
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Dynamic Scene Novel View Synthesis via Deferred Spatio-temporal Consistency

Beatrix-Emőke Fülöp-Balogha, Eleanor Tursmanb, James Tompkinb, Julie Dignec, Nicolas Bonneelc,∗

aUniv. Lyon, UCBL, France
bBrown University, Rhode Island, USA
cUniv. Lyon, CNRS, France

A R T I C L E I N F O

Article history:

Received 27 April 2022
Received in final form 5 July 2022

Accepted 18 July 2022

Available online 25 Juy 2022

2000 MSC: 68U05, 68T45

A B S T R A C T

Structure from motion (SfM) enables us to reconstruct a scene via casual capture
from cameras at different viewpoints, and novel view synthesis (NVS) allows us
to render a captured scene from a new viewpoint. Both are hard with casual
capture and dynamic scenes: SfM produces noisy and spatio-temporally sparse
reconstructed point clouds, resulting in NVS with spatio-temporally inconsistent
effects. We consider SfM and NVS parts together to ease the challenge. First,
for SfM, we recover stable camera poses, then we defer the requirement for
temporally-consistent points across the scene and reconstruct only a sparse point
cloud per timestep that is noisy in space-time. Second, for NVS, we present a
variational diffusion formulation on depths and colors that lets us robustly cope
with the noise by enforcing spatio-temporal consistency via per-pixel reprojection
weights derived from the input views. Together, this deferred approach lets us
generate novel views for dynamic scenes without requiring challenging spatio-
temporally consistent reconstructions nor training complex models on large
datasets. We demonstrate our algorithm on real-world dynamic scenes against
classic and more recent learning-based baseline approaches.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Novel-view synthesis (NVS) creates a new view of a
scene by combining existing images captured from different
viewpoints. Much progress in NVS has been made over
the past two decades to tackle its two core problems: 1)
how to build a proxy scene geometry to aid in rendering,
such as constructing simplified sparse depth points or a
piecewise planar mesh via structure from motion (SfM),
and 2) how to interpolate or extrapolate an image via
the reprojected proxy given the existing captured imagery.
NVS increases in difficulty across many axes [1, 2]: as
the cameras become farther apart (wide baseline)[3], as

∗Corresponding author: Nicolas Bonneel
e-mail: nicolas.bonneel@liris.cnrs.fr (Nicolas Bonneel)

their number decreases (few cameras)[4], as they become
handheld (casual capture)[5], as the scene itself contains
motion (dynamic scene)[6], as the scene phenomena become
more visually complex (geometry, materials, and motion)[7],
and as the time given to generate the result decreases
(compute cost)[8].

We consider dynamic scenes captured by a small number
of cameras (5–12) over baselines of around 60◦ (≈1m for
close scenes up to ≈3m for far scenes), as might occur with
a crowd of people capturing an event (Figure 1). We assume
that these videos are synchronized. Within this scenario,
we include sequences with casual handheld cameras. This
is a relatively rare and challenging setting because both
the cameras and the scene objects move simultaneously,
and because sequences with only a small number of casual
cameras makes robustness hard to obtain. This complicates

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint /Computers & Graphics (2022)

Input camera videos Structure from motion Novel depth and RGB

3D point reconstruction
without temporal consistency

Efficient pose estimation
robust to dynamic objects

Sparse noisy point clouds

Camera poses

Virtual camera path

Variational optimization
with temporal consistency

Fig. 1: Overview. Given a small set of video sequences of a performance, our method computes camera poses and sparse points, then
optimizes those points into a novel video sequence following a user-defined camera path. Our space-time SfM intentionally does not compute
temporal consistency for points on dynamic objects and instead defers spatio-temporal consistency in both depth and RGB reconstructions to
the novel view synthesis stage via our variational formulation.

camera pose estimation and depth estimation in SfM [9]
and, if the proxy geometry is not perfect, causes ghosting,
bleeding, and flickering artifacts across views and time
during NVS in both moving objects and the background
[10]. Thus, one key component of any algorithm is a way
to enforce spatio-temporal consistency in both the SfM and
the NVS to reduce these artifacts.

We propose to address these challenges by deferring the
difficult problem of reconstructing dynamic objects in time
via SfM, and instead using a NVS approach to enforce
temporal consistency. To ease the task of reconstructing
dynamic scenes via SfM, many approaches first segment
out moving objects or feature points and process the static
background and the dynamic foreground separately [9, 11,
12]. Instead, we first recover camera poses for all views
without any explicit dynamic object segmentation. Then,
we recover scene points on both static and dynamic objects
without temporal consistency and perform per-frame SfM
across views only. This is easier to solve, but leads to
significantly noisy reconstructions temporally.

Next, we turn our sparse (and noisy) reconstructed point
clouds into novel views. This is commonly completed by
densifying points into a depth map [13] for each view in
a consistent way, and using the depths to reproject and
merge input RGB views into a virtual view. We present a
formulation which only densifies a depth map in the virtual
camera’s view, rather than for all input views, which leads
to a more efficient solve. For this, we take a coarse-to-fine
variational approach and solve a diffusion-based formula-
tion. Importantly, this formulation lets us enforce robust
temporal consistency in the output depth to overcome the
initial noisy reconstructions from the SfM. To determine
our final RGB values, we also solve for the output color
within the coarse-to-fine variational formulation.

We perform comparisons to recently-proposed ap-
proaches in point densification and view interpolation, using
both optimization and learning-based approaches. Further,
we show results on a synthetic dataset in an ablation study.
In a nutshell, we show that considering SfM and NVS to-
gether allows us to ease the difficult temporally-consistent
reconstruction problem and instead cope with it at the ren-
dering stage. Overall, our work takes another step forward

in improving digital content creation for scenes captured
by multiple video cameras.

2. Related work

Rendering a novel viewpoint of a real-world scene cap-
tured with photographs is a problem that has received
much attention over the past 30 years [1].

Static scene IBR. Image-based rendering (IBR) has ini-
tially attempted to render static scenes either from set of
images or videos. This can be achieved either via warping
input views using optical flow [14], using coarse geometric
proxies [15] or via deep learning approaches [16]. In com-
plex environments, IBR techniques often need some 3D
proxy reconstruction. For example, the Lumigraph [15, 17]
uses planar or coarse geometric proxies; Shade et al. [18]
used multiple planar sprites; and Debevec et al. [19] em-
ployed photogrammetric reconstructions of buildings. Oth-
ers have used 3D meshes from multi-view stereo reconstruc-
tions [20, 21]. For instance, Chaurasia et al. [22] proposed a
depth-based synthesis using planar superpixel patches [23].
Matzen et al. [24] used two spherical cameras to synthesize
an omni-directional stereo panorama. Recently, Riegler and
Koltun [25] synthesized new views via neural textures atop
a Delaunay reconstruction of sparse points obtained from
video of static scenes. Beyond surface geometry, NeRF [26]
performs an expensive optimization to create a volumetric
function that is then rendered to synthesize new views.

Solving problems in the gradient domain can help too; for
instance, to achieve smoother interpolations [7] or to densify
sparse scene points. Holynski and Kopf spatio-temporally
propagate sparse depth samples in a single view by solving
a Poisson problem [13]. Their method relies on camera
motion to detect depth edges, which limits it to static scenes.
Inspired by gradient domain approaches, we formulate a
variational approach that jointly enforces depth smoothness
and consistency, color smoothness and consistency, as well
as temporal consistency. Our approach additionally works
with multiple potentially-dynamic cameras, and introduces
a view-consistency term to ensure geometric consistency
between views.

Preprint /Computers & Graphics (2022) 3

Deep learning can also be employed for static scene IBR.
This includes plane sweep volumes [27] and multi-plane
images to interpolate between two static narrow-baseline
views [28] or between multiple views at once [29, 16], appear-
ance flows to generate novel views from a single image of
isolated objects [30], and light-field view interpolation [31].
Hedman et al. [5] use a geometric proxy and learn blend-
ing weights between view reprojections using a CNN. To
improve the quality around depth discontinuities, Choi et
al. [4] use a 3D uncertainty volume as a proxy and neu-
ral network-based patch refinement. Srinivasa et al. [32]
train a CNN to predict a light field from a single image for
small-baseline view synthesis. Similarly, Song et al. [33]
synthesize new views from a single image of a static scene
using deep learning.

While these techniques were not designed for videos and
so neither explicitly maintain temporal consistency nor
are constrained by speed, we nevertheless compare our
approach to relevant methods for static scenes taken frame
by frame.

Dynamic scene VBR. For dynamic scenes, please see dos
Anjos et al. [2] for an exhaustive survey on video-based
rendering (VBR) techniques. The need for a controlled
capture setting is shared by many methods. Zitnick et
al [8] use a specific system of 8 cameras combined with seg-
mentation based stereo to extract the geometry. Similarly
Wilburn et al. [34] use an array of 100 tightly-packed cam-
eras. Broxton et al. [35] describe a custom camera array
of 46 synchronized cameras mounted on a dome used to
capture 6 degrees of freedom (DoF) wide-baseline light field
videos. Guo et al. [36] relight videos with a set up of 331
light sources and 90 cameras, while Collet et al. [37] require
106 cameras. In a less constrained way, Pozo et al. [38]
create a 16-camera rig to reconstruct 360 panoramic videos
and synthesize new views. Penner and Zhang [39] use a
soft volumetric representation for narrow baseline IBR to
enforce smooth reconstructions. This method can handle
motion, but has trouble handling unstructured data and
works best from camera arrays. Our method also works
with handheld cameras.

Casually-captured videos have also been considered. Bal-
lan et al. [3] allow for quick transitions between handheld
video sequences. Their method segments a single dynamic
foreground subject approximated by a planar proxy, and
creates a 3D reconstructed static background. To cope
with dynamic background objects reprojecting incorrectly,
the method blurs background transitions between captured
viewpoints. Our method assumes no segmentation nor pla-
narity assumptions for dynamic objects. Lipski et al. [10]
use dense correspondence fields to interpolate views be-
tween videos. They disambiguate matches in difficult cases
by manually drawing correspondence lines on image pairs
to use as priors in their matching algorithm. Mustafa et
al. [11, 12] reconstruct isolated moving objects after seg-
menting them out from the initial video. These methods
focus on specific object meshes, and so do not provide
re-rendering of an entire scene from a novel viewpoint.

Recently, Luo et al. [40] introduced a consistency term
by fine tuning a neural network to improve the estimated
depth per point. This works for a single camera with no or
limited dynamic motion. Bansal et al. [6] use foreground
and background extraction together with a self-supervised
CNN based composition operator, and Yoon et al. [41]
use deep learning to extrapolate new views from a single
monocular video camera; we compare our approach to
this method. While deep learning techniques have shown
progress in this area, and neural methods show significant
gains, they still often need hours of computation for a
single static scenes (e.g., NeRF [26]) or use voxel-based
acceleration structures that are not obvious to extend to
video due to memory constraints (e.g., DirectVoxGo [42]
or InstantNGP [43]).
Outside of NVS, other video reconstruction tasks raise

consistency questions. Vo et al. [9] used a spatio-temporal
bundle adjustment technique and human motion priors
to reconstruct actor performances by temporally aligning
videos at sub-frame precision. Bao et al. [44] used deep
learning for consistent video super resolution. Finally,
Davis et al. [45] recovered depth in dynamic scenes by
unifying structured light and laser scanning into a space-
time stereo framework.
Given how challenging consistency can be for dynamic

scenes with just RGB cameras, our approach considers how
to defer temporal consistency from the reconstruction step
to the novel view synthesis step.

3. Method

Our algorithm takes as input a set of casually-captured
synchronized videos. We also provide the focal lengths for
a pair of cameras (required by OpenMVG [46]), while the
remaining focal lengths are estimated automatically by our
algorithm. Our method proceeds in two steps (Figure 1):

1. Camera pose estimation and 3D scene points.
We perform a three-step structure from motion recon-
struction to provide both the set of camera poses and
a set of sparse 3D points for each time step (Section
3.1).

2. Novel depth and novel view rendering. We den-
sify the sparse points into a depth map and render
a new virtual camera frame by optimizing a coarse-
to-fine variational formulation while enforcing spatio-
temporal consistency (Section 3.2).

3.1. Camera pose estimation and 3D scene points.

Let us consider a set of S synchronized video views of a
dynamic scene, each composed of T frames. We call I =
{Is,t|s = 1, ..., S; t = 1, ..., T} the set of all frames indexed
by s (camera index) and t (time step). At each frame, via
SfM, we recover the camera parameters Cs,t consisting of
the intrinsic matrix and extrinsic rotation and translation
matrices, and a set of sparse 3D points for each time step.
First, we efficiently recover a set of camera poses for all

4 Preprint /Computers & Graphics (2022)

frames. In contrast to other methods [3, 11, 12], we estimate
poses without an explicit dynamic object segmentation step.
Second, we recover 3D points by solving a per-timestep SfM
problem without a complex temporal reconstruction. We
solve each SfM problem with an a contrario algorithm [47].
This automatically adapts thresholds to the input data
instead of using global thresholds, which is more flexible
to different inputs.

Efficient camera pose estimation. A straightforward ap-
proach for accurate SfM is to solve a problem across all
frames simultaneously, but this can be expensive and mem-
ory prohibitive. A second approach might consider solving
only between consecutive time steps, but this is known
to produce camera position drift [48]. Instead, we take a
coarse-to-fine approach.
We begin by computing SfM across keyframes at every

κ time steps of each video. We detect and match SIFT
keypoints [49] within this subset and then simultaneously
solve for all camera poses and 3D points. Then, we refine
our estimate with a second SfM that only matches key-
points between successive frames of the same camera view,
with previously-estimated camera poses held fixed. This
considers every frame of every video, but we only match Is,t
to Is,t+1, and not to Is+1,t or Is+1,t+1. To recover smooth
camera paths per view, we add two additional penalty
terms to the bundle adjustment:

w(t− t′) ∥Cs,t − Cs,t′∥2, t− 3 ≤ t′ ≤ t+ 3 (1)

and

w(t− t′) ∥As,t −As,t′∥2, t− 3 ≤ t′ ≤ t+ 3, (2)

where w(t− t′) is a Gaussian weight function with a stan-
dard deviation of 1.16, Cs,t is the center of each camera
pose, and As,t is the angle-axis representation of the ro-
tation matrix Rs,t, where the angle is expressed in ra-
dians. This second SfM reduces computation time over
all-pairs matching while still reducing drift by constraining
the frame-to-frame pose estimates by the keyframe pose
estimates. For hyperparameters, smaller κ will increase
processing time, while larger κ may make it more difficult
to match fast camera motion. We found κ = 20 to be a
good compromise in our test sequences.

3D scene points. To recover 3D points across the scene, we
solve a keypoint reconstruction problem that is independent
per time step. Taking as fixed the recovered camera poses
for each video frame, we match 2D keypoints only between
frames with the same timestamp, then reconstruct a set of
sparse 3D points per time step. This is our key to handling
dynamic scenes: Motion often make it difficult to match
dynamic objects over time, but as 2D keypoints are not
matched in time in this last SfM step, moving objects
are correctly recovered at least in space at each time step.
However, this knowingly produces temporal inconsistencies;
we will recover from these errors in the novel view synthesis
stage where it is easier to enforce consistency (Sec. 3.2).

Post processing. Finally, we increase the density of our
point matches using PatchMatch [50], as proposed in the
OpenMVS1 and COLMAP2 [51] frameworks. This process
splats points to each view and assigns colors to the 3D
point cloud.

3.2. Novel depth and novel view rendering

Our SfM recovers a set of camera poses and an RGB 3D
point cloud per time step. However, at this stage of our
algorithm, projecting these points to a novel view still leaves
large regions of empty space. To synthesize more realistic
views, we diffuse these points in depth and RGB in the
new view in image space while enforcing spatio-temporal
constraints.

Notation. We will often warp the content of a frame Is,t
into the domain of the novel view It: this reprojection
is computed using the extrinsic and intrinsic parameters
of both reprojected frames and virtual camera, as well
as the depth map Dt. We denote the projected frame as
Iprojs,t (x) = Is,t(Cs,tC

−1
t (x,Dt(x))), where C−1(x,Dt(x))

is the image plane to world coordinate system transforma-
tion of the pixel location x given its depth value d. We also
denote a sparse map by ·̂. The sparse depth map obtained
by projecting the sparse point cloud into frame t of the
new virtual camera path is then D̂t and its corresponding
sparse color image is Ît.

Algorithm progression. We wish to warp a frame Is,t to the
novel view It to be blended into a final novel view. For this,
we need both the estimated camera poses and the dense
depth maps Dt, which are yet to be computed. But, to
properly constrain the diffusion of the sparse depth values
D̂t, recovered in Sec. 3.1, we need RGB information from
the virtual camera’s point of view. Thus, we jointly solve
for the depth maps Dt and color images It by minimizing
the energy functional:

E(Dt, It) = ED(Dt) + EI(It). (3)

The functional relates terms constraining the depth map
(ED) to terms constraining the color image (EI) by weights
that guide the diffusion process. We solve E iteratively: we
first solve for the depth map Dt while fixing the color values
It, and then conversely we fix the depth values and solve
for color. This avoids having to solve a nonlinear system of
equations, and lets us use slightly-improved depth values
to warp the input frames at each step. This improves
the estimate of the rendered RGB image, which in turn
constrains the diffusion of the depth.

Depth diffusion. We project the sparse point cloud into
the novel view image plane approximated to integer pixel
locations, creating the sparse depth map D̂t as an initial-
ization. When several sparse points project onto the same

1https://github.com/cdcseacave/openMVS
2https://colmap.github.io/

https://github.com/cdcseacave/openMVS
https://colmap.github.io/

Preprint /Computers & Graphics (2022) 5

Fig. 2: 3D point weights preserve color edges and occlusions.
Top row: Sparse reconstructed 3D points (left) and their weights wD̂
(right) projected into the virtual view. White indicates areas of empty
space; depth map is bright green in far depth regions. Bottom row:
Points diffused into a full depth map D (left) according to the weight
map wD (right). Note how the color edges are correctly identified
via Eq. 5, and how the occluded points from behind the head of the
character on the left are given no weight by Eq. 6 (top right) and so
do not corrupt the depth.

pixel, we keep only the depth value corresponding to the
sparse point that is closest to the camera, disregarding
possible outliers. Then, we densify the sparse depth map
by minimizing the following energy:

ED(Dt) =

∫
x∈Ω

wD(x, t)|∇Dt(x)|2dx

+λPC

∫
x∈Ω

wD̂(x, t)|Dt(x)− D̂t(x)|2dx.
(4)

The first integral is a smoothness term controlled by
weight wD. We wish diffusion to decrease around color
edges to produce sharp results. We also wish diffusion of
depth values to increase when the colors from reprojected
input views are similar, as they are likely correct. As such,
we define wD as:

wD(x, t) =
1

∥∇It(x)∥2
∑n

s=1 σ
s
vis(x, t)

n∑
s=1

ws
P (x, t), (5)

where 1/∥∇It∥2 modulates depth diffusion around color
edges, and 1/

∑n
s=1 σs

vis(x,t) is a normalization factor that
accounts for each pixel’s visibility in the novel view. As
both the visibility term σvis and the projection weight ws

P

pertain more to the color diffusion process, we will define
them later on in Eq. 8.

The second integral in Eq. 4 reduces the weight of sparse
3D points that are occluded from the point of view of the
virtual camera or are erroneously reconstructed. For this,
we relax the constraint of Dt where it exactly matches the
projected sparse point cloud:

wD̂(x, t) = exp

(
−∥Ît(x)− It(x)∥2

2σ2

)
. (6)

In Figure 2, we show example weight maps wD̂ and wD

that govern the depth diffusion process, as defined in Eqs. 5
and 6.

There are two parameters in this diffusion process: 1) σ
controls the soft occlusion tolerance, and we set σ = 0.075 in
all our experiments; 2) the sparse point cloud attachment
weight λPC controls the influence of the reconstructed
points, and we set it in the range λPC ∈ [0.25, 2].

Color diffusion. Given depth map Dt, we initialize the
RGB image to a projection of the color in the input point
cloud. Then, we densify it by minimizing the following
diffusion energy on each color channel independently:

EI(It) =

∫
x∈Ω

∥∇It(x)∥2

+

n∑
s=1

∫
x∈Ω

λPw
s
P (x, t)∥It(x)− Iprojs,t (x)∥2dx

+

n∑
s=1

∫
x∈Ω

λGw
s
P (x, t)∥∇It(x)−∇Iprojs,t (x)∥2dx

(7)

The first integral encourages smooth gradients over the
intensity of the novel view, which aids blending of the
projected input images especially along their borders. The
second integral constrains the RGB intensities and It to
be close to the intensities of Iprojs,t , and the third integral
constrains the RGB gradients similarly. They are both
modulated by the weight

ws
P (x, t) = σs

vis(x, t) exp

(
−
∥Iprojs,t (x)− It(x)∥2

2σ2

)
, (8)

which measures the agreement of each warped input frame
with the novel view and is held constant at each iteration.
Figure 3 shows a set of warped input frames along with
their weight maps ws

P .

Fig. 5: Visibility term σs
vis de-

termines whether a projected
input pixel is seen in the novel
view.

wP incorporates visibility
term σs

vis(x, t) (Fig. 5) that
is 1 for a given pixel x of the
novel view It only if, out of
every pixel that is projected
to the same pixel location
in an input image Is,t, x has
the smallest depth value d in
the input image’s coordinate
frame.
Color diffusion relies on

two new parameters: λP

controls the influence of the data constraint and λG controls
the influence of the gradient equality constraints. We set
them both in the range [5, 20]. σ serves the same function
and values as in the depth map diffusion.

3.3. Temporal consistency

We enforce temporal consistency within novel views by
additional terms in ED and EI . With slight abuse of
notation, this term is added to Eqs. 4 and 7:

ED(Dt) = · · ·+ λT

∫
x∈Ω

wT (x, t) ∥Dt(x)−Dproj
t−1 (x)∥2dx,

(9)

6 Preprint /Computers & Graphics (2022)

Fig. 3: Input image contributions. Four closest input images Is,t projected onto the virtual camera’s view point alongside their corresponding
weight maps wP (Eq. 8). We see that occluded regions are given little weight.

Fig. 4: Effect of temporal weight. Top row: Color image It−1 and
depth map Dt−1 of a previous time step warped to the camera view
at time step t. Bottom left: Current color image It. Bottom right:
Weight map wT (Eq. 11) modulates consistency, notably around the
moving mouth of the character on the left.

EI(It) = · · ·+ λT

∫
x∈Ω

wT (x, t) ∥It(x)− Iprojt−1 (x)∥2dx.

(10)

These terms constrain depth Dt to remain similar to
the warped previous depth Dt−1 projected to the current
camera location, and for color It similarly. This constraint
is relaxed by a weight

wT (x, t) =
1

n

n∑
s=1

exp

(
−
∥Iprojt−1 (x)− Iprojs,t (x)∥2

2σ2

)
(11)

for pixels for which an agreement in color was not reached.
This is expected in regions containing motion because the
depth values of frame t− 1 may be invalid, as is the case
around the mouth of the character on the left in Figure 4.
wT allows the computation of depth and color values of
these pixels to rely more freely on the other terms of the
functional, like the data term of the depth or the color of
the warped input images.

The parameter controlling the strength of the temporal
consistency λT is set in the range of [0.01, 0.1].

3.4. Implementation details

To avoid using input frames that are far away from the
novel camera’s view, we rank each input camera based
on its distance from the novel camera according to the
following formula:

rF (s) =
1

∥Ct − Cs,t∥2
exp

(
−
arccos ((tr(RtR

T
s,t)− 1)/2)

2πσ2

)
(12)

This penalizes frames with camera poses that are either
far in position or in viewing direction from the novel view.
Then, we use the first n = 4 ranked input frames to mini-
mize the functional of Eq. 3.
We approximate every partial derivative as central dif-

ferences and use Dirichlet boundary conditions.
For efficiency, we also proceed in a multiscale fashion: we

solve for depth and color at a coarse resolution l, and then
use these to initialize a finer resolution l − 1 at twice the
previous resolution—our lowest level is 1/64 of the original
frame size. At each level we iterate 10 · 2l times. Finally,
we also proceed in a streaming manner: we reproject the
previous frame’s depth and color (denoted as Dproj

t−1 and

Iprojt−1) into the current virtual camera pose for use within
the temporal consistency constraint.

4. Experiments and results

4.1. Dataset sequences

Real-world existing dataset. We exploit existing datasets
used in the context of novel view synthesis, all of them
captured using camera arrays:

• Jumping [41]: A group of four people jump (12 cam-
eras).

• Skating [41]: A person rides a skateboard (12 cameras).

• Playground [41]: A person flies a dinosaur balloon (12
cameras).

• Umbrella [41]: A person opens and rotates an umbrella
(12 cameras).

Preprint /Computers & Graphics (2022) 7

• DynamicFace [41]: A person of making faces (12 cam-
eras).

• Breakdancers [8]: A person break dancing in front of
4 people (8 cameras).

Custom dataset. We test our algorithm on three 100-frame
real world sequences that we acquired each with five Canon
Rebel EOS T7i cameras at 1920×1080 resolution. The
cameras were set up with a mix of hand held or tripod
capture. The videos were synchronized based on the audio
track. Our sequences are:

• Cat and Dog : Two pet animatronics.

• Elephant Wiggle: A puppet hanging by a wire.

• Drone: A drone hanging by a wire.

We additionally generate a synthetic 100 frames long
Minions sequence using 11 input cameras to compare to
ground truth RGB and depth estimation from a 12th cam-
era. It contains a rendering of two characters laughing
behind a table. In this sequence, all cameras are moving.

4.2. Metrics

To evaluate reconstruction results, we compare camera
pose position and orientation error in world space, and
3D point reprojection error in pixels. To evaluate novel
view synthesis results, we quantitatively compare methods
in terms of PSNR (higher is better), more perceptually-
motivated SSIM [52] (higher is better), and video temporal
consistency measures SRRED and TRRED [53] (lower is
better).

4.3. Results and ablation study

To show results in this paper, we extract frames from
output videos to highlight the comparisons; please see our
accompanying video to better evaluate the results and
comparisons. To begin with our method, Figure 6 shows
rendered frames from novel views and corresponding depth
maps for the Cat and Dog and the Elephant Wiggle se-
quences. While some artifacts remain in the depth video,
the generation of the final novel view RGB rendered se-
quence is robust to these and has fewer artifacts. Note that
the borders of the view partially appear blurry when there
is insufficient field of view overlap between input videos.

We ablate our SfM method using the synthetic Minions
dataset with moving objects, where points are known to
be either static or dynamic (Table 1). We compared the
recovered pose over 50 timestamps and 5 cameras. First,
we compare against a naive SfM approach that solves for all
frames simultaneously without consideration of dynamic ob-
jects. Next, some methods rely on segmenting out moving
objects to cope with dynamic scenes [11, 12]. To compare
to this idea, we created a segmentation-based SfM baseline
from the naive SfM by performing reconstruction only from
points that are known to be static using perfect ground
truth masks. While the segmentation slightly improves the
3D reconstruction, its positive effect is not clear on the

recovery of camera positions, even though the dynamic ob-
ject segmentation is a pixel accurate ground truth. Against
both baselines, our method makes better use of dynamic
points to more accurately recover camera paths and its
median reprojection error is the smallest even compared
to the reconstruction of static points only. Finally, we
compare against the non-smoothed camera path version
of our approach. While the positional error decreases, the
rotation error slightly increases. Our camera path regular-
ization also reduced reprojection errors. Overall, we found
smoothing to provide better final results.

We also test our rendering method in an ablation study
by disabling the temporal consistency term and the weight
functions in the diffusion process one at a time. The results
are shown in Figure 7 and Table 2. For all metrics, our
full model achieves the best performance. The effect of
the temporal consistency term on our rendering process
can be best seen in our accompanying video, where the
rendering without it results in jitters mostly along object
boundaries. If we forego the weights wD̂ (Eq. 6) on the
projected sparse 3D points, the background points that
should be occluded by foreground objects gain out-sized
influence over the depth diffusion process and ultimately
over the color rendering. The depth weights wD (Eq. 5)
boost the propagation of high-confidence depth values and
reduce the influence of incorrect ones and so prevent over-
smoothing of the depth maps. The inverse image gradients
applied to modulate the depth diffusion give additional
sharpness to the depth images along object boundaries.
Finally, the weights ws

P (Eq. 8) on the projected input
images prevent ghosting artifacts caused by occlusions and
erroneous reprojections.

4.4. Baseline method comparisons

We compare our method to four recent methods, in-
cluding deep-learning-based methods that require external
training databases: Deep Blending [5], Local Light Field
Fusion [29], Extreme View Synthesis [4], and MonoCam
[41]. Furthermore, we use the Breakdancers scene to com-
pare to results provided by two older methods that best
match our intended setup: the View Interpolation (VI)
method of Zitnick et al. [8] and the Virtual Video Camera
(VVC) method of Lipski et al. [10]. Each of these methods
work with different numbers of input views and require dif-
ferent amounts of processing time. Some of these methods
are only intended for static scenes, and so we would expect
them to produce temporally inconsistent results. Table 3
summarizes these properties.

Static—Deep Blending [5]. We compare our render-
ing method with Deep Blending [5]. This learns optimized
weights to blend four layers of mosaic images, where the
first layer is composed of the best fitting pixels, the sec-
ond layer holds the second best, and so on, with ‘best’
determined by a heuristic. For the comparison, we first
reconstructed each scene separately for each time step as
described in their method. Afterwards, to use the same
camera path as for our results, we registered each time

8 Preprint /Computers & Graphics (2022)

Fig. 6: Results. Color and depth outputs for Cat and Dog and Elephant Wiggle scenes.

Method Pos. error Orient. error Median reproj. Mean reproj.
(mm) (◦) error (pix) error (pix)

Naive SfM 0.0016 0.1088 0.0553 0.0972
Naive SfM from static objects only 0.0017 0.1482 0.0512 0.0901
Our SfM without path smoothing 0.0016 0.0675 0.0513 0.0940
Our SfM 0.0015 0.0740 0.0511 0.0937
SfM with Ground Truth Poses 0 0 0.0552 0.0975

Table 1: Ablation study—quantitative camera pose and 3D point reconstruction. On the synthetic Minions scene, we compare
estimated camera pose accuracy for naive SfM, naive SfM using a ground truth mask for the static parts of the scene, and an ablated version
of our space time SfM without camera smoothing. While adding smoothing slightly increases the orientation error, it reduces positional errors.
Our approach also minimizes the median reprojection error of the feature points. SfM minimizes reprojection error by construction: using
ground truth poses results in zero position and orientation error, but can still lead to inaccurate point locations and so increased reprojection
error.

Preprint /Computers & Graphics (2022) 9

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

No Temp. Cons.
(Eq. 9–10)

No PC Weights
wD̂ (Eq. 6)

No Depth Weights
wD (Eq. 5)

No Image Grads.
1/∥∇It∥2 (Eq. 5)

No Proj. Weights
ws

P (Eq. 8)
All Terms Ground Truth

Fig. 7: Ablation study—qualitative novel views. We show our rendered result without temporal consistency (1st column), without
weights on the projected sparse 3D points (2nd column), without depth weights and inverse image gradients (3rd column), only without inverse
image gradients (4th column), without weights on the projected input images (5th column), together with the full result (6th column) and the
ground truth (7th column), for both the depth (first row) and the color view (2nd row).

Metric PSNR↑ SSIM↑ SRRED↓ TRRED↓

No Temp. Cons. 26.878 0.846 11.82 26.60
No PC Weights 26.875 0.848 11.65 19.62
No Depth Weights 25.256 0.833 15.62 32.60
No Image Grads. 26.207 0.847 12.88 21.34
No Proj. Weights 27.302 0.846 11.30 19.20
All Terms 27.427 0.853 10.35 17.77

Table 2: Ablation study—quantitative novel views. Evaluated
in terms of PSNR and perceptual video quality measures SSIM [52]
and consistency measures SRRED/TRRED [53]. For PSNR and
SSIM higher values are better, while for SRRED and TRRED lower
values are better. All terms contribute to improve quality.

step to our full space-time reconstruction based on the
camera positions. Finally, we used the pre-trained network
provided by the authors to render each frame.

Figure 8 shows that Deep Blending cannot always re-
construct marginal parts of the scene, and is often blurrier
than our result. Table 4 quantitatively shows that our
method outperforms it in every metric. Figure 9 shows
that SRRED values correlate with the angular distance
between the target view and the four nearest input views
used for reconstruction, and that this distance tends to
increase over time for our particular test sequence.

Static—Extreme View Synthesis [4]. Figure
10 shows a comparisons with Extreme View Synthesis
(EVS) [4]. As input, EVS receives our SfM results. As
expected, it exhibits flickering since this method is designed
for static scenes and does not enforce temporal consistency.
In addition, EVS cannot handle high resolution input be-

Ours Deep Blending [5]

Fig. 8: Results—qualitative. Comparison with Deep Blending [5]
on the Cat and Dog and Elephant Wiggle sequences.

cause of its memory requirements; we had to lower the
resolution of the input video from 1920×1080 to 1280×720.
For the same reason, we also could not increase the depth
resolution of its scene reconstruction step, which leads inac-
curate depth maps and thus severe ghosting in the affected
areas.

Static—Local Light Field Fusion [29]. Fig-
ure 11 shows a comparison with Local Light Field Fusion
(LLFF) [29]. Since LLFF requires at least 6 cameras to
work, we could only compare on the 12-camera dataset
sequences. To improve stability, we provide LLFF with
our temporally consistent reconstruction results instead
of their COLMAP reconstruction. Since our 3D recon-

10 Preprint /Computers & Graphics (2022)

Method Scenes Min.
views

Training
time

Preprocess
per frame

Render
time

Fig. #

Deep Blending [5] Static 4 37 h 8 h Real time 8
LLFF [29] Static 6 ? 10 min Real time 11
EVS [4] Static 2 ? 10 min 98 sec 10
MonoCam [41] Dynamic 1 ? ? ? 12
VI [8] Dynamic 8 N/A ? Real time 13
VVC [10] Dynamic 5 N/A Manual fix Real time 13
Ours Dynamic 4 N/A 2 min 6.8 sec 7–11

Table 3: Related work comparisons. Considering scene type, minimum number of input views, and speed. LLFF and EVS use pre-trained
networks, so we did not re-train them. For MonoCam, we used the author’s results for comparison. ‘?’ denotes where no information is
available.

Method PSNR↑ SSIM↑ SRRED↓ TRRED↓
Ours 26.22 (25.59) 0.80 (0.79) 7.12 (7.82) 11.13 (10.50)
Deep Blending [5] 9.8 (21.59) 0.34 (0.63) 12.51 (11.87) 57.39 (50.82)
LLFF [29] 21.88 (21.09) 0.57 (0.56) 22.28 (21.67) 35.61 (31.48)

Table 4: Results—quantitative metrics. The metrics were computed on the first 34 frames of the synthetic Minions scene. In parenthesis,
we also compute metrics on the first 12 frames only, after which Deep Blending [5] starts to occasionally produce entirely black frames.

0 10 20 30 40 50 60 70 80 90 100
Timestep

0

5

10

15

20

25

SS
RE

D
(lo

w
er

 is
 b

e
er

)

1
2
3
4
5
6
7
8
9
10
11

Av
er

ag
e

ro
ta

on
 (d

eg
re

es
)

Average rota on
SRRED (Ours)
SRRED (Ours, no temp. consist.)
SRRED (LLFF)
SRRED (DB)

Results unavailable

Fig. 9: Results—quantitative temporal consistency. We show
the evolution of SRRED values (lower is better) over time on the
Minions scene for our method (green), our method without temporal
consistency (cyan), and for Deep Blending (DB) [5] and LLFF [29].
At the same time, we display the average rotation angle between the
target view and the four nearest views used for reconstruction (see
Sec. 3.4). While our method outperforms DB and LLFF, for this
sequence, the novel view rotation with respect to the four nearest
views increases over time, which correlates with increasing errors. As
expected, our temporal consistency reduces this drift. DB produces
several frames with large black areas that result in NaN SSRED
values, and thus, gaps in plots.

struction remains noisy by design, which is not expected
by this method, we fixed the minimum and maximum
depths to known correct values—this lets LLFF correctly
set space bounds for its Multi-Plane Image computations.
Without this, extreme flickering occurs; with, flickering is
reduced but is not eliminated completely. Our result also
appears sharper and with less ghosting artifacts, which is
also reflected in the comparison in Table 4.

Dynamic—Monocam [41]. We conduct a com-
parison with Monocam [41], using the results given by
the authors. It is important to note that the input se-
quences provided by the authors as a dataset differ slightly
from the sequences used as results in the corresponding
paper [41], which makes direct comparison impossible. For
instance, in the Skating sequence, the skater is performing
hand gestures in the input sequence, but not in the result
sequence.

In the MonoCam results, Figure 12 shows that dynamic
background objects like the plants in the Umbrella sequence
incorrectly appear static if the virtual camera is static, and
are inconsistent if the virtual camera is dynamic. Mono-
Cam results also exhibit temporal coherence artifacts. For
instance, the reflections in the jumping and skating se-
quences jump back and forth based on which view was
used to render them. Please see these artifacts in the
accompanying video.

Dynamic—View Interpolation, Virtual Video
Camera [8, 10]. Figure 13 shows a comparison with
View Interpolation (VI) [8] and Virtual Video Camera
(VVC) [10] methods. We approximately reproduced the
camera path of the video provided by the authors for the
Breakdancers scene for this comparison. While VI requires
a fixed and calibrated camera grid, our method can use
hand-held devices. VVC eliminates these restrictions, but

Preprint /Computers & Graphics (2022) 11

Ours EVS [4] Ours EVS [4] Ours EVS [4]

Fig. 10: Results—qualitative comparison with Extreme View Synthesis (EVS) [4]. On the Cat and Dog, Jumping, and Elephant
Wiggle sequences. Our method produces fewer artifacts than EVS.

Ours LLFF [29]

Fig. 11: Results—qualitative comparison with Local Light
Field Fusion (LLFF) [29]. On the Jumping, Playground, Umbrella,
and Skating sequences.

relies on user input to correct correspondence matches—a
user-interaction that our methods avoids.

4.5. Challenging sequence—Drone

This sequence shows a quadrocopter drone (Figure 14).
The drone has many thin features: the chassis, the fan
blades, and exposed wires between battery and motors.
Here, our SfM reconstruction fails to find feature points on
or nearby thin features at the correct depth, therefore our
consistent propagation cannot provide the correct depth.
As such, we see ghosting effects.

4.6. Computational resources

We implemented our system in C++ on a Intel(R)
Xeon(R) CPU ES-2630 v3 @2.4GHz computer. We used
the OpenMVG library to compute Structure from Motion
and sparse depth maps; and both OpenMVS and COLMAP
to compute the PatchMatch-based sparse depth map post
processing (Section 3.1). We parallelize the code using
OpenMP and run on 32 cores; the rendering algorithm
loads up to 2GBs of data per frame. As an example of
wall-clock time, it took 2.2 hours to process the Elephant
Wiggle sequence (5 cameras, 100 Full HD 1080p frames per
camera). The computation time breaks down to camera
and sparse depth estimation (2 hours), and the rendering
itself (6.8s per frame at half of the input resolution, 11.3
minutes for the whole video).

5. Discussion

Our method has several limitations. First, our choice
of the OpenMVG library [46] for computing the SfM has
the drawback that we must provide focal lengths for a pair
of cameras to initiate the reconstruction process. Second,
our method requires that the video sequences should have
enough texture on the objects and in the background such
that enough SIFT keypoints can be detected and matched.
Another limitation lies in the amount of motion in the
frame: conceptually, if SIFT keypoints are only detected
on moving objects, then camera pose estimation will fail. In
practice, we did not find this to be a problem. Furthermore,
if the baseline is too wide, then not enough points will be
obtained on moving objects and the depth propagation
will fail. Similarly, in the case of objects not properly
supported by 3D points, our propagation technique will
produce ghosting artifacts around depth discontinuities.
This effect is most noticeable around (dynamic) foreground
object boundaries and the background, where the difference
in depth values tends to be larger. Finally, our optimization
has parameters that can be tuned for each sequence; we
provide reasonable initial values (Sec. 3.2), but tweaking
can improve quality.
Our approach solves a joint optimization for color and

depth via alternating descent, where each of color and depth
is optimized in turn via Eq. 3 through the coarse-to-fine
iterations. Solving for both color and depth simultaneously

12 Preprint /Computers & Graphics (2022)

Ours Monocam [41] Ours Monocam [41]

Fig. 12: Results—qualitative comparison with MonoCam [41]. On the Jumping, Playground, Umbrella, and Skating sequences.
Stronger temporal inconsistencies in results computed with MonoCam can be seen in the accompanying video. Camera poses and small scene
details differ between the input data and MonoCam results, but were provided as is by the authors.

Ours VI [8] VVC [10]

Fig. 13: Results—qualitative comparison with VI [8] and
VVC [10]. On the Breakdancers sequence, using results provided
by the authors.

struggled to converge under the same scheme, producing
poorer results.

Finally, our current implementation is unoptimized C++
running on a CPU. Even if we optimize the implementation,
one bottleneck is that keypoints from several images must
be matched, and this is time consuming. If we consider
SfM as an offline task to be performed once per scene, then
the view rendering part currently takes 7 seconds per frame.
Given the fixed grid, GPU-based diffusion optimizers are
possible, which would produce a much more application-
friendly render time.

6. Conclusion

We introduce a novel view synthesis method which can
handle dynamic scenes. It is based around the key in-
sight that reconstructing temporally-consistent 3D points
on dynamic objects is hard, yet a structure-from-motion

Fig. 14: Limitations on thin features. In the Drone sequence, the
scene has thin features which makes geometry reconstruction difficult.
Here, our consistent propagation has trouble correcting for missing
sparse feature points.

reconstruction method need not be temporally consistent if
temporal consistency can be enforced in the rendering algo-
rithm. We show that this can be accomplished by deferring
consistency to a variational screen-space formulation, which
makes it easy to robustly enforce spatio-temporal consis-
tency via reprojection constraints weighted by confidences.
While our setting has some restrictions, we show competi-
tive results against existing baselines for video-based ren-
dering without resorting to powerful but time-consuming
deep learning techniques. In the future, we hope to reduce
constraints in camera motions and time with asynchronous
videos.

Acknowledgments

This work was funded in part by ANR project CALiTrOp
(ANR-16-CE33-0026).

Preprint /Computers & Graphics (2022) 13

References

[1] Zhang, C, Chen, T. A survey on image-based render-
ing—representation, sampling and compression. Signal Pro-
cessing: Image Communication 2004;19(1):1–28.

[2] dos Anjos, RK, Pereira, J, Gaspar, J. A navigation paradigm
driven classification for video-based rendering techniques. Com-
puters & Graphics 2018;77:205–216.

[3] Ballan, L, Brostow, GJ, Puwein, J, Pollefeys, M. Unstruc-
tured video-based rendering: Interactive exploration of casu-
ally captured videos. ACM Transactions on Graphics (TOG)
2010;29(4):87.

[4] Choi, I, Gallo, O, Troccoli, A, Kim, MH, Kautz, J. Extreme
view synthesis. In: 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). 2019, p. 7780–7789.

[5] Hedman, P, Philip, J, Price, T, Frahm, JM, Drettakis, G,
Brostow, G. Deep blending for free-viewpoint image-based
rendering. ACM Trans Graph 2018;37(6). URL: https://doi.
org/10.1145/3272127.3275084. doi:10.1145/3272127.3275084.

[6] Bansal, A, Vo, M, Sheikh, Y, Ramanan, D, Narasimhan, S. 4d
visualization of dynamic events from unconstrained multi-view
videos. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2020;.

[7] Kopf, J, Langguth, F, Scharstein, D, Szeliski, R, Goesele, M.
Image-based rendering in the gradient domain. ACM Transac-
tions on Graphics (TOG) 2013;32(6):199.

[8] Zitnick, CL, Kang, SB, Uyttendaele, M, Winder, S, Szeliski, R.
High-quality video view interpolation using a layered representa-
tion. ACM Trans Graph 2004;23(3):600–608. URL: https://doi.
org/10.1145/1015706.1015766. doi:10.1145/1015706.1015766.

[9] Vo, M, Narasimhan, SG, Sheikh, Y. Spatiotemporal bundle
adjustment for dynamic 3d reconstruction. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.
2016, p. 1710–1718.

[10] Lipski, C, Linz, C, Berger, K, Sellent, A, Magnor, M. Virtual
video camera: Image-based viewpoint navigation through space
and time. Computer Graphics Forum 2010;29(8):2555–2568.

[11] Mustafa, A, Kim, H, Guillemaut, J, Hilton, A. Temporally
coherent 4d reconstruction of complex dynamic scenes. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, p. 4660–4669. doi:10.1109/CVPR.2016.504.

[12] Mustafa, A, Volino, M, Kim, H, Guillemaut, J, Hilton,
A. Temporally coherent general dynamic scene reconstruction.
CoRR 2019;abs/1907.08195. URL: http://arxiv.org/abs/1907.
08195. arXiv:1907.08195.

[13] Holynski, A, Kopf, J. Fast depth densification for occlusion-
aware augmented reality. In: SIGGRAPH Asia 2018 Technical
Papers. ACM; 2018, p. 194.

[14] Chen, SE, Williams, L. View interpolation for image synthesis.
In: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. ACM; 1993, p. 279–288.

[15] Gortler, SJ, Grzeszczuk, R, Szeliski, R, Cohen, MF. The
lumigraph. In: Siggraph; vol. 96. 1996, p. 43–54.

[16] Flynn, J, Broxton, M, Debevec, P, DuVall, M, Fyffe, G,
Overbeck, R, et al. Deepview: View synthesis with learned
gradient descent. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, p. 2367–2376.

[17] Buehler, C, Bosse, M, McMillan, L, Gortler, S, Cohen,
M. Unstructured lumigraph rendering. In: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques. ACM; 2001, p. 425–432.

[18] Shade, J, Gortler, S, He, Lw, Szeliski, R. Layered depth images.
In: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. 1998, p. 231–242.

[19] Debevec, PE, Taylor, CJ, Malik, J. Modeling and rendering
architecture from photographs: A hybrid geometry-and image-
based approach. In: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. 1996, p. 11–20.

[20] Snavely, N, Seitz, SM, Szeliski, R. Photo tourism: exploring
photo collections in 3d. In: ACM transactions on graphics
(TOG); vol. 25. ACM; 2006, p. 835–846.

[21] Hedman, P, Ritschel, T, Drettakis, G, Brostow, G. Scal-

able inside-out image-based rendering. ACM Transactions on
Graphics (TOG) 2016;35(6):231.

[22] Chaurasia, G, Duchene, S, Sorkine-Hornung, O, Drettakis, G.
Depth synthesis and local warps for plausible image-based navi-
gation. ACM Transactions on Graphics (TOG) 2013;32(3):30.

[23] Achanta, R, Shaji, A, Smith, K, Lucchi, A, Fua, P, Süsstrunk,
S. Slic superpixels. Tech. Rep.; 2010.

[24] Matzen, K, Cohen, MF, Evans, B, Kopf, J, Szeliski, R. Low-
cost 360 stereo photography and video capture. ACM Trans
Graph 2017;36(4).

[25] Riegler, G, Koltun, V. Free view synthesis. In: European
Conference on Computer Vision. 2020,.

[26] Mildenhall, B, Srinivasan, PP, Tancik, M, Barron, JT,
Ramamoorthi, R, Ng, R. Nerf: Representing scenes as neural
radiance fields for view synthesis. 2020. arXiv:2003.08934.

[27] Flynn, J, Neulander, I, Philbin, J, Snavely, N. Deepstereo:
Learning to predict new views from the world’s imagery. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, p. 5515–5524.

[28] Zhou, T, Tucker, R, Flynn, J, Fyffe, G, Snavely, N. Stereo
magnification: Learning view synthesis using multiplane images.
arXiv preprint arXiv:180509817 2018;.

[29] Mildenhall, B, Srinivasan, PP, Ortiz-Cayon, R, Kalantari, NK,
Ramamoorthi, R, Ng, R, et al. Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines. ACM Trans
Graph 2019;38(4). URL: https://doi.org/10.1145/3306346.
3322980. doi:10.1145/3306346.3322980.

[30] Zhou, T, Tulsiani, S, Sun, W, Malik, J, Efros, AA. View
synthesis by appearance flow. In: European conference on
computer vision. Springer; 2016, p. 286–301.

[31] Kalantari, NK, Wang, TC, Ramamoorthi, R. Learning-based
view synthesis for light field cameras. ACM Transactions on
Graphics (TOG) 2016;35(6):193.

[32] Srinivasan, PP, Wang, T, Sreelal, A, Ramamoorthi, R, Ng,
R. Learning to synthesize a 4d RGBD light field from a single
image. International Conference on Computer Vision (ICCV)
2017 2017;.

[33] Song, J, Chen, X, Hilliges, O. Monocular neural image based
rendering with continuous view control. In: ICCV 2019. 2019, p.
4089–4099.

[34] Wilburn, B, Joshi, N, Vaish, V, Talvala, EV, Antunez, E,
Barth, A, et al. High performance imaging using large camera
arrays. ACM Trans Graph 2005;24(3).

[35] Broxton, M, Flynn, J, Overbeck, R, Erickson, D, Hedman,
P, DuVall, M, et al. Immersive light field video with a layered
mesh representation. ACM Transactions on Graphics (Proc
SIGGRAPH) 2020;39(4):86:1–86:15.

[36] Guo, K, Lincoln, P, Davidson, P, Busch, J, Yu, X, Whalen,
M, et al. The relightables: Volumetric performance capture of
humans with realistic relighting. ACM Trans Graph 2019;38(6).

[37] Collet, A, Chuang, M, Sweeney, P, Gillett, D, Evseev, D,
Calabrese, D, et al. High-quality streamable free-viewpoint
video. ACM Trans Graph 2015;34(4).

[38] Pozo, AP, Toksvig, M, Schrager, TF, Hsu, J, Mathur, U,
Sorkine-Hornung, A, et al. An integrated 6dof video camera
and system design. ACM Trans Graph 2019;38(6).

[39] Penner, E, Zhang, L. Soft 3d reconstruction for view synthesis.
ACM Transactions on Graphics (TOG) 2017;36(6):235.

[40] Luo, X, Huang, J, Szeliski, R, Matzen, K, Kopf, J. Consis-
tent video depth estimation. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH) 2020;39(4).

[41] Yoon, JS, Kim, K, Gallo, O, Park, HS, Kautz, J. Novel view
synthesis of dynamic scenes with globally coherent depths from
a monocular camera. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2020;.

[42] Sun, C, Sun, M, Chen, HT. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2022,URL: https://arxiv.org/abs/2111.
11215. doi:10.48550/ARXIV.2111.11215.

[43] Müller, T, Evans, A, Schied, C, Keller, A. Instant neural
graphics primitives with a multiresolution hash encoding. arXiv

https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084
http://dx.doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/1015706.1015766
https://doi.org/10.1145/1015706.1015766
http://dx.doi.org/10.1145/1015706.1015766
http://dx.doi.org/10.1109/CVPR.2016.504
http://arxiv.org/abs/1907.08195
http://arxiv.org/abs/1907.08195
http://arxiv.org/abs/1907.08195
http://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1145/3306346.3322980
http://dx.doi.org/10.1145/3306346.3322980
https://arxiv.org/abs/2111.11215
https://arxiv.org/abs/2111.11215
http://dx.doi.org/10.48550/ARXIV.2111.11215

14 Preprint /Computers & Graphics (2022)

preprint arXiv:220105989 2022;.
[44] Bao, W, Lai, WS, Ma, C, Zhang, X, Gao, Z, Yang, MH.

Depth-aware video frame interpolation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.
2019, p. 3703–3712.

[45] Davis, J, Ramamoorthi, R, Rusinkiewicz, S. Spacetime stereo:
A unifying framework for depth from triangulation. In: 2003
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings.; vol. 2. IEEE; 2003, p.
II–359.

[46] Moulon, P, Monasse, P, Perrot, R, Marlet, R. Openmvg:
Open multiple view geometry. In: International Workshop on
Reproducible Research in Pattern Recognition. Springer; 2016,
p. 60–74.

[47] Moulon, P, Monasse, P, Marlet, R. Adaptive structure
from motion with a contrario model estimation. In: Proceed-
ings of the Asian Computer Vision Conference (ACCV 2012).
Springer Berlin Heidelberg; 2012, p. 257–270. doi:10.1007/
978-3-642-37447-0_20.

[48] Cornelis, K, Verbiest, F, Van Gool, L. Drift detection
and removal for sequential structure from motion algorithms.
IEEE Transactions on Pattern Analysis and Machine Intelligence
2004;26(10):1249–1259. doi:10.1109/TPAMI.2004.85.

[49] Lowe, DG. Distinctive image features from scale-invariant
keypoints. International journal of computer vision 2004;60(2):91–
110.

[50] Barnes, C, Shechtman, E, Finkelstein, A, Goldman, DB.
Patchmatch: A randomized correspondence algorithm for struc-
tural image editing. In: ACM SIGGRAPH 2009 Papers. SIG-
GRAPH ’09; New York, NY, USA: Association for Computing
Machinery. ISBN 9781605587264; 2009,URL: https://doi.org/
10.1145/1576246.1531330. doi:10.1145/1576246.1531330.

[51] Schonberger, JL, Frahm, JM. Structure-from-motion revisited.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, p. 4104–4113.

[52] Wang, Z, Bovik, A, Sheikh, H, Simoncelli, E. Image quality
assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing 2004;13(4):600–612. doi:10.
1109/TIP.2003.819861.

[53] Soundararajan, R, Bovik, AC. Video quality assessment by
reduced reference spatio-temporal entropic differencing. IEEE
Transactions on Circuits and Systems for Video Technology
2013;23(4):684–694. doi:10.1109/TCSVT.2012.2214933.

http://dx.doi.org/10.1007/978-3-642-37447-0_20
http://dx.doi.org/10.1007/978-3-642-37447-0_20
http://dx.doi.org/10.1109/TPAMI.2004.85
https://doi.org/10.1145/1576246.1531330
https://doi.org/10.1145/1576246.1531330
http://dx.doi.org/10.1145/1576246.1531330
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TCSVT.2012.2214933

	Introduction
	Related work
	Method
	Camera pose estimation and 3D scene points.
	Novel depth and novel view rendering
	Temporal consistency
	Implementation details

	Experiments and results
	Dataset sequences
	Metrics
	Results and ablation study
	Baseline method comparisons
	Challenging sequence—Drone
	Computational resources

	Discussion
	Conclusion

