• 𝑃 = min(1,
𝜋 𝑝′

𝜋 𝑝
)

• Results in a sequence of paths following the distribution 𝜋

• Ideal when paths are hard to find
• Specular paths

• Refraction / caustics

• Small holes letting light pass

A Simple and Robust Mutation Strategy for the Metropolis Light Transport



Photon mapping

*

x

x x

x

x

x

x

x

Faster Photon Map Global Illumination, PH Christensen (only non purely specular objects receive photons)



Photon mapping



Photon mapping

*

x

x x

x

x

x

x

x

Final Gathering



Photon mapping

Final gathering step
(irradiance)



Photon mapping

• Density estimation
• Fix a radius, count the number of photons inside
• Fix a number of photons to get, look at the radius
• Goal: obtain a number of photon per unit area
• Can weigh photons with distance

• Bottleneck : Retrieving nearest neighbors
• Acceleration structures (kd-trees, octrees...)

• Biased estimate
• For a finite # photons, the expected value is not the true value
• Due to the gathering of nearby (and incorrect) values
• E.g., next to a shadow, a pixel is systematically darker



Photon mapping

Final gathering step
(radiance)

Noisy. Idea:
do it just for indirect



Photon mapping

Purely direct lighting



Photon mapping

Sum



Precomputed Radiance Transfer

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

• Decompose 𝑓 𝜔𝑖 , 𝜔𝑜 ൻ𝜔𝑖 , ۧ𝑛 and  𝐿𝑖(𝜔𝑖)  on orthonormal bases

• Use a scalar product 𝑓, 𝑔 =  𝑓 𝑥 𝑔 𝑥 𝑑𝑥

• If 𝑓(𝑥) = σ𝛼𝑖𝑆𝑖(𝑥) and 𝑔(𝑥) = σ𝛽𝑗𝑆𝑗(𝑥) and {𝑆𝑖} is orthonormal

𝑓, 𝑔 = 𝛼, 𝛽

(proof by bilinearity of scalar product)

Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments, PP Sloan et al. 



Precomputed Radiance Transfer

• For instance: 
• 𝑓𝜔𝑜

𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 = σ𝑘 𝛼𝑘 𝑌𝑘(𝜔𝑖)

• 𝐿𝑖 𝜔𝑖 = σ𝑘 𝛽𝑘 𝑌𝑘(𝜔𝑖)

• With 𝑌𝑘(𝜔𝑖) spherical harmonics



Precomputed Radiance Transfer

• 𝑌𝑘 𝜔𝑖 = 𝛼 𝑃𝑙
𝑚 cos 𝜃 𝑒𝑖𝑚𝜙

• With 𝑃𝑙
𝑚(𝑥) the associated Legendre polynomial of order m (related to the m’th

derivative of 𝑃𝑙)
• Eigenfunctions of the Δ operator on the sphere
• Equivalent to Fourier basis on the sphere
• Fast computation via 2D Fast Fourier Transforms

• The frequency content of the result is bounded by the minimum frequency 
content between the BRDF and illumination !
• E.g. : a diffuse object under high frequency lighting looks the same as a metal ball 

under diffuse (constant) lighting

• Other bases have been used: Spherical Wavelets, Zonal Harmonics, ...



Wavelets

• Haar wavelet
• 𝜓𝑛,𝑘 𝑡 = 2𝑛/2 𝜓(2𝑛𝑡 − 𝑘)

with 𝜓 𝑡 = 1
𝑡∈[0,

1

2
]

− 1
𝑡∈

1

2
,1

and 𝑘, 𝑛 ∈ 𝑍

• Orthogonal:
• 𝑅

𝜓𝑘1,𝑛1
𝑡 𝜓𝑘2,𝑛2

𝑡 𝑑𝑡 = 𝛿𝑘1,𝑘2
𝛿𝑛1,𝑛2



Wavelets

• Wavelet transform
• 𝑋 𝑘, 𝑛 = 𝑅

𝜓𝑘,𝑛 𝑡 𝑥 𝑡 𝑑𝑡

• Various translations k => convolution

• In fact:

𝑋𝑛 𝑘 = 2𝑛/2 න
𝑅

𝜓 2𝑛𝑡 − 𝑘 𝑥 𝑡 𝑑𝑡

• Haar scaling function
• 𝜙 𝑡 = 1𝑡∈[0,1]

• Expresses residual low frequencies



Wavelets

• In fact, recursive formulation of Haar wavelets:
• Scaling function : 𝜙 𝑡 = 𝜙 2𝑡 + 𝜙(2𝑡 − 1)

• Wavelet:                𝜓 𝑡 = 𝜙 2𝑡 − 𝜙(2𝑡 − 1) (no typo!)

• Given 𝜒 𝑘, 𝑛 = 2𝑛/2 𝑅
𝑥 𝑡 𝜙 2𝑛𝑡 − 𝑘 𝑑𝑡

and        𝑋 𝑘, 𝑛 = 2𝑛/2 𝑅
𝑥 𝑡 𝜓 2𝑛𝑡 − 𝑘 𝑑𝑡

We recursively obtain:

𝜒 𝑘, 𝑛 = 2−
1
2 𝜒(2𝑘, 𝑛 + 1 + 𝜒(2𝑘 + 1, 𝑛 + 1))

𝑋 𝑘, 𝑛 = 2−
1
2(𝜒 2𝑘, 𝑛 + 1 − 𝜒 2𝑘 + 1, 𝑛 + 1 )

Box filter

Finite difference

Only depends on scaling function!Example at: 
https://www.eecis.udel.edu/~amer/CISC651/Haar.wavelets.paper.by.Mulcahy.pdf



Spherical Wavelets

• Same concept on the sphere

• Scaling function defined as piecewise constant on tessellated spheres

(low passed only)

Images from Gabriel Peyre’s “Numerical Tours” : check these tours out!



Back to path tracing: Participating Media

• Phase function 𝑓(𝜔𝑖 , 𝜔𝑜)

𝑛
𝜔𝑖𝐿𝑖



Back to path tracing: Participating Media

• Extinction coefficient 𝜎𝑡

• density of the medium

• Optical depth: 𝜏(𝑑) = 0

𝑑
𝜎𝑡 𝑥 − 𝑡𝜔𝑖 𝑑𝑡

• Transmittance: T(d) = exp(−𝜏(𝑑))
defines how much light is absorbed or scattered out

𝜔𝑖𝐿𝑖

𝑑

𝑥



Back to path tracing: Participating Media

• Scattering coefficient 𝜎𝑠

• Absorption coefficient 𝜎𝑎

• 𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎

• 𝐿𝑖 𝑥, 𝜔𝑖 = 𝐿𝑖 𝑥′, 𝜔𝑖 . T d

+ න
0

𝑑

න
Ω+

𝑇 𝑡 𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥𝑡 , 𝜔𝑜 𝜎𝑠 𝑥𝑡 𝑑𝜔𝑜𝑑𝑡

With 𝑥𝑡 = 𝑥 − 𝜔𝑜𝑡

(loose notations)

𝜔𝑖𝐿𝑖

𝑑

𝑥

𝑥′



Back to path tracing: Participating Media

• We merely added 3 dimensions to the integration domain
• Absorb the incoming light

• Add in-scattered radiance by
• Sampling one position

• Sampling one direction

• Adding the contribution    𝑇 𝑡 𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥𝑡 , 𝜔𝑜 𝜎𝑠 𝑥𝑡

𝜔𝑖𝐿𝑖

𝑑

𝑥

𝑥′



Back to path tracing: Participating Media

Tutorial  : http://liris.cnrs.fr/~nbonneel/teaching.html



Radiosity

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
P

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛
𝑉 𝑥, 𝑥′ ൻ𝜔𝑖 , ۧ𝑛′

𝑥 − 𝑥′ 2
𝑑𝑃

• Under diffuse reflectance, we have  𝑓 𝜔𝑖 , 𝜔𝑜 =
𝜌

𝜋

• And omnidirectional emissivity

• So :

𝐿𝑜(𝑥) = 𝐿𝑒(𝑥) +
𝜌(𝑥)

𝜋
න

P

𝐿𝑖 𝑥, 𝜔𝑖 𝐺(𝑥, 𝑥′)𝑑𝑃

𝐺(𝑥, 𝑥′)
Form factor:



Radiosity

𝐿𝑜(𝑥) = 𝐿𝑒(𝑥) +
𝜌(𝑥)

𝜋
න

P

𝐿𝑖 𝑥, 𝜔𝑖 𝐺(𝑥, 𝑥′)𝑑𝑃

• Now, discretizing and assuming constant values per triangle k:

𝐿𝑘 = 𝐿𝑒
𝑘 +

𝜌𝑘

𝜋


𝑙

𝐿𝑙 𝐺𝑘,𝑙

(could also take any orthogonal basis function over triangles instead)



Radiosity

𝐿𝑘 = 𝐿𝑒
𝑘 +

𝜌𝑘

𝜋


𝑙

𝐿𝑙 𝐺𝑘,𝑙

• Can be written in matrix form. Consider a vector L and matrix G :

𝐿 = 𝐿𝑒 + 𝑑𝑖𝑎𝑔
𝜌

𝜋
𝐺 𝐿

Re-arranging terms:

𝐿 = 𝐼𝑑 − 𝑑𝑖𝑎𝑔
𝜌

𝜋
𝐺

−1

𝐿𝑒

Can be solved numerically quite easily

𝑀



Radiosity

• Instead of a full direct linear solve, use Jacobi iterations

𝐿𝑖 =
1

𝑀𝑖𝑖
𝐿𝑒

𝑖 − 
𝑗=1
𝑗≠𝑖

𝑛

𝑀𝑖𝑗 𝐿𝑗

• Each iteration corresponds to 1 light bounce:

One iteration: ∀𝑖



Radiosity

• Unfortunately, now mostly abandoned
• Has been generalized to non-diffuse scenes

• To (near) realtime settings*

• But nice meshing is difficult

• Conceptually simpler methods exist (e.g., 
photon maps)

* Implicit Visibility and Antiradiance for Interactive Global Illumination, Dachsbacher et al.



Physically-based rendering meets realtime

• Instant radiosity
• Essentially unrelated to radiosity, but more related to photon mapping

• Sends “Virtual Point Lights” from light sources, use them as new light sources



Distant illumination models

• Environment maps



Distant illumination models

• Analytic Sky Model [Preetham et al. 1999] : parametric sky model
• Turbidity: optical thickness of atmosphere including haze / optical thickness of 

atmosphere without haze



Distant illumination models

• Analytic Sky Model [Preetham et al. 1999] : parametric sky model
• Skylight luminance from Perez et al.

• 𝐹 𝜃, 𝛾 = 1 + 𝐴𝑒−
𝐵

cos 𝜃 1 + 𝐶𝑒𝐷𝛾 + 𝐸 cos2 𝛾

• Skylight chrominance

• 𝑥 = 𝑥𝑧
𝐹 𝜃,𝛾

𝐹(0,𝜃𝑠)
𝑦 = 𝑦𝑧

𝐹 𝜃,𝛾

𝐹(0,𝜃𝑠)

• Parameters different for x and y

• Fitted from measurements



Results



Prefiltered environment maps

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
Ω

𝑓 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 ൻ𝜔𝑖 , ۧ𝑛 𝑑𝜔𝑖

When the incident illumination is distant: 

Spherical convolution between  𝑓 . , 𝜔𝑜 .ۦ , ۧ𝑛 and 𝐿𝑖

A Unified Approach to Prefiltered Environment Maps, Kautz et al.



Prefiltered environment maps

• Precomputing convolutions between environment map and BRDF for 
various 𝜔𝑜

• Easy for some BRDF : Gaussian blur

• Just a lookup when rendering: 



Ambient occlusion

• Idea: precompute occlusion as

• 𝑂 =
1

𝜋
Ω

𝑉 𝜔 . < 𝜔, 𝑛 > 𝑑𝜔

• Does not depend on the illumination

• Often computed per object
• Does not require raytracing the entire scene

• Can be used for animated objects

• Another option: screen space ambient occlusion
• Does not trace rays in the scene: samples a sphere around fragments

• More for realtime rendering



Tone Mapping

[Reinhard et al. 2002] « Photographic Tone Reproduction for Digital Images »



Tone Mapping

• Scene key: ത𝐿 =
1

𝑁
exp(σ log(𝛿 + 𝐼))

• Adjusting image values: 𝐿 =
0,18

ത𝐿
𝐼

• Compressing highlights: 𝐿𝑑 = 𝐿
1+

𝐿

𝐿𝑤
2

1+𝐿

• If not sufficient, perform local adjustments:
• Estimate contrast via difference of gaussian convolution at different scales

• Locally find the smallest scale that produces low contrast

• Adjust highlight compression step accordingly



Camera models

• Depth of field



Camera models

• Depth of field



Camera models

• Depth of field

• Idea: simulate circle of confusion



Image-based rendering

• Further from physically-based rendering

• Essentially interpolates between photographs
• Lightfields / Lumigraph : dense array of photographs

• Multi-view : sparse set

• Restricted to real-life scenes

Depth Synthesis and Local Warps for Plausible Image-based Navigation, Chaurasia et al.



Light-fields

• The plenoptic function
• 𝐿(𝑥, 𝜔)

• Light-fields

• Display

By Gordon Wetzstein

By Fuchs et al.



Holography & Computational holography

• If time permits…



Holography & Computational holography



Holography & Computational holography



Computational holography

• Simulates wavefront propagation from 3D scene
• Tight time constraints – Gigapixels

• Fourier optics



State-of-the-Art

• Fake or Photo ?
https://area.autodesk.com/fakeorfoto/

• Graphics Turing Test

https://area.autodesk.com/fakeorfoto/

