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This supplementatl material derives the exact form of the color tran-
formation curvature being used in Sec.5 of the paper “Example-
based Video Color Grading”.

The single-frame color matching technique described in Sec. 4 of
the paper estimates a series of color transfer functions, Tt, t =
1, 2, . . . , n, one for each input video frame. In turn, each transfer
function consists of a non-linear transfer function for luminance,
Tl
t and three affine matrices, Tc,i

t , i = {1, 2, 3}, for chrominance.
These color transforms are designed to transfer the color style of
the model video to the input video clip. However, as discussed be-
fore (see Sec. 3 and Fig. 2 of the paper), directly applying these
color transforms to the input video frames leads to temporal arti-
facts such as flickering and color shifts. The second stage of our
pipeline is a novel differential-geometry based temporal smoothing
scheme that is designed to remove these artifacts. We treat each per-
frame transformation Tt as a point in a high-dimensional space of
color transformations; the entire set of transformations, thus, forms
a curve in this space. Regions of this curve with a high curvature
correspond exactly to instants in the video with temporal artifacts.
With this is mind, we automatically detect points on this curve with
low curvature. We treat these points as keyframes; interpolating the
color transformations at these keyframes produces a set of tempo-
rally coherent color transformations that, when applied to the input
video, no longer lead to artifacts. This process approximates the
notion of curvature flow [Ilmanen 1995] encountered in differen-
tial geometry. Note that, contrary to curve simplification methods
that aim at preserving the shape of a curve by approximating areas
of high curvature more accurately, we try to remove areas of high
curvature (see Fig. 8 in the paper) in order to smooth the curve and
obtain temporal coherence.

1 Curvature estimation

The transformations Tt define a curve in the space of all possible
color transformations, sampled at each frame, and we use differ-
ential geometry principles to analyze this curve. In particular, we
would like to filter this curve by detecting and smoothing out re-
gions of high curvature; this requires us to define a notion of cur-
vature for this high-dimensional space. However, one component
of each transformation is a non-linear luminance mapping, and an-
alyzing the resulting infinite-dimensional transformation curve is
not tractable. Therefore, in order to simplify the curvature com-
putation we approximate the 1-d non-linear luminance transform
with a affine transform, i.e., a scale and translation in 1-d. This
approximation is used only to make the computation the curvature
of the transformation curve tractable, and to find the appropriate
keyframes. As will be discussed later, the final color transfer func-
tions themselves are constructed by interpolating the original trans-
fer functions (including the non-linear luminance transfer function).

Each per-frame transformation, Tt, therefore, consists of the lumi-
nance scale and translation (two scalars per-segment), the chromi-
nance translations (three 2x1 vectors per-segment) and the chromi-
nance scaling matrices (three 2x2 symmetric positive definite ma-
trices per-segment). Each transformation therefore lies in the Carte-
sian product of all these individual spaces – a 17-dimensional space
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(or alternatively, a 34-dimensional space if the videos are seg-
mented into foreground and background). To analyze the trans-
formation curve, we would like to define a notion of curvature in
this high-dimensional space. While many curvature operators ex-
ist [Kitagawa 2005], we focus on the covariant derivative along the
curve’s tangent vector, i.e., the vector ∇ṪṪ. The covariant deriva-
tive of a curve’s tangent vector generalizes the traditional notion of
the second derivative in Euclidean spaces to arbitrary Riemannian
manifolds. We chose this particular form for curvature because it
appropriately captures changes in the velocity of color transforma-
tions along the transformation curve, and consequently, its smooth-
ness. This makes it particularly useful for our application of tem-
porally smoothing the transform curve. This is in contrast to the
second fundamental form (that is typically used by standard cur-
vature flows), which captures variations orthogonal to the curve.
For instance, a non-constant speed geodesic or any curve in a one-
dimensional manifold posses a vanishing second fundamental form.
In contrast, the covariant derivative of the tangent vector field to a
curve only vanishes for constant speed geodesic curves, i.e., con-
stant speed geodesics are defined by ∇ṪṪ = 0. The covariant
derivative hence appropriately captures the desired changes in ve-
locity of the color transformations, and consequently, its smooth-
ness.

To obtain the desired covariant derivative in this high-dimensional
Cartesian product, we separate each per-frame transformation Tt

into its individual elements (i.e., the luminance scaling and trans-
lation scalars, the chrominance translation vectors, and the chromi-
nance scaling matrices ), and independently compute a covariant
derivative for each of them [do Carmo 1992]. The final curvature
value is computed by combining these individual vectors. We de-
note one of these elements γ. For each of these elements, the gen-
eral form of the covariant derivative vector,∇γ̇ γ̇, is given by:

∇iγ̇ γ̇ = γ̈i +
∑
k,l

Γik,l γ̇
k γ̇l, i = 1..d (1)

where ()i denotes the ith component of an n-dimensional vector, γ̇i

denotes the i’th component of the derivative wrt time, γ̈i denotes
the second derivative wrt time. In addition, Γik,l are real numbers
called the Christoffel symbols for a given metric (see section 2 for
a derivation of these elements).

Eqn. 1 describes the general form of the covariant derivative vec-
tor and can be used to derive the corresponding form for each ele-
ment of the transformation curve. For example, the luminance and
chrominance translation components live in an Euclidean space.
Here, the notion of covariant derivative of the tangent vector field
coincides with the usual second derivative, i.e., for these quantities,
∇γ̇ γ̇ = γ̈.

The luminance and chrominance scaling terms on the other hand
lie in a more complex space. Takatsu [Takatsu 2011] describes a
Riemannian metric for covariance matrices called the Wasserstein
metric, that can be used to compute the corresponding Christoffel
symbols (Γ in Eqn. 1). In section 2, we derive the form for these
symbols for both the 1-d (luminance scaling) and the 3-d (chromi-
nance scaling) cases. By substituting these values in Eqn. 1, we can



compute the covariant derivative vector for both the luminance and
chrominance scaling terms.

Having computed the covariance derivative vectors for each indi-
vidual element of the transformation curve, the curvature value for
the complete transformation curve is obtained as the norm in the
concatenated high-dimensional space, i.e.,

Kt = (
∑
i

gi(∇γ̇i γ̇i,∇γ̇i γ̇i))
1
2 , (2)

where γi denotes the translation and scaling components of the lu-
minance, T`, and chrominance, Tc transformations, and g denotes
a Euclidean metric for translation vectors (i.e., g(x, y) = 〈x, y〉)
and a Wasserstein metric for scalings (see section 2).

2 Curvature computation in the Wasserstein
space

In this section, we further detail the curvature computations and
provide analytic formulas. We compute the Christoffel symbols
Γiab required to evaluate the covariant derivative ∇γ̇ γ̇ based on the
results of Takatsu [2011]

Takatsu [Takatsu 2011] defines a parameterization of the space of
symmetric positive definite matrices – i.e., our chrominance trans-
forms – using a Riemannian submersion Π(M) = MTM from
the space of general matrices G to the space of symmetric pos-
itive definite matrices Sym+. She pushes forward the Euclidean
metric in G to Sym+ using this submersion, to obtain a metric
gV (X,Y ) = tr(X V Y ) where tr denotes the matrix trace and
X and Y are symmetric matrices.

2.1 In 1D

In 1D, y = Π(x) = x2. We want to push-forward the Euclidean
metric to Sym+ using Π, i.e., transfer an Euclidean metric for vec-
tors in an Euclidean space to an appropriate metric in the space
defined by applying the function Π to all points in the Euclidean
space. We have dy = 2x dx = 2

√
y dx. The metric is hence

given by gx(dx,dx) = G( dy
2
√
y
, dy
2
√
y

) = 1
4y

dy2 where y is a vari-
ance, and dy is a 1D vector in the space of variances (a “variance
derivative”), and G(dx, dx) = dx2 the Euclidean metric.

In 1D, the unique Christoffel symbol for our curve γ is thus ob-
tained by Γ = 1

2
g−1 d g

dy
= −1/(2γt), where γt is the current vari-

ance. The covariant derivative can be computed using:

∇γ̇ γ̇ = γ̈ − γ̇2

2γ

2.2 For 2× 2 matrices (3D)

We first define a set of standard basis vectors – for instance, the
standard basis {x1 = [ 1 0

0 0 ] ,x2 = [ 0 1
1 0 ] ,x3 = [ 0 0

0 1 ]}. Any 2× 2
symmetric matrix can be written as a linear combination of these
three basis matrices, and the space is hence three-dimensional.

In fact, Takatsu’s metric is not given in such a standard basis. As
such, to obtain tangent vectorsX and Y usable with Takatsu’s met-
ric at point V : gV (X,Y ) = tr(X V Y ), one need to solve a small
linear system. If A and B are vectors in a standard basis of sym-
metric matrices, one can obtain vectors X and Y by solving the
system A = XTV +V TX and B = Y TV +V TY . These X and
Y can finally be plugged into Takatsu’s metric.

For easier reimplementation of our method, we analytically per-
formed such an inversion. The expression of gV (A,B) (in Hörner

form, whereA = [ a0 a1a1 a2 ], B =
[
b0 b1
b1 b2

]
, V = [ v0 v1v1 v2 ]) is given by:

gV (A,B) =
1

4 (v0 + v2) (v0v2 − v12)
(((−v12 + (v0 + v2) v0)b2

− 2 v1v0b1 + v1
2b0)a2 + (4 v2v0b1 − 2 b2v0v1

− 2 v2v1b0)a1 + (−2 v2v1b1 + v1
2b2+(

−v12 + v2
2 + v0v2

)
b0)a0)

(3)

In addition to the metric, we need to compute the Christoffel sym-
bols in order to compute the covariant derivative. In three dimen-
sions, Christoffel symbols are defined by:

Γik,l =
1

2

3∑
m=1

gim(
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

) (4)

where gij is the value of the metric for the tangent vectors, ∂gij
∂xk

denotes the directional derivative of g(xi,xj) (for two basis vec-
tors) in the direction of xk a third basis vector, and gim denotes the
components of the inverse matrix whose coefficients are gim. The
3 × 3 matrix gim is numerically inverted. The basis need not be
orthogonal.

To evaluate Γik,l, one needs the directional derivative of g in a di-

rection D =
[
d0 d1
d1 d2

]
. We also analytically derived the formula for

the directional derivative of g in a direction D:

∂gV (A,B)

∂D
=

1

4 (v0 + v2)2 (v0 v2 − v12)2
((a2 − a0)(b0 − b2)

(d0 + d2)v1
4 + 2 (a1 (b2 − b0) + (a2 − a0)b1)

(d0 v2 − d2 v0)v1
3 − ((2 (a2 b1 + a1 b2)d1+

(a2 b0 + 4 a1 b1 − (a2 − a0)b2)d2 + a2 b2 d0)v0
2+

2 ((a2 b0 − (a2 − a0)b2)d2 + (a1 (b0 + b2)+

(a0 + a2)b1)d1 + ((a2 − a0)b0 + a0 b2)d0)v2 v0+

(a0 b0 d2 + (a0 b2 + 4 a1 b1 + (a2 − a0)b0)d0+

2 (a1 b0 + a0 b1)d1)v2
2)v1

2 + (2 ((a2 b1 + a1 b2)

(2 d2 + d0) + ((a0 + a2)b2 + a2 b0 + 4 a1 b1)d1)

v2 v0
2 + 2 ((a1 b0 + a0 b1)(d2 + 2 d0) + (a0 b2+

4 a1 b1 + (a0 + a2)b0)d1)v2
2v0 + 2 (a2 b1 + a1 b2)

d2 v0
3 + 2 (a0 b0 d1 + (a1 b0 + a0 b1)d0)v2

3)v1+

a2 b2 v0
3(2 d1 v1 − d2 v0)− 2 ((a2 b1 + a1 b2)d1+

a2 b2 d2)v2 v0
3 − 2 ((a1 b0 + a0 b1)d1 + a0 b0 d0)

v2
3v0 − (2 (a1 (b0 + b2) + (a0 + a2)b1)d1+

(4 a1 b1 + a2 b2)d2 + (4 a1 b1 + a0 b0)d0)v2
2v0

2−
a0 v2

4b0 d0)
(5)

The desired covariant derivative can finally be obtained by plugging



the expression of Γi (Eq. 4) into the main paper’s formula:

∇iγ̇ γ̇ = γ̈i +
∑
k,l

γ̇k Γik,l γ̇
l, i = 1..d

where the three Christoffel symbols Γik,l are expressed using Eq 3
and 5.
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