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Monte-Carlo methods
for 3d rendering



Projection

B

Rasterization Raytracing
(OpenGL, DirectX) (physically-based rendering)
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Rasterization
(OpenGL, DirectX)



procedure drawTriangle(T)
T’ = Project(T)
Rect = bounding box(T’)
for each pixel p in Rect
if pinside T’
if depth(p) < z_buffer(p)

p = color
z_buffer(p) = depth(p)

End procedure

Rasterization
(OpenGL, DirectX)

Raytracing
(physically-based rendering)



procedure drawTriangle(T) | Procedure drawPixel(p)
T’ = Project(T) L = Line(origin, p)
Rect = bounding box(T’)| S=0

for each pixel p in Rect | for each primitive T
S =S Uintersect(L, T)

if pinside T’
if depth(p) < z_buffer(p)
p = color if S+ 0
z_buffer(p) = depth(p) p = color
End procedure End procedure

Rasterization Raytracing
(OpenGL, DirectX) (physically-based rendering)



Rasterization Raytracing
(OpenGL, DirectX) (physically-based rendering)



Why realism can be important ?
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Uncanny Valley
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What is realism ?

RandarSing
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Replacing wood shingles
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Physical Realism

- full simulation

- useful in scientific computing
Functional Realism -e.g., architecture

Photo-realism
- motivated by perception
- HDR, faster rendering

“Three Varieties of Realism in Computer Graphics”, Ferwerda



Limits of realism
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Non-Photorealistic Rendering

Non physically realistic Non realistic



The rendering equation



Bidirectional Reflectance Distribution Functions (BRDF)

Function f: 5% xS? (XxR) > R
Describes the appearance of materials

Such that:
* f(w;,w,) = flw, w;) (Helmoltz’s reciprocity)
* f(wir wo) =0

* fg f(wi:wo) wiydwi <1




Bidirectional Reflectance Distribution Functions (BRDF)

| | Specular BRDF.
Diffuse (Lambertian) BRDF. f(w;, w,) =6(R — w,)

_P
f(a)i' wo) - T



Bidirectional Reflectance Distribution Functions (BRDF)

Glossy BRDF
f(w;, w,) = :-+ many options



Bidirectional Reflectance Distribution Functions (BRDF)

* Analytical models

* Phenomenological/Experimental models :
* Phong f(w;w,) = (a)o,R)“
* Blinn  f(w;, w,) = (1, H)®

(1i,H)
exp( — tan®~5*

/47ta2\/(ﬁ’,wo)(ﬁ,wi)

* Lafortune, Minnaert, Strauss, Lewis, Schlick, ....

« Ward f(w;, w,) =

e




Bidirectional Reflectance Distribution Functions (BRDF)

Distribution of normals (~“Gaussian)

. Shadowing and maskin
° Analytlcal models Fresnel \ (can be reflgated to D) ;

* Physical models (microfacets): \ /
* Ashikhmin-Shirley F(,B) D (H)G((Ul, (1)0)
* Cook-Torrance f((l)i, (1)0) —
* Poulin-Fournier, Torrance-Sparrow, Oren-Nayar, Kajiya, ...T[ COS(wO) COS((Ui)

Cook-Torrance

macrosurface

g

microsurface




Bidirectional Reflectance Distribution Functions (BRDF)

* Empirical models




Bidirectional Reflectance Distribution Functions

Empirical models
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Bidirectional Reflectance Distribution Functions
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Bidirectional Reflectance Distribution Functions (BRDF)

3
Hazy olt) = an;u“

e Other / generalizations
* BSDF -J:

* Scattering / Phase functions
« BSSRDF ;.
« SVBRDF :z< > :i:< )

irky Mie v'f

n (b) App _-o.u




Bidirectional Reflectance Distribution Functions (BRDF)

* Parenthesis: BRDF printing
* /Joematrope

THE ZOOTROPE.

L. Miyashita, K. Ishihara, Y. Watanabe and M. Ishikawa
ZoeMatrope: A System for Physical Material Design (SIGGRAPH 2016)



The rendering equation

Lo @) = Le e @) + | £ (@, @) LiCx, D)@, )
Q

* Assumptions:
* Geometric optics
* No subsurface scattering, fluorescence, transparency, polarization

H—=
—




The rendering equation

Lo @) = Le e @) + | £ (@, @) LiCx, D)@, )
Q
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The rendering equation

Lo @) = Le e @) + | £ (@, @) LiCx, D)@, )
Q
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The rendering equation

Lo @) = Lo @) + | f(@3, @)L, @) @, i
Q

X




The rendering equation
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The rendering equation




First idea: Using Helmoltz’s reciprocity

<}|/ ~.

Idea behind Backward Raytracing / path tracing




The rendering equation

LO(xJ w_o)) — Le(xl (‘)—o)) + f f(a){, a)0>)Li(xi a{)(@i 77i>dal)
Q)

At each bounce, new integral L
| )

Lo(x, @) = Lo(x,@5) + j f @7, @3) [Leu',m) ¥ j f @y, BOL(, ) (@, ) dw—’] (w7, @
Q Q

—

Fredholm equation of the second kind




The rendering equation

Lo @) = Lee @) + | (@, @) LaCx, D)@, )
Q)

At each bounce, new integral

L (x wo) — L +j j j j j F(X xl 144 III IIII (l) ,(,(),,:, ...,(,()”” wo a)o Illl)dwdw d(,()””




The rendering equation

* |n fact, additional dimensions for the camera model
e Anti-Aliasing (+2D)
* Depth-of-Field (+2D)
* Motion blur (+1D)
* Multispectral (+1D)




Second idea: integration

A

Method of rectangles, errorin 1/N
(1/N? for mid-point method — and better schemes exist)



Second idea: integration

In 2D: In 3D




Second idea: integration

* Instead, Monte-Carlo integration

* Example: Buffon’s needle to estimate Pi

21

* Probability for a needle to cross a line: P = —

-



Monte-Carlo Integration

* Why not using uniform random variables ?

XX

Problem for specular or glossy BRDFs




Monte-Carlo Integration

].[ké:ll
* General formula: y g
r[f(x) dx =~ l f(xi) |IEI:"IIHE II'Illll
N = P(Xi) I,I'II!'].Jf} '-II'-,I
Where x;~L [oaf |\
e AN
—-1.5 1.0 —0.5 0.0 H[].ﬁ 1.0 1.5
* Example
+y 1% cos°? x;
50 l
f cos " x dx = —
T
X="7 i=1

Where x;~N(0,02)



Monte Carlo Integration

e Other example

T T T T N
2 otz (2 (2 o 1 cos®0(x;* y; * z; * wy)
j j j j cos > (x *xy x Z x w) dwdzdydxz—z RO > >
S VN PR N 1o (_ Gyl + 20+ w; ))
(O’\/ZTL’) 20
Where Xi, Vi, Zi, WiNN(O, 0'2)
e Unlike rectangle integration, STILL a single sum
* Property
e Iff(x) = a p(x), we have [ f(x)dx =~ %Z{Vﬂig‘% = %Z?’zla = aforall N

... So there is equality, and you can take a single sample: N = 1, or even 0 sample!

.50 [f(x)dx =a
....but if you know @, this means you already knew how to integrate f
So this NEVER happens: you always have p “similar” to f but not equal



Sampling
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Following material from: Independent random sampling

Fourier Analysis of Numerical Integration in Monte Carlo Rendering: Theory and Practice
Kartic Subr, Gurprit Singh, Wojciech Jarosz



Sampling

Independent random sampling



Sampling
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Frequency analysis

Samples Expected power spectrum Radial mean
- 'l." . 2 _
. - ;: -c' !
L : L o «®
. s %
.“ i .-.'-
e’ AL % |
S . 1
d. J. . -t * ‘e . .
o .ll .l L
..l . ¥ .. . -
. ® M .; " .’.. * |
. » i;-. o i
N ) %0 2
vl Frequency

Uniform sampling




Frequency analysis

Samples

Expected power spectrum

Radial mean

Frequency

Jittered sampling




Frequency analysis

Samples Expected power spectrum Radial mean

Power

Frequency

Poisson Disk



Frequency analysis

Samples Expected power spectrum Radial mean

Power

Frequency

CCVT



Monte Carlo Integration

* Convergence rate : Depends on frequency of samples
* Random: variancein 1/N
e Jitter : variance in 1/N 1

* Poisson Disk : variancein 1/N
* CCVT: variance in 1/N1®

* With error = +/variance
* So, using standard random numbers, 4x more samples for 2x accuracy
* using jittered sampling, 2.5x more samples for 2x accuracy

u(T9) th,(501—1) J.Ooo p3=1P.(p)Pr(p)dp
and u(T%) =1

¢ VaT(IN) —_
* With u(S471) =

2\

r(3)




Third idea: Change of variables

Lo @) = Lo @) + | (@, @) LiCx, D)@, )
Q)
e

— — > > > > — V(x)x’)‘<wbﬁ’
oo @) = L (e @) + | £ (@, @) LiCx, D)@, )
P
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Path Tracing

X

Random ray

Random ray




Path Tracing

* How to generate a random ray

* With a probability similar to BRDF ?
* Mostly easy: for diffuse BRDFs and some BRDF models

e.g., diffuse: p(0) = —  and (x,y,2) = (cos 2mry /1 — 1y, sin 2 try V1 — 12,(/73)

T

e See Global lllumination Compendium (Philip Dutré)

* With a probability similar to incoming Light ?
* More difficult in general
* Easy for point lights

* Both?
* “Multiple Importance Sampling”



How to generate samples according to a
distribution f ?

* Rejection method

Suppose you know how to sample g, with g <c

cg
* Do
e Sample y with density g
* Generate a uniform random number u ~ U(0,1) f

While u > LY
cgy)

Keepy

Average number of iteration =c



How to generate samples according to a
distribution f ?

* Inverse transform sampling (1-d)
« Compute the inverse cumulative distribution function F~1

« F(x) = f_xoof(t)dt (may use numerical integration)
« F7Y(y) =min {x |y = f(x)} (may use numerical solvers)
* Take a random uniform u~U(0,1)
e Use F~1(u)
* Proof
c P(Fl(w) <x)=P(u<F(x)) = F(x)



How to generate samples according to a
distribution f ?

* Example
s f(x) =A™ x>0
cF(x)=1—e™

_ log(1-)
FFTNy) = -

* We take u~U(0,1) and compute v = —

log(u)
A




How to generate samples according to a
distribution f ?

* Inverse transform sampling (images)
* First option: concatenate image rows => 1d case
* Second option:
« Compute m(x) = folf(x, y)dy the marginal density function of f

. Then M(y) = foy m(x)dx ->allows to determine y >

f(x,y)
M(y)

* Then use the conditional c(x | y) =
and its cumulative C to determine x

[Secord et al. 2002] “Fast Primitive Distribution for Illlustration »



Other tricks

* Multiple Importance Sampling
* Used for integrating with multiple strategies

* Given estimates {I; },—1 ,, of an integral | f(x)dx using pdf {Pi}k=1n
o [ = YR wil, withY -, w, =1 (naive)

; f(xij)
e [ =Y YH J
l 121=1Zﬁ=1nkpk(xij)

* Control Variates
* Used for integrating when the integral H of a proxy h is known
1 1
¢ | = Zzi (f(x) —h(x))+H = Var(l) = - Var(f —h)

) , Cov(f,h
 Better:[ = ;Zi (f(x;) — Bh(x;)) + BH with B = 5:,9(0,1))

(balanced heuristic) : optimal”

"Assuming a convex sum. See [Kondapaneni et al. 2019] “Optimal Multiple Importance Sampling” for better, possibly negative, weights



Bidirectional Path Tracing




Metropolis-Hastings




Metropolis-Hastings

* Probability P of accepting a new path p’

D n(p')
P = min(1, n(p))

e Results in a sequence of paths following the distribution 7

* |deal when paths are hard to find

* Specular paths
* Refraction / caustics
* Small holes letting light pass

A Simple and Robust Mutation Strategy for the Metropolis Light Transport



Photon mapping

e

’i

Faster Photon Map Global lllumination, PH Christensen (only non purely specular objects receive photons)



ing

Photon mapp




Photon mapping

Final Gathering 7\6 O



Photon mapping

Final gathering step
(irradiance)




Photon mapping

* Density estimation
* Fix a radius, count the number of photons inside
* Fix a number of photons to get, look at the radius
* Goal: obtain a number of photon per unit area
* Can weigh photons with distance

e Bottleneck : Retrieving nearest neighbors
* Acceleration structures (kd-trees, octrees...)

* Biased estimate
* For afinite # photons, the expected value is not the true value
* Due to the gathering of nearby (and incorrect) values
e E.g., next to a shadow, a pixel is systematically darker



Photon mapping

Final gathering step
(radiance)

Noisy. Idea:
do it just for indirect




Photon mapping

Purely direct lighting




Photon mapping

Sum




Precomputed Radiance Transfer

Lo @3) = Lo @) + | £ (@, @) LaCx, D)@, )
Q

» Decompose f(w;, wy) (w;,7) and L;(w;) on orthonormal bases

* Use a scalar product {f, g) = | f(x)g(x)dx
* If f(x) = Xa;S;(x) and g(x) = 2.B;S;(x) and {S;} is orthonormal

(f,9) = (a,p)
(proof by bilinearity of scalar product)

Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments, PP Sloan et al.



Precomputed Radiance Transfer

 For instance:

¢ faz (@) (w;,1) = Xy ay Y (w;)

* Li(w;p) = X Br Vi (w;)
« With Y, (w;) spherical harmonics

T N




Precomputed Radiance Transfer

* Y, (@;) = a P/"(cos §)e'™?
* With P/ (x) the associated Legendre polynomial of order m (related to the m’th
derivative of P)
* Eigenfunctions of the A operator on the sphere
* Equivalent to Fourier basis on the sphere
* Fast computation via 2D Fast Fourier Transforms

* The frequency content of the result is bounded by the minimum frequency
content between the BRDF and illumination !

e E.g.:adiffuse object under high frequency lighting looks the same as a metal ball
under diffuse (constant) lighting

* Other bases have been used: Spherical Wavelets, Zonal Harmonics, ...



Wavelets

e Haar wavelet
* Y i(t) =22 (2"t — k)
with ¥ (t) = 1t€[0%] — 1’56[%»1]
andk,n € Z

* Orthogonal:
* Jo Wk, @) Vi, ®)dt = Sk, k,0n, n,



Wavelets

 Wavelet transform

* X(k,n) = [ Ppn(t) x(t)dt
e Various translations k => convolution
* |n fact:

X, (k) = 2™/>2 jl/)(znt — k) x(t)dt
R

* Haar scaling function

* d(t) = 1eepon
* Expresses residual low frequencies




Wavelets

* In fact, recursive formulation of Haar wavelets:
e Scaling function : ¢ (t) = ¢p(2t) + (2t — 1)
* Wavelet: Y(t) = dp(2t) — dp(2t —1)  (notypol)

e Given y(k,n) = 2™/? J.x(©)p(2™"t — k)dt
and  X(k,n) = 22 Jox(®) Y™t — k) dt

We recursively obtain:

1
x(k,n) = 2_51()((2]{,71 +1)+x(2k+1,n+1)) Box filter
X(k,n) = 2_5()((2k,n +1) — )((Zk +1,n+ 1)) Finite difference
Example at: Only depends on scaling function!

httos://www.eecis.udel.edu/~amer/CISC651/Haar.wavelets.paper.bv.Mulcahv.odf



Spherical Wavelets

* Same concept on the sphere
 Scaling function defined as piecewise constant on tessellated spheres

L ©
“ ©

Images from Gabriel Peyre’s “Numerical Tours” : check these tours out!

(low passed only)



Back to path tracing: Participating Media
* Phase function f (w;, w,) / 0




Back to path tracing: Participating Media

* Extinction coefficient o,
* density of the medium

* Optical depth: 7(d) = fod o:(x — tw;) dt

* Transmittance: T(d) = exp(—1(d))
defines how much light is absorbed or scattered out



Back to path tracing: Participating Media

* Scattering coefficient oy
* Absorption coefficient g,

°* 0y = 05 + 0,

* Ll wp) = Li(x', ). T(d)
+f j T(t)f(w;, wy) Li(xe, wy)os(xp)dw, dt
0 Jar

Withx; = x — w,t

(loose notations)



Back to path tracing: Participating Media

* We merely added 3 dimensions to the integration domain
e Absorb the incoming light

e Add in-scattered radiance by
e Sampling one position
e Sampling one direction
» Adding the contribution T (t)f(w;, w,)L;(x;, w,)os(x;)



Back to path tracing: Participating Media

Tutorial : http://liris.cnrs.fr/~nbonneel/teaching.html



Radiosity

Lo @) = Lo @) + | f (@, @) LiCx, i),
P

* Under diffuse reflectance, we have f(w;, w,) =

* And omnidirectional emissivity

*So:

B p(x)
Lo(x) — Le(x) + T

P

Form factor:

G(x,x")

V(x,x")|(w;, 7"

| — x'|]4

p
s

L;(x,0;)G(x,x")dP

dP



Radiosity

L,(x) = L,(x) +¥ L;(x,w;)G(x,x")dP
P

* Now, discretizing and assuming constant values per triangle k:

_Lk lele

(could also take any orthogonal basis functlon over triangles instead)



Radiosity

ok
Ik = [k _|__Z 1! gkl
" a

e Can be written in matrix form. Consider a vector L and matrix G :
L=Le+diag£ G L

Re-arranging terms:

L =|(Id — diag% G) L,
M

Can be solved numerically quite easily




Radiosity

* Instead of a full direct linear solve, use Jacobi iterations
n
L[
One iteration: L; = M_ Le — Mij Lj Vi
ii 4

JEI!
* Each iteration corresponds to 1 light bounce:

2nd Pass



Radiosity

e Unfortunately, now mostly abandoned
* Has been generalized to non-diffuse scenes
 To (near) realtime settings”
* But nice meshing is difficult

e Conceptually simpler methods exist (e.g.,
photon maps)

" Implicit Visibility and Antiradiance for Interactive Global lllumination, Dachsbacher et al.



Physically-based rendering meets realtime

* Instant radiosity
* Essentially unrelated to radiosity, but more related to photon mapping

* Sends “Virtual Point Lights” from light sources, use them as new light sources

2.9.0 'R: 176 ms (-5 fps) @ 500 x 500

o Tweaﬁ?ar =l
£ Wis 201

% replacedffr.. 1.00

Update? v

Play/Pause




Distant illumination models

* Environment maps




Distant illumination models

* Analytic Sky Model [Preetham et al. 1999] : parametric sky model

* Turbidity: optical thickness of atmosphere including haze / optical thickness of
atmosphere without haze

pure air

256
exceptionally clear

128

light haze

8 16 32 64
Turbidity

[
[RS]
o




Distant illumination models

* Analytic Sky Model [Preetham et al. 1999] : parametric sky model
e Skylight luminance from Perez et al.

B
« F(8,y) = (1 + Ae_cose)(l + CePY + E cos? y) —F
* Skylight chrominance

. = o FOV _ . FOpy N

2F08) 7 T Y7Fey) ; ol
* Parameters different for x and y ! / | .
* Fitted from measurements ’—/Y\ N

S ‘



Results

Figure 9: The new model looking west at different times (left morning and right evening) and different

turbidities (2, 3, and 6 top to bottom).



Prefiltered environment maps

Lo @3) = Lee @) + | £ (@, @) LaCx, D)@, )
{* )

Spherical convolution between f(.,w,){.,n)and L;

When the incident illumination is distant:

A Unified Approach to Prefiltered Environment Maps, Kautz et al.



Prefiltered environment maps

* Precomputing convolutions between environment map and BRDF for
various w,

* Easy for some BRDF : Gaussian blur
* Just a lookup when rendering:




Ambient occlusion

* |dea: precompute occlusion as 2w l
gy

Original model With ambient occlusion Extracted ambient occlusion map

1
« 0 =;fﬂ Viw).< w,n>dw
* Does not depend on the illumination

e Often computed per object
* Does not require raytracing the entire scene
* Can be used for animated objects
* Another option: screen space ambient occlusion

* Does not trace rays in the scene: samples a sphere around fragments
* More for realtime rendering



Tone Mapping

rﬁ
a— N

Stockham

e

=2

Ward’s contrast scale factor Schlick

|

Ward’s hist. adj. New operator

Rendering by Peter .-S‘hilcy

[Reinhard et al. 2002] « Photographic Tone Reproduction for Digital Images »



Tone Mapping

* Scene key: L = %exp(Z log(o + 1))
0,18

* Adjusting image values: L = — I
L
1+L—2
* Compressing highlights: L; = L 1+Z"

* If not sufficient, perform local adjustments:
» Estimate contrast via difference of gaussian convolution at different scales
* Locally find the smallest scale that produces low contrast
* Adjust highlight compression step accordingly



Camera models

e Depth of field




Camera models

e Depth of field




Camera models

e Depth of field

‘\\

* |dea: simulate circle of confusion



Image-based rendering

* Further from physically-based rendering

* Essentially interpolates between photographs -
e Lightfields / Lumigraph : dense array of photographs
* Multi-view : sparse set

e Restricted to real-life scenes

Depth Synthesis and Local Warps for Plausible Image-based Navigation, Chaurasia et al.



Light-fields

* The plenoptic function
* L(x,w)

* Light-fields

* Display

By Gordon Wetzstein

Light field display
By Fuchs et al.




Holography & Computational holography

* If time permits...




Holography & Computational holography




Holography & Computational holography




Computational holography

e Simulates wavefront propagation from 3D scene
* Tight time constraints — Gigapixels
* Fourier optics



State-of-the-Art

* Fake or Photo ?
https://area.autodesk.com/fakeorfoto/

* Graphics Turing Test



https://area.autodesk.com/fakeorfoto/

