Mass Transportation Principles for Computer Graphics

Nicolas Bonneel

Mémoire sur la théorie des déblais et des remblais (1781)

MÉMOIRE SURLA THÉORIE DES DÉBLAIS ET DES REMBLAIS. Par M. MONGE.

L'onsqu'on doit transporter des terres d'un lieu dans un autre, on a coutume de donner le nom de *Déblai* au volume des terres que l'on doit transporter, & le nom de *Remblai* à l'espace qu'elles doivent occuper après le transport.

Le prix du transport d'une molécule étant, toutes choies d'ailleurs égales, proportionnel à son poids & à l'espacequ'on lui fait parcourir, & par conséquent le prix du transport total devant être proportionnel à la somme des produits des molécules multipliées chacune par l'espace parcouru, il s'ensuit que le déblai & le remblai étant donnés de figure & de position, il n'est pas indifférent que telle molécule du déblai soit transportée dans tel ou tel autre endroit du remblai, mais qu'il y a une certaine distribution à faire des molécules du premier dans le second, d'après laquelle la somme de ces produits sera la moindre possible, & le prix du transport total sera un minimum.

Leonid Kantorovich

Nobel prize in economy in 1975, for his "contribution to the theory of resources allocation"

Monge formulation

$$\inf_{X} \int_{X} c(x, T(x)) d\mu(x)$$

s.t. $T_{*}(\mu) = \nu$
(or $f(x) = |\det J_{T}(x)|g(T(x))$ with $d\mu = f(x)dx$)
(or $\forall B, \nu[B] = \mu[T^{-1}(B)]$)

Monge used c(x, y) = |x - y|

e.g., variational formulation with Lagrange multipliers (invalid!):

$$\inf \int_{X} c(x,T(x)) d\mu(x) + \lambda(x) |\det J_T(x)| g(T(x))$$

Discretization of the Kantorovich problem Earth Mover's Distance

Application: BRDF

Function A

Linear interpolation

Function B

Displacement interpolation

[Bonneel et al. 2011] Displacement Interpolation using Lagrangian Mass Transport, Siggraph Asia

Displacement Interpolation using Lagrangian Mass Transport

Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, Wolfgang Heidrich SIGGRAPH Asia 2011

"Bidirectional Reflectance Distribution Function"

Function A

18

Ś

Interpolation

Function A

19

Linear interpolation

Function B

Function A

Linear interpolation

Function A

21

Linear interpolation

Function B

Function A

22

Linear interpolation

Function A

23

Displacement interpolation

Function A

Displacement interpolation

Function A

25

Displacement interpolation

Function A

26

Displacement interpolation

Four steps

- Decompose PDFs into non-negative radial basis functions
- Optimal transport computation
- Partial advection
- Reconstruct interpolated PDF
- (+optional multiscale approach)

Radial Basis Function decomposition

Transport computation

 $\min \sum_{i,j} c_{i,j} x_{i,j}$ $\sum_{j} x_{i,j} = \mu_i$ $\sum_{i,j} x_{i,j} = \nu_j$

s.t

- Transport RBF weights
- Network simplex > Transportation simplex

Auction algorithm for assignment

- Consider instead: $\max \sum a_{ij}$ over complete assignments $(i, j) \in S$ and $j \in A(i)$
 - a_{ij} : how much person i is ready to pay for object j
- Solves the dual $\min \sum r_i + \sum p_j$ s.t. $r_i + p_j \ge a_{ij} \quad \forall i, j \in A(i)$ price
- Value of object $j \in A(i)$: $v_{ij} = a_{ij} p_j$
- Profit of person i: $\pi_i = \max_{j \in A(i)} v_{ij}$
- At optimality $\pi_i = \max_{k \in A(i)} a_{ik} p_k = a_{ij} p_j \quad \forall (i,j) \in S$
- Add some slack: $\pi_i \epsilon = \max_{k \in A(i)} a_{ik} p_k \epsilon \le a_{ij} p_j$ optimal if $\epsilon < \frac{1}{N}$

"The auction algorithm", Bertsekas and Castanon

Auction algorithm for assignment

- Start with some assignment S
- For each unassigned person *i*, find object j^* maximizing value and the value w_i of the second best. Compute bid : $b_{ij^*} = a_{ij^*} w_i + \epsilon$
- For each object j : P(j) is the set of persons who bid for j.
 - If $P(j) \neq \emptyset$: $p_j \leftarrow \max_{i \in P(j)} b_{ij}$; remove (i,j) from S, and add (i^*,j) $(i^*$ best bidder)
 - If $P(j) = \emptyset$, p_j unchanged

Auction algorithm for optimal transport (1989)

- In O(N A log(N C))
- Idea: convert problem to assignment with duplicated sources/sinks
- Works on similarity classes
- In the previous algo, replace "second best" by "second best among other classes"

Interpolation

Divide Gaussian function w.r.t to transported weights

We advect.

EMD (minimize kinetic energy)

Linear interpolation

Displacement interpolation

Linear interpolation

Displacement interpolation

Sliced and Radon Wasserstein Barycenters of Measures

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, Hanspeter Pfister Journal of Mathematical Imaging and Vision (2014)

Multi-way interpolation

• Two ways transportation :

$$\min \sum_{i} \sum_{j} d_{i,j} x_{i \to j}$$
$$x_{i \to j} \ge 0$$
$$\sum_{i} x_{i \to j} = g_{j}$$
$$\sum_{j} x_{i \to j} = f_{i}$$

Number of non-zeros among M*N variables : M+N-1

Multi-way interpolation

Three ways transportation :

$$\min \sum_{i} \sum_{j} \sum_{k} d_{i,j,k} x_{i,j,k}$$
$$x_{i,j,k} \ge 0$$
$$\sum_{i} \sum_{j} x_{i,j,k} = h_{k}$$
$$\sum_{i} \sum_{k} x_{i,j,k} = g_{j}$$
$$\sum_{j} \sum_{k} x_{i,j,k} = f_{i}$$

Number of non-zeros among M*N*P variables : M*N*P-(M*N+N*P+M*P)+(M+N+P-1)

Simple cases

- Transport 1 Gaussian \leftrightarrow 1 Gaussian
- Transport 1 Gaussian \leftrightarrow 1 Gaussian \leftrightarrow 1 Gaussian [...]
- Transport = translation + scaling
- Transport 1D function \leftrightarrow 1D function (\leftrightarrow 1D function [...])

1D Case $F_{interp}^{-1}(x) = \sum_{i} \alpha_{i} F_{i}^{-1}(x)$ with F(x) the CDF of f(x): $F(x) = \int_{-\infty}^{t} f(t) dt$ and $\sum \alpha_i = 1$

Sliced Partial Optimal Transport

Nicolas Bonneel^{*}, David Coeurjolly^{*}

ACM Trans. on Graphics (SIGGRAPH 2019)

Matching points

Linear Assignment Problem

 $\min_{\text{T bijective}} \sum_{i} c(x_i, y_{T(i)})$

Optimal transport

$$W(f,g) = \min \sum_{i,j} c_{i,j} \pi_{i,j}$$

s.t.
$$\sum_{j} \pi_{i,j} = 1$$
$$\sum_{i} \pi_{i,j} = 1$$
$$\pi_{i,j} \ge 0$$

1-d Linear Assignment Problem is trivial*

Partial optimal assignment ?

Similar problems

- DNA sequence alignment
- Text alignment

• • •

Music synchronization

Scarites	С	т	т	A	G	A	т	С	G	т	A	С	С	A	A	-	-	-	A	A	т	A	Т	Т	A	С
Carenum	С	т	т	A	G	A	т	С	G	т	A	С	С	A	С	A	-	т	A	С	-	т	т	т	A	С
Pasimachus	A	т	т	A	G	A	т	С	G	т	A	С	С	A	С	т	A	т	A	A	G	т	т	т	A	С
Pheropsophus	С	т	т	A	G	A	т	С	G	т	т	С	С	A	С	-	-	-	A	С	A	т	A	т	A	С
Brachinus armiger	A	т	т	A	G	A	т	С	G	т	A	С	С	A	С	-	-	-	A	т	A	т	A	т	т	С
Brachinus hirsutus	A	т	т	A	G	A	т	С	G	т	A	С	С	A	С	-	-	-	A	т	A	т	A	т	A	С
Aptinus	С	т	т	A	G	A	т	С	G	т	A	С	С	A	С	-	-	-	A	С	A	A	т	т	A	С
Pseudomorpha	С	Т	т	A	G	A	Т	C	G	Т	A	С	C	-	-	-	-	-	A	С	A	A	A	Т	A	С

Flie Edit Changes View Tabs Help	
📮 🗆 Save 🖛 Undo 🛩 🛧 🔸 🛇	
🗵 [tecmint] functiod] functions.php 🛛 ×	
<pre>/TecMint-WpUseOf-Site-Backups/tecmint Browse /* // Content width if (!isset(\$content_width)) { \$content_width = 7 </pre>	<pre>//TecMint-WpUseOf-Site-Backups/tecmint Browse base Tunctionality // Content width if (!isset(\$content_width)) { \$content_width = 7 </pre>
/* Ineme setup /* */ if (! function_exists('alx_setup')) { function alx setup() { // Enable title tag add_theme_support('title-tag');	<pre>/* Theme setup /* */ if (! function_exists('alx_setup')) { function alx setup() { // Enable automatic feed links add theme support('automatic-feed-links'); } }</pre>
<pre>// Enable automatic feed links add_theme_support('automatic-feed-links'); // Enable featured image add_theme_support('nost_thumbpails');</pre>	<pre>// Enable featured image add_theme_support('post-thumbnails'); // Enable post format support</pre>
<pre>// Enable post format support add_theme_support('post-formats', array('audic // Declare WooCommerce support add_theme_support('woocommerce');</pre>	<pre>add_theme_support('post-formats', array('audic // Declare WooCommerce support add_theme_support('woocommerce'); // Thumbnail sizes add image size('thumb-small', 160, 160, true);</pre>
→	add_image_size('thumb-medium', 520, 245, true) add_image_size('thumb-large', 720, 340, true); // Custom menu areas

Existing Solutions

- Dynamic Time Warping
 - Solves a dynamic programming problem
 - Smith–Waterman algorithm, Needleman–Wunsch algorithm O(N²) space and time
 - Hirschberg's algorithm O(N²) time, O(N) space
- All end up doing variants of

$$A_{i,j} = \min(A_{i-1,j-1} + \cos t, A_{i-1,j} + \cos t', A_{i,j-1} + \cos t'')$$

Euclidean Nearest Neighbor assignment

X______Y_____

Euclidean Nearest Neighbor assignment

X Y

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

X Y

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Linear time problem decomposition

Problem decomposition

- Computed in quasi-linear time
- Yields independent subproblems
 - Solvable in parallel
 - That can be further simplified (see paper)

Sliced Partial Optimal Transport (SPOT)

Extension to d dimensions

Sliced optimal transport

 P_{ω}

$$E = \int_{\mathbb{S}^{d-1}} W(P_{\omega}X, P_{\omega}Y) d\omega = \int_{\mathbb{S}^{d-1}} \min_{T} \sum_{i} (P_{\omega}x_{i} - P_{\omega}y_{T(i)})^{2} d\omega$$

ω

Full Transfer

Target 20% larger

Target 40% larger

Full Transfer

Target 20% larger

Target 40% larger

Fast Iterative Sliced Transport

Source: 8k samples Target: 10k samples

Source: 90k samples Target: 100k samples

(input too large for iterative transport with network simplex)

Source: 90k samples Target: 100k samples

(input too large for iterative transport with network simplex)

Source: 150k samples Tar<u>aet: 200k samples</u>

(input too large for iterative transport with network simplex)

ICP (0.09 s / iteration) Our FIST algorithm (2.18 s / iteration)

Failure case: the transport is optimal only on projections

Conclusions

- Fast partial optimal transport in 1d
 - Quadratic-time algorithm (worst case)
 - Quasi-linear time decomposition
- Sliced Partial Optimal Transport
- Fast Iterative Sliced Transport
- Applications: point cloud registration, color matching

Geometric interpretations of optimal transport

- Space of probability measures
- With the Earth Mover's Distance metric

- Space of probability measures
- With the Earth Mover's Distance metric
- And actually, seen as a Riemannian manifold

- Space of probability measures
- With the Earth Mover's Distance metric
- And actually, seen as a Riemannian manifold
 - So, with a tangent space

- Space of probability measures
- With the Earth Mover's Distance metric
- And actually, seen as a Riemannian manifold
 - So, with a tangent space

- A tangent space at ρ
 - $-\nabla . (\rho v)$ with $v = \nabla u$
- A curvature
 - \blacktriangleright Zero for \mathbb{R}^1
 - Bounded from below if manifold of positive curvature
Semi-discrete optimal transport

Voronoi diagram

- A partition such that each point x is assigned to its closest site x_i $||x - x_i||^2 \le ||x - x_j||^2 \quad \forall j$
- The dual of a Delaunay triangulation: a triangulation of the sites such that no other site is encompassed by the circumcircle of a triangle
 - Also: convex hull of a parabolic lifting

Project onto paraboloid.

Compute convex hull.

Project hull faces back to plane.

Centroidal Voronoi Diagram

Can be defined as the solution to a least-square problem

$$\min \int_{Vor_i} \sum_i \|x - x_i\|^2 dx$$

Also says that the centroid of Vor_i is the site x_i

- Can be computed by:
 - A Lloyd clustering algorithm
 - A descent approach on the above energy

Power diagram (Laguerre diagram)

- A partition s.t. each point x is assigned to its closest site x_i with weight w_i $||x - x_i||^2 - w_i \le ||x - x_j||^2 - w_j \quad \forall j$
- Can be computed by lifting a Voronoi diagram
 - Consider site coordinates $x'_i = (x_i; \sqrt{c w_i})$ for large constant c; x' = (x; 0)
 - Then $||x' x'_i||^2 \le ||x' x'_j||^2 \forall j$
- Any partition into convex polyhedral cells is a power diagram of some sites

Back to optimal transport

• Optimal transport (Monge version) : $\min \int ||x - T(x)||^2 d\mu(x)$

Considering μ is continuous with density ρ $\min \int \|x - T(x)\|^2 \rho(x) dx$

Considering ν (the target measure) discrete: $\nu = \sum \lambda_p \delta_p$ The mass preservation constraint is:

$$\lambda_p = \int_{T^{-1}(\{p\})} \rho(x) dx$$

A Multiscale Approach to Optimal Transport [Mérigot 2011] Minkowski-Type Theorems and Least-Squares Clustering [Aurenhammer et al. 98]

Back to optimal transport

• In this case : $T^{-1}(\{p\}) = Vor^{W}(p)$ a power cell for some weight w_p

This determines as partition, so Monge problem is:

$$\min\sum_{p}\int_{Vor^{W}(p)} \|x-p\|^2 \rho(x) dx$$

хp

- Idea: optimize weights w for each site to grow/shrink power cells until $\lambda_p = \int_{T^{-1}(\{p\})} \rho(x) dx$

• Gradient of appropriate functional given by $\frac{\partial \phi}{\partial w(p)}(w) = \lambda_p - \int_{Vor^W(p)} \rho(x) dx$

Optimal Transport in 3D [Lévy 2015]

Application

Enforces cells to have the same mass

- $\min \sum_{p} \int_{Vor^W(p)} ||x-p||^2 \rho(x) dx \sum_{p} w_p \left(\int_{Vor^W(p)} \rho(x) dx m \right)$
- Also optimizes for the locations p

Blue Noise through Optimal Transport [de Goes et al. 2012]

Fluid dynamic interpretation

PDE formulation

Introduce a time variable t

$$\min \int_{X} \int_{0}^{T} \rho(t, x) \, \|v(t, x)\|^{2} \, dt \, dx$$

• Subject to B.C. :
$$\rho(0,.) = f$$
 and $\rho(T,.) = g$

- The density ρ is transported by velocity field v.
 - Continuity equation: $\partial_t \rho + \nabla (\rho v) = 0$
- Optimality condition: $v(t, x) = \nabla \phi(t, x)$ and $\partial_t \phi + \frac{1}{2} \|\nabla \phi\|^2 = 0$
- After some rewriting: solved via space-time Poisson equation and projections

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem [Benamou & Brenier 2000]

Simple fluid simulation via semi-discrete OT

- For each time step
 - Compute OT from $\{p_i\}$ to uniform density
 - For each site p_i
 - $\vec{F}_i = \frac{1}{\epsilon^2} (Centroid_i p_i) m \vec{g}$

$$\bullet \ \overrightarrow{V_i} = \overrightarrow{V_i} + \frac{dt}{m_i} \overrightarrow{F_i}$$

 $\bullet \ p_i = p_i + dt \ \overrightarrow{V_i}$

A Lagrangian scheme à la Brenier for the incompressible Euler equations [Gallouet, Mérigot 2017]

0.8

0.6

0.4

0.2

0.0

Simple fluid simulation via semi-discrete OT

- Extension to free boundary fluids
 - Store air + fluid particles
 - Impose each fluid particle to have constant mass (e.g., cell area = 0.5 * $\frac{1}{N}$ for a fluid of N particles taking half of the space of a unit size domain)
 - Impose the sum of air particles to have constant mass (e.g., Σ cell areas = 0.5 for the example above)
 - Same optimization as before
 - Only move fluid particles

Geodesic computation

• Special case for L^1 optimal transport:

$$\min \int_{X} \|v(x)\| dx$$

s.t. $\nabla \cdot v = g(x) - f(x)$
 $v(x) \cdot n(x) = 0 \text{ on } \partial \lambda$

The optimal transport only depends on the difference : can remove shared mass

- Flow lines of v are geodesics on X
- Use Helmoltz-Hodge decomposition:

$$\min \int_{X} \|\nabla A(x) + \nabla \times B(x) + C(x)\| dx$$

s.t. $\Delta A(x) = g(x) - f(x)$
 $B(x) = 0$ and $\frac{\partial A(x)}{\partial n} = 0$ on ∂X
 $\nabla . C(x) = 0$ and $\nabla \times C(x) = 0$

Earth Mover's Distances on Discrete Surfaces [Solomon et al. 2014]

Regularized optimal transport

• Kantorovich optimal transport: $\min_{m} \sum_{i} \sum_{j} c_{i,j} m_{i \to j}$

- Rewritten as : $\min_{M \in \mathcal{U}(r,c)} \langle C, M \rangle$ with $\mathcal{U}(r,c)$ matrices whose rows sum to r and columns to c
- Idea: consider instead $\min_{M \in \mathcal{U}(r,c)} \langle C, M \rangle \epsilon E(M)$ where $E(M) = -\sum M_{ij} (\log(Mij) - 1)$ is the entropy, ϵ a small constant
- Can be rewritten as a projection: $\min_{M \in \mathcal{U}(r,c)} KL(M,\xi)$ where $\xi = \exp\left(-\frac{c}{\epsilon}\right)$ and $KL(M,\xi) = \sum M_{ij}\left(\log\left(\frac{M_{ij}}{\xi_{ij}}\right) - 1\right)$ the Kullback-Leibler divergence
- This is a projection on two affine constraints due to $\mathcal{U}(r,c)$

Iterative Bregman Projections for Regularized Transportation Problems [Benamou et al. 2014] Sinkhorn Distances: Lightspeed Computation of Optimal Transport [Cuturi 2013]

- We can thus apply Bregman projections: we iteratively project on each constraint
- We obtain the algorithm:

•
$$u^{(n)} = \frac{f}{\xi v^{(n)}}$$
 •

•
$$v^{(n+1)} = \frac{g}{\xi^T u^{(n)}}$$
 -

•
$$M = diag(u^{(n)})\xi diag(v^{(n)})$$

- We realize that $\xi v^{(n)}$ can be computed efficiently
 - E.g., if $c(x, y) = ||x y||^2$, $\xi_{ij} = \exp\left(-\frac{||x_i x_j||^2}{\epsilon}\right)$
 - Then $\xi v^{(n)}$ is just a Gaussian convolution
 - So, it is a separable operator, and efficiently done in high-dimension

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains [Solomon et al. 2015]

Generalized to compute displacement interpolation and barycenters

• $b_s^{(0)} = 1 \quad \forall s$ • for $\ell = 0 \dots L$ • $a_s^{(\ell)} = \frac{p_s}{K b_s^{(l-1)}} \quad \forall s$ • $p(\lambda) = \prod_s \left(K^T a_s^{(\ell)} \right)^{\lambda_s}$ • $b_s^{(\ell)} = \frac{p(\lambda)}{K^T a_s^{(\ell)}} \quad \forall s$

Wasserstein Barycentric Coordinates: Histogram Regression Using Optimal Transport

N. Bonneel, G. Peyré, M.Cuturi

SIGGRAPH 2016

t = 1

Formally:

 $\min_{\substack{\lambda \\ st. \sum \lambda_i = 1, \lambda_i \ge 0}} \mathcal{L}(p(\lambda), q)$

with $p(\lambda)$ a Wasserstein barycenter:

$$p(\lambda) = \operatorname{argmin}_p \sum_{s} \lambda_s W^2(p_s, p)$$

nd $\mathcal{L}(p,q)$ a cost function : $\mathcal{L}(p,q) = W(p,q), ||p-q||_2^2, ||p-q||_1, KL(p,q)$

Method

$$\min_{\lambda} \mathcal{E}(\lambda) = \mathcal{L}(p(\lambda), q)$$

We minimize using L-BFGS

Idea

- $[\partial p(\lambda)]^T$ by deriving the Sinkhorn algorithm [Solomon et al. 2015]
- To compute $p(\lambda)$ given λ , Sinkhorn iterations read:

$$b_{s}^{(0)} = 1 \quad \forall s$$

$$for \ \ell = 0 \quad \dots L$$

$$a_{s}^{(\ell)} = \frac{p_{s}}{K b_{s}^{(\ell-1)}} \quad \forall s$$

$$p(\lambda) = \prod_{s} \left(K^{T} a_{s}^{(\ell)} \right)^{\lambda_{s}}$$

$$b_{s}^{(\ell)} = \frac{p(\lambda)}{K^{T} a_{s}^{(\ell)}} \quad \forall s$$

Idea

Automatic differentiation: given an iterative algorithm, apply the chain rule: ■|f $p^{(\ell+1)}(\lambda) = f(p^{(\ell)}(\lambda), \lambda)$ Then $\partial p^{(\ell+1)}$ $=\frac{\partial f}{\partial p^{(\ell)}}$ $\partial p^{(\ell)}$ $+\frac{\partial f}{\partial \lambda}$ ∂λ $\partial \lambda$ We similarly compute the adjoint $q^{(\ell+1)}$ $q^{(\ell)}$...formulas in the paper

• We obtain:
•
$$q_s = 0$$
; $r_s = 0 \forall s$
• $g \leftarrow \nabla \mathcal{L}(p(\lambda), q) \odot p(\lambda)$
• for $\ell = L \dots 1$
• $r_s \leftarrow -K^T \left(K \left(\frac{\lambda_{sg} - r_s}{K^T a_s^{(\ell)}} \right) \odot \frac{p_s}{(K b_s^{(\ell-1)})^2} \right) \odot b_s^{(\ell-1)} \forall s$
• $g \leftarrow \Sigma_s r_s$

Applications

3E-6

.23

6E-6

0.77

Database

Database

Projection

Flickr results for "Autumn"

Projection

Input

Projection

Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning

SIAM Journal on Imaging Sciences

M. Schmitz, M. Heitz, N. Bonneel, F. Mboula, D. Coeurjolly, M. Cuturi, G. Peyré, J-L. Starck

What is dictionary learning ?

Linear Dictionary Learning

X: input elements (column vectors)

Factorization $X \approx D \Lambda$

 \rightarrow a dictionary D: atoms of same dimension as elements of X.

 \rightarrow a list of codes Λ : weights to reconstruct input elements by **linear combination** of the atoms.

What is dictionary learning ?

Wasserstein Dictionary Learning

X: input elements (column vectors)

Factorization $X \approx P(D, \Lambda)$

 \rightarrow a dictionary D: atoms of same dimension as elements of X.

 \rightarrow a list of codes Λ : weights to reconstruct input elements by **Wasserstein combination** of the atoms. Here, $\Lambda = [(1.0, 0.0), (0.75, 0.25), (0.5, 0.5), (0.25, 0.75), (0.0, 1.0)]^{\circ\circ}$

10

04

02

04

02

Wasserstein dictionary learning

Wasserstein dictionary learning

 $\mathcal{E}'(\lambda, \{D_s\}_s) = \sum_i \mathcal{L}(p(\lambda_i, \{D_s\}_s), X_i)$

 \mathbf{X}

Now

• Idea: differentiate \mathcal{E}' w.r.t the weights **q**

- $\nabla_{\lambda} \mathcal{E}'(\lambda, \{D_s\}_s)$ as before
- $\nabla_{\{D_s\}_s} \mathcal{E}'(\lambda, \{D_s\}_s)$ as follows

Wasserstein dictionary learning

•
$$c_s = 0$$
; $v_s = 0$; $g_s = 0$ $\forall s$
• $n \leftarrow \nabla \mathcal{L}(p(\lambda, \{D_s\}_s), X_i)$

• for
$$\ell = L \dots 1$$

• $c_s \leftarrow K\left((\lambda_s n - v_s) \odot h_s^{(\ell)}\right) \quad \forall s$
• $g_s \leftarrow g_s + \frac{c_s}{K b_s^{(\ell-1)}} \quad \forall s$
• $v_s \leftarrow -\frac{1}{K^T a_s^{(\ell-1)}} \odot K^T \frac{D_s \odot c_s}{(K b_s^{(\ell-1)})^2} \quad \forall s$

 $\blacktriangleright n \leftarrow \sum_{s} v_{s}$

Extensions

- Log-domain computations
 - Including separable convolutions in log-domain
- Heavy-ball extrapolation
 - Faster convergence
 - Requires 'real' automatic-differentiation
- Unbalanced optimal transport
 - Requires 'real' automatic-differentiation

Applications

PSF learning: PSF varies with wavelength

Extension to Dictionary Learning

182

Extension to Dictionary Learning

183

D Wasserstein

P

D Wasserstein

Conclusion

- Notion of barycentric coordinates useful for computer graphics and tractable
 - Barycenter gradient requires 2x convolutions w.r.t to barycenter alone
 - Relatively large memory footprint
 - Takes between seconds to minutes
- Wasserstein dictionary learning useful for summarizing histogram data
 - Still tractable, though with gradient requiring 2D+2N x convolutions
- Easy to implement
 - Code available: <u>http://liris.cnrs.fr/~nbonneel/WassersteinBarycentricCoordinates/</u>
 - https://github.com/matthieuheitz/WassersteinDictionaryLearning