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Introduction (English)

This document summarizes my main contributions to computer graphics in the last nine
years, since I defended my PhD in 2009. These contributions have spanned two distinct areas
of computer graphics – Optimal Transport and Video Processing – but linked with the desire to
provide numerical tools to the computer graphics community. Optimal transport is a trending
tool with applications in computer graphics, including video processing, which I explore in a first
chapter. As I explored different solutions to video processing problems that led to high impact
contributions, I decided to expose these contributions in a separate chapter.

Optimal Transport. The Optimal Transport problem seeks a way to warp one function
(or more precisely a probability measure) towards another, by minimizing a certain cost function
modeling the effort one would require to move the function as if it were a pile of sand. This
framework is particularly attractive to computer graphics as it produces visually appealing defor-
mations. I developed computationally efficient optimal transport algorithms (Sec. 2.1 and 2.2),
formulated inverse problems making use of the optimal transport theory (Sec. 2.3) and applied
these algorithms to computer graphics problems throughout my work. I became aware of optimal
transport theory at the end of my PhD thesis, while working on a photograph-based reflectance
acquisition method for hair, that made use of the so-called Earth Mover’s Distance [27]. I pursued
the study of this fascinating theory during my post-docs and until now.

Video Processing. The second problem I addressed in this manuscript is that of making
image processing algorithms stable when applied to video frames. This came from the observation
that most image processing algorithms, when applied to videos, tend to produce flickering artifacts.
My first attempts at solving this problem were focusing on two specific but well studied image
processing problems: color grading (Sec. 3.1) and intrinsic decomposition (Sec. 3.2). Faced to the
colossal project of adapting each possible image processing algorithm to videos, I then developed an
all-purpose blind solution that handles most image processing algorithms, and further extended it
to the case of videos taken from multiple cameras (Sec. 3.3). I entered the area of video processing
during my post-doc at Harvard University funded by an NSF grant on video processing, and
continued this line of work afterwards thanks to a long-lasting collaboration with Adobe.
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Introduction (Français)

Ce document résume mes principales contributions à l’informatique graphique ces neuf dernières
années, depuis que j’ai soutenu ma thèse en 2009. Ces contributions englobent deux pans distincts
de l’informatique graphique – le transport optimal et le traitement de vidéos – mais reliés par le
désir de fournir des outils mathématiques pour la communauté graphique. Le transport optimal
est un outil en vogue avec des applications en informatique graphique, incluant le traitement
vidéo, que j’explore dans un premier chapitre. En explorant diverses solutions liées aux problèmes
de traitements vidéos ayant données des contributions de fort impact, j’ai décidé d’exposer ces
contributions dans un chapitre distinct.

Transport Optimal. Le problème du transport optimal est celui de chercher une manière
de déformer une fonction (ou plus précisément une mesure de probabilité) vers une autre, tout
en minimisant une certaine fonction coût qui modélise l’effort qu’il faudrait fournir pour déplacer
cette fonction comme s’il s’agissait d’un tas de sable. Ce cadre est particulièrement attractif en
informatique graphique car il produit des déformations visuellement plaisantes. J’ai développé
des algorithmes efficaces de transport optimal (Sec. 2.1 et 2.2), formulé des problèmes inverses
utilisant la théorie du transport optimal (Sec. 2.3) et ai appliqué ces algorithmes à des problèmes
d’informatique graphique tout au long de mon travail. Je pris connaissance de la théorie du
transport optimal à la fin de ma thèse, lorsque je travaillais sur une méthode d’acquisition de
la réflectance des cheveux à partir d’une photographie, qui utilisait ce qu’on appelle la Distance
du cantonnier [27]. J’ai poursuivi cette fascinante théorie lors de mes post-doctorats et jusque
maintenant.

Traitements Vidéos. Le second problème que j’expose dans ce manuscrit est celui de
rendre des traitements d’images temporellement stables lorsqu’ils sont appliqués à chaque image
de vidéos. Cela vient de l’observation que la plupart des algorithmes de traitement d’images,
lorsqu’ils sont appliqués à des vidéos, ont tendance à produire des artefacts de scintillement. Mes
première tentatives pour résoudre ce problème se sont focalisés sur deux problèmes spécifiques
mais bien étudiés en traitements d’images : l’étalonnage de couleurs (Sec. 3.1), et la décomposition
intrinsèque (Sec. 3.2). Face au projet colossal d’adapter chaque traitement d’image possible et
imaginable aux vidéos, j’ai ensuite développé une solution générique aveugle qui supporte la
plupart des algorithmes de traitements d’images, et l’ai étendu pour gérer le cas de vidéos prises
par plusieurs caméras en même temps (Sec. 3.3). Je suis entré dans le domaine du traitement vidéo
pendant mon post-doctorat à l’Université d’Harvard, financé par une subvention de la NSF sur le
traitement de vidéos, et ai continué cette ligne de recherche par la suite, grâce à ma continuelle
collaboration avec Adobe.
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1
Background

This chapter is dedicated to the introduction of the two problems being tackled, numerical
techniques used and related work. While it aims at defining the introduced problem, more context
will be presented in subsection 1.1.7 and subsection 1.1.8.

1.1 The Optimal Transport Problem

This section is intended to be a well-illustrated but concise exposition of optimal transport,
its history and recent numerical techniques for solving it, along with concurrent approaches. Most
illustration are one-dimensional for clarity but extend to higher dimensions. The interested reader
can find an in-depth coverage of optimal transport in Cedric Villani’s monograph [186], numerical
tools in the recent books of Peyré and Cuturi [136] and Filippo Santambrogio [158], and its
historical context in the articles of Vershik [184] and Schrijver [162].

1.1.1 The Monge Problem

In a memoir published in 1781 [120], Gaspard Monge, a French mathematician, formulated
the earliest known instance of a linear programming problem precursor. Monge was interested
in solving practical problems of operations research, and first described the Optimal Transport
problem. This problem aims at finding the most efficient way to move a pile of sand to a hole
in the ground, while minimizing the total distance traveled by all particles of sand from their
location in the pile to their destination in the hole (see Fig. 1.1 for an illustration in 1D, though
the problem works in higher dimension too).

The above problem is known as the Monge Problem. In modern mathematical language,
and with some generalization, it consists in finding a mass preserving map T between probability
measures µ0 and µ1 minimizing:

W (µ0, µ1) = inf
T

∫
M
c(x, T (x))dµ0(x). (1.1)

Here,M denotes a Riemannian manifold along which the sand is transported, since the Earth is
not necessary flat (though in most cases, we will use the Euclidean space). c(x, T (x)) is called
the ground cost and denotes the cost of transporting one particle of sand from location x in the
manifold to its target location T (x). Monge originally used c(x, T (x)) = |x−T (x)|, the Euclidean

13
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μ0

μ1

μt

Figure 1.1: The mass transportation problem consists in optimally moving a probability measure
µ0 represented by a pile of sand, towards a probability measure µ1 making a hole. At an
intermediate time t ∈ [0, 1], an interpolated probability measure µt, the displacement interpolation,
is obtained. A Wasserstein barycenter generalizes this notion to more than 2 input probability
measures.

distance, but most optimal transport research has focused on the simpler case c(x, T (x)) = |x−
T (x)|2 (called the quadratic cost) or c(x, T (x)) = d(x, T (x))2 where d(x, T (x)) is the geodesic
distance from x to T (x) along the manifold. We recall a probability measure µ is a positive
measure with µ(M) = 1. The “mass preservation” constraint is imposed on T and states that
once T is applied to µ0, it indeed reconstructs µ1. This imposes that the measure of all subsets
be preserved by T , or said differently, that the following constraint be enforced:

s.t. ∀Ω ∈M, µ0(T−1(Ω)) = µ1(Ω) (1.2)

In that case, µ1 is also called the pushforward measure of µ0 by T , and Eq. 1.2 can be noted
µ1 = T#µ0.

In many cases, we will deal with absolutely continuous measures. This means that µ0 and µ1
can be represented by their respective probability density functions f0 and f1 and the Lebesgue
measure as dµ0 = f0 dx and dµ1 = f1 dx. This essentially precludes measures consisting of Dirac
distributions. In that case, Eq. 1.1 and 1.2 can be simplified to:

W (f0, f1) = inf
T

∫
M
c(x, T (x))f0(x)dx (1.3)

s.t. f0(x) = f1(T (x)) |det Jac T (x)|, (1.4)

where det Jac T (x) is the determinant of the Jacobian of T (one can recognize in Eq. 1.4 the
standard change of variable formula for integration). Existence of Monge solutions is an active
topic in mathematics [5]. When solutions exist, and when the ground cost is quadratic, Brenier
showed that the optimal T is the gradient of a convex function [36]. In 1-D, this simply means
that T is non-decreasing (see Fig. 1.2)) While Monge successfully cast and studied this problem,
he did not manage to find a solution. The Jacobian determinant makes this problem highly non-
linear, and his focus on the Euclidean distance as a ground cost rendered the problem particularly
complex to solve.

W (µ0, µ1) defines the overall cost of transporting the pile of sand µ0 into the hole µ1. In
fact, when the ground cost can be expressed as c(x, T (x)) = d(x, T (x))p with p > 1 and d the
geodesic distance, it can be shown that W (µ0, µ1)

1
p defines a mathematical distance between µ0

and µ1. This distance is commonly refered to as the pth Wasserstein distance and is often
denoted Wp(µ0, µ1). However, when 0 < p < 1 (or more generally, for concave cost functions),
there is in general no solution if µ0 and µ1 overlap [185]. For p = 1, solutions exist if measures
are absolutely continuous, but are in general non unique.

The facts that optimal transport defines a distance Wp between probability mea-
sures and this distance accounts for the motion of mass are the main motivations for
its adoption in computer graphics, and for the work presented in this manuscript.
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In practice, computers deal with discrete representations of probability density functions, such
as histograms or signatures [153], and we will expose recent numerical techniques for optimal
transport in Sec. 1.2.

1.1.2 Kantorovich Reformulation

Leonid Vitaliyevich Kantorovich is a Russian mathematician, who formulated the first solu-
tion of the optimal transport problem in 1942 [88]. While Kantorovich was busy inventing linear
programming, the celebration of the bicentenary of Monge’s birthday led the Commission on His-
tory of Mathematical and Physical Sciences of the USSR Academy to hold a public session in 1947
in Monge’s honour [184]. The proceedings of this session ended up in the hands of Kantorovich,
who drew connections to his work [89]. He finally got awarded the Nobel Prize in economics
in 1975, along with Tjalling C. Koopmans, for his work on the theory of optimum allocation of
resources.

Contrary to his previous articles on finite dimensional linear programming, his 1942 paper
focused on the following infinite dimensional linear programming problem, now called the Monge-
Kantorovich problem:

W (µ0, µ1) = inf
π∈Γ(µ0,µ1)

∫
M

∫
M
c(x, y)dπ(x, y), (1.5)

where

Γ(µ0, µ1) = {π ∈ Pr(M×M) | ∀Ω ∈M, π(M× Ω) = µ1(Ω), π(Ω×M) = µ0(Ω)},

and Pr the set of probability measures. Γ hence represents the set of probability measures whose
projections (or marginals) are µ0 and µ1. As this amounts to a linear program, a dual problem
can be expressed:

W (µ0, µ1) = sup
ϕ0,ϕ1

∫
M
ϕ0(x)dµ0(x) +

∫
M
ϕ1(y)dµ1(y)

s.t. ϕ0(x) + ϕ1(y) ≤ c(x, y).

Solutions to this problem always exist since the plan obtained by the product π = µ0⊗ µ1 is
always admissible (unless c ≡ ∞). The interesting thing is that, when solutions of the problem 1.1
exist, they correspond to solutions of problem 1.5 and produce the same transportation cost [69,
142]. These solutions are given by π(dx, dy) = δ(y − T (x))dx. Said differently, when a solution
T of the Monge problem exists, a solution π of the Monge-Kantorovich problem exists and the

0 0.2 0.4 0.6 0.8 10

1

2

3

x 10−3

f0 f1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

T

Figure 1.2: Given probability density functions f0 and f1 (left) the Monge problem uncovers an
optimal map T (right) from the domain of f0 to the domain of f1 (here, both live in the interval
[0, 1]. In 1-D, T is necessarily non-decreasing for any convex ground cost.
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0.5

0.4

0.6

0.8

1

f1

f0

Figure 1.3: Similarly to Fig. 1.2, we transport f0 to f1 shown in blue and red but using
Kantorovich’s formulation. This amount to computing a large but sparse matrix (here, zeros are
shown in white) called the transport plan, whose entry (i, j) indicates the amount of mass going
from bin i to bin j. It can be shown that when a Monge solution exist, Kantorovich’s transport
plan corresponds to the graph of Monge’s transport map, as can be seen here in black.

mass of the measure π is concentrated on the graph of T (see Fig. 1.3). Both problems are
thus essentially the same. It is also known that the set of solutions to 1.5 is broader than that
of 1.1 [176]. For instance, it is easy to build a mass transport problem between a single Dirac
(µ0 = δ0) and two half-Diracs (µ1 = 1

2δ−1 + 1
2δ1), and in this case, Monge solutions do not exist

as a map cannot warp a single Dirac into two, but Kantorovich solutions exist and allow for the
splitting of mass. It is shown that when µ0 does not give mass to small sets (e.g., no Diracs, nor
mass supported on submanifolds), then Kantorovich solutions always exist. When the ground
cost is c(x, y) = |x − y|p with p > 1, and µ0 and µ1 are absolutely continuous, then solutions to
the Kantorovich problems exist and are unique.

Discretizing 1.5 may help to understand the problem from a computer scientist perspective.
Assuming µ0 is discretized as a histogram called h0 over m bins, and µ1 as a histogram h1 over
n bins, the discretized Eq. 1.5 amounts to the following finite-dimensional linear programming
problem:

inf
π

∑
i,j

c(xi, yj)πi,j (1.6)

s.t. πi,j ≥ 0 ∀i, j (1.7)
n∑
i=1

πi,j = h1(xj) ∀j (1.8)

m∑
j=1

πi,j = h0(xi) ∀i (1.9)

(1.10)

where now, π is represented by a m × n matrix. It is a linear program with mn unknowns,
mn inequality constraints and m + n equality constraints. It can be shown that the solution
of such a linear program is a matrix with at most m + n − 1 non-zero elements [64], and can
be obtained via linear programming solvers such as the simplex method [84] though at a fairly
high computational cost (typically, in roughly O(n3) in practice or worst case exponential). When
coefficients are integers, solutions also are. The particular case where m = n and the only possible
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values for h0 and h1 are 0 or 1 amounts to an assignment problem. In this case, the solution π
can only take values 0 or 1.

In the literature, the optimal transport problem has then arised with various names, giving
rise to the Earth Mover’s Distance (or EMD, or as I found, in French, “la distance du cantonnier”),
1st Mallow’s distance, the Kantorovich-Rubinstein problem, the Monge-Kantorovich problem, the
Wasserstein distance, the Hitchcock-Koopmans problem...

1.1.3 Displacement Interpolation and Wasserstein Barycenters

Since optimal transport defines a distance Wp between probability measures µ0 and µ1, it is
tempting to construct probability measures µt (0 ≤ t ≤ 1) that interpolate this distance. This
would correspond to finding measures in-between µ0 and µ1 in the sense of the Wp distance. For
the case W2, this notion has been introduced by Robert McCann in 1997 [117] that he called
displacement interpolation. Using Monge’s framework, this finds an optimal transport map T
between µ0 and µ1, but uses it to move the pile of sand µ0 only partway towards µ1. This
corresponds to applying to µ0 a linearly interpolated map Tt between the identity map and
T : Tt = (1 − t)Id + t T . We obtain the displacement interpolated measure µt = Tt#µ0 (or
using densities, ft(Tt(x)) |det JacTt| = f0(x)). This interpolation smoothly advects one measure
towards the other, and this motion makes it attractive for visual effects studied in computer
graphics (e.g., Figure 2.1 or Figure 2.9).

Once a notion of interpolation between two measures has been defined, one could ask how
to generalize this interpolation to more than two measures. This type of interpolation defines a
barycenter of measures, and Agueh and Carlier have introduced this concept as that ofWasserstein
barycenter [1]. By analogy with Euclidean barycenters, they introduced Wasserstein barycenters
using Fréchet mean. Given measures along with barycentric weights {(µi, λi)}i=1..N , the Wasser-
stein barycenter µ is defined as the minimizer:

µ = argminµλiW 2
2 (µ, µi) (1.11)

Using the Monge-Kantorovich formulation of optimal transport, they show that the minimizer
exists and is unique if at least one of the µi does not give mass to small sets. The notion of
Wasserstein barycenter is the second pilar of my work.

1.1.4 Riemannian Geometry

It is tempting to use optimal transport between two infinitesimally close probability distribu-
tions. In fact, optimal transport with a quadratic ground cost defines a Riemannian metric, and
the displacement interpolation µt between two probability measures µ0 and µ1 corresponds to the
geodesic between µ0 and µ1 in the infinite-dimensional manifold of probability measures endowed
with this Riemannian metric. The cost W2 is the geodesic distance.

To define this manifold, one need to characterize its tangent space. A tangent vector ∂ρ
∂t at a

measure with density ρ (see the tangent vector as an infinitesimal variation of the density ρ, see
Fig. 1.4) is such that ∂ρ

∂t = −∇ · (ρ∇u) with ∇u a velocity field [186]. The scalar product of two
tangent vectors (i.e., the Riemannian metric) can then be defined as 〈 ∂ρ∂t1 ,

∂ρ
∂t2
〉ρ =

∫
ρ〈∇u1,∇u2〉,

with ∇u1 and ∇u2 both velocity fields characterizing each tangent vectors. Minimal length
geodesics using this Riemannian metric indeed correspond to displacement interpolation.

I will make use of the Riemannian geometry of optimal transport in Sec. 3.1 to compute
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ρ ∂ρ
∂t1

∂ρ
∂t2

Figure 1.4: In the infinite dimensional Riemannian manifold of probability distributions, each
probability distribution (here with a density ρ) is a point, and tangent vectors can be defined
using infinitesimal variations of probability measures. Given two tangent vectors ∂ρ

∂t1
and ∂ρ

∂t2
, a

scalar product between them defines the Wasserstein Riemannian metric.
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Figure 1.5: Two high-peaked distributions of disjoint support always have an Euclidean distance
of 2. In contrast, optimal transport accounts for their motion, here resulting in a small distance.

the curvature of a curve of Gaussian densities within this manifold (see also Sec. 1.1.6 for the
particular case of Gaussian densities) for video processing purposes.

1.1.5 Other metrics

Other metrics and ways of interpolating between probability distributions have been proposed.
The simplest way is the Euclidean geometry along with the linear interpolation of probability
measures: (1− t)µ0 +µ1. This is the appropriate interpolation in many applications. For instance,
building the age pyramid of a country without accounting for gender can be performed by taking
the sum of the age pyramid of women and that of men. More generally, drawing m male and n
female individuals from a population results in a distribution that is a linear combination of male
and female distributions with weights m

m+n and n
m+n respectively. However, as it does not model

any horizontal motion, it will not behave well for instance when trying to model the evolution in
time of age pyramids (e.g., see my vulgarization article, in French but illustrated with animated
gifs, on optimal transport [25]). In general, computer graphic applications often rely on horizontal
motions as we shall see in Sec. 1.1.7. In term of distance measure, the Euclidean distance between
two probability distributions measures their overlap, such that two distributions of disjoint support
will always have the same distance equal to 2 ; in particular, when two near-Dirac distributions
are compared, the Euclidean geometry is rarely useful (see Fig. 1.5).

Information Geometry is a field interested in studying the differential geometry of probability
distributions – I will refer to the excellent book of Amari for a clear and fascinating introduction
to the subject [4]. However, the Wasserstein metric has essentially been left out of this field
in favor of the Fisher metric. The Fisher metric provides an alternative Riemannian metric to
manipulate, interpolate and compute distances between probability distributions. In addition,
when there is no need for an actual distance to be computed, information geometry provides
other tools to manipulate probability distributions. In particular, parallel transport is a concept
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Figure 1.6: Various metrics or ways to interpolate two simple Gaussian distributions.

of differential geometry that allows to move points (or, in this context, probability distributions)
without the need for a Riemannian metric but only a connection. A connection is essentially a
way of moving on a manifold by describing how tangent spaces vary from a point to a neighboring
point. While they do not provide a way to compare probability distributions, these connections,
called α-connection in the context of information geometry, allow for powerful applications such
as statistical inference and have α ∈ [−1, 1] as a degree of freedom 1.

I will not discuss the generality of connections further. Instead, I will illustrate in Fig. 1.6
how Euclidean metric, the Fisher metric, the e-connection (which is the α-connection with α = 1,
which is most suited to distributions of the exponential family such as Gaussians) and optimal
transport behave when simply interpolating between two Gaussian distributions. Formulas to
interpolate Gaussian distributions according to the Fisher metric are available in a paper by Xia
et al. [191], while formulas for the e-connection can be found in Amari’s book [4].

1.1.6 Particular Cases

Optimal Transport in 1D When probability measures are supported on the real line,
optimal transport becomes much easier [186]. This section will further assume the ground cost is
a strictly convex function of the distance (e.g., c(x, y) = |x − y|n with n > 1). In that case, the
optimal transport map between probability measures µ0 and µ1 is given by:

T = M−1
1 ◦M0

where M0 (resp. M1) is the cumulative distribution function M0 =
∫ x
−∞ dµ0 = µ0[(−∞, x)] and

the generalized inverse M−1
1 is defined by M−1

1 (t) = inf{x ∈ R;M1(x) > t}. This amounts to
progressively accumulating mass from µ1 until it matches that of µ0. A discrete version of this
procedure is expressed in a short Matlab function of linear time complexity working on histograms
h0 and h1:

1 f unc t i on T = transport1d (h0 , h1 )
2 cdf1 = cumsum(h0 ) ;
3 cdf2 = cumsum(h1 ) ;
4 j =1;
5 f o r i =1: s i z e (h0 , 1)
6 whi le ( cdf2 ( j )<cdf1 ( i ) ) j = j +1; end ;
7 T( i ) = j ;
8 end

1When a Riemannian metric is available, such as the Fisher or Wasserstein metric, one can use the Levi-Civita
connection obtained from the metric. In the case of the Wasserstein metric, this recovers the usual theory of the
differential geometry of optimal transport, including displacement interpolation as minimizing geodesics. The
α-connection with α = 0 is the Levy-Civita connection of the Fisher metric, but when α 6= 0, they are not derived
from a metric.
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The optimal transport cost can be obtained using W (µ0, µ1) =
∫ 1

0 c(M
−1
0 (t),M−1

1 (t))dt, or,
in the specific case of c(x, y) = |x−y|, this can be simplified toW (µ0, µ1) =

∫
R |M0(x)−M1(x)|dx.

Now, using a quadratic ground cost, the displacement interpolation can then be obtained
using µt = ((1− t)Id + t T )#µ0, but a computationally more interesting option directly provides
the Wasserstein barycenter between any number of probability measures associated with their
weights {(µi, λi)}i=1..N :

M
−1 =

N∑
i=1

λiM
−1
i (1.12)

where again M
−1 denotes the generalized inverse of the cumulative distribution function of the

desired barycenter µ. As can be seen by the expression of the Wasserstein distance for quadratic
costs, the space W2(R) has zero curvature – more details in the geometric study of Kloeckner [92].

When dealing with 1D discrete measures consisting of a sum of Diracs with uniform weights
and with the same number of atoms, the optimal transport map between two such measures is
easily obtained by sorting the positions of each Dirac in both measures, and progressively pairing
them from left to right. I will make use of 1D optimal transport to define Radon barycenters in
Sec. 2.2.

Optimal Transport of Gaussian Measures

A second case for which optimal transport can be expressed in closed form is that of Gaussian
measures with quadratic ground cost [56, 1, 62]. Given two Gaussian µ0 = N (Σ0,m0) and
µ1 = N (Σ1,m1), the optimal transport cost is then given by:

W (µ0, µ1)2 = tr(Σ0 + Σ1 − 2Σ0,1) + ‖m0 −m1‖2 (1.13)

with Σ0,1 = (Σ1/2
0 Σ1Σ1/2

0 )1/2.

The displacement interpolation is also a Gaussian µt = N (Σt, (1− t)m0 + tm1), with

Σt = [(1− t)Id + t P ]Σ0[(1− t)Id + t P ] (1.14)

and P = Σ1/2
1 Σ+

0,1Σ1/2
1 , denoting Σ+

0,1 the Moore-Penrose pseudo-inverse of Σ0,1. Here P is the
Monge transport map between the two centered Gaussians.

The Wasserstein barycenter of multiple Gaussians {µi = N (Σi,mi)}i=1..N with weights
{λi}i=1..N is also a Gaussian µ = N (Σ,

∑N
i=1 λimi) with Σ obtained by solving a fixed point

equation, by taking the limit of the iterates:

Σ(n+1) =
N∑
i=1

λi(Σ(n+1)1/2ΣiΣ(n+1)1/2)1/2

As can be seen above, the space of Gaussian measures is a totally geodesic submanifold ofW 2,
meaning that any geodesic in this submanifold is also a geodesic in W 2 (since the displacement
interpolation between Gaussians is always a Gaussian). Takatsu has thus derived the expression of
the Riemannian metric in this submanifold [178]. The space of Gaussian measures is the product
of the space of 0-mean Gaussian measures and the Euclidean space of translations. So, in the rest
of this section, we will only consider 0-mean Gaussian measures, and we will identify it with the
space of their covariance matrices (a space of symmetric positive definite matrices).

Let Σ be a covariance matrix at which the metric is desired. Takatsu’s method makes use
of the Riemannian submersion Π(A) = A>A = Σ with A in the space of general real matrices.
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Then, given two matrices U and V in the tangent space of Σ (the tangent space of symmetric
positive matrices is the space of symmetric matrices), we solve for symmetric matrices X and Y
such that U = ΣX +XΣ and V = ΣY + Y Σ (a so-called Lyapunov or Sylvester equation). Then
the Riemannian metric can be expressed as gΣ(U, V ) = tr(XΣY ).

I will make extensive use of Gaussian optimal transport in Sec. 3.1 for video processing
purpose.

1.1.7 Optimal Transport in Computer Graphics

Optimal transport has attracted much attention in recent years in the computer graphics and
vision communities for several reasons:

• Optimal transport deals with histograms and probability distributions, which are frequently
encountered in computer graphics (color histograms, reflectance functions, several histogram-
based image descriptors). It has clear benefits over other metrics as we have seen in
Sec. 1.1.5.

• Optimal transport also deals with mass being transported, which is attractive for other
applications such as geometry processing, and models a perceptually meaningful motion
(e.g., the motion of highlights in reflectance functions, the warping of shapes and images)

• Optimal transport defines relevant metrics to compare histograms

• Optimal transport has recently seen practical numerical methods

• Optimal transport has a beautiful underlying theory

Aside from my own (and co-authors’) contributions that will be described in the next chap-
ter, it is thus not surprising to find numerous applications in computer graphics. Notably for
retrieving images in a collection based on their color histogram [153], for altering colors in an
image to match those of another image [140, 143, 174], to interpolate between two tetrahedralized
meshes [107] or produce barycenters of several voxelized 3d objects [174], as a metric to fit shapes
and meshes to point clouds [47, 51], for mesh parameterization [53] and retrieval [144, 110], for
registering and warping images [79, 119, 129], to interpolate between simulated caustics [77], and
to interpolate between multiple reflectance functions [174]. Other intriguing applications include
the computation of geodesics on meshes [175] and blue noise sampling patterns [46], the design
of transparent or reflecting caustic-producing shapes [163, 6], and fluid dynamics simulation [68].
Applications in image processing are detailed in Nicolas Padadakis’ habilitation [128].

It is interesting to note that the vast majority of these applications are less than 10 years
old. This is mostly because until recently optimal transport was too computationally costly for
being used in practice. The situation has evolved, and the section 1.2 will illustrate the two major
approaches.

1.1.8 Optimal Transport in Machine Learning

Optimal transport provides a loss function suitable for comparing histogram data. It also
provides ways of interpolating and a whole Riemannian geometry. This makes the theory ideal for
replacing Euclidean concepts often encountered in machine learning by the Wasserstein geometry.
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Several recent papers have investigated the use of optimal transport distances as fitting losses
that have desirable properties that KL or Euclidean distances cannot offer. For instance, Principal
Component Analysis (PCA) has been generalized to the set of probability measures via the use of
optimal transport distances [23, 165]. Sandler and Lindenbaum first considered the Non-Negative
Matrix Factorization (NMF) problem with a Wasserstein loss [157]. Their computational approach
was, however, of limited practical use. More scalable algorithms for Wasserstein NMF and (linear)
dictionary learning were subsequently proposed [151]. The Wasserstein distance was also used as
a loss function with desirable robustness properties to address multilabel supervised learning
problems [66].

Using the Wasserstein distance to quantify the fit between data (an empirical measure) and a
parametric family of densities, or a generative model defined using a parameterized push-forward
map of a base measure, has also received ample attention in the recent literature. Theoretical
properties of such estimators were established by Bassetti, Bodini, and Regazzini [14] and Bas-
setti and Regazzini [15], and additional results by Bernton et al. [19]. Entropic smoothing (see
subsection 1.2.1) has facilitated the translation of these ideas into practical algorithms, as illus-
trated in the work by Montavon, Müller, and Cuturi, who proposed to estimate the parameters of
restricted Boltzmann machines using the Wasserstein distance instead of the KL divergence [121].
Purely generative models, namely, degenerate probability measures defined as the push-forward
of a measure supported on a low-dimensional space into a high-dimensional space using a pa-
rameterized function, have also been fitted to observations using a Wasserstein loss [19], allowing
for density fitting without having to choose summary statistics (as is often the case with usual
methods). The Wasserstein distance has also been used in the context of generative adversarial
networks (GANs) [7]. In that work, the authors use a proxy to approximate the 1-Wasserstein
distance. Instead of computing the 1-Wasserstein distance using 1-Lipschitz functions, a classical
result from Kantorovich’s dual formulation of optimal transport (see Theorem 1.14 in Villani’s
book [185]), the authors restrict that set to multilayer networks with rectified linear units and
boundedness constraints on weights, which allows them to enforce some form of Lipschitzness
of their networks. Unlike entropic smoothing, that approximation requires solving a nonconvex
problem whose optimum, even if attained, would be arbitrarily far from the true Wassertein dis-
tance. More recently, Genevay, Peyré, and Cuturi introduced a general scheme for using optimal
transport distances as the loss in generative models [73], which relies on both the entropic penalty
and automatic differentiation of the Sinkhorn algorithm.

Our work will exploit the geometry of optimal transport for machine learning – such as
Wasserstein Barycentric Coordinates and Wasserstein Dictionary Learning (section 2.3).

1.2 Numerical Optimal Transport

Optimal transport was, until recently, very costly, and mostly relying on the resolution of
the linear programming problem via classical operational research approaches (the Hungarian
method [99], the auction algorithm [20], the transportation simplex [83] or network simplex [42]),
or the resolution of partial differential equations [17, 79, 53, 129]. Optimal transport has seen
some breakthrough in the last decade, mostly coming from two different approaches: entropy
regularized optimal transport, and semi-discrete optimal transport. I will expose both approaches
in this section. In Sec 2.2, I will expose a third even faster algorithm which I developed in
the same period, based on Radon transforms, but that only solves an approximate transport
problem. For completeness, this section will also briefly introduce an approach that solves a
similar approximation, called Sliced optimal transport.
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function Sinkhorn(µ0, µ1)
a, b← 1

for i = 1, 2, . . . , L
a← p0

Kb
b← p1

KT a

return πγ ← diag(b)Kdiag(a)

Algorithm 1: Given two histograms p0 and p1, this function computes the entropy-regularized
transport plan πγ .

1.2.1 The Sinkhorn Algorithm

In a 2013 seminal paper [43], Cuturi has brought the Sinkhorn algorithm for optimal trans-
port [171] to light. This algorithm considers a slightly modified functional, that adds an entropic
regularization term (originally, it looked for solutions with bounded entropy). Doing so, transport
plans become slightly blurred, but the method becomes trivial to implement and very fast. Its
convergence speed depends on the regularization parameter, and, as the transport plan becomes
more blurry, it converges faster. The new functional reads:

Wγ(µ0, µ1) = inf
π∈Γ(µ0,µ1)

∫
M

∫
M
c(x, y)dπ(x, y)− γH(π) (1.15)

where γ is the regularization factor, and H(π) = −
∫
M
∫
M π(x, y) log π(x, y)dxdy the entropy

(with H(π) = −∞ when π is not absolutely continuous). This functional is often rewritten in
vector form as follows. For two matrices A,B of the same size, denoting 〈A, B〉 = tr(ATB) their
usual inner-product, where AT is the transpose of A, the entropy regularized distance between
two histograms p and q discretized over N bins can be written:

Wγ(p, q) def.= min
T∈RN×N+

{
〈T, C〉 − γH(T ) ; T1 = p, T T1 = q

}
, (1.16)

where the matrix C = (ci,j)i,j quantifies the cost of transporting mass between histogram bins.
This functional can be minimized via iterative Bregman projections, leading to the so-called
Sinkhorn algorithm (see Alg. 1). All multiplications and divisions in this iterative algorithm are
performed component-wise on vectors. This algorithm makes uses of a kernel matrix K defined
as K = exp(−C/γ), where exp is again a component-wise exponential on matrix values.

This also extends the definition of Wasserstein barycenters to that of regularized barycenters
using the resulting smoothed cost Wγ , leading to a fast algorithm (Alg. 2) [18]. Iterations of this
algorithm correspond to projections for the KL divergence on a set of affine constraints.
Definition 1. Given a family of S normalized input histograms (ps)s, the barycentric map P
associates to a vector λ ∈ [0, 1]S with

∑
s λs = 1, the barycenter of (ps)s with weights λ, uniquely

defined as
P : λ 7→ P (λ) def.= argmin

p∈ΣN

∑
s

λsWγ(p, ps). (1.17)

where ΣN denotes the simplex of normalized histograms of N bins. The uniqueness of P (λ)
comes from the strong convexity (as a function of p) of the energy defined on the right-hand side
of Eq. (1.17), itself inherited from the regularization term in Eq. (1.16).

In particular cases, the operatorK = exp(−c/γ) is translation invariant, and applyingK on a
vector can be implemented via convolutions instead of matrix-vector products [174]. In particular,
the quadratic ground cost c(x, y) = ‖x− y‖2 makes the kernel K a Gaussian convolution kernel,
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function Sinkhorn-barycenter((ps)Ss=1, q, λ)
∀ s, b(0)

s ← 1

(w, r)← (0S , 0S×N )
for ` = 1, 2, . . . , L
∀ s, ϕ(`)

s ← K> ps

Kb
(`−1)
s

p←
∏
s

(
ϕ

(`)
s

)λs
∀ s, b(`)s ← p

ϕ
(`)
s

return P (L)(λ)← p

Algorithm 2: Given a database of histograms (ps)Ss=1 and weights λ, the function computes the
entropy regularized Wasserstein barycenter P (L)(λ)

that can be efficiently implemented 2. However, this method is particularly sensitive to the choice
of γ, as too small values tend to make the the iterations diverge due to divisions by increasingly
small numbers. More robust yet computationally more complex approaches perform Sinkhorn
iterations in the log domain [161, 40, 115].

1.2.2 Semi-Discrete Formulation

This sections briefly exposes a formulation that I do not make use of within the contributions
detailed in this manuscript (though my current work investigates this formulation as discussed in
section 4.1). It is exposed nevertheless for completeness, but the hasty reader might choose to
skip this section.

A special case of optimal transport arises when considering the input distribution µ0 with a
density, and a target distribution µ1 being discrete (that is, µ1 is a weighted sum of Dirac measures
with weights {pi}i). Aurenhamer showed that in this case, the transport map can be expressed
as a power diagram [9], that is, a weighted Voronoi diagram with weights {ϕi}i (Figure 1.7).

Definition Given a domain X, a finite set of weighted samples (xi)1≤i≤n ⊂ X coupled with
weights (ϕi)1≤i≤n ⊂ R, a power diagram (or Laguerre’s diagram) is a partition of the space into
cells {Pow(xi)}i given by

Pow(xi)
def.= {x ∈ X | ||x− xi||2 − ϕi ≤ ||x− xj ||2 − ϕj}

The transport map will transport all the mass within a power cell Pow(xi) of mass µ0(Pow(xi))
towards its corresponding seed located at xi in µ1. Finding the transport map thus amounts to
finding the power weight ϕi associated to each sample xi such that the mass of each power cell
µ0(Pow(xi)) equals the mass of its corresponding sample µ1(xi). This can be achieved by design-
ing a loss function such that the optimum satisfies this constraint. The following loss has been
proposed [9] :

Φ((xi), (ϕi)) =
n∑
i=1

∫
x∈Lagϕ(xi)

(ϕi − ||x− xi||2)µ0(x)dx−
n∑
i=1

ϕipi (1.18)

2From personal experience, however, even relatively accurate approximations such as recursive filters produce
significant artifacts ; truncated kernels prevent mass from moving further than the kernel support (as this
corresponds to setting c(x, y) = ∞ outside) ; FFT-based solutions resulted in ringing artifacts. In practice, I could
only benefit from the kernel separability.
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Figure 1.7: Power diagram (blue) of a set of samples (red), associated to random weights.

The construction of Power diagrams in dimension d can be obtained by lifting a Voronoi
diagram, i.e., by considering a Voronoi diagram in dimension d + 1 for which the additional
dimension is given by

√
(M − ϕi) where M is any sufficiently large constant, and intersecting it

with the original d-dimensional hyperplane passing through the origin. This leads to a geometric
interpretation of the semi-discrete optimal transport, best illustrated in 1D in Fig. 1.8.

x₀ x₁ x₂ x₃ x₄
x x x x xx

x

x

x
x

√M-φ₀

√M-φ4

μ1

μ0

√M-φ1

√M-φ2
√M-φ3

Figure 1.8: Illustration of 1D semi-discrete transportation. The transportation problem between
a continuous density µ0 and Diracs supported on the 5 colored crosses at {xi}i, amounts to
finding weights {ϕi}i. These weights are such that the measure according to µ0 of each 1D
cell (shown as colored line segments) formed by the intersection of the 2D Voronoi Diagram
of {(xi,

√
M − ϕi)}i and the line (x, 0) is equal to the corresponding Dirac mass. These 1D

intersections define a power diagram.

Loss 1.18 can be minimized using a gradient descent approach [9] since the gradient can be
expressed simply by the difference between the mass of the power cell and the corresponding Dirac
mass (it can trivially be seen that, at the optimum the gradient is null and the mass preservation
criterion is met). A multiscale approach has been proposed and implemented in 2D [119], and
a (non-multiscale) version for tetrahedral meshes in 3D has been implemented [107]. Recent
methods consider second order optimization routines making use of the Hessian [91].
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1.2.3 Sliced Optimal Transport

For completeness, this section describes an approach that does not directly compute an
optimal transport map, but a transport map that is optimal per 1D slice. Its benefit is its very
high computational speed and ease of implementation, and has been pioneered by Pitié [140]
and extended to barycenters by Rabin et al. [145]. We refined the notion of Sliced Wasserstein
Barycenter in our work [29], and provided a similar barycenter construction on regular grids via
Radon transforms in section 2.2.

Realizing that 1D optimal transport between two discrete measures of uniform weights can
be achieved by a mere sort of the atom positions (see subsection 1.1.6), the idea of sliced optimal
transport is to project two n-dimensional discrete measures with uniform weights onto a random
1D line of direction ω, sorting the atoms, pairing them, and translating the atoms of the first
distribution along ω so that their projections match those of their paired atoms in the second
measure, and iteratively repeat the procedure with another random 1D line. This progressively
makes the first distribution closer and closer to the second, by iteratively moving its atoms closer
to those of the second distribution. The resulting advection is not optimal with respect to the
n-dimensional Monge functional, but is optimal with respect to a simpler functional that operates
per slice (see section 2.2 – both the Radon and Sliced approaches minimize the same functional).
This approach has initially been used for matching the color distribution of one image to that of
a second image – a process called color transfer – and is, I believe, still a near state-of-the-art
method for color transfer despite it being introduced in 2005.
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1.3 Temporal Coherence

Chapter 3 will focus on my second line of work: making image processing algorithms tempo-
rally consistent. In fact, most non-trivial image processing algorithms, when applied independently
to each frame of a video, produce large flickering artifacts. This section reviews the litterature on
temporal consistency of both application specific approaches and more general ones. While other
notions of temporal consistency exist (e.g., video stabilization [116], restoring flickering from old
footages [138, 48], enforcing temporal regularity of brush strokes or inpainting [146]), we mostly
focus on algorithms applicable to the regularization in time of image processing filters assuming
a clean input video.

1.3.1 Application specific consistency

Various image processing operations have been extended to work on videos. Notably, as we
shall see in section 3.2, numerous attempts investigate the temporal regularization of the intrinsic
decomposition problem – the problem of separating an image (or video frame) into reflectance
and illumination components – appeared concurrently to our work in 2014 [193, 94, 167], and
were later extended to light field images [70] or made real-time [118].

Color processing has also been studied for videos. Chang et al. [38] use anisotropic diffusion
to ensure that subtle color transformations are temporally coherent, while Wang et al. use B-
splines to interpolate color transforms in time [187]. Farbman and Lischinski [60] stabilize tonal
fluctuations in videos by using optical flow estimated at sparse locations to propagate tonal
differences across frames. Oskam et al. [127] employ spatio-temporally consistent radial basis
functions to color balance sequences for augmented reality.

Other filters made temporally consistent include tone mapping [90, 11], matting [188], col-
orization [192], painterly rendering [113], or more generally neural style transfer approaches [154].

Each approach introduced in this section would not readily work to tackle other filtering prob-
lems. While we will first adress video color grading in section 3.1 and the intrinsic decomposition
problem in section 3.2, we aim for an all-purpose strategy that will be exposed in section 3.3.

1.3.2 General-purpose consistency

Regularization methods have been proposed, which amount to low-pass filtering pixel values.
In particular, Paris [130] extends the Gaussian kernel to the time domain and uses this result to
adapt applications such as bilateral filtering and mean-shift clustering to videos. Lang et al. [102]
also extend the notion of smoothing to the time domain by exploiting optical flow and revisit
optimization-based techniques like motion estimation and colorization. For other techniques that
do not optimize an energy, they resort to temporal low-pass filtering.

Concurrent to our work, Dong et al. [55] present a technique to stabilize video frames pro-
cessed by an unknown image filter that can be expressed as nonlinear curves applied to regions of
the original video frames. In contrast, our technique described in section 3.3 is not restricted to
a specific formulation and can handle applications like intrinsic images or depth prediction that
violate this assumption.
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2
Optimal Transport for Computer Graphics

This chapter details my contributions relating to optimal transport. The following section
describes my first solver for optimal transport based on linear programming and radial basis
functions. I will then expose a faster albeit approximate solver based on Radon transforms in
section 2.2, and finally expose definitions of inverse problems as well as efficient algorithms in
section 2.3.

2.1 Lagrangian Displacement Interpolation

(a) BRDF A
(anisotropic angle = 0◦)

(b) BRDF B
(anisotropic angle = 45◦)

(c) linear interp.
(double highlight)

(d) ground truth
(single highlight at 22.5◦)

(e) our interpolation

Figure 2.1: Examples of interpolation between two anisotropic sampled BRDFs (a,b). Naive linear
interpolation generates an unrealistic double highlight (c). Since we used a parametric BRDF
model, we can compute the ground-truth in-between BRDF by interpolating the parameters (d).
Our approach has no knowledge of the parametric BRDF representation but is nonetheless able
to produce a similar output (e).

After preliminary exposure to optimal transport during my Ph.D [27], I wanted to investigate
the use of optimal transport for interpolating functions. I re-discovered the notion of displacement
interpolation, and after more readings, proposed a first framework published in 2011 [34], exposed
in this section, with applications to computer graphics.

Challenges: First, optimal methods working on regular grids [17, 79, 147] do not scale well
in high dimensions. We hence want to cast optimal transport solutions based on min-cost flow
on graph [83] to continuous domains, allowing to generate continuous interpolated distributions
from a pair of continuous input distributions. Second, in the discrete setting, it is unclear which
mass transport solvers are best suited to the task at hand, so we investigate a number of solutions.
Third, we wish to extend advection-style interpolation so that it can be applied to arbitrary
functions, rather than being restricted to probability distributions. These produce unintuitive

29



30 CHAPTER 2. OPTIMAL TRANSPORT FOR COMPUTER GRAPHICS

 Multiscale 
decomposition

Non-negative gaussian RBFs
         and normalization

f

g

for each scale : for each scale :

positive parts :

negative parts :

Network Simplex

for each scale :

positive parts :

negative parts :

Advection

∑

Reconstruction
    and scaling

Figure 2.2: Overview of our pipeline.

artifacts if simply treated as a distribution.

2.1.1 Displacement Interpolation of Continuous Distributions

Our interpolation follows a three-step process. First, the source and target distributions are
decomposed into a sum of Gaussians. Each Gaussian in the source distribution is then paired to
one or more Gaussians of the target distributions by solving a mass transport problem. In the last
step, an interpolated distribution is constructed by summing the Gaussians after a partial advec-
tion to the target locations. When appropriate, this whole procedure is repeated independently
at different frequency scales to achieve a multiscale decomposition and reconstruction. Figure 2.2
summarizes the complete pipeline.

RBF decomposition

We assume that the source and target functions f and g are given as a set of samples at
locations xi and yj , that is, we know a set of values f(xi) and g(yj). We do not require that the xi
and yj points be the same or that they be regularly spaced. To approximate smooth functions, we
associate a smooth Gaussian radial basis function (RBF) kernel with each sample point that will
also serve as a particle of mass within the mass transport problem. Each particle is represented by
wGσ, where w is the mass associated with the particle, and Gσ is a normalized Gaussian kernel
with variance σ2 and centered at the sample point.

To represent a non-negative function f as an appropriate sum-of-Gaussians, we seek to ap-
proximate f(x) by

∑
i wiGσi(d(xi, x)), where d(xi, x) is the geodesic distance between point x and

the center of a particle xi, and wi and σi are the unknowns to be determined. The kernel width
σi controls the smoothness of particle representations, and is chosen as the distance dNi between
xi and its N th nearest neighbor (typically 1 ≤ N ≤ 10). Given σi, we can estimate the wi weights
using a non-negative least-squares formulation:

min
wi

∑
k

[f(xk)−
∑
i wiGσi(d(xi, xk))]2 with wi ≥ 0 (2.1)

For a function with positive and negative values, we decompose it into its positive and
negative components, f+ = max(0, f) and f− = max(0,−f) (the same applies to g), interpolate
each component separately, and recombine the result h = h+ − h−.
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We use a dense non-negative least-squares solver based on QR factorization [103] which is
more robust and faster than solvers based on sparse matrices and the normal equations [37] due
to the poor conditionning of RBF matrices.

Mass transport

The core of the algorithm resides in the mass transport scheme [64]. The goal is to pair each
particle of the source distribution f to one or more Gaussian particles of the target distribution
g. First, we normalize particles weights wi and wj by sf =

∑
i wi and sg =

∑
j wj respectively,

yielding normalized weights, w̄. Since the Gaussian kernels G are normalized, the mass of a
particle w̄ G is simply w̄. We assumes that the mass of particle is concentrated at its center,
which further motivates our use of small kernels (§ 2.1.1), and we directly apply Equation 1.6.

The transport problem is solved using a network simplex method (see subsection 2.1.2). The
output of this algorithm is a coupling between the source and target particles. A particle may
be associated to several particles in the other distribution. In this case, it is split into as many
particles as pairs in which it is involved, each with an associated weight that meets the mass
transported requirement along the links and summing up to the mass of the original particle. As
a result, we have new source and target particles, denoted by î and ̂. The notation ̂(̂i) is used
for the index of the target particle paired with the source particle î. The new set of particles is
such that there are equal numbers of source and target particles, and that the paired particles
have the same weight, i.e. w̄î = w̄̂(̂i).

Advecting the particles

To build the interpolated function h corresponding to the parameter t ∈ [0, 1], we advect
the particles to the position γ(t) along the geodesic path γ that links their source location to
their target destination. We use z` to denote the new position of each particle. We linearly
interpolate the size of each particle: σ2

` = (1 − t)σ2
î + t σ2

̂(̂i) and the total mass of the function
sh = (1−t)sf+t sg. Since the weight is constant in a pair, it remains the same, i.e., w̄` = w̄î = w̄̂(̂i).
With these values, we construct the interpolated function h:

h(x) = sh
∑
`

w̄`Gσ`(d(z`, x)). (2.2)

Multiresolution interpolation

The Lagrangian mass transport method described thus far results in intuitive advection-like
behavior in many settings. For example, interpolating between two bumps generates a translating
bump. However, the intuitive behavior is lost when a constant offset or low frequency is added. In
the example shown in Figure 2.3, the displacement interpolation solution (top two rows) does not
establish correspondences between the peaks of the two distributions, nor for the valleys. Instead,
the solution resembles a linear blending solution because of particles representing the peaks and
valleys finding correspondences with particles that represent the constant offset associated with
the function.

To remedy this problem, we propose a multi-resolution scheme that interpolates different
band-passed versions of the functions separately. The lowest frequency bands are constant func-
tions that are blended linearly. The other frequency bands are interpolated using the displacement
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interpolation method as describes previously. We typically use 3 frequency bands. The bottom
two rows of Figure 2.3 illustrate the resulting more intuitive interpolation. We further discuss
this point when describing the individual application (§ 3.3.4).
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Figure 2.3: Left to right: 1D interpolation of a constant plus a difference of two gaussians. Top
to bottom: inverse CDF formula (failure case, due to the constant); displacement interpolation
with 1 band (same as inverse CDF); 2 bands; 3 bands. More bands can yield undesirable artifacts
in this case.

2.1.2 Mass Transport Solver

Several algorithms exist for solving the mass transport problem on graphs. Here, we inves-
tigate methods based on the transportation simplex that are dedicated to the computation of
Earth Mover’s Distance [83] and the network simplex used to solve min-cost flow problems. We
test the fast transportation simplex implementation of MacDonald’s [114], the network simplex
implemented in CPLEX [41], and our own code1 obtained by optimizing the network simplex with
block search pivoting implemented in the generic graph library LEMON [104].

All timings were re-measured at the time of writing this document (April 2018), with an
improved faster implementation.

The transportation simplex has a worst-case exponential complexity but it has been observed
to have a polynomial average case complexity under various distributions. The network simplex
has a known complexity in O(n3) [2]. To determine how these algorithms behave in practice in our
context, we generate random mass transport instances of 2D mass transport problems between
randomly weighted diracs. Figure 2.4 plots the resulting performance. The tests reproduce
the O(n3) complexity of the transportation simplex but also reveal that the network simplex
behaves in O(n2) in our context, which is a major gain at the scale at which we typically work,

1available at https://github.com/nbonneel/network_simplex/ , with further comparisons

https://github.com/nbonneel/network_simplex/
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Figure 2.4: As of April 2018, speed comparison between our network simplex (in single and double
precision, mono-threaded and multi-threaded), the network simplex implemented in CPLEX [41]
and the transport simplex implementation of MacDonald’s [114]. Even in double precision, we
perform up to 25x faster than CPLEX, and solve large problems of more than 55000 particles in
about 7 minutes. Our network simplex behaves as a O(n2) algorithm in practice whereas the
transport simplex runs in O(n3).

i.e. thousands of particles. Our experiments presented in the paper [34] also show that fixed-
point precision further speeds up computations, which we used to generate the results presented
hereafter.

2.1.3 Results

In this section, we discuss specific applications and their associated details such as the choice
of ground distance. We first present applications that handle continuous data, BRDFs and value
functions of animation controllers. We then apply our method to discrete problems such as stipple
rendering. Further discussions and results on environment map interpolation are available within
our paper [34].

BRDF interpolation

We demonstrate our method for interpolating Bidirectional Reflectance Distribution Func-
tions (BRDFs) that describe the appearance of materials. We use cosine-weighted BRDFs to
ensure proper energy conservation, interpolate for each wavelength independently, and work in
the log domain using a log(1 + x) transformation for perceptually more meaningful results [155].
This concave remapping ensures that our result does not break the energy preservation rule. Since
energy preservation applies to the 2D slices representing the outgoing directions associated to a
given incoming direction, we perform interpolation slice by slice. Reciprocity is not guaranteed in
this process, but could be enforced in a postprocessing step. We use the squared geodesic distance
on the sphere as the ground distance and use spherical linear interpolation for particles.

Interpolation results on a (sampled) parametric Ashikhmin-Shirley anisotropic BRDF model
and on measured BRDFs, with comparisons to naive linear interpolation are shown respectively
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Figure 2.5: Validation on an anisotropic Ashikhmin-Shirley synthetic BRDF. Naive interpola-
tion (a) and our method (b) do not know about the underlying parametric model and are given
only a sampled representation of the BRDFs. Naive linear interpolation (a) cross-fades the two
BRDFs, which produces unrealistic double highlights. In comparison, our approach (b) rotates
the highlights in a realistic way similar to interpolating the parameters of the model (c).

in Figure 2.1 and Figure 2.5.

(a) BRDF A (b) BRDF B (c) Linear interp. (d) Disp. interp.
1 band

(e) Disp. interp.
3 bands

Figure 2.6: 80% interpolation between two measured BRDFs. Even at 80%, the linear interpo-
lation remains specular, while the 1 band displacement interpolation increased the roughness
of the surface: linear blending cannot control the roughness of the underlying microgeometry,
as could be desired. The target BRDF does not contain high frequencies to be matched: the
multi-scale approach does not perform much better than linear blending in this case.

Value function interpolation

In character animation and reinforcement learning, value functions are a convenient way to
compute and store optimal control policies. A value function stores the optimal discounted cost-
to-go across a state space that is defined by the state of the character with respect to a goal.
Meaningful interpolation interpolation of value functions would allow for existing control policies
to be reused for new sitations. In the example we shall demonstrate, this takes the form of an
obstacle whose position is not known until run-time. We wish to be able to interpolate between
two reference solutions for the value function that are computed for two particular locations of
the obstacle.

We perform interpolation experiments where the value function is computed on the 4D state
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space of an oriented particle. The 4D state space represents the particle position, angular velocity
and sagital acceleration. Particle trajectories can be seen in Fig.2.7. Initial curls at the start of the
trajectories are due to the particle initial velocities and their initial angular velocities. As shown
in Figures 2.7, the value function computed using displacement interpolation does significantly
better at preserving the desired intent than the linearly interpolated value function.
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Figure 2.7: Interpolation between two 4D value functions. The red square is an obstacle and the
green square is a target. From left to right: particles trajectories for reward A; for reward B;
using our interpolated value function (α = 0.5); using a linear reward interpolation as in [45].
The particle can be used to drive a 3D physically-based character. Although our method does
not result in optimal trajectories, most of the particles achieved the expected interpolated goal
location while avoiding the interpolated obstacle. Linear Bellman combination [45] results in an
optimal behavior, but yields two different targets and obstacles.

Color distribution interpolation

We apply our method to transfer and interpolate color histograms. Given a source and
target image, we use clustering and solve the mass transport on the resulting discrete problem.
The pairing between source and target particles define a remapping of the source colors onto the
target colors, or any distribution interpolated using this pairing.

In this particular context, our color transfer algorithm is similar to the method of Morovic
and Sun [123]. However, our fast network simplex solver allows for a much finer quantization of
colors, so we can use 16 000 particles and remove the artifacts stemming from the coarse sampling
imposed by the transport simplex (Fig. 2.8). We also compared our approach to the method by
Pitié et al. [140].

Source Target Transfer (3072 colors) Transfer (16k colors)

Figure 2.8: Our method can be used for histogram transfer as in [123]. The use of an efficient
network simplex allows the use of 16000 colors while the transportation simplex used in [123]
only achieves up to 3072 colors (artifacts due to color reduction are highlighted).
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Animated Stipples

Our fast network simplex can be used to animate stipples in the context of non-photorealistic
rendering (NPR). We use the method of Secord et al. [164] to generate particles on the source and
target images, as a set of points or strokes. We set the method such that the number of source
and target particles is the same. We solve the transport problem by assigning a unit mass to
each particle. In this case, mass transport reduces to an assignment problem and its solution does
not require splitting or merging particles [83]. For the ground distance, we use the standard L2

distance that generates straight lines as geodesics, and the optimal transport solution guarantees
paths are not crossing. For strokes, their orientations are linearly interpolated between input and
target orientations. The results are shown in Figure 2.9.

Figure 2.9: Stipple interpolation using displacement interpolation.

2.1.4 Discussion

We have presented a practical Lagrangian method for displacement interpolation of continu-
ous distributions, by advecting frequency bands independently. We show that a network simplex
algorithm is in many cases preferable to the transportation simplex algorithm, and we have demon-
strated the utility of displacement interpolation in multiple applications.

The current implementation of the method cannot achieve real time interpolation for his-
tograms larger than a few hundred bins. While simplex computations have been performed on
the GPU [22], their performance is still much lower than efficient CPU implementations. Sparse
QR approaches may also result in faster computation. Note that while the preprocessing can be
slow, the interpolation itself is fast, and is trivially parallelized as it merely consists in comput-
ing a sum of Gaussian for each sample. In the context of Value Function interpolation, we also
explored the displacement interpolation as a way to extrapolate (see paper [34]). We believe this
is a promising direction for further investigations.
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2.2 Radon Wasserstein Barycenters

As seen in subsection 1.1.6, it is computationally inexpensive to compute the Wasserstein
barycenter of 1-D densities. It thus makes sense to seek for alternate definitions of barycenters of
measures in Rd that rely on 1-D Wasserstein distances and barycenters.

This section briefly sketches the notion of Radon Barycenters as described in our paper [29].
The sliced barycenter, also proposed in this paper, is the work of my co-authors. More details,
properties and connections between Sliced and Radon Wasserstein barycenters can be found in
the paper.

2.2.1 Radon Transform

The classical Radon transform of functions (see [82]) is commonly used for tomographic
imaging. The Radon transform of a function essentially projects the function onto lines, by
integrating the function along the direction orthogonal to these lines (see Figure 2.10). This
process is, up to an exponential decay, that of the absorption of an X-ray beam (or electrons,
sound waves...) by a body – the problem being of recovering a 3D reconstruction from many such
projections through an inverse Radon transform.

Figure 2.10: A 2-D indicator function of two squares (left) and its Radon transform (right).
Wikipedia

The Radon transform is naturally extended to measures by duality. The Radon transform of
a measure µ, denoted R(µ), gathers projections of the input measure along all possible directions.
Intuitively, the Radon transform of a measure µ is a decomposition of µ into a set of measures
R(µ)θ, and each measure R(µ)θ is a conditional measure which projects µ on the line of direction
θ.

We also define the inverse Radon transform of measures by duality using the operator R+,∗ def.=
R(R∗R)−1, where R∗ denotes the adjoint of R (see paper [29]).

2.2.2 Radon Barycenter

The injectivity of the Radon transform of a measure allows us to define the Radon barycenter.
Denoting BarRRd(µi, λi)i∈I the Radon barycenter of measures (µi)i∈I indexed by some index set I
with weights (λi)i∈I , and similarly, BarWΩd(νi, λi) the 1-d Wasserstein barycenter applied to each
slice θ of Ωd def.= R× Sd−1:
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Definition 1 (Radon barycenter). Given weights λI and probability measures (µi)i∈I ∈M+
1 (Rd)I ,

we define
BarRRd(µi, λi)i∈I

def.= R+BarWΩd(R(µi), λi)i∈I ∈ D∗(Rd).

Since for ν ∈ BarWΩd(R(µi), λi)i∈I one does not have in general ν ∈ Im(R), BarRRd(µi, λi)i∈I is
composed of distributions and not necessarily measures.

It can be shown (see Appendix C of our paper) that the Radon Wasserstein barycenter
minimizes an energy:

Proposition 1. Denoting
E(ν) def.=

∑
i∈I

λiWΩd(Rµi, ν)2, (2.3)

with
WΩd(ν1, ν2)2 def.=

∫
Sd−1

WR(νθ1 , νθ2)2dθ,

WR(νθ1 , νθ2) the Wasserstein distance with quadratic cost between slices of ν1 and ν2 along a direc-
tion θ ∈ Sd−1, and denoting M̄1 the space of measures for which each slice is a (unit) probability
measure, one has

BarRRd(µi, λi)i∈I = R+ argmin
M̄+

1 (Ωd)
E . (2.4)

(2.5)

Our paper shows that this Wasserstein Radon Barycenter enjoys a number of properties
shared with classical Wasserstein Barycenters [29]. In particular, it is invariant with respect to
translation, scaling, rotation and symmetry, and the Wasserstein Radon Barycenter of translated
and scaled copies of a given measure is also a translated and scaled copy.

2.2.3 Approximate Computation with Eulerian Discretization

Discretizing the input measures on a grid, our procedure relies on a discrete Radon transform
and a discretization of the 1-D Wasserstein barycenter of Equation 1.12. The 1-D Wasserstein
barycenter of Equation 1.12 is approximated by approximating cumulative distribution with sums
and interpolation, as well as a finite difference derivation.

Marginals are obtained via a discrete Radon Transform. We investigate the use of the Fast
Slant Stack Radon transform [10]. It has the property to faithfully approximate the geometry of
the Radon transform, i.e., it exactly computes integrals over 1-D rays for band limited functions.
This Fast Slant Stack implements both the computation of the Radon transform and its adjoint
with fast algorithms. The inverse Radon transform is obtained using the Moore-Penrose pseudo-
inverse of R, computed via a conjugate gradient descent.

The approximated Radon barycenter of the discretized measures (µi)i is finally obtained by
first computing the Radon transforms of all (µi)i resulting in a set of sliced measures, computing
the 1-D discretized Wasserstein barycenter of each slice, and finally performing an inverse Radon
transform.

A typical Radon barycenter of three two-dimensional pdfs discretized on a 1024× 1024 pixel
grid, and the principled Fast Slant Stack Radon transform with 2048 slices, requires 11 seconds
to precompute the initial Radon transforms, and 170 seconds to compute 32 Radon barycenters,
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with unoptimized parallel Matlab code. It is possible to accelerate this timing using less precise
Radon transform. For instance, using Matlab’s implementation of the Radon transform with
180 slices requires 14 seconds to compute these 32 barycenters on a single core. In comparison
with the Eulerian proximal splitting method of Papadakis et al. [129], the Wasserstein barycenter
between two 1024 × 1024 distributions with 32 time steps and 100, 000 iterations to achieve an
acceptable convergence requires on average 72 hours, using an optimized C++ vectorized and
parallel implementation (see Figure 2.11 for a display of the resulting barycenters). Comparing
with the entropy regularized approach of Cuturi and Doucet [44], the result obtained with their
method is produced in two hours on a GPU, using a 150 × 150 sampling grid (see Figure 2.12).
Note however that the more recent convolutional method of Solomon et al. [174] would be much
faster for the same result. In contrast, our Radon barycenter computed on a grid of 400 × 400
pixels (which is zero-padded to 1200×1200 pixels to avoid Radon transform artifacts) is obtained
in 40 seconds using the fast slant stack approach with 1200 directions, and 2 seconds with Matlab
built-in Radon transforms with 180 directions, on a single core of a laptop.

Radon barycenter Sliced barycenter Wasserstein barycenter

Figure 2.11: Comparison of the Radon, Sliced (see [29]) and Wasserstein barycenter computed
using the method detailed in [129].

BarSRd BarRRd Cuturi et al.

Figure 2.12: Comparison of three methods (Sliced [29], Radon, and entropy-regularized [44]) to
compute isobarycenters (i.e. using weights (1, 1, 1)/3) of the three input densities displayed at
the vertices of Figure 2.11, bottom.

2.2.4 Application to Texture Mixing

To illustrate the usefulness of the Radon barycenter, we apply it to the problem of texture
mixing. Texture synthesis seeks to produce textures that look “random” albeit following a texture
examplar image. Texture mixing seeks to produce a similarly random texture, but in-between a
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number of texture examplars. The Radon barycenter is well suited to this application which
requires an Eulerian discretization in order to interpolate power-spectra computed on the uniform
grid of Fourier frequencies.

Spot-noise (SN) texture model. Following the work of [67], we consider stationary Gaussian
random vectors F which take values in RN . These vectors are indexed on the image grid

F = (Fk)k∈G where G = {−n/2 + 1, . . . , n/2}2,

(for simplicity we assume that n is even) and we use periodic boundary conditions. Without loss
of generality, we assume that they have zero mean E(F ) = 0. Such a random vector is thus
entirely characterized by its (square root) power spectrum density (PSD)

∀ω ∈ G, PF (ω) = E(|F̂ (ω)|2)1/2

with F̂ the Fourier transform of F .

It is easy to draw a realization f of the vector F by convolving the inverse Fourier transform of
PF (the so-called texton, see [50]) by a realization w of a white noiseW ∼ N (0, IdN ). We estimate
the covariance of input Gaussian {F [i]}i∈I by using the empirical periodogram (see [67, 61]):

∀ i ∈ I, ∀ω ∈ G, PF [i](ω) = |f̂ [i](ω)|.

Examples. We demonstrate our Radon barycenter of power spectrum densities on several ex-
amples. A sparse hand-designed power spectrum is interpolated in Fig. 2.13 and a more natural,
less sparse, power spectrum is used in Fig. 2.14. We handle colors by convolving the interpolated
power spectrum of each color channel by the same white noise. Although the decoupling of color
channels could occasionally lead to color artifacts, we did not observe such effects on our set of
examples (further examples can be see in the additional material of the main paper). We hence
leave the investigation of perceptually decoupled color spaces or the joint transportation of color
channels for future work.
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(a) Radon barycenter (our approach) (b) Linear interpolation [61]

Figure 2.13: (a) Eulerian Radon barycenter interpolates sparse amplitude spectra. (b) linear
interpolation of the amplitude spectrum, as performed in [61]. The top row shows the interpolated
spectra PFλ .
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Figure 2.14: Eulerian Radon barycenter applied to the mixing of natural textures.
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λ0 = 0.03 λ1 = 0.12

λ2 = 0.40 λ3 = 0.43
(a) (b) (c)

Figure 2.15: Illustration of Wasserstein Barycentric Coordinates. Our Wasserstein projection
framework can be used to automatically color grade an input photo (a) using a database of
stylized color histograms, with samples shown in (b). We propose to compute the optimal
transport barycenter of these stylized palettes that can approximate best the original palette,
and use that barycenter to carry out color transfer without large color distortions as shown in
(c), where the modified image and the barycentric palette are represented. That barycentric
palette is parameterized using only the weights appearing in the captions of figure (b). Other
applications include inferring reflectance functions or missing geometry (see Sec. 2.3.5).

2.3 Wasserstein Barycentric Coordinates and Dictionary Learn-
ing

We consider in this section two inverse problems associated with histogram interpolation:

• that of forming, for a given histogram, a Wasserstein barycenter of reference histograms
that approximates it best. The barycenter itself can be interpreted as a denoised version of
the original input, with respect to the prior contained in those reference histograms. The
usually much shorter vector of barycentric coordinates can serve as a handy representation to
compress, visualize or carry out inference on the original histogram. The crucial novelty lies
in the fact that the interpolation we consider here is in the optimal transport metric sense,
which gives our barycentric coordinate system an intuitive and geometrically faithful flavor.
We call this new notion of coordinates for histograms Wasserstein barycentric coordinates
and is akin to a projection in the Wasserstein space (Fig. 2.15).

• that of approximating a large set of histograms (the data points) by a handful of represen-
tative histograms. This problem amounts to a non-linear dictionary learning: non-linearity
comes from the fact that we replace the usual linear combination of dictionary atoms by
Wasserstein barycenters. Our goal is to reconstruct data points using the closest Wasser-
stein barycenter to that point using the dictionary atoms according to an arbitrary fitting
loss. We propose to learn simultaneously atoms and barycentric weights. We call this notion
Wasserstein Dictionary Learning.

We provide algorithms to compute Wasserstein barycentric coordinates and Wasserstein Dictio-
nary Learning efficiently. We apply our algorithms on histograms frequently encountered in
computer graphics, ranging from color histograms to reflectance distributions as well as image
processing applications.

Contributions. We first propose a method to project an input histogram q onto the set of all
Wasserstein barycenters formed by S given histograms (p1, · · · , pS) (see Fig. 2.16). This corre-
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Figure 2.16: Illustration of Wasserstein Barycentric Coordinates. We consider four monochrome
500× 500 images, (q, p1, p2, p3) whose total intensity is normalized to sum to 1. The three images
(pi)i generate their Euclidean simplex (left, blue background), which consists in all of their convex
combinations. The (pi)i also define their Wasserstein simplex (right, red background), which
consists in all of their Wasserstein barycenters under varying weights λ. (left arrows) Finding the
best approximation of q on the Euclidean simplex with a `2 loss is a simple constrained linear
regression problem. Finding such an approximation with a Wasserstein loss was recently studied
in [151]. (right arrows) projections of q onto the Wasserstein simplex of the histograms (pi)i using
either the `2 or the Wasserstein loss. This work proposes the first known algorithms to carry out
such projections, which can be entirely parameterized by weight vectors λ. These coordinates (3
numbers here) are reflected in the projections’ locations in their respective simplexes.

sponds to approximating the input histogram q by its closest (with respect to some loss) Wasser-
stein barycenter P (λ) of (p1, · · · , pS), where λ = (λ1, . . . , λS) is the optimal weight vector sought
for. We call this weight vector λ the Wasserstein barycentric coordinates of q. We propose the
first numerical scheme to compute Wasserstein barycentric coordinates. This scheme builds upon
gradient descent, and thus requires the computation of the (usually high-dimensional) Jacobian
of the barycenter operator λ 7→ P (λ). To be tractable, our solution relies on an approximation
of P (λ) that uses a fixed number of steps of a fixed-point iteration computation proposed by
Benamou et al. [18]. We can therefore use a recursive differentiation method to compute that
Jacobian efficiently. This leads to an algorithm which is both fast and stable, allowing for the
computation of optimal barycentric weights on large scale dense 3-D grids and other domains. We
showcase a set of typical applications of our methods to color analysis (Fig. 2.18, fitting sparse
reflectance measurements (Fig. 2.20) and reconstructing 3D shapes (Fig. 2.22).

We then extend the Wasserstein barycentric coordinate algorithm to carry out non-linear
dictionary learning. Suppose that M input datapoints (in our case, histograms) of interest can
be stored in a matrix X = (x1, . . . , xM ) ∈ RN×M . The aim of (linear) dictionary learning
is to factorize the data matrix X using two matrices: a dictionary, D, whose elements (the
atoms) have the same dimension N as those of X, and a list of codes Λ used to relate the two:
X ≈ DΛ. However, contrary to existing dictionary learning approaches, including those using the
Wasserstein distance as the fidelity criterion (see subsection 1.1.8), our method makes full use of
the Wasserstein space: instead of considering linear reconstructions for X ≈ DΛ, our aim is to
approximate columns of X ≈ P(D,Λ) using the Wasserstein barycenter operator P with weights
Λ (see Figure 2.17). We expand the Wasserstein barycentric coordinate approach by also deriving
a gradient for the atoms themselves, and performing updates by gradient descent (or, in our case,
a quasi-Newton approach) to both atoms and barycentric coordinates simultaneously. We also
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Figure 2.17: Illustration of Wasserstein Dictionary Learning. Top row: data points. Bottom
three rows: On the far sides, in purple, are the two atoms learned by PCA, NMF and our method
(WDL), respectively. In between the two atoms are the reconstructions of the five datapoints for
each method. When the parameter associated with the entropy is high, our method yields atoms
that are sharper than the dataset on which it was trained, as is observed here where the atoms
are Dirac despite the dataset consisting of discretized Gaussians. See section 2.3.4 for a method
to reach arbitrarily low values of the entropy parameter and counteract the blurring effect.

offer some variants to our method, such as a separable log-domain stabilization, a warm-start and
a heavy-ball strategy, and accounting for unbalanced optimal transport.

2.3.1 Notations

We consider the simplex ΣN
def.=

{
p ∈ RN+ ;

∑
i pi = 1

}
of N -dimensional normalized his-

tograms, and consider a family of S reference histograms (p1, · · · , pS) in ΣN . To interpolate
between these S histograms, we consider barycentric weights λ ∈ ΣS . We write 1 for the vec-
tor with unit coordinates and whose size depends on the context. The `α norm for α ≥ 1 is
||p||αα

def.=
∑
i p
α
i . The Kullback-Leibler divergence between histograms is KL(p|q) def.=

∑
i pi log(pi/qi).

Here, multiplication (
∏

for products of many terms and � for two terms) and division / operators
between vectors are applied entry-wise, as well as exponential exp and logarithmic log maps.

We rewrite the fixed-point algorithm 2 in the following way:

Proposition 2. [18, Prop. 2] Define for all s ≤ S, a(0)
s = 1, and then recursively for l ≥ 0, s ≤ S:

P (`)(λ) def.=
∏
s

(
K>a(`)

s

)λs
and

 b
(`+1)
s

def.= P (`)(λ)
K>a

(`)
s

,

a
(`+1)
s

def.= ps

Kb
(`+1)
s

.
(2.6)

where K def.= e−C/γ is the N × N kernel matrix corresponding to the cost C and regularization γ.
Then P (`)(λ) −−−→

`→∞
P (λ).
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2.3.2 Wasserstein Barycentric Coordinate

Overview

Given a histogram q ∈ ΣN , our goal is to define and compute the barycentric coordinates of
q within a family of S fixed reference histograms (ps)s, namely to find the vector of probability
weights λ ∈ ΣS such that q ≈ P (λ) with respect to a loss function L : ΣN × ΣN → R+:

Definition 2. Let q, p1, . . . , pS ∈ ΣN . The barycentric coordinates of q with respect to (ps)s are
any optimal solution to problem

argmin
λ∈ΣS

E(λ), where E(λ) def.= L(P (λ), q). (2.7)

In contrast to the convexity of problem (1.17), the energy of problem (2.7) is in general not
convex. Our goal is thus to recover a stationary point of that energy through gradient descent.
The gradient of E with respect to λ can be computed using the chain rule:

∇E(λ) = [∂P (λ)]>∇L(P (λ), q), (2.8)

where ∂P (λ) is the Jacobian of λ 7→ P (λ), ∇L(p, q) is the gradient of the loss p 7→ L(p, q), and,
with these notations, ∇L(P (λ), q) is that gradient evaluated at P (λ).

Among the two quantities in Eq. (2.8), the gradient of the loss ∇L(P (λ), q) is the least
problematic since it can be easily derived for several common losses as shown below, and evaluated
at P (λ). Applying the transpose of the Jacobian [∂P (λ)]> to that gradient is more challenging,
both in theory and practice: We showed that, although an exact expression for that Jacobian can
be obtained by differentiating the fixed point of Sinkhorn iterates, computing it is impractical for
large dimensions N (see full paper [28]). We hence present an efficient alternative, by replacing the
true barycenter P (λ) in the definition of the energy E by the running estimate P (L)(λ) obtained
after L iterations of the map described in Eq. (2.6), where L is a number of iterations fixed
beforehand.

Gradient of the loss

The gradient with respect to p of commonly used separable losses L(p, q) is

∇1
2 ||p− q||

2
2 = p− q, ∇||p− q||1 = sign(p− q), (2.9)

∇KL(p|q) = log(pq ), ∇W (p, q) = γ log(a), (2.10)

where, for the gradient ofW (p, q), a ∈ RN is the left scaling produced by Sinkhorn’s fixed-point al-
gorithm, namely the unique vector with geometric mean 1 such that the matrix diag(a)K diag(q/K>a)
has row-sum p and column-sum q [44, §5]. Note that the notation ∇||p− q||1 is not rigorous, since
the `1-norm is not differentiable everywhere and the sign vector is only a subgradient of that quan-
tity. We side-step this issue, which is only problematic for the 1-norm, by using quasi-Newton
solvers such as L-BFGS that work well even with non-smooth objectives [109].
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Algorithmic Differentiation of the Jacobian

To simplify this exposition, we introduce two bi-variate functions (Φ,Ψ) to rewrite the itera-
tions of Proposition 2 as operating only on the scalings b(`)(λ) def.= (b(`)s (λ))Ss=1:

P (`)(λ) = Ψ(b(`)(λ), λ) where Ψ(b, λ) def.=
∏
s

ϕs(bs)λs (2.11)

b(`+1)(λ) = Φ(b(`)(λ), λ) where Φ(b, λ) def.=
(Ψ(b, λ)
ϕs(bs)

)
s

, (2.12)

and ϕs(bs)
def.= K> ps

Kbs
, using this time the initialization b(0)

s = 1.

We propose to minimize a loss on the approximate barycenter P (L)(λ) computed after a finite
number of iterations L ≥ 1, to solve:

argmin
λ∈ΣS

EL(λ) def.= L(P (L)(λ), q). (2.13)

The gradient formula (2.8) thus needs to be replaced by

∇EL(λ) = [∂P (L)(λ)]>(u(L)), u(L) def.= ∇L(P (L)(λ), q). (2.14)

Because P (L)(λ) is obtained by recursively applying the same map L times, the application of
the transposed Jacobian [∂P (L)(λ)]> to the vector u(L) can be computed using backward recursive
differentiation [124]. This turns out to be particularly efficient, since the overall complexity of
computing [∂P (L)(λ)]>(u(L)) is the same as that of computing the approximate barycenter P (L)(λ).
Proposition 3 shows that one can compute [∂P (L)(λ)]>(u(L)) and thus ∇EL(λ) using a simple
backward recursion. Its proof is given in Appendix B of the full paper [28].

Proposition 3. Let us denote, for ` ≥ 0,

Φ(`)
λ

def.= [∂λΦ(b(`)(λ), λ)]> and Φ(`)
b

def.= [∂bΦ(b(`), λ)]>,

Ψ(`)
λ

def.= [∂λΨ(b(`)(λ), λ)]> and Ψ(`)
b

def.= [∂bΨ(b(`), λ)]>.

One has

∇EL(λ) = Ψ(L)
λ (u(L)) +

L−1∑
`=0

Φ(`)
λ (v(`)) (2.15)

where u(L) is defined in (2.14) and the vectors (v(`))L−1
`=0 are computed using the following backward

recursion
∀ ` = L− 1, L− 2, . . . , 0, v(`−1) def.= Φ(`−1)

b (v(`)) (2.16)

initialized with v(L) def.= Ψ(L)
b (u(L)).

The overall numerical scheme to compute ∇EL(λ) is detailed in Algorithm 3, which can be
obtained by plugging the expression for the differential of (Φ,Ψ) (see their expression in Appendix
A of the full paper [28]) into the formulas of Proposition 3. The algorithm first performs a
forward loop to compute the barycenter P (L)(λ) and then an inverse loop to implement (2.16)
and accumulate the sum appearing in (2.15). This efficient implementation computes both the
gradient and barycenter in twice as many Gibbs kernel K and K> applications as required to
compute the barycenter alone, making it a competitive approach, even against naive approximate
numerical finite differentiation, which would run (S + 1)/2 times slower. To summarize, this
algorithm only requires 4SL convolutions and additional storage for 3NLS scalar values at each
gradient step carried out to minimize the energy EL.
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function Sinkhorn-differentiate-weights((ps)Ss=1, q, λ)
∀ s, b(0)

s ← 1

(w, r)← (0S , 0S×N )
for ` = 1, 2, . . . , L // Sinkhorn loop
∀ s, ϕ(`)

s ← K> ps

Kb
(`−1)
s

p←
∏
s

(
ϕ

(`)
s

)λs
∀ s, b(`)s ← p

ϕ
(`)
s

g ← ∇L(p, q)� p
for ` = L,L− 1, . . . , 1 // Reverse loop
∀ s, ws ← ws + 〈logϕ(`)

s , g〉
∀ s, rs ← −K>(K(λsg−rs

ϕ
(`)
s

)� ps

(Kb(`−1)
s )2

)� b(`−1)
s

g ←
∑
s rs

return P (L)(λ)← p, ∇EL(λ)← w

Algorithm 3: Given a database of histograms (ps)Ss=1, the input distribution q, weights λ, this
function computes ∇EL(λ) ∈ RS . The barycenter P (L)(λ) is obtained as a by-product.

Barycentric Coordinates using Quasi-Newton

With the function Sinkhorn-differentiate-weights at hand, which is able to compute
both the current barycenter estimate P (L)(λ) and the gradient ∇EL(λ), one can now efficiently
compute barycentric coordinates λ as a local minimizer of (2.13) through a descent method. Quasi-
Newton methods proved very efficient in our experiments. We tested two methods, which turned
out to be equally effective: The PQN constrained quasi-Newton of Schmidt et al. [159], which can
optimize smooth functions such as EL over the simplex ΣS ; a standard quasi-Newton (L-BFGS)
over a logarithmic domain using the change of variables λ = eα∑

s
eαs
∈ ΣS and carrying out the

optimization over α ∈ RS . Despite the energy being non-convex in theory, our paper illustrates
the energy function in practice [28].

2.3.3 Wasserstein dictionary learning

Overview

Given data X ∈ RN×M in the form of histograms, i.e., each column xi ∈ ΣN (for instance a
list of M images with normalized pixel intensities), and the desired number of atoms S, we aim
to learn a dictionary D made up of histograms (d1, . . . , dS) ∈ (ΣN )S and a list of barycentric
weights Λ = (λ1, . . . , λM ) ∈ (ΣS)M so that for each input, P (D,λi) is the best approximation of
xi according to some criterion L (see subsection 2.3.2, Gradient of the Loss for examples). Namely,
our representation is obtained by solving the problem

min
D∈(ΣN )S ,Λ∈(ΣS)M

E(D,Λ) def.=
M∑
i=1
L (P (D,λi), xi) . (2.17)

Note the similarity between the usual dictionary learning formulation that seeks to approximate
X as a linear combinations of atoms {dj}j , and the one above. In our case, however, the re-
construction of the original data happens via the nonlinear Wasserstein barycenter operator,
P(D,Λ) = (P (D,λi))i, instead of the (linear) matrix product DΛ.
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function Sinkhorn-differentiate-dictionary(Data x ∈ ΣN , atoms d1, . . . , dS ∈ ΣN ,
current weights λ ∈ ΣS)

Sinkhorn-differentiate-weights((ds)Ss=1, q, λ)
y ← 0S×N
z ← 0S×N
n← ∇L(p, x)
for ` = L,L− 1, . . . , 1 // Backward loop - dictionary
∀s, cs ← K((λsn− zs)� b(`)s )
∀s, ys ← ys + cs

Kb
(`−1)
s

∀s, zs ← − 1N

ϕ
(`−1)
s

�K> ds�cs
(Kb(`−1)

s )2

n←
∑
s zs

return P (L)(D,λ)← p,∇DE(L) ← y,∇λE(L) ← w

Algorithm 4: Computation of dictionary and barycentric weights gradients. This function calls
the previously defined Sinkhorn-differentiate-weights inline

Differentiation of (2.17) relies in part on the computation of the Wasserstein barycenter
operator’s Jacobians with regard to either the barycentric weights or the atoms. Again, while it
is possible to obtain their analytical formulae, they rely on solving a linear system of prohibitive
dimensionality for our settings of interest where N is typically large. Following our approach for
Wasserstein barycentric coordinates, we instead take the path of automatic differentiation. That
is, we recursively differentiate the iterative scheme yielding our algorithm instead of the analytical
formula of our Wasserstein barycenter. Instead of (2.17), we thus aim to minimize

min
D∈(ΣN )S ,Λ∈(ΣS)M

EL(D,Λ) def.=
M∑
i=1
L
(
P (L)(D,λi), xi

)
, (2.18)

where P (L) is the approximate barycenter after L iterations. Even when using an entropy penalty
term, we have no guarantee on the convexity of the above problem, whether jointly in D and
Λ or for each separately. We thus aim to reach a local minimum of the energy landscape EL by
computing its gradients and applying a descent method. By additivity of EL and without loss of
generality, we will focus on the derivations of such gradients for a single datapoint x ∈ ΣN (in
which case Λ only comprises one list of weights λ ∈ ΣS).

Differentiation of (2.18) yields

∇DEL(D,Λ) =
[
∂DP

(L)(D,λ)
]>
∇L(P (L)(D,λ), x), (2.19)

∇λEL(D,Λ) =
[
∂λP

(L)(D,λ)
]>
∇L(P (L)(D,λ), x). (2.20)

The right-hand term in both cases is the gradient of the loss which is typically readily computable
(see subsection 2.3.2, Gradient of the Loss) and depends on the choice of fitting loss. The left-hand
terms are the Jacobians of the Wasserstein barycenter operator with regard to either the weights
or the dictionary. These can be obtained either by performing the analytical differentiation of the
P (l) operator (see 4), or by using an automatic differentiation library such as Theano [180].

Using these gradients, one can find a local minimum of the energy landscape (2.18), and
thus the eventual representation Λ and dictionary D, by applying any appropriate optimization
method under the constraints that both the atoms and the weights belong to their respective
simplices ΣN ,ΣS . For the applications shown in subsection 2.3.6, we used a Quasi-Newton solver,
and the same log-domain change of variables as before to enforce positivity.
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Note that in this case, both gradients are fed to the solver as a concatenated vector. It is
then beneficial to add a “variable scale” hyperparameter ζ and to multiply all gradient entries
related to the weights by that value. Otherwise, the solver might reach its convergence criterion
when approaching a local minimum with regards to either dictionary atoms or weights, even if
convergence is not yet achieved in the other. This strategy avoids the computation of two different
forward Sinkhorn loops to obtain the derivatives in both variables, compared to alternate descent.

Algorithmic Differentiation of the Jacobian

Using the same notations as before, we derive explicit formulas for the derivatives of Wasser-
stein barycenters with respect to the dictionary D and weights λ.

Proposition 4.

∇DEL(D,λ) = Ψ(L−1)
D

(
∇L(P (L)(D,λ), x)

)
+

L−2∑
l=0

Φ(l)
D

(
v(l+1)

)
, (2.21)

∇λEL(D,λ) = Ψ(L−1)
λ

(
∇L(P (L)(D,λ), x)

)
+

L−2∑
l=0

Φ(l)
λ

(
v(l+1)

)
, (2.22)

where:

v(L−1) def.= Ψ(L−1)
b

(
∇L(P (L)(D,λ), x)

)
, (2.23)

∀l < L− 1, v(l−1) def.= Φ(l−1)
b

(
v(l)
)
. (2.24)

See Appendix X of our paper [160] for more details and a proof. An implementation is
proposed in 4.

2.3.4 Extensions

Our paper [160] extends these optimization strategies in various ways, including a warm
start which initializes the result of a descent iteration with results from previous iterations, an
unbalanced formulation that allows for some slack in the mass preservation constraint, and a
heavyball strategy that extrapolates the Sinkhorn iterations to accelerate convergence. In this
document, I will only develop a log-domain formulation that preserves the separability of the
kernel K, and refers the reader to our paper for other extensions.

Stabilization

In its most general framework, representation learning aims at finding a useful representation
of data, rather than one allowing for perfect reconstruction. In some particular cases, however, it
might also be desirable to achieve a very low reconstruction error, for instance if the representation
is to be used for compression of data rather than a task such as classification. In the case of our
method, the quality of the reconstruction is directly linked to the selected value of the entropy
parameter γ, as it introduces a blur in the reconstructed images. In the case where sharp features
in the reconstructed images are desired, we need to take extremely low values of γ, which can
lead to numerical problems, e.g. because values within the scaling vectors a and b can then
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tend to infinity. As suggested by Chizat et al. [40] and Schmitzer [161], we can instead perform
the generalized Sinkhorn updates in the log-domain. Indeed, noting u(l)

s , v
(l)
s as the dual scaling

variables, that is,

a(l)
s

def.= exp
(
u

(l)
s

γ

)
, b(l)s

def.= exp
(
v

(l)
s

γ

)
,

the quantity −cij + ui + vj is known to be bounded and thus remains numerically stable. We can
then introduce the stabilized kernel K̃(u, v) defined as

K̃(u, v) def.= exp
(
−C + u1> + 1v>

γ

)
, (2.25)

and notice that we then have

u(l)
s = γ

[
log(ds)− log(Kb(l−1)

s )
]
,

[
log(Kb(l−1)

s )
]
i

= log

∑
j

exp

−cij + v
(l−1)
j

γ


= log

∑
j

K̃(u(l−1)
s , v(l−1)

s ).j

−
[
u

(l−1)
s

]
i

γ
.

With similar computations for the vs updates, we can then reformulate the Sinkhorn updates in
the stabilized domain as

u(l)
s

def.= γ

log(ds)− log

∑
j

K̃(u(l−1)
s , v(l−1)

s ).j

+ u(l−1)
s , (2.26)

v(l)
s

def.= γ

[
log(P (l))− log

(∑
i

K̃(u(l)
s , v

(l−1)
s )i.

)]
+ v(l−1)

s . (2.27)

This provides a forward scheme for computing Wasserstein barycenters with arbitrarily low values
of γ, which could be expanded to the backward loop of our method either by applying an automatic
differentiation tool to the stabilized forward barycenter algorithm or by changing the steps in
the backward loop of 4 to make them rely solely on stable quantities. However, this would
imply computing a great number of stabilized kernels as in (2.25), which relies on nonseparable
operations. Each of those kernels would also have to either be stored in memory or recomputed
when performing the backward loop. In both cases, the cost in memory or number of operations,
respectively, can easily be too high in large scale settings.

Separable log kernel

These issues can be avoided by noticing that when the application of the kernelK is separable,
this operation can be performed at a much lower cost. For a d-dimensional histogram of N = nd

bins, applying a separable kernel amounts to performing a sequence of d steps, where each step
computes n operations per bin. It results in a O(nd+1) = O(N d+1

d ) cost instead of O(N2). As
mentioned previously, the stabilized kernel (2.25) is not separable, prompting us to introduce a
new stable and separable kernel suitable for log-domain processing. We illustrate this process using
2-dimensional kernels without loss of generality. Let X be a 2-dimensional domain discretized as
an n × n grid. Applying a kernel of the form K = exp(−C

γ ) to a 2-dimensional image b ∈ X is
performed as such:

R(i, j) def.=
n∑
k=1

n∑
l=1

exp
(
−C((i, j), (k, l))

γ

)
b(k, l) ,
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where C((i, j), (k, l)) denotes the cost to transport mass between the points (i, j) and (k, l).

Assuming a separable cost such that C((i, j), (k, l)) def.= Cy(i, k) + Cx(j, l) , it amounts to per-
forming two sets of 1-dimensional kernel applications:

A(k, j) =
n∑
l=1

exp
(
Cx(j, l)
γ

)
b(k, l),

R(i, j) =
n∑
k=1

exp
(
Cy(i, k)

γ

)
A(k, j) .

In order to stabilize the computation and avoid reaching representation limits, we transfer it
to the log-domain (v def.= log(b)). Moreover, we shift the input values by their maximum and add
it at the end. The final process can be written as the operator KLS : log(b)→ log(K(b)) with K
a separable kernel, and is described in 5.

function LogSeparableKer(Cost matrix C ∈ RN×N , image in log-domain v ∈ Rn×n)
∀k, j, xl(k, j)

def.= Cx(j,l)
γ + v(k, l)

∀k, j, A′(k, j) def.= log (
∑n
l exp(xl −maxl xl)) + maxl xl

∀i, j, yk(i, j)
def.= Cy(i,k)

γ +A′(k, j)
∀i, j, R′(i, j) def.= log (

∑n
k exp(yk −maxk yk)) + maxk yk

return Image in log-domain KLS(v) = R′

Algorithm 5: LogSeparableKer KLS : Application of a 2-dimensional separable kernel in log-
domain

This operator can be used directly in the forward loop (see Appendix B of our paper [160]).
For backward loops, intermediate values can be negative and real-valued logarithms are not suited.
While complex-valued logarithms solve this problem, they come at a prohibitive computational
cost. Instead, we store the sign of the input values and compute logarithms of absolute values.
When exponentiating, the stored sign is used to recover the correct value.

2.3.5 Applications of Wasserstein Barycenters

This section illustrates our histogram barycentric coordinates for various computer graphics
applications. Our paper [28] illustrates an additional application for MRI brain imaging, not
detailed here for conciseness.

Optimal Image Color Palettes

We propose in this section a new approach to define target palettes adaptively using multiple
images for automatic color grading. Given an input photograph f and a small database of relevant
color palettes, we compute first, among all barycenters of these palettes, the one that is the closest
to the color palette of f . We then modify the distribution of colors in f to make it match that of
this closest palette. Color transfer towards a single predefined palette often results in artefacts,
especially when the target palette is very far from the original one [143]. Our approach sidesteps
this problem, and considers automatically an infinite family of target palettes that retain the
characteristics of the database.
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(a) database (fs)s (b) input f (c) color corrected f̃

Figure 2.18: From a set (fs)Ss=1 of professional photographs (consisting of, from top to bottom:
S = 7, S = 12, S = 6, and S = 15 photos), our algorithm projects a photograph f (b) to
improved color-corrected or stylized photographs (c). Note that only the four most contributing
professional photos (i.e. highest weights λs) are shown in (a). Their corresponding optimal weights
(λs)s, from top to bottom, are: λ = (5.10−6, 2.10−5, 0.40, 0.60), λ = (10−6, 7.10−4, 0.34, 0.66),
λ = (3.10−6, 6.10−6, 0.23, 0.77) and λ = (0.05, 0.09, 0.29, 0.54).

We discretize RGB histograms with N = 1283 values on a uniform grid (xi)Ni=1 of the RGB
cube. This defines the histograms (ps)Ss=1 of the input database (fs)Ss=1, and the histogram q of
the image f to process. Our algorithm computes the optimal barycenter P (λ) using the ground
cost Ci,j = ||xi−xj ||2 and the quadratic loss function L(p, p′) = ||p−p′||2. The image f is modified
into an image f̃ , so that the histogram of f̃ is equal, up to a small approximation error, to P (λ).
This is achieved using the barycentric projection method detailed in [174].

Figure 2.18 illustrates our method using a database of professional photographs. Figure 2.19
shows an application in the context of text-based user interfaces. We use the top 10 results of the
Flickr image search engine (www.flickr.com) for the query autumn to stylize an input summer
photograph with a more autumnal aspect. Among various loss functions, the quadratic loss offered
the best quality/speed tradeoff for this application.

www.flickr.com
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Flickr database Input KL (23 min)
λ2 = 1

TV (38 min)
λ0,2,6 =

(0.34, 0.23, 0.42)

Wasserstein
(49 min)
λ0,8 = (0.37, 0.63)

Quadratic
(33min)
λ2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[139], λ0 = 1 [139], λ2 = 1 [139], λ4 = 1 [139], λ6 = 1 [139], λ8 = 1

Figure 2.19: Using the image search engine Flickr, we use the top 10 results for the query autumn
(here, with Commercial use allowed and sorted by Interesting) and use them to color grade
a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 1283 voxel RGB color histograms, L = 60 and
our CPU implementation. (Second row) We use the color matching of Pitie et al. [139] to
transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Sparse Reflectance Inference

Acquiring reflectance data can be cumbersome. Our method makes it possible to infer re-
flectance values from sparse data given a database of densely measured reflectances. A Bidirec-
tional Reflectance Distribution Function (BRDF) p̄ is a function p̄(ω, ξ) describing the probability
for a photon hitting a surface with a direction ω to be reflected off that surface with a direction
ξ, or to be absorbed by that surface. These functions are sampled on discretized hemispheres
(ω, ξ) ∈ Ω2 of N = 288 points. Since p̄ describes distributions of energy, we consider (p̄(ω, ·))ω∈Ω
as a set of un-normalized histograms on the hemisphere. We thus first normalize the BRDF and
define p(ω, ξ) def.= p̄(ω, ξ)/

∑
ξ′ p̄(ω, ξ′), so that (p(ω, ·))ω∈Ω is a collection of normalized histograms.

Given a database (ps)Ss=1 of such normalized BRDF ps(ω, ξ), we extend (1.17) to define
barycenters by jointly optimizing over all incoming direction ω

P (λ) def.= argmin
(p(ω,ξ))ξ,λ

∑
ω∈Ω

∑
s

λsW (p(ω, ·), ps(ω, ·)). (2.28)

We use the cost matrix Ci,j = d(xi, xj)2 where d is the geodesic distance on the hemisphere.
Using this extended notion of barycenters, we use (2.13) to define barycentric coordinates of
a normalized BRDF q computed from some BRDF q̄, where the loss L is the Wasserstein loss ,
extended to collections of histograms. The gradient of EL is now obtained by summing the gradient
contribution of all incident directions ω, so that we can use Algorithm 3 for the computation of
the optimal λ. One finally recovers the interpolated BRDF P̄ (λ) from P (λ) by re-introducing the
initial scaling factor of q̄, i.e. P̄ (λ)(ω, ξ) def.= P (λ)(ω, ξ)

∑
ξ′ q̄(ω, ξ′)

Fig. 2.20 shows typical results for isotropic and anisotropic BRDFs from the UTIA database [63].
To simulate a sparse acquisition setup, we progressively decimate (which corresponds to replacing
some histogram values by 0) an input BRDF q̄0 by up to 95% to obtain the input BRDF q, prior to
computing barycentric coordinates λ. We observe relatively good reconstruction quality even for
highly degraded BRDFs. This suggests our approach could alleviate the BRDF capture process
when reasonably similar materials have already been captured at higher resolution.
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λ = (1, 94, 0, 1, 1, 4),
PSNR=34.5dB

λ = (1, 94, 0, 1, 1, 3),
PSNR=34.5dB

λ = (2, 94, 0, 1, 1, 4),
PSNR=34.2dB

λ = (1, 92, 0, 1, 3, 3),
PSNR=34.1dB

λ = (54, 0, 0, 2, 44, 0),
PSNR=38.3dB

λ =
(39, 5, 0, 21, 34, 1),
PSNR=37.2dB

λ =
(26, 21, 1, 12, 39, 1),
PSNR=36.2dB

λ =
(18, 14, 1, 17, 46, 3),
PSNR=35.8dB

λ =
(6, 2, 20, 12, 1, 59),
PSNR=41.1dB

λ =
(5, 1, 23, 11, 1, 58),
PSNR=41.2dB

λ = (9, 0, 23, 0, 0, 67),
PSNR=41.5dB

λ = (0, 74, 1, 25, 0, 0),
PSNR=36.0dB

(a) BRDF database
(p̄s)s

(b) Reference
q̄0

(c) P̄ (λ), all
data

(d) P̄ (λ), 25%
data

(e) P̄ (λ), 10%
data

(f) P̄ (λ), 5%
data

Figure 2.20: We fit a measured anisotropic BRDF q̄ (b) using a basis of S = 6 measured
BRDFs (p̄s)Ss=1 (a). We obtain an approximation P̄ (λ) (c) that remains robust when decimating
measurements prior to the fitting (d,e,f). Reported λ are normalized so that

∑
s λs = 100, and

PSNR values computed on BRDFs.

Inferring missing geometry

Capturing geometries can be difficult due to partial occlusions, measurement noise, or un-
reachable camera angles. Given a database of input 3-D models, our tool can be used to infer
missing geometry in an input mesh. We voxelize all shapes on a N = 1923 uniform 3-D grid
(xi)Ni=1 and we use a ground cost Ci,j = ||xi − xj ||2, and L = KL as loss function. Each shape
is represented as a normalized histogram representing the uniform distribution inside this shape,
and a uniform mass of ε = 10−4 outside for compatibility with KL loss. We account for the mass
missing in the input geometry by roughly estimating the amount of missing mass, and normalizing
the input histogram accordingly. Specifically, if α percent of the input shape is missing, we use
a loss of the form KL(P (λ), (1 − α) q∑

q
). Figure 2.21 compares the Wasserstein and Euclidean

projections, and Figure 2.22 illustrates additional results.

Euclidean Projection Our Projection P (λ)

Figure 2.21: Euclidean (λ = (0.25, 0.29, 0.01, 0.08, 0.11, 0.19)) and our Wasserstein projection
(λ = (0.30, 0.12, 0.07, 0.08, 0.16, 0.27). The Euclidean projection yields linearly blended shapes.
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Shape database
(p1, . . . , pS)

Input shape
q

Projection
P (λ) Iso-surface

Figure 2.22: We fit a 1923 voxelized digital shape q, on a database of similar shapes (p1, . . . , pS) [39].
We obtain a projection P (λ), with computed weights λ = (7.10−4, 0.93, 0.07, 6.10−4, 4.10−4) (top)
and λ = (0.30, 0.12, 0.07, 0.08, 0.16, 0.27) (bottom), from which we extract a smooth iso-surface.

2.3.6 Applications of Wasserstein Dictionary Learning

This section details a few applications we developed. An additional application for Point
Spread Function learning has been developed by our co-authors at CEA, and is exposed in the
paper [160].

Cardiac sequences

We tested our dictionary learning algorithm on a reconstructed MRI sequence of a beating
heart (Figure 2.23). The goal is to learn a dictionary of four atoms, representing key frames of
the sequence. For this application, we used 13 frames of 272× 240, a regularization γ = 2, and a
scale between weights and atoms of ζ = N/(100 ∗M), N = 272× 240, M = 13 frames. We used a
quadratic loss because it provided the best results in terms of reconstruction and representation.
We found 25 iterations for the Sinkhorn algorithm to be a good trade-off between computation
time and precision. The recovered “barycentric path” (polyline of the barycentric points) is a
cycle and residuals are small, which means the algorithm is successful at finding those key frames
that, when interpolated, represent the whole dataset.

Wasserstein faces

It has been shown that images of faces, when properly aligned, span a low-dimensional space
that can be obtained via PCA. These principal components, called Eigenfaces, have been used
for face recognition [182]. We show that, with the right setting, our dictionary learning algorithm
produces atoms that can be interpreted more easily than their linear counterparts.

We illustrate this application on the MUG facial expression dataset [3]. From the images
shown in Figure 2.24(a), we inverted colors, because it produced lower residuals. We used a
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Figure 2.23: Left: Comparison between four frames (out of 13) of the measures (lower row) and
the same reconstructed frames (upper row). Right: plot of the reconstructed frames (blue points)
by their barycentric coordinates in the 4-atom basis, with each atom (red points) at the vertices
of the tetrahedra. The green point is the first frame.

total of 20 (224 × 224) images of a single person performing five facial expressions and learned
dictionaries of five atoms using PCA, NMF, a K-SVD implementation [152], and our proposed
method. For the last, we set the number of Sinkhorn iterations to 100 and the maximum number
of L-BFGS iterations to 450. As illustrated by Figure 2.24, using a KL loss, our method reaches
similarly successful reconstructions given the low number of atoms, with a slightly higher mean
PSNR of 33.8 compared to PSNRs of 33.6, 33.5 and 33.6 for PCA, NMF and K-SVD respectively.
We demonstrate a face editing application and compare various loss functions in our paper [160].
In particular, a Wasserstein loss produces a visually more appealing dictionary albeit with slightly
higher reconstruction errors.

Literature learning

We use our algorithm to represent literary work. To this end, we use a bag-of-words repre-
sentation [156], where each book is represented by a histogram of its words. In this application,
the cost matrix C (distance between each word) is computed exhaustively and stored. We use
a semantic distance between words, computed from the Euclidean embedding provided by the
GloVe database (Global Vectors for Word Representation) [133].

To demonstrate our algorithm’s performance, we created a database of 20 books by five
different authors. To keep the problem tractable we only considered words that are between seven
and eight letters long.

Our algorithm is able to group novels by author, recognizing the proximity of lexical fields
across the different books (see Figure 2.25). Atom 0 seems to be representing Charlotte Brontë’s
style, atoms 1 and 4 that of Mark Twain, atom 2 that of Arthur Conan Doyle, and atom 3 that
of Jane Austen. Charles Dickens appears to share an extended amount of vocabulary with the
other authors without it differing enough to be represented by its own atom, like others are.
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Figure 2.24: We compare our method with Eigenfaces [182], NMF and K-SVD [152] as a tool to
represent faces on a low-dimensional space. Given a dataset of 20 images of the same person
from the MUG dataset [3] performing five facial expressions four times (row (a)), we project
the dataset on the first five Eigenfaces (row (b)). The reconstructed faces corresponding to
the highlighted input images are shown in row (f). Rows (c) and (d), respectively, show atoms
obtained using NMF and K-SVD and rows (g) and (h) their reconstructions. Our method results
in five atoms shown in row (e) with reconstructions shown in row (i).
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Figure 2.25: Our Wasserstein dictionary learns five atoms among 20 books by five authors. Each
book is plotted according to its barycentric coordinates with regard to the learned atoms.
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2.4 Conclusions on Optimal Transport

Generally speaking, optimal transport has been widely successful throughout the years, with
a Nobel loreate in economics (Leonid Kantorovich, 1975), and two Fields Medalists (Cedric Villani,
2010, and Alessio Figalli, 2018). However, since I started investigating this subjects, I have been
the witness of an explosion of interest towards this topic in the computer science community –
perhaps not nearly as dramatic as the explosion towards deep learning during the same time span,
but still... I am happy to have started contributing near the onset of this wave.

This explosion has provided numerical optimal transport with now relatively fast tools, at
least compared to the state-of-the-art nearly 10 years ago. My contributions towards these nu-
merical tools is first a fast network simplex implementation (subsection 2.1.2) that, despite its
high theoretical complexity, remains fast, in the order of 3 minutes for transporting 50k parti-
cles using a quadratic cost function and orders of magnitude faster than commercial solvers such
as IBM CPLEX. I believe it is still one of the fastest exact solver to compute transport plans
between arbitrary discrete measures with arbitrary cost functions. My second contribution to
numerical optimal transportation is an approximation based on Radon transforms to Wasserstein
barycenters, which is even faster and more stable than entropy regularized methods, and came
concurrently with a similar method by Tóth and Csébfavi [181]. While it enjoys similar properties
as the actual N-d Wasserstein barycenter, it however does not converge in the general case to the
real Wasserstein barycenter (while, in theory, entropy regularized methods can approximate as
close as desired to the Wasserstein barycenter) and does not provide transport plans.

I implemented and played with many solvers. Table 2.26 summarizes various optimal trans-
port solvers I had the chance to implement, in their functionalities and speed (unless explicited
otherwise, timings were measured on my own implementations).

This trend for optimal transport has been intensified by the machine learning community,
who saw optimal transport as an interesting tool to measure the mismatch between various types
of data points (including histograms), and who saw the interest of the Wasserstein geometry on
which to carry machine learning tasks. My contributions in this area has been to develop efficient
Wasserstein barycentric projections and dictionary learning methods, and to show applications in
computer graphics.
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Discussion Setup Cost #
mea-
sures

Typical Speed Notes

Network
Simplex

Sec. 2.1.2 Discrete General 2 3 min for 50k weighted
diracs (my implem.)

Most general ; speed de-
pends on cost function

Power
Dia-
grams

Sec. 1.2.2 Semi-
Discrete
(continuous
2d or 3d
density
often dis-
cretized
on a grid
towards
weighted
Diracs)

Quadratic 2 [108] reports tens of
seconds for 10 millions
Diracs using both CPU
and GPU

Extension to 1-
Wasserstein distances
studied in [80]

Entropy
Regular-
ized

Sec. 1.2.1 Discrete General
(regular
grids +
quadratic
cost if using
fast convo-
lutions)

Many ≈25 seconds for barycen-
ter of three 1024x1024
grids (100 iterations,
convolutional)

Approximate ; speed de-
pends on regularization
parameter ; quite unsta-
ble unless using much
slower log-domain ap-
proaches

Sliced Sec. 1.2.3 Discrete
with non-
weighted
n-d Diracs.

N/A Many barycenter of three 40K
Dirac distributions in 18
seconds

Inexact: does not con-
verge towards n-d opti-
mal transport

Radon Sec. 2.2 Continuous
2d densities,
discretized
on regular
grids

N/A Many 14 seconds for 32
barycenters of three
1024x1024 grids on
single core

Inexact: does not con-
verge towards n-d opti-
mal transport ; does not
give transport plans.

Fluid
PDE

[17, 129] Continuous
2d densities
discretized
on grids

quadratic
cost

2 2 minutes for 256x256
grids using my imple-
mentation of [129]

Figure 2.26: Non-exhaustive and approximate comparison of optimal transport numerical solvers
that I had the opportunity to implement myself at least in some variant.
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3
Temporal Coherence of Image Processing Algorithms

Many image processing algorithms, when applied to each frame of a video, result in temporal
inconsistencies, such as flickering or lower frequency artifacts. My post-doc at Harvard University
in Hanspeter Pfister’s group was funded by an NSF grant “Images through Time” to investigate
such issues. This led at the time to propose solutions to the problems of video color grading
(which turned out to largely rely on optimal transport theory, section 3.1) and intrinsic video
decomposition (section 3.2). While at CNRS, I later proposed a general purpose approach to
make most types of image filtering operations temporally consistent for both single and then
multi-view videos (section 3.3).

3.1 Video Color Grading
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Figure 3.1: The first three frames are nearly consecutive and the last one is more distant.
(a) Computing a color transform once at the beginning and applying it to the entire sequence
yields results that degrade as time passes (e.g., the bluish face). (b) Evaluating the transform at
each frame produces temporally inconsistent results (e.g., brightening when the man appears).
(c) Our result is stable and does not drift.

The color palette used in a movie often plays a critical role in establishing its visual look, to
locate a movie in place and time or to evoke certain emotions. Over time, certain looks have come

63
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Input

Model Result
Representative model frames

Per-frame color matching Temporal smoothing of transformations

T1 T2 T3 T4
T’1

T2
T3

T’4T’2 T’3

Keyframe Keyframe

Figure 3.2: The first stage color matches each frame of the input video to one image out of a set
of representative model video frames. The second stage filters these color transformations using a
novel approximate curvature flow technique. This technique treats the set of transformations as a
curve in high-dimensional space and detect points of low curvature (i.e., keyframes). Interpolating
the color transformations at these keyframes produces a temporally coherent set of transformations
that result in a high-quality color graded video.

to represent entire genres of movies – e.g., Film Noir’s use of low-key lighting and contrast between
light and shadows. The visual style of a movie is often carefully devised by the cinematographer,
and executed by a team of skilled colorists who manipulate the movie’s colors – through a process
known as color grading. The goal of our work published at ACM SIGGRAPH [30], is to make it
possible for amateur users to apply popular color grading styles to their own home videos with
minimal user interaction. We achieve this using an example-based approach; users are asked
to specify a model video (or image) that represents the color grading style they like, and our
technique transfers the color palette of this model video to their clip.

This approach of matching colors has been extensively studied for images [148, 140]. How-
ever, applying image color matching naively to every frame of video sequences leads to temporal
artifacts, and computing a single color transformation for the entire video sequence results in poor
color matching (see Fig. 3.1). Our approach exposed in this section alleviates these issues.

3.1.1 Overview

Given a user-specified model video M and an input clip I, we seek to transfer the color palette
of M to I to create the color graded result O. Optionally, a segmentation of the two videos into
foreground and background regions can be used for improved matching results. We propose a two-
stage approach, shown in Figure 3.2 First, we estimate a color transfer function Tt for every input
video frame It that maps its colors to those of a representative model video frame (subsection 3.1.2),
and apply it to produce the result, i.e., Ot = Tt(It) . Applying these transformations naively to
the input video leads to temporal artifacts. To avoid this, in a second step (Sec. 3.1.3), we filter
the per-frame transformations to make them temporally coherent. We interprete the series of color
transformations T as a curve in a transform space: points at which this curve has a high curvature
correspond to frames with temporal artifacts. We hence detect points on this curve that have a
low curvature (called keyframes) and interpolate the transformations in-between these points to
build a set of temporally coherent color transformations T′. Applying T′t to the input frames It
produces the final color graded output video frames Ot (Fig. 3.1, bottom). Our technique is able
to handle a number of visual styles (including Film Noir, bleach bypass, orange-teal) and a wide
range of input video sequences.
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(a) Model video frame (b) Input video frame (c) Naive histogram (d) Our color transfer
“Transformers” “Amélie” matching model

Figure 3.3: We would like to transfer the color palette of the model video frame (a) to an input
video frame (b). (c) The simplest way is to apply histogram matching in each color channel (and
the foreground and background) independently. This often produces artifacts (see Amélie’s face).
(d) Our color transfer model removes these artifacts.

(a) Model video frame (b) Input video frame (c) Color transfer (d) Color transfer
“D.O.A” without segmentation with segmentation

Figure 3.4: Some color styles have spatially-varying characteristics (a) that cannot be replicated
with global color adjustments. (c) Global color adjustments do not replicate the style of (a). (d)
Using a user-specified segmentation (shown in a and b) reproduces more faithful colors.

3.1.2 Single-frame Color Matching

Our method first computes per-frame color transformations Tt to match each input frame It
to a desired image or model frame Mt.

Color Transfer Model

We seek to transfer the color distribution of a model video frame Mt to an input video
frame It. A color transfer method that is too flexible such as full color histogram matching
would highly depend on the footage content and be prone to flickering. On the other hand, a
transfer model without enough flexibility such as matching only the mean color would not be
expressive enough. We strike a balance by first transferring the luminance values (CIE-Lab, D65
illuminant [149]) using a smooth remapping curve T` = H−1(I)

(
H(M)

)
∗N (0, σ), with H(I) the

cumulative luminance histogram of I. This corresponds to an optimal transport map, convolved
by a Gaussian (typically, σ = 10%). We then match the chrominance values using three affine
transforms, one for each of shadows, midtones, and highlights, computed via the closed-form
optimal transport solution of Pitié and Kokaram [139] for gaussian distributions (Equation 1.14).

In cases where a segmentation into foreground and background objects is needed (Fig. 3.4),
we compute a hard segmentation using SnapCut [12], transform it to a soft matte [105] and
regularize it in time by filtering [102]. We then compute our color transformation for foreground
and background, respectively, for a total of six transformations per frame (one luminance curve
and two chrominance affine transforms per segment).
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(a) Input video frame (b) Bad model frame (c) Color transfer with (d) Good model frame (e) Color transfer with
“The Dark Knight” bad model match “The Dark Knight” good model match

Figure 3.5: When an input frame (a) is color graded with a bad model frame (b), the results are
often bad (c). We pre-cluster the model video into a few representative model frames and match
each input frame to the most similar representative (d) improving the result (e).

Finally, to reduce halo artifacts, we follow an approach inspired by Rabin et al. [143] and Pouli
and Reinhard [141]. We compute the difference between the original and transformed luminance
images, apply an edge-aware smoothing filter [71] to this difference, and add this filtered difference
back to the original image. Fig. 3.3 illustrates the advantage of using our color transfer model.

Representative model frames

We automatically pair each input video frame with a model video frame. We first perform a
K-medoids clustering [132] to summarize the model sequence by a few representative frames, using
the gaussian optimal transport metric of Equation 1.13 summed over the three luminance bands.
Given the representative frames, we then match each input frame to the nearest representative
frames using the same metric, and estimate the corresponding color transformation. The benefits
of this process is illustrated in Fig. 3.5.

3.1.3 Differential Color Transform Filtering

Each of the transformations Tt has been computed in isolation and applying them directly
to the video frames produces a temporally inconsistent result. One could apply a spatio-temporal
filter to the video pixels but this would produce a smooth result in which high-frequency details
are lost. We address this issue by temporally filtering the color transforms applied to video frames,
as briefly described below.

We analyze the color transforms, T, as a curve in the space of color transforms. We observe
that rapid changes of colors resulting from sudden changes in the scene (for e.g., when the passer-by
enters the frame in Fig. 3.1) correspond to frames where the estimated transforms vary sharply, and
consequently the curvature of the transformation curve is high at these points and need processing.
First, we extend the notion of curvature to the color transforms previously computed. Second,
we find points of low curvature and select them as keyframes. Finally, we interpolate the color
transforms at the detected keyframes to compute a temporally smooth set of color transformations
for the entire sequence. Fig. 3.6 illustrates our approach.

Estimating the curvature

We would like to define a notion of curvature for the curve T in the space of color transfor-
mations, as the rate of change of the tangent to the curve. A simple approach is to work in a
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Tb

Ta=T’a Tc=T’c
T’b

T’a(Ia) T’b(Ib) T’c(Ic)

Tb(Ib)

Figure 3.6: The per-frame color transformations Tt can be analyzed as points on a curve in
a high-dimensional space (blue curve, green dots). Regions of high curvature correspond to
transformations that cause temporal artifacts (for e.g., the background in the top right image
brightens when a person walks across the back). We detect keyframes (purple circles) by sampling
regions of low curvature and compute a smooth transform curve by interpolating the original
transformations at the keyframes (red dashed curve, green dots). Applying the interpolated
transforms to the input frames produces a temporally consistent result (bottom middle).

Euclidean space, thus defining curvature as the magnitude of the second derivative of the color
transform curve with respect to time, ||T̈||, and linearly interpolating color transforms between
keyframes. However, linear interpolation does not accurately model the rotations of the color
wheel and looses correlations between color channels. Therefore, we use a Euclidean space only
for the translational components of the color transformations. We instead handle rotations and
scalings via a Wasserstein space that accounts for their properties [178] more accurately. But this
requires accounting for the curvature of the Wasserstein space itself.

The rate of change of tangent vectors along the curve is characterized using the covariant
derivative ∇ṪṪ [52], that generalizes directional derivatives to manifolds. Standard curvature
flow techniques operate on a modified version of the covariant derivative – the second fundamental
form [86] – but this does not account for all the variations we are interested in. For instance, a
non-constant speed geodesic results in a vanishing second fundamental form. Instead, we compute
the curvature Kt at time t as the magnitude of the covariant derivative vector, i.e., Kt = ||∇ṪṪ||.

Our color transformation model consists of a non-linear luminance mapping, and three rota-
tions/scalings and translations for the chrominances. To simplify the analysis, we approximate the
1D luminance mapping by an affine transformation (i.e., a scale and a translation) only when esti-
mating curvatures. As a result, the color transform space is a finite-dimensional space of dimension
17 (or 34 when using a segmentation). These 17 dimensions consist of two 1D spaces (luminance
scaling and translation), three 2D spaces (chrominance translations for shadows, midtones and
highlights), and three 3D spaces (one 2× 2 symmetric matrix representing the chrominance rota-
tion and scaling for shadows, midtones, and highlights), and these transforms can be represented
by matrices. We use the property that the squared curvature ||∇ṪṪ||2 in a Cartesian-product
space can be computed as the sum of the squared curvature for each subspace [52]. The subspace
of the luminance and chrominance translations is Euclidean, and the covariant derivative here
corresponds to the standard second derivative with respect to time. We will thus focus on the
luminance scaling and the chrominance rotation sub-components of the color transformations.

We parameterize the space of transformations using a d-dimensional basis. For instance, for
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the 2 × 2 symmetric chrominance linear transform matrices, a natural basis consists of {x1 =
[ 1 0

0 0 ] ,x2 = [ 0 1
1 0 ] ,x3 = [ 0 0

0 1 ]}. Any 2× 2 symmetric matrix can be decomposed as a weighted sum
of these d = 3 basis matrices. We denote the ith components of the matrix Tt in this basis as T i
(i = 1 . . . d). Obtaining the covariant derivative then requires a set of real coefficients called the
Christoffel symbols, Γik,`, of the Wasserstein metric that account for the space curvature [4], where
i, k and ` range from 1 to the dimension d of the space (d = 1, 2 or 3), defined in Equation 3.2.
We can compute the ith component of the covariant derivative ∇ṪṪ as:

∇iṪṪ = T̈ i +
∑
k,`

Γik,` Ṫ k Ṫ `, i = 1 . . . d (3.1)

where Ṫ i and T̈ i are the first and second derivatives of the ith component of the transformations
T in the basis xk w.r.t. time and are approximated with standard finite differences.

The Christoffel symbols are expressed by:

Γik,` = 1
2

d∑
m=1

gim(∂gmk
∂x`

+ ∂gm`
∂xk

− ∂gk`
∂xm

), i, k, ` = 1 . . . d, (3.2)

gij correspond to the coefficients of the inverse of the d× d first fundamental form of coefficients
gij defined by Takatsu’s metric g [178], computed as in subsection 1.1.6. For the case d = 1 of our
1D luminance scaling, we have Γ1

1,1 = − 1
2 s where s is the luminance scaling at the current point

on the curve. The squared curvature at time t, K2
t , is finally computed as the sum of the squared

norms of the covariant derivatives in the individual subspaces. The squared norm in one subspace
is computed as g(∇ṪṪ,∇ṪṪ). More details on the terms introduced, a closed form derivation,
C++ code and additional results are provided in supplemental material of our paper [30].

Approximate curvature flow

Curvature flow is a mathematical method that advects a manifold locally with a speed pro-
portional to its local curvature, and is often used to smooth 2D surfaces using the surface mean
curvature (the trace of its second fundamental form). Having computed a curvature value, Kt,
for each frame, we similarly reduce the total curvature of our curve T by detecting segments of
high curvature and replacing them by (smoother) geodesics.

We first generate a set of r keyframes in areas of low curvature by random sampling the
probability function corresponding to the inverse of the curvature, i.e., p(t) ∝ 1/Kt, and locally
moving these samples to the location of lowest curvature. This produces more keyframes in areas
of low curvature. We then interpolate each sub-component of T between keyframes to produce the
desired smooth color transforms T′. In particular, the symmetric positive definite chrominance
transform matrices are interpolated using Equation 1.14, and the non-linear luminance mappings
are linearly interpolated. Finally, the interpolated color transformations, T′, are applied to the
input frames to produce the color graded output video frames.

3.1.4 Results and Limitations

We show a subset of our results in Fig.3.7, but advise to appreciate temporal consistency in
the supplemental videos. Results were obtained within minutes for 100 frames. In particular, our
method is able to color grade videos that have already been stylized (see Fig. 3.8) – a process
we call “color re-grading”. Still, the (optional) semi-automatic segmentation [12] requires signif-
icant user input, and could benefit from the multi-label video segmentation technique we later
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developed [106]. Grayscale input video sequences produce rank-deficient matrices that result in
artifacts. We refer the reader to video colorization techniques [192] for such applications.

(a) Input Video Frame (b) Color graded to “D.O.A” (c) Color graded to “300” (d) Color graded to “Saving
(Film Noir) (sepia tones) Private Ryan” (bleach-bypass)

Figure 3.7: Our color grading method successfully transfers a variety of color styles to a range of
video sequences. Here we demonstrate this for sepia tones, Film Noir, and bleach-bypass. In
addition to capturing the color palette of the model videos, our results are temporally consistent.
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(a) Color graded input (b) Re-graded to “D.O.A” (c) Re-graded to “300” (d) Re-graded to “Amélie”
video frame

Figure 3.8: Our technique can take stylized video clips and change their visual look. We call this
process “color re-grading”. Here we show results for re-grading (top to bottom) “Transformers”
and “Saving Private Ryan” to the styles of the films (left to right) “D.O.A.”, “300”, and “Amélie”.
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3.2 Intrinsic Videos

(a) Input video (b) Intrinsic decomposition (c) Editing the reflectance only

Figure 3.9: A video sequence (a) is interactively decomposed into temporally consistent com-
ponents for reflectance (b, top) and illumination (b, bottom). Now, editing the textures in the
reflectance image does not affect the illumination (c): changes to the brick walls, the roof tiles,
and the pathway all maintain the complex illumination of the light through the trees.

A number of image editing operations, including recoloring, relighting, white balancing, and
texture editing, require the materials properties of the objects in the photograph, and the illumi-
nation in the scene to be handled independently. This requires the separation of an image into
a product of reflectance and illumination layers: the intrinsic decomposition problem. This is a
challenging decomposition because the effects of reflectance and illumination are combined into a
single observation, which makes the inverse problem of separating them severely ill-posed.

Significant progress has been made on this problem, involving sophisticated and slow algo-
rithms and requiring scene-specific parameter tuning which make them unsuited to video. We
have later thoroughly reviewed and evaluated them in a state-of-the-art report [26]. Recent work
has extended these approaches to video [193], but, at the time of our 2014 paper [31], the compu-
tation time for short sequences were measured in hours. To achieve interactive editing, we need
a significant increase in speed from minutes per frame to less than seconds.

We introduce a new algorithm designed for the fast intrinsic decomposition of videos that
enables interactive reflectance and illumination editing. The centerpiece of our approach is a
hybrid `2 – `p formulation that enforces a smooth prior on illumination gradients and a sparse
prior on reflectance gradients and is solved efficiently using look-up tables. We reconstruct the
reflectance and illumination from these gradients by adding spatial and temporal constraints.

3.2.1 Efficient Intrinsic Decomposition

In this section, we describe our algorithm to efficiently decompose an input video I into an
illumination layer S and a reflectance layer R. We assume that the illumination is monochromatic
(i.e the illumination in the scene has a constant color). The observed intensity at pixel x is then
given by:

I(x) = S(x) R(x), (3.3)

where I and R are RGB-vectors and S is a scalar.

The core of our algorithm is a hybrid `2–`p energy formulation in the gradient domain that
separates image gradients into reflectance and illumination gradients by enforcing a sparsity prior
on reflectance values and a smoothness prior on illumination.
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Hybrid `2–`p Gradient Separation

For the sake of efficiency, we perform most of the computation on single-channel luminance
images. We define the image luminance as the geometric mean of the individual RGB compo-
nents, i.e., I = (Ir Ig Ib)1/3, and reflectance luminance R, similarly, as the geometric mean of the
reflectance components. This gives us the relation I(x) = R(x) S(x), which we solve for R and S.
Finally, the color reflectance R(x) can be estimated as I(x)/S(x).

We work in the log domain to transform the image formation into a sum: log I(x) = logS(x)+
logR(x) and formulate our approach in the gradient domain. For this, we introduce lowercase
variables to represent logarithmic gradients, e.g., i = ∇ log I. We can then write: i(x) = s(x)+r(x)
and express this constraint as a least-squares energy term: ‖i(x)− s(x)− r(x)‖2.

We address the ill-posedness of this formulation by adding priors on s and r. We assume
that reflectance values are sparse [126, 85], i.e., that scenes are mostly made up of objects of
constant colors separated by hard boundaries. This is typically modeled using a `p term on the
gradients with p < 2, i.e., with our notation: ‖r(x)‖p. Low p values assume very sparse reflectance
gradients, while p = 2 would assume normally distributed reflectance gradients. We assume that
illumination exhibits smoother variations [101], by using an `2 term on illumination gradients, i.e.:
‖s(x)‖2. This yields an energy E:

E(s, r) =
∑
x

‖i− s− r‖2 + λs‖s‖2 + λr‖r‖p (3.4)

where λs and λr control the influence of the priors on s and r (Figure 3.11) ; dependencies on
pixel x have been omitted for conciseness.

Minimizing the energy Solving mixed-norm optimization problems as Equation 3.4 often
requires time-consuming combinatorial approaches. Inspired by Krishnan et al. [97], we show that
we can minimize Equation 3.4 using a simple look-up table. Note that this formulation treats the
horizontal and vertical components of the gradients independently. The formulations we derive
below, can therefore be applied to each axis separately. Differentiating E(s, r) with respect to s
first gives an expression of s:

s = i− r
1 + λs

(3.5)

Substituting the expression for s from Equation 3.5 into Equation 3.4 gives us:

E(r) =
∑
x

λs
1 + λs

‖i− r‖2 + λr‖r‖p (3.6)

To minimize this expression, we use Iterative Re-weighted Least Squares to replace the `p term [24,
§ 4.5] with a weighted `2 term. This iterates solutions r̃k to quadratic minimization problems
converging towards the optimal solution r? of the mixed-norm problem (Equation 3.6):∑

x

λs
1 + λs

‖i− r̃k+1‖2 + λrwk+1‖r̃k+1‖2 (3.7a)

with wk+1 = p

2 |r̃k|
p−2 (3.7b)

Differentiating this cost function and setting it to 0 gives us a closed form recurrence:

r̃k+1 = 2λsi
2λs + λr(1 + λs)p|r̃k|p−2 (3.8)
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Figure 3.10: Behavior of lutλs,λr,p(r̃k) (Eq. 3.8); r̃k varies along the x-axis. p controls the
smoothness of the separation – at values closer to 1 it starts approximating a clipping function
(a). Higher λr makes it more like a clipping function, while a larger λs makes it smoother.

(a) Baseline decomposition (b) Increased `2 weight (c) Increased `p weight (d) Increased p

Figure 3.11: Effect of the different parameters in Equation 3.8 on the reflectance (top) and
illumination (bottom), without non-local terms and nor color handling. Increasing the `2 weight
(b) leads to a blurry illumination, but the reflectance is not sparse; increasing the `p weight (c)
pushes stronger gradients to the illumination component. A denser p = 1.2 norm (d) makes the
decomposition smoother albeit with less separated gradients than a sparser p = 0.4 norm.

In practice, given i, λs, and λr, we iterate Equation 3.8 K times (typically, K = 100). Further,
given λs and λr, the output r value depends only on i. When λs and λr are fixed, we use this
property to precompute a look-up table lutλs,λr(r̃k) for varying values of r̃k. We can also build a
higher-dimensional table to enable varying parameters.

Taking chrominance variations into account The energy function in Equation 3.4 encour-
ages sparse but large reflectance gradients and dense but smaller illumination gradients. This
does not account for illumination effects like shadows that can lead to large gradients. However,
shadows typically do not give rise to large variations in chrominance values; these are more likely
to be caused by changes in reflectance [76]. Similar to them, we set the shading gradient to zero
whenever the chrominance of the image gradient is above a user-specified threshold T chr.
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Discussion Figure 3.10 illustrates the form the function lutλs,λr(r̃k) takes for different values
of λs, λr, and p. For p ≈ 0.5, this function approximates the thresholding function that the
Retinex algorithm uses to separate image gradients into reflectance and illumination gradients.
This suggests that our look-up table is a generalization of the Retinex algorithm. However, unlike
the Retinex algorithm, our look-up table is a softer function that allows for non-zero reflectance
and illumination gradients at the same pixel. As shown in Figs. 3.15 and 3.12, this leads to higher
quality results at depth discontinuities.

Reconstructing the Layers

For given values of λr and λs, we precompute lutλr,λs(i). Then, for each pixel, we estimate
the horizontal and vertical gradients of r by applying lutλr,λs for each axis. We use Equation 3.5 to
recover s. Then, we solve for S′t by minimizing Ep(S′t) =

∑
x‖∇S′t(x)− st(x)‖2 and exponentiate

the result to get the illumination layer S = exp(S′). Finally, we estimate the color reflectance
layer R using the image formation model (Equation 3.3).

Spatial reflectance constraints Reconstructing the reflectance and illumination from gradi-
ents can lead to results with low-frequency errors. Previous work has addressed this by incorporat-
ing non-local reflectance constraints, typically by enforcing that pixels with similar chrominances
have similar reflectances [169, 194]. We propose a faster approach that only incorporates a few
non-local constraints that add negligible overhead to the linear system we solve. We cluster the
video into a set of C chrominance clusters using k-means, and for every frame, we select a repre-
sentative pixel of each cluster. We then add a non-local penalty term to our energy enforcing the
reflectance of every pixel to remain close to the reflectances of the N nearest cluster representatives
weighted by a function w of its distance in chrominance space:

Enl(S′t) =
∑
x

N∑
n=1

w(x, xn)‖logRt(x)− logRt(xn)‖2

=
∑
x

N∑
n=1

w(x, xn)‖S′t(x)− S′t(xn)− log It(x) + log It(xn)‖2, (3.9)

where xn is the representative coordinate of the nth nearest cluster in chrominance space. We adopt
the definition of the chrominance as Ck = log(Rk)−

∑
k log(Rk) for the three color channels [76].

In our implementation, C = 8 and N = 2, and w(x, xn) = exp(−‖C(x) − C(xn)‖2/100). This
adds only N = 2 non-zero terms to the linear system for every pixel.

Temporal constraints Applying the previous technique frame by frame can lead to results
with unpleasant flickering artifacts. However, the reflectance of a scene is typically temporally
coherent and we would like to enforce this in our optimization. While solving for the intrinsic
decomposition at a particular frame, we add a temporal regularization that keeps the reflectance
close to the computed reflectance from the previous frame. In addition to being fast, solving for
the decomposition in chronological order is a user-friendly option because it ensures that frames
that have already been annotated by the user are not affected by subsequent strokes.

Denoting ut(xt) the forward optical flow, i.e., the pixel xt at frame tmoves to xt+1 = xt+ut(xt)



3.2. INTRINSIC VIDEOS 75

(a) Input frame (b) Retinex (d) `2 – `p term (e) Non-local term (f) User input
and scribbles function added added

Figure 3.12: Effect of the different terms in our optimization. The hard thresholding of Retinex-
based methods (b) leads to aliasing artifacts at object boundaries. Our `2 – `p decomposition
is smoother (c) especially at object boundaries. Adding the non-local constraints reduces low
frequency artifacts (d). The user can refine the result using a few strokes (e); constant reflectance
scribbles are shown in red, constant illumination in blue.

at frame t+ 1, we define a temporal regularization term:

Et+1(S′t+1) =
∑
x

‖logRt+1(xt+1)− logRt(xt)‖2

=
∑
x

‖S′t+1(xt+1)− S′t(xt)− log It+1(xt+1) + log It(xt)‖2. (3.10)

Multi-scale solver We combine all terms to obtain E(S′t) = Ep(S′t) + λnlEnl(S′t) + λtEt(S′t),
where λnl and λt control the weights given to the non-local and temporal constraints. λt is
modulated by a per-pixel optical flow confidence. We solve for the illumination that minimizes
this energy at every time instant, starting with the first frame and moving onto each subsequent
frame. Minimizing this energy leads to a sparse linear system with only N + 4 off-diagonal non-
zeros per pixel. We use parallelized Jacobi iterations on a coarse-to-fine multi-resolution pyramid.

User strokes We provide users with a scribble tool to specify constraints in the gradient do-
main, ultimately only altering the right hand side of existing equations. We use two strokes, for
constant reflectance and constant illumination, that specify that the gradient of the reflectance
(and illumination, respectively) at those points is 0. These constraints are straightforward to
apply to s and r, and do not require us to perform the gradient separation again. To speed up
user interaction, we propagate user strokes both spatially and forward in time to similar pixels
using a fast coherency-sensitive hashing [96] (CSH) using the LSHKIT library [54] and feature
vectors estimated via a Principal Component Analysis (PCA) of 11× 11 patches.

3.2.2 Results and Discussion

In this section, we evaluate our algorithm on both single images and video sequences and
compare with state-of-the-art techniques. The quality of our results is better evaluated on the
video accompanying our paper [31]. In our prototype implementation, we let the user interactively
adjust the parameters p, λr, λs, T chr, λt and λnl. Typical ranges are p ∈ [0.4, 0.5], λr ∈ [0, 0.5],
λs ∈ [0, 10], λnl ∈ [0, 1], T chr ∈ [0, 0.2]. We precompute the optical flow using the method of
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Figure 3.13: We compare our technique (third row) to the decompositions of Shen et al. [168]
(first row) and Zhao et al. [194] (second row). Shen et al. has brushes and takes 6 min. while
Zhao et al. is automatic and takes 6 s. Our method takes 0.5 s per frame, and provides a more
satisfactory decomposition for our applications.

Liu et al. [111] which takes 0.25-0.50s to process a 0.5MP video frame, and propagate the user
constraints forward by 12 frames using background threads.

Figure 3.12 evaluates the different terms in our decomposition algorithm. We observe that
non-local terms remove low-frequency errors, temporal constraints lead to time-coherent results,
and user input can resolve other ambiguities. Importantly, every video is different and might need
slight variations of these terms. By making the solver interactive, we allow users to quickly adapt
the result to their requirements.

Static images Figure 3.13 compares to the work of Shen et al. [168] and Zhao et al. [194]. A
few strokes are sufficient to create comparable results, but at interactive speeds. Our subsequent
state-of-the-art report [26] evaluates our method against numerous more recent approaches. Our
work [26] also provides a new dataset of 45 realistic synthetic scenes1 under various illumination
conditions resulting in 149 renderings – a database that we call ARAP for “As Realistic As
Possible” dataset. It provides, along with the synthetic rendering, a ground truth reflectance,
illumination, depth map, segmentations, and normal map among other data. Sample images are
shown in Fig. 3.14. Unfortunately, this dataset was not available at the time of this intrinsic video
decomposition project.

1https://perso.liris.cnrs.fr/nicolas.bonneel/intrinsicstar/ground_truth/

https://perso.liris.cnrs.fr/nicolas.bonneel/intrinsicstar/ground_truth/
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Figure 3.14: Our ARAP dataset [26] contains (from left to right), among other things, a
photorealistic synthetic rendering, ground truth reflectance and shading, and other data such as
a normal map, for 45 scenes under different lighting conditions for a total of 149 photorealistic
renderings. It also illustrates the difficulty in defining a ground-truth decomposition in complex
scenes.

Sequence Figure # Frames Resolution Solver (per frame) # Strokes Interaction

House 3.9 91 1024×576 0.60 s 325 20 min
Kermit 3.12 (f) 291 320 ×568 0.18 s 101 6 min
San Miguel 3.15 (d) 100 1280×960 1.30 s 32 15 min
Kid 3.16 (top) 285 960 ×540 0.51 s 10 6 min
Chicken 3.17 (c) 148 640 ×360 0.24 s 0 0 min
Girl 3.19 98 640 ×360 0.24 s 276 15 min
SIGGRAPH Cart Video (3’24) 141 1024×576 0.59 s 0 0 min
Shadow art 3.20 134 1024×576 0.62 s 28 10 min
Compositing (background) 3.21 (a) 215 1024×576 0.60 s 330 20 min
Compositing (foreground) 3.21 (b) 107 1024×576 0.62 s 207 20 min

Table 3.1: Statistics for our input videos. We report approximate interaction times and the
number of strokes for each complete video sequence.

Videos First, we evaluate our technique on a realistically-rendered [137] animation of the San
Miguel 3D scene (Figure 3.15), 100 frames at 1280×960. This complex sequence is a good approx-
imation of a real-world example, with the advantage of providing a ground-truth decomposition.
As shown in Figure 3.15), our technique produces a result that compares well with the ground
truth and is significantly better than the state-of-the-art single image technique of Zhao et al. [194].
Additionally, we compare our method with the concurrent work of Ye et al. [193] on a real-world
video sequence in Figure 3.16 and an animated video in Figure 3.17. Like us, they incorporate
user input to disambiguate challenging areas, but unlike us, this user input is specified on the first
frame and the solution is propagated to the rest of the video. Also, their method runs in the order
of hours, precluding any interactive refinement. Please refer to our paper [31] for a numerical
evaluation of temporal consistency.

Discussion We believe performance could be further improved by implementing our algorithm
on graphics hardware. Due to the nearest-neighbor search, our algorithm could slow down if
too many strokes are specified. In practice, the examples we show were edited with less than 20
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(a) Input video frame (b) Ground truth (c) [194] (d) Our result
(no user strokes) (no user strokes)

Figure 3.15: We demonstrate our technique on one frame of a rendered video sequence (a) with
ground truth reflectance and illumination (b). Using the single image method of Zhao et al. [194]
per frame produces a result that is spatially inaccurate and temporally inconsistent (c).

minutes of user interaction and sometimes, were produced with no interaction at all. Table 3.1
contains detailed statistics about our input videos, and computation and interaction times that
were required to produce our results.

Our tool assumes monochromatic lighting for efficiency. However, in presence of illumination
with spatially varying colors, or strong colored inter-reflections, this can lead to artifacts (e.g., see
the shirt in Fig.3.18, and the pink inter-reflections on the girl’s arms in Fig. 3.19).

Our `2 – `p model assumes that illumination is smoothly varying; this assumption can be
violated at object boundaries where our technique produces an overly smooth shading layer. This
can be observed in Fig. 3.13 where our illumination is smoother than other methods. Generally,
the decomposition obtained using Ye et al.’s slower approach [193] with user interaction is more
accurate when compared to our method without any user interaction.

3.2.3 Applications

We demonstrate our method on various applications benefiting from an editable and tempo-
rally consistent intrinsic decomposition.

Reflectance editing Editing the reflectance of an object in a video is easy when the color is
uniform; in such cases, a simple chrominance change suffices. However, this becomes laborious in
the presence of more complex textures that are also visible in the luminance. With our decompo-
sition, painting in the reflectance layer performs the desired operation since illumination remains
unchanged. We demonstrate this in Figures 3.9 and 3.19 (top).

Illumination editing Turning hard shadows into soft shadows is a challenging operation if
one only has access to raw data since blurring the shadows ends up blurring the textures in the
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(a) Input video / Ye et al. scribbles (b) Reflectance (c) Shading (d) Recoloring

Figure 3.16: Comparison of our approach (top) to Ye et al. [193] (bottom). Both require user
input, with Ye et al.’s all coming on the first frame (a). Their method requires four hours to
compute, while our approach only takes two minutes and gives immediate feedback to user
scribbles. This allows to easily correct the decomposition such as the yellow logo on the shirt.

(a) Input video frame (b) Ye et al. [193] (with user strokes) (c) Our result (without user strokes)

Figure 3.17: On this animated video sequence (a), our technique is able to, without any user
strokes, produce a comparable result (c) to the user-assisted result of Ye et al. [193] (b).

scene too. In comparison, with our decomposition, this task becomes straightforward since one
needs to blur the illumination layer (Fig. 3.20).

Lighting-consistent video compositing Naively compositing videos that contain shadows
produces unsightly results in which the shadows overlap instead of merging. Our decomposition
enables the proper merging. Denoting S1 and S2 the shading layers of the two videos to be com-
posited, we compute min(S1, S2) as the new shading layer within a segmentation of the foreground
video obtained with Video Snapcut for instance [12] (Fig. 3.21).

3.2.4 Conclusions

In this work, we have presented the first interactive intrinsic decomposition algorithm for
video sequences. Our technique is built on top of a hybrid `2 – `p algorithm that efficiently
computes reflectance and shading gradients from a image. We present a fast solver that combines
these gradients with spatial and temporal constraints to reconstruct temporally consistent shading
and reflectance videos at interactive rates. The interactive nature of our solver is a significant
contribution over previous work, making it possible for users to navigate the parameter space of
the algorithm and make annotations while receiving immediate feedback. Our technique can be
used to efficiently derive high-quality intrinsic decompositions for a wide variety of real-world video
sequences. Most importantly, our decomposition enables a number of video editing tools that are
otherwise difficult to implement; these include recoloring, retexturing, illumination editing, and
lighting-consistent video compositing.
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(a) Input frame (b) Albedo (c) Shading

Figure 3.18: Our method assumes monochromatic lighting. The presence of chromatic lighting
or strong interreflections that produce colored shading violate our model, and can produce
significant artifacts that cannot be corrected, even with heavy user interactions.

(a) Input video sequence (b) Intrinsic (c) Reflectance-edited video (d) Naive chrominance
decomposition editing

Figure 3.19: Our decomposition enables easy reflectance editing such as re-coloring the girl’s
t-shirt. By separating the two components, we are able to make these edits while retaining the
original illumination in the video. A naive editing of the chrominance leaves luminance variations
due to the illustration on the shirt.

(a) Input video sequence (b) Intrinsic (c) Shadow-edited video
decomposition

Figure 3.20: Lighting editing. After intrinsic decomposition, we blur the illumination component,
and recombine the original reflectance and the blurred illumination to produce a video sequence
with soft shadows.
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(a) Background video frame (b) Foreground video frame (c) Naive compositing (d) Our compositing

Figure 3.21: Video compositing. Here, we decompose two video sequences shot with different
viewpoints (a, b). Compositing the two reflectance and illumination layers separately and
combining them allows us to create a video composite with realistic shadows and lighting (d). A
naive compositing produces inconsistent shadows (c).
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3.3 Blind Consistency for Videos and Camera Arrays

Upon developing algorithms tailored for color processing (chapter 3) and then intrinsic de-
composition (section 3.2), the need for a general-purpose method became obvious. This section
describes an approach to make various image processing filters temporally consistent, which con-
siders the image processing filter as a black box. We hence called this class of algorithms blind. We
developped this algorithm both for single- [33] and multi-camera [32] video sequences, and base
our method on a gradient domain formulation in the spirit of our video intrinsic decomposition
(section 3.2).

(a) Input video (b) Per-frame processing (c) Our result
Figure 3.22: With many image filters, such as this automatic color, tone, and contrast adjustment,
processing an input video (a) (frames 167-168) frame by frame results in temporal discontinu-
ities (b). We take the two video sequences (a) and (b) and automatically generate a temporally
consistent video (c), without knowing the image filter used to produce the unstable video (b).
This enables the application of our technique to a wide range of video effects such as color
constancy, stylization, color grading, intrinsic decomposition, depth prediction, and dehazing.

With advances in processing, effective filters for restoration, enhancement, creative edits, and
analysis are now common for static images. Videos, on the other hand, do not enjoy the same
rich and diverse toolbox. Several video processing algorithms have been developed along this line,
such as color grading [30], dynamic range compression [11], intrinsic decompositions [193, 31, 94],
and tonal stabilization [60]. While effective, these techniques are specific to each task and do not
generalize to other problems. Paris [130] and Lang et al. [102] propose more generic approaches
to extend still image operators to videos. However, these continue to assume a specific filter
formulation, which limits their application. For operators outside this set, Lang et al. resort to
temporal low-pass filtering. As we shall see, this reduces flickering but does not fully remove it.

We aim for a more general approach to extending image filters to videos, and propose an
algorithm that is agnostic to the internal design of the filter, i.e., we treat image filters as black
boxes that take input frames and generate processed frames. In that sense, our approach to
temporal consistency is blind to the image filter being applied. We have two requirements: 1)
that the original video is available and that optical or feature flow is recoverable, such that it can
be used as a temporal consistency guide, and 2) that the filter does not generate new content
uncorrelated with its input — for instance, inpainting techniques that synthesize new content
is outside our scope. That said, our approach covers a wide variety of filters such as dehazing,
automatic photographic enhancement, color grading, and intrinsic decomposition. We formulate
our algorithm in the gradient domain and propose an energy function that amounts to a spatial
screened Poisson equation with temporal constraints that we can solve efficiently. We formally
characterize the properties of our approach in terms of frequency content.
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Further, capturing video with multiple cameras is an integral component of many popular
applications. For example, camera array rigs record content for 3D displays, for stitched 360◦
video for virtual reality [134], for virtual-camera-based post production [65], and for refocusing
and depth-aware processing [125, 183]. This makes filtering challenging, to recover consistency
both across cameras and in time, and to make this process efficient. Camera arrays often produce
10–100× more video data than single-view cameras, and so any kind of filtering is expensive, both
in terms of computation and memory. As an example, a 91-view sequence at 1280×768 resolution
contains about 8GB of data per second.

We present an efficient approach that reduces the cost of filtering the data by an order of
magnitude, without a large reduction in quality, by skipping the filtering step on many frames
completely, and instead, transferring the filter response from a small subset of input frames to the
rest of the data. Further, our approach is causal as it sequentially processes frames, and so does
not need multiple passes, or even to keep multiple views or entire videos in memory. Combined,
these properties reduce the computational burden and allow for of spatio-temporally consistent
filtering of camera array video.

3.3.1 Restoring Single Video Temporal Consistency

Our algorithm takes as input an unprocessed video {V0, V1 . . . } and the same video {P0, P1 . . . } =
{f(V0), f(V1) . . . } processed frame by frame by some image filter f . The filter f has introduced
temporal artifacts that we seek to remove to create a temporally stable video {O0, O1 . . . }.

Spatially, the artifacts in P can be either global or local. For instance, intrinsic image
decompositions are defined up to a global multiplicative factor and algorithms often set this
factor arbitrarily, leading to random offsets in each frame. Algorithms that rely on sophisticated
optimization schemes are prone to local minima, which makes them overly sensitive to initial
conditions and can generate discontinuous local variations between adjacent frames. Further,
many optimization schemes are spatially regularized, so variations typically impact an entire
object or image region at once — they rarely occur at the scale of a few pixels. In the temporal
domain, the profile of these artifacts is arbitrary: they can vary slowly, be random at each frame,
or be anywhere in between. We design our algorithm with these characteristics in mind.

One naive approach would be to enforce perfect temporal consistency by warping the first
frame by optical flow to recreate each subsequent frame. However, this ignores the inevitable im-
precision of accumulated flow fields, and would eventually cause large errors. Further, this scheme
does not account for issues like occlusions and appearance variations, e.g., due to lighting changes.
In other words, enforcing temporal consistency can come at the expense of scene dynamics. Our
solution balances these two aspects.

Joint optimization of temporal consistency and scene dynamics

We describe our approach in a causal setting: we consider the nth frame (n > 1) assuming
that the previous frames have already been processed. This processes frames one at a time, which
keeps the memory requirement small and enables the processing of arbitrarily-long videos without
resorting to complex memory management schemes [130].

We formulate the temporal consistency objective with a simple least-squares energy:
argminOn

∫
‖On − warp(On−1)‖2dx, where x represents the spatial position in the frame, and

warp() uses backward flow to advect the previous frame toward the current frame.
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For the scene dynamics term, one naive option would be a simple data attachment term:
argminOn

∫
‖On−Pn‖2dx. However, P implicitly suffers from temporal inconsistency, and so this

term would go against our objective and transfer instability to the output video O. Ideally, we
would like to attach O only to the part of P that represents the scene and discard the part that
is inconsistent. To achieve this, we draw inspiration from the work of Elder [59], who showed
that a scene is well represented by its edges. We are also inspired by Poisson Image Editing [135],
which reproduces the appearance of image regions by copying their gradients. Thus, instead
of requiring pixel values to be similar, we require their gradients to be similar. We minimize:
argminOn

∫
‖∇On − ∇Pn‖2dx. Intuitively, this can be seen as a data attachment on the scene

edges, where the gradients are approximations of the edges. We further analyze this aspect in
Section 3.3.1.

We combine the two terms after modulating the influence of the temporal consistency term
by a weight, w(x), that measures the input video consistency V . We set the first frame as a
boundary condition and compute O as the minimum of the least-squares energy:∫

‖∇On −∇Pn‖2 + w(x)‖On − warp(On−1)‖2dx (3.11a)

with: w(x) = λ exp(−α‖Vn − warp(Vn−1)‖2) (3.11b)
O0 = P0 (3.11c)

The weighting function w(x) is key to our approach because it relaxes the temporal consistency
requirement when the input video V itself is not consistent or the warp inaccurate, which we
detect when the warped previous frame does not explain well the current frame (Eq. 3.11b). In
other words, we only impose temporal consistency when the input video is consistent. We use
the first frame as a boundary condition (Eq. 3.11c) which corresponds to the common scenario
where users tune the image filter f to achieve the desired result on the first frame and would like
to propagate the same quality of results to the rest of the video. It would be straightforward to
adjust our scheme to use any frame as reference and to process the video forwards and backwards
in time from it. Our formulation is parametrized by λ, which controls the regularization strength
(see analysis Sec. 3.3.1) and α which indicates our confidence in the warp.

To minimize Equation 3.11a, we use the Euler-Lagrange formula [189] to derive a differential
property that On must satisfy at the minimum:

−∆On + w(x)On = −∆Pn + w(x) warp(On−1) (3.12)

Frequency-domain Analysis

Our approach has a varying impact upon different spatial frequencies in the video, with the
low frequencies being more constrained to be temporally consistent than the high frequencies. We
analyze Equation 3.12 in the frequency domain using F(·) for the Fourier transform and ξ for
the spatial frequency. For the sake of simplicity and in this section only, we assume that the
weighting function w is constant and equal to λ0, i.e., w(x) = λ0 for all x. Applying the identity
F(∆·) = −4π2ξ2F(·) to Equation 3.12 gives:

4π2ξ2F(On) + λ0F(On) = 4π2ξ2F(Pn) + λ0F(warp(On−1))

which leads to:
F(On) = 4π2ξ2F(Pn) + λ0F(warp(On−1))

4π2ξ2 + λ0
(3.13)

which is the basis of our analysis.
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Figure 3.23: We perform a synthetic experiment on a 1D video: each frame is a vertical line of
pixels. The first frames show a linear chirp, i.e., a signal of increasing spatial frequency, and
the remaining frames are uniformly gray. With a low λ0 value, there is no temporal consistency
and the output video transitions instantly back to a uniform color. For intermediate values, the
temporal consistency is enforced more strongly on the low frequencies which remain visible for a
long time. For a large λ0 value, temporal consistency is enforced on the whole spectrum and the
chirp is propagated to all frames (see § 3.3.1). Right: In contrast, temporal smoothing enforces
consistency uniformly over the spectrum.

First, we look at the effect of λ0. For large values, i.e., λ0 → +∞, we have F(On) ≈
F(warp(On−1)), that is, we warp the previous frame — this would not account for scene dynamics.
For small values, i.e., λ0 → 0, for ξ 6= 0, we have F(On) ≈ F(Pn), that is, we copy the frequency
content of the frame processed by the image filter without imposing any temporal consistency. The
DC component (ξ = 0) is treated differently though. If λ0 = 0, we have a 0/0 indeterminacy that
corresponds to the well-known ill-posedness of the Poisson equation in the absence of boundary
conditions. More interestingly, if λ0 6= 0, we have F(On)(0) = F(warp(On−1))(0), i.e., we copy
the DC component of the previous frame. That is, even with a small temporal weight, as long as
it is non-zero, our approach removes the flickering due to a constant spatial offset.

Next, we assume a general non-zero value of λ0 and analyze the influence of the unstabilized
filtered frame Pn vis-a-vis the stabilized previous frame On−1. The influence of Pn is proportional
to the square of the frequency ξ. As a result, the low frequencies of the stabilized frame On are
dominated by the previous frame On−1, but the high frequencies are closer to those of the output
Pn of the image filter. This means that the temporal consistency is more strongly enforced on low
frequencies. We illustrate this property on a synthetic example in Figure 3.23. Recall that our
goal is to remove temporal inconsistencies that are mostly constant or large-scale while preserving
the scene structure captured by the image edges. By enforcing temporal consistency more strongly
on the low frequencies and preserving the high frequencies, our approach fulfills our objective.

In comparison, temporal smoothing can be modeled as averaging the current frame with
the previous frame, i.e., On = (Pn + µ0 warp(On−1))/(1 + µ0) where µ0 controls the smooth-
ing strength [130]. This directly translates to F(On) = (F(Pn) + µ0F(warp(On−1)))/(1 + µ0).
All frequencies are affected equally by the previous frame, i.e., temporal consistency is enforced
uniformly over the spectrum.

Our paper [33] experimentally analyzes the behavior of our temporal smoothing over vari-
ous spatial scales of synthetic random noise, and shows that even extreme noise can be made
temporally consistent if it is of spatially low-frequency.
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3.3.2 Single-Video Results

This section provides implementation details, comparisons with state-of-the-art techniques,
and applications of our technique to several video processing applications.

Implementation

The choice of the warp() operator in Equation 3.11a is critical, as inaccurate correspon-
dences across the input video V can result in flickering or bleeding in the stabilized result O.
After testing several optical flow techniques [111, 190, 177], we found that the method of Sun et
al. [177] produced satisfactory results on a wide range of videos, despite occasionally introducing
minor bleeding. Its main drawback is computational cost, taking 1–2 hours for 100 frames at
1024 × 576 resolution. We also considered several nearest neighbor field techniques [13, 21, 78].
PatchMatch [13] provides a complementary option which generates satisfactory results on many
examples, including on videos which are challenging for optical flow, and at a fraction of the cost:
less than 30 seconds for 100 frames. However, PatchMatch sometimes introduces minor flickering
when the estimated correspondence field is discontinuous between two successive frames. In gen-
eral, both methods were able to produce high-quality results: videos with rapid motion are often
better handled with PatchMatch, while applications which remove texture cues such as depth
prediction and intrinsic decomposition are better with optical flow. We generated the results in
Figures 3.22, 3.24, 3.26, 3.27, and 3.28 using PatchMatch, and optical flow was used for 3.25, and
3.38.

Having pre-computed correspondences which define the warp() operator, we solve the linear
system of Equation 3.12 using a fast multiscale solver with Gauss-Seidel iterations. Our approach
takes less than 0.40 seconds per frame at 1024× 576 resolution. The temporal weight (Eq. 3.11b)
is computed using α = 0.2 for all our experiments. For λ, we start with λ = 1.0, which works in
about 75% of cases. We reduce it when we observe bleeding due to optical flow inaccuracy. In
practice, a λ value between [0.05; 1.0] produced results without spatial bleeding nor flickering.

Comparisons

We compare our approach to the unaltered filtering algorithm of Lang et al. [102] on a typical
automatic color and tone enhancement task, using a combination of Adobe Photoshop’s ‘Auto
Color’, ‘Auto Contrast’, and ’Auto Tone’ tools. Applying these tools on a per-frame basis results
in strong high-frequency flickering (Fig. 3.22) and slow color drifts (Fig. 3.24). As shown in
Figure 3.24, our approach generates a temporally-consistent output without any loss of spatial
detail, while the method of Lang et al. either leaves residual flickering or result in undesirable
spatial blurring, depending on the smoothing parameter. Comparisons with Lang et al. [102] on
all sequences can be found in supplementary material.

We also compare our technique to the commercially available and unpublished RE:Vision
DE:Flicker software [150]. DE:Flicker operates only on the processed video, P , with no knowl-
edge of the input video, V , and so can be more widely applied than our technique. We evaluated
this software with two types of users: naive users, i.e., us, where we tested on all of our sequences,
and expert users, i.e, the authors of DE:Flicker, where three sequences were tested. Please see
supplementary material for these results. Naive application often fails to remove all inconsistency,
whereas our approach is broadly successful. Expert use is able to reduce more inconsistency (see
Old Man autocolors), but still has problems on difficult cases (see Bedroom intrinsic decomposi-
tion).
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(a) Original frames (b) Processed frames (c) Lang (σ = 2) (d) Lang (σ = 10) (e) Our result

Figure 3.24: We process the original video (frames 75 and 90) (a) using the Auto-Color, Auto-
Contrast, and Auto-Tone tools in Adobe Photoshop (b). The method of Lang et al. [102] does
not eliminate low temporal frequency variations for short temporal kernels (σ = 2)(c) and creates
spatial blurring for longer kernels (σ = 10)(d). Our method produces temporally consistent
results while retaining the spatial details (e).

(a) Original frames (b) Reflectance frames (c) Our reflectance (d) Bonneel et al. [31]
(Bell et al. [16])

Figure 3.25: The intrinsic decomposition problem is inherently unstable. Processing the original
frames (a) using the single-image technique of Bell et al. [16] produces reflectance frames
with temporal inconsistencies (emphasized in red) (b). In spite of having no knowledge about
the intrinsic image problem, our approach produces stabilized reflectance frames (c), that are
qualitatively similar to our interactive solution (section 3.2) (d).

Applications

The strength of our technique lies in the fact that it makes very few assumptions about the
underlying image processing applied to the video frames, and we have explored applying it to a
wide range of applications detailed in this section.

Intrinsic Images The intrinsic decomposition problem is naturally ill-posed: multiplying one
layer by a constant and dividing the other by the same constant results in the same product. The
state-of-the-art intrinsic image decomposition algorithm by Bell et al. [16] produces large temporal
inconsistencies when applied per frame, which we regularized with our approach (Fig. 3.25). We
also successfully regularized the intrinsic image decomposition of Zhao et al. [194] applied per
frame (see supplemental material). We produce results with similar quality as our temporally-
consistent approach (see Sec. 3.2), which is tailored to the intrinsic decomposition problem and
cannot benefit from the improvements of the Bayesian approach of Bell et al., nor any future work
on this problem, without modification.
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(a) Original frames (b) Single-image color grading (c) Bonneel et al. [30] (d) Our result

Figure 3.26: Applying the per-frame color model of section 3.1 produces temporal inconsistencies
(see brightening in the background) (b). We filtered color-transforms in a higher-dimensional
space as proposed in section 3.1 (c); we achieve a similar consistency with our algorithm that is
blind to the color transfer (d).

Color Grading By-example color grading allows the transfer of color style between photographs,
which is often performed by matching color statistics. We previously proposed a model consisting
of a 1D luminance histogram and a 2D chrominance covariance matrix matching in each segment
of foreground-background segmented frames (see section 3.1). This model produces temporal
inconsistencies that are regularized in a second differential geometric step. We obtain similar
temporal consistency from a more general framework (Fig. 3.26).

Color Constancy These algorithms find the white point of an image and balance it accordingly.
This process can be unstable as the white point determined by the system can vary significantly
from frame to frame. Color correction requires a linear transform of the red, green, and blue
components of each pixel. We applied two gamut mapping methods of Gijsenij et al. [74, 75],
based on edge derivatives (Fig. 3.27) and edge weighting (see additional material). Both produce
relatively low temporal frequency inconsistencies that our technique eliminates.

Spatially-varying White Balance We experimented with the two-illuminant white balancing
scheme of Hsu et al. [85]. This algorithm clusters a photograph into regions with the same albedo
and uses them to recover the spatially-varying weights of the two illuminants. This algorithm is
sensitive to the clustering step and initial light color parameters. We adjusted its parameters for
the first frame of the video sequence, and then relied on our algorithm to temporally regularize
the output of Hsu et al.’s algorithm (Fig. 3.28).

Color Harmonization This consists in matching and averaging color statistics of multiple
images to register their color palettes. It can be used to simulate different photos being taken on
the same device, or same setup, or during the same day, even when they were not. We used our
sliced Wasserstein barycenter [29] to harmonize colors of three videos per frame. This resulted in
minor flickering which our technique stabilizes.

Style Transfer Generalizing example-based color grading, Aubry et al. [8] introduced a method
to transfer the style of a particular photograph to an input image. Used per frame, this algorithm
yields minor flickering, which we are able to remove with our method (Fig. 3.29).
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Figure 3.27: The gamut mapping of Gijsenij et al. [74] is not stable, producing different white
balance on two different frames depicting Zina Lahr2. Our approach directly propagates the
white balance from previous frames.
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Figure 3.28: The local white balancing algorithm of Hsu et al. [85] applied to video frames is
sensitive to initial parameters. Our solution regularizes the output of this algorithm.

HDR Compression We processed HDR frames with the tone mapping operators of Paris
et al. [131], and Durand and Dorsey [57] on videos by Kalantari et al. [87] and Kronander et
al. [98] These methods produce mostly low spatial frequency flickering. We also processed LDR
frames with the “HDR Toning” filter of Adobe Photoshop (Fig. 3.29), and using Adobe Lightroom
(highlights, clarity and shadows settings), and again removed the temporal inconsistencies.

2Zina Lahr was a fascinating artist whom I met at Siggraph 2013, and who passed away in an accident later
that year. A short documentary is available at https://vimeo.com/80973511, part of which we used in our tests.

https://vimeo.com/80973511
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Dehazing We applied the algorithms of Tang et al. [179] and He et al. [81] to video frames.
While we found the former more temporally stable, both benefit from our approach (Fig. 3.29).

Depth prediction Our algorithm also performs well for recovering depth from a single input
image. We successfully regularize the method of Eigen et al. [58] applied per-frame (Fig. 3.29).
Because of the problem difficulty, the resulting depth maps are of low resolution and only produce
spatially low frequency artifacts that are easy to remove with our approach.
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Figure 3.29: We experimented with other filters which produce a flickering too subtle for side-
by-side comparison. Among those, the style transfer approach of Aubry et al. [8], two dehazing
methods [81] (a) and [179] (b), Photoshop’s HDR toning effect, the tone mapping of Paris
et al. [131], and depth prediction [58]. Please appreciate temporal consistency in the video
accompanying [33].
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(a) Input dataset (b) Step 1: Apply image filter to entire dataset

(c) Step 2: Stabilize anchor view (d) Step 3: Stabilize secondary views

Processed frameAnchor view

Temporal data term Spatial data term
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Figure 3.30: Multi-view algorithm overview. We apply image filer f to input data {Vij} (a)
to produce filtered data {Pij}. We are interested in the case where these data suffer from
spatial and temporal instability (b). First, we stabilize the anchor view {Pat} using an existing
technique to remove temporal inconsistencies from videos (c). Then, we stabilize the secondary
frames {Pij} (for i 6= a) using the anchor frames {Oat} as reference in addition to the previous
frames (d). We reorder this computation to be more storage efficient: in practice, (c) and (d) are
interleaved to create a streaming algorithm. Please view in color. (‘Big Buck Bunny Flower’:
λt = 0.1, λs = 0.1.)

3.3.3 Restoring Multi-View Video Spatial and Temporal Consistency

We now consider a dataset with several views {Vi}, e.g., a stereo dataset has two views V1
and V2, and a 5× 5 light field has 25 views. We use x to denote the position of a pixel in a view;
and for dynamic sequences, e.g., a stereo video, we use t to index the frames, i.e., Vit is the tth
frame of the ith view. Our algorithm takes as input an unprocessed dataset {Vit} and an image
filter f . By analogy with the single-view case, we name {Pit} = {f(Vit)} the dataset filtered
frame-by-frame by f . We are interested in cases where the filtered dataset {Pit} suffers from
spatial and/or temporal inconsistencies. Our objective is to generate an output dataset {Oit}
that retains the visual appearance of {Pit} while being spatially and temporally consistent.

We design our algorithm to handle large numbers of views and arbitrary video lengths. We
proceed in two main steps. First, we select an anchor view denoted by a, and stabilize it. Second,
we operate on the other views i 6= a, processing frames one at a time in temporal order (Fig. 3.30).
One major advantage of our algorithm is that when we treat the frame Pit, we only need to
consider its input counterpart Vit, its predecessor Vi(t−1), and the corresponding output anchor
frame Oat, resulting in little memory overhead. We formulate our problem by extending the
single-view energy described in subsection 3.3.1.
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Stabilizing the Anchor View

The first step of our algorithm is to select by hand an anchor view. In principle this could be
any view, but as we wish to maximise potential coverage in correspondence, then this is typically
the most central view in the dataset. We name a its index. {Vat}, {Pat}, and {Oat} are datasets
restricted to a single view. To remove any inconsistency introduced in {Pat} by the image filter,
we use the method described in subsection 3.3.1 with the least-square energy of Equation 3.11a.
We denote T() the warping operator warp() between consecutive frames in time. In practice, for
T() , we adapt the PatchMatch algorithm [13] (§3.3.3) to compute a correspondence Tat between
the input frames Va(t−1) and Vat.

Stabilizing the Secondary Views

Once we have stabilized the anchor view a, we process secondary views i 6= a one by one.
For each view, the process is causal and only involves data at t and (t − 1) similarly to Equa-
tion 3.11a. The difference is the addition of a data term that relates the considered frame Pit to
its corresponding stabilized anchor frame Oat:

argminOit
∫
‖∇Oit −∇Pit‖2

+ wt(x)‖Oit − Tit(Oi(t−1))‖2

+ ws(x)‖Oit − Sit(Oat)‖2dx

(3.14a)

with: wt(x) = λt exp(−αtd(Vit, Tit(Vi(t−1)))2) (3.14b)
ws(x) = λs exp(−αsd(Vit,Sit(Vat))2) (3.14c)

where Sit(·) is the spatial warp operator that puts in correspondence the pixels in view i with those
in the anchor view a, d(., .)2 denotes the quality of alignment, computed as the sum of squared
pixel difference over a 7× 7 patch neighborhood and αs and λs are parameters that controls the
influence of the view consistency term. We use a modified version of PatchMatch to define the
operators Sit and Tit as described in details in our paper [32], which goal is to prevent overly
small patches while improving the speed of PatchMatch – optical flows being untractable for the
amount of data being processed in multi-view videos. Here, λt controls the regularization strength
over time and λs across views, while αt and αs control the confidence we give to the computed
correspondences. In practice, we use λt ∈ [1, 50], λs ∈ [0.2, 10] and αt = αs ∈ 7× 7× [0.1, 1].

Akin to Equation 3.11a, this process is a least-squares optimization problem that amounts to
solving a Screened Poisson Equation. Most importantly, the memory requirement of our approach
does not dependent on the number of views and frames in a dataset, e.g., we can process arbi-
trarily long sequences within a fixed amount of memory, by re-ordering computations. Instead of
processing the entire anchor view first and then secondary views, we sequentially process all views
at time t (see our paper [32] for details). As the process at each frame amounts to running Patch-
Match at most twice (for S and T ) and solving a linear system of the same size and sparsity that
is independent of the number of views and frames, the computational complexity of processing a
dataset is linear in the number of views and frames, that is: O(NvNf), where Nv is the number
of views in a dataset and Nf is the number of frames per view.

In the appendix of our paper [32], we perform a similar Fourier analysis which shows that
while the high frequencies still mostly come from the processed frame Pit, the low frequencies
are dominated by a blend of the previous frame Oi(t−1) and of the anchor frame Oat, the balance
between them being controlled by ws and wt.
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(a) Input dataset (b) Step 1: Apply image filter to subset of dataset

(c) Step 2: Stabilize anchor view (d) Step 3: Stabilize secondary views

Processed frameAnchor view
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Figure 3.31: We accelerate our algorithm by applying image filter f only to a subset of the input
data (a). We filter all frames at t = 0 and all anchor frames, and 1 in n frames for the secondary
views (b). We use n = 3 in this example. The rest of the algorithm remains the same (c,d).
This significantly speeds up the process by “hallucinating” the effect of the filter. We reorder
this computation to be more storage efficient by interleaving (c) and (d) to create a streaming
algorithm. Please view in color. (‘Big Buck Bunny Flower’: λt = 0.1, λs = 0.1.)

Speed-up via Filter Transfer

The approach described produces stable outputs for many datasets and filters (§3.3.4). How-
ever, applying image processing filters across multiple frames and views can be prohibitively
expensive when the image filter f is costly. We propose an approximation which enables a sig-
nificant speed-up to the per-frame filtering while maintaining a satisfying output. Our strategy
is to filter only a subset of the frames, i.e., we compute f(Vit) only for some i and t values and
let our regularization technique transfer the response from these frames (Fig. 3.31). With this
strategy, we exploit the high level of redundancy between nearby frames and views to propagate
the effect of the image filter f from a few filtered frames onto all the others even if they have not
been filtered. In our algorithm, the anchor frames are more important because they regularize
the secondary frames. Building on this observation, we filter all the anchor frames as normal, but
filter only one in every n secondary frames. Because our approach is causal, we also filter the first
frames of all views, i.e., we compute f(Vi0) for all i. Formally, we define the dataset {P̃it}:

P̃it =
{
f(Vit) if (i = a) or (t mod n ≡ 0)
Vit otherwise

(3.15)

Then, the algorithm is the same, i.e., we minimize Equations 3.11a and 3.14 using P̃ instead of
P . As we filter all anchor frames, Equation 3.11a is unchanged; only secondary view processing
(Eq. 3.14) is affected. An experimental analysis of the approximation error introduced by this
scheme is described in our paper [32]. We found that speed-up factors of 5× were possible while
keeping a satisfying output quality.
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(a) Input camera array video (stereo rig) (b) Per-frame filtered with dehaze operator(c) Our result after enforcing consistency

Figure 3.32: Our method turns inconsistent filtered video from camera arrays into consistent
video across time and view. Applying image dehazing per frame to an input stereo video (a)
produces unstable results across time and view (b). Our approach makes the resulting stereo
video consistent (c). (‘Up and Down’: λt = 0.05, λs = 0.05.)

3.3.4 Results for Multi-View Videos

We found that our approach performs well on a broad range of image filters as shown in our
experiments. First, we report run times and memory consumption, then we run experiments with
a variety of filters, scenes, and camera array configurations.

Performance Our algorithm is efficient, and scales linearly with the number of views. In
many cases, camera array sequences either have high angular and low spatial resolution, or high
spatial and low angular resolution. Our algorithm scales linearly with angular resolution, and
super-linearly with spatial resolution due to our multi-scale Poisson solver and PatchMatch.

On a 6-core Intel Xeon 3.5 GHz, a low resolution 320 × 240 15-view sequence is regularized
at a rate of approximately 2.7 seconds per frame for all views, while a high resolution 1280× 768
91-view sequence takes roughly 2 minutes per frame for all views, or 1.3 seconds per image. With
our unoptimized implementation, this corresponds to a throughput of 0.8 mega-pixel per second.

Color mapping Automatic color adjustment filters are common, and so we tested both Adobe
Photoshop and Premiere Pro on various multi-camera setups: light fields (‘Truck’, ‘Aquarium’),
stereo videos (‘Bangkok Chaos’), and multi-view setups (‘Magician’). Common artifacts are flick-
ering, which is often caused by bright object, such as the sun or a flame, entering the frame,
and more subtle color casts which vary between views and over time as occlusions reveal unseen
areas. In most cases, our approach is able to correct for both artifacts. However, the lack of
correspondences between views in the ‘Magician’ sequence leaves some temporal inconsistencies.
Similar flickering artifacts are seen with other color mapping functions such as tone mapping and
contrast-preserving decoloration (color2gray), which we successfully remove.

Stylization Stylization methods often perform some kind of color mapping in combination with
edge highlights, which can exhibit flickering over time and space. We show a panoramic example
using the watercolor filter from Adobe Photoshop applied to each frame, and then regularized. In
general, filters which add new edges which are inconsistent with input edges will lead to those
new edges being smoothed out during consistency enforcement (Fig. 3.33).
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Figure 3.33: Two examples of other filters that resulted in flickering that was corrected. (‘Juggler’:
λt = 0.2, λs = 0.2. ‘Bangkok Chaos’: (λt = 0.01, λs = 0.01.))

Dehazing We ran the Photoshop Dehazing filter on each frame of a stereo video, which esti-
mates an atmospheric haze color from image statistics, and uses this to remove haze in outdoor
images. In this case, small changes in this estimate led to drastic changes in the result, which we
were able to make consistent (Fig. 3.32).

Intrinsic Decomposition Similarly to our single-view experiments, we computed a per-frame
decomposition into reflectance and albedo information using Bell et al. [16] (Fig. 3.34). This filter
shows significant flickering across time and view, but our approach is able to enforce consistency
across both. In Fig. 3.35, we show a comparison with the recent (static) light field intrinsic
decomposition method of Garces et al. [70]. Additional comparisons can be found in supplemental
materials of our paper [32].

Non-photorealistic Rendering To help evaluate which filters are appropriate for our ap-
proach, we also consider NPR filters which create a significantly pronounced effect. As our al-
gorithm works in the gradient domain, it implicitly assumes that the input edge structure can
effectively regularize the filter. Thus, our approach is not appropriate for filters which add signifi-
cant new edges to the output, e.g., Adobe Photoshop crystallize filter (Fig. 3.38). This is because
when there is a new edge in the output that is missing from the input, our approach blurs it away,
producing an unsatisfying result.

However, for iterative filters that introduce new edges, such as the popular neural style
transfer [72] or ‘deep dream’ effects [122], we propose an iterated (filter → regularize → filter)
approach to cope with this edge blurring problem. By interleaving our regularization within style
transfer iterations, we are able to remove significant inconsistency at low computational cost,
while retaining the desired style, as the high frequencies are added back at each iteration. We
perform this iteration four times to create a stable result, as shown in the video and in Fig .3.36.
One contemporaneous approach for temporally stable style transfer uses long-term features to
track objects across motions in videos [154]. While effective, this approach relies on optical flow
and takes roughly 3 minutes per image pair, which would be prohibitive when scaling to large
numbers of views. Further, their approach modifies the underlying formulation [72], while ours is
agnostic to the formulation and so applies to a class of problems.
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Figure 3.34: Decomposing light field videos into albedo and reflectance information produces
unstable results due to changes in content over time and view. For instance, in (b), V0, the
balloon string brightness changes over time; in V5, the green balloon has different appearance
either side of the string. Our method greatly reduces the resulting flicker, yielding a consistent
result. (‘Balloon’: λt = 0.2, λs = 0.02.)

Random Filters To demonstrate the efficacy of our filter transfer approach, we applied random
color transforms to all but the anchor view of the ‘Treasure’ static light field (Fig. 3.37). Despite
the drastic frame-to-frame differences, our approach is still able to produce a mostly consistent
output. While a real world per-frame filter is unlikely to produce such extreme variations, this
test shows that when the gradients are kept intact, our approach can still stabilize the views in
the presence of significant instability.

Other experiments and comparisons to state-of-the-art and proprietary methods are presented
in our paper [32].

Discussion

Our approach addresses the problem of temporal instability introduced by applying unstable
image filter to single and multi-view videos. It is designed to exploit a pair of unprocessed–
processed videos and is not meant to handle the single-sequence scenario. For instance, it cannot
remove flickering due to problems at capture time such as sensor noise or temporal aliasing of
time-lapse videos, since, in these cases, there is no temporally-consistent input video to be used
as a reference.

We found that our approach does not work well on matting because instabilities occur on
fuzzy object boundaries which is also where optical flow techniques tend to fail (Fig. 3.38). Further,
as discussed previously, artistic filters that create content uncorrelated with their input are also
problematic, such as painterly stylization (Fig 3.38), although when filters are formulated as
iterative processes, our solution interleaving filter iterations and regularization alleviate this issue.
To speed-up the per-frame processing, we experimented with a fixed subsample factor, but a prior
video analysis would allow automatic subsample factor adjustment based on motion or content.
Our work favored a solution for which no precomputation is necessary.

In some cases, standard PatchMatch introduces posterization artifacts, but by adding rigid
motion initialization, limiting the search radius and number of repeated target patches, and
skipping constant source patches, we effectively increase robustness and reduce artifacts. That
said, some sequences can be challenging, e.g., ‘Magician’, where artifacts in shadows and smooth
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(a) Input Images (b) [70] (c) Our result

Figure 3.35: We compare our approach with that of Garces et al. [70] which operates on static
light field images. We enforce consistency across views on the albedo obtained via the method of
Zhao et al. [194]. The method of Garces et al. exhibits consistency artifacts across views, shown
in red. (‘Teapot’: λt = 0, λs = 1.)

Figure 3.36: Iterative NPR filters can benefit from our regularization. We stabilize the Gatys et
al. approach [72]. Our process averages out high frequencies over time but integrating it into the
NPR loop reintroduces them. (‘Big Buck Bunny Flower’: λt = 0.1, λs = 0.1.)

gradients come from correspondence errors. While our method helps reduce ‘one-to-many’ cor-
respondence errors over standard PatchMatch in wide-baseline or low-textured sequences, some
sequences still produce artifacts due to the challenge of finding correspondence in general situa-
tions where disocclusion between views may be large. Prior information about the camera layout,
or improvements in registration, will help generalize our approach.

3.3.5 Conclusion

We have described a blind algorithm to stabilize the output of image processing filters applied
frame by frame to videos, and static or dynamic light fields. Our approach relies on a standard
least-squares energy that can be solved with a linear system that has the property of scaling linearly
with the number of cameras in the array and with the duration of sequence, and of running within
a fixed amount of memory independent of these parameters. We have analyzed the properties of
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(a) One view of a 16-camera light field (b) Random filter for each view (c) Same views after our approach

(d) Output on an automultiscopic display (left to right: input, random filters causing view artifacts, our output).

Figure 3.37: Torture test: We chose a random filter effect for each view (b). The anchor frame
(top left) stabilizes the remaining views. Even with vastly different appearances, our approach
still creates a consistent output (c). When viewed on an automultiscopic display (d), view
inconsistencies cause spatially-varying artifacts which change over views. Our approach removes
them. (‘Treasure’: λt = 0, λs = 10.)

(a) Original frames (b) Matte frames (c) Our result (d) Processed frames (e) Our result
(Shahrian et al. [166])

Figure 3.38: Left: The matting problem (here, Shahrian et al. [166]) (b), produces temporal
artifacts on object boundaries, precisely where the optical flow is unreliable due to occlusions,
which leads to bleeding (c). Right: Some NPR effects, such as the ‘Crystallize’ tool of Adobe
Photoshop, produce temporally inconsistent edges which do not gracefully blend in time (d).
This leads our method to lose the NPR style (e).

our schemes in the Fourier domain and showed that despite its apparent simplicity, it performs
a sophisticated differentiation between high and low frequencies that enables the stabilization
of the video without degrading its content. Our experiments show that our technique performs
significantly better than temporal smoothing and is able to produce high-quality results on a wide
variety of applications independently of their inner workings, thereby helping bring the video
processing toolbox closer to parity with that of images. For computationally expensive image
filters, we have proposed an acceleration strategy that runs the filter only a subset of the data
and then transfers the result to nearby frames and views. Our experiments have demonstrated
that our approach enables a large class of standard filtering operations on media like stereo and
light field videos that are rapidly gaining in popularity.
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3.4 Conclusions on Temporal Consistency

My work on temporal consistency has been progressively built upon, in such a way that I now
consider our blind temporal consistency to completely subsume our previous temporal consistency
approaches tailored for color grading and intrinsic video decomposition. It works very well, it
is fast, and it is easy to implement. Nevertheless, even for static images, our intrinsic video
decomposition technique remains a reasonable solution mostly because the interactive process
allows users to refine the decomposition until it matches their expectations. It hence remains
among the best algorithms we evaluated in our state-of-the-art report [26]. Similarly, our color
grading tool also remains a reasonable approach. I believe this is in part due to the combined
lack of definition for a ground truth color transfer, and the very tolerant human color perception.
Even drastically different color transfer results would perhaps be considered as similarly good.
In contrast, temporal artifacts can be very disturbing, and being able to correct them while still
benefiting from the continuing research and developments in image processing for static images
should be very impactful, and should really push blind approaches. Our blind consistency paper
has yet had a moderate impact in the last 3 years, but I believe it should set the ground for video
filtering research and its impact should likely increase. In the meantime, a convolutional neural
network approach builds upon our work [100] and emphasizes the trend for deep learning that
concluded the first part of this HDR.
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4
Perspectives (English)

My research has focused on two aspects – optimal transport and video processing. I wish
to explore the frontiers of these subjects, and go beyond them. This section details my personal
thoughts on these subjets, and exposes a few paths I want to undertake in the near future, some
of which I already started investigating.

4.1 Optimal Transport

Semi-discrete barycenters

As we have seen in subsection 1.2.2, the semi-discrete optimal transport problem considers a
continuous source measure to be transported towards a (weighted) sum of diracs. The asymmetri-
cal nature of this problem, discrete vs. continuous, seems to make it a bad candidate to generalize
to more than two probability distributions to produce Wasserstein barycenters. Nevertheless, we
have started some preliminary investigations on the problem of using Power Diagrams to define
barycenters between discrete measures approximating continuous measures, by first symmetriz-
ing the problem. This finds applications in mesh interpolation, since it provides intermediate
shapes in a way that is agnostic to the topology of the input meshes (e.g., it becomes possible
to meaningfully interpolate between a sphere and a torus). Interesting difficulties to investigate
also include the locus of discontinuities of the transport map: this is where tearing occur, and
careful handling is necessary. This will be part of the work of a new Ph.D. student we are recruit-
ing as of September 2018, Agathe Herrou, in joint supervision with Bruno Levy (INRIA Nancy
Grand-Est) and Julie Digne (CNRS, LIRIS). Agathe started her investigations as part of her
M.Sc. internship with us. Part of her work will also (or is expected to!) consist in generalizing
the inverse problems we have built on continuous measures via entropy regularized mass transport
to the semi-discrete framework. Her work is funded by a grant from the Agence Nationale de la
Recherche (ANR) called ROOT (RegressiOn with Optimal Transport, for computer graphics and
vision). This ANR also funds a second Ph.D. student, Matthieu Heitz, working inverse problems
within the entropy-regularized framework who I co-supervise with Gabriel Peyré (CNRS, ENS),
Marco Cuturi (ENSAE) and David Coeurjolly (CNRS, LIRIS).

101
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Neural Networks

The popularity of optimal transport is also currently exploding, with much research directed
towards machine learning, even having given rise to whole conferences dedicated to the subject [35].
In particular, neural networks have recently benefited from optimal transport, mostly as a loss
between observed and predicted probability measures, whether with simple restricted Boltzmann
machines [121], Autoencoders [93] or Generative Adversarial Networks [49] (both of which use our
sliced Wasserstein formulation [29]) or other generative networks [73] to name a few. However,
they have, to my knowledge, not used the whole geometry of optimal transport, only as their
loss function. I am currently investigating how deep neural networks could benefit from the
optimal transport geometry via the entropic regularized optimal transport framework, but this
could be envisaged within the sliced Wasserstein framework [29], as this facilitates the handling
of high-dimensional problems1.

Unbalanced Sliced Transport

The unbalanced optimal transport in 1D for measures consisting of non weighted Diracs is
much more complex than the balanced case. This problem shares large similarities with alignments
problems encountered for instance in genomics, and results in algorithms of quadratic complexity
(compared to linear for the balanced case, excluding the sorting of atoms that is needed in both
cases). I am currently developing a fast algorithm, already currently supporting hundreds of
thousands of Diracs in reasonable time.

4.2 Imaging problems

Video-Based Rendering

In the line of multiple-view imaging problems, image-based rendering has been successful in
rendering realistic and geometrically complex scenes by merely performing clever interpolations
and warpings between sparse sets of photographs taken from different viewpoints, possibly using a
limited rough 3d reconstruction of the scene which serves as a proxy [172]. Similar techniques have
seen popular applications such as hyperlapse videos [95], where highly unstable video sequences
(e.g., a long camera motion path captured by someone walking) could be accelerated and stabilized,
or PhotoTourism [173] that proposes visits of popular places largely pictured by the crowd (see
Figure 4.1). Within this context, I believe this is a good time to introduce a possible next step –
that of Video Based Rendering. This generalization of image-based rendering is expected to result
in its own set of temporal consistency issues to be adressed (in particular, for dynamic scenes),
and is the topic of a Ph.D student, Beatrix-Emőke Fülöp-Balogh, I am co-supervising with Julie
Digne.

1During my defense, the jury of my HDR brought up a concern that sliced Wasserstein distances with randomized
slices could suffer from a drop in convergence rate with the dimensionality as the convergence of Monte-Carlo
integration depends on the variance of the integrand which itself here linearly depends on the dimension.
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Figure 4.1: PhotoTourism allows to navigate among largely crowd-sourced photographs of popular
places by clever view interpolation, a process called image-based rendering. See live demo at
http://phototour.cs.washington.edu/

Computer Generated Holography

Upon investigating stabilization problems for multiple views, I worked with light field videos
and other data for passive 3d displays. My curiosity towards passive displays was further aroused
by an excellent Eurographics course on computational holography [112]. I am currently playing
with analog holography, and envision working on computer generated holography in the relatively
near future. This amounts to generalizing the multiple views light field images use to instead
encode the light wave as interference patterns (combinations of light fields and holography have
recently been studied [170]). Realistic and efficient rendering of images for holography remains
an open problem.

http://phototour.cs.washington.edu/
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Perspectives (Français)

Ma recherche s’est focalisée sur deux aspects – le transport optimal et le traitement vidéo. Je
souhaite explorer les frontières de ces sujets, et aller au-delà. Cette section détaille mes réflexions
personnelles sur ces sujets, et expose plusieurs pistes que je souhaite entreprendre dans un futur
proche, dont certaines que j’ai dejq commencé à investiguer.

5.1 Transport Optimal

Barycentres Semi-discrets

Comme nous avons vu en subsection 1.2.2, le transport optimal semi-discret considère une
mesure source continue transportée vers une somme (pondérée) de diracs. La nature asymmétrique
de ce problème, discret vs. continu, semble le rendre un mauvais candidat pour une généralisation
au cas de plus de deux distributions de probabilité pour produire des barycentres de Wasserstein.
Néanmoins, nous avons commencé des investigations préliminaires de ce problème en utilisant des
diagrammes de puissance pour définir un barycentre entre deux mesures discrètes approximant
des mesures continues, en symétrisant d’abord le problème. Cela trouve des applications en inter-
polation de maillages, puisque cela produit des formes intermédiaires d’une manière agnostique à
la topologie des maillages en entrée (par exemple, il devient possible d’interpoler d’une manière
qui ait un sens entre une sphère et un tore). Une difficulté intéressante à investiguer est le lieu
des discontinuités de la fonction de transport: c’est là où se produisent des déchirements, ce qui
peut nécessiter un traitement spécial.

Cela fera partie du travail de la nouvelle doctorante que nous recrutons en Septembre 2018,
Agathe Herrou, en co-supervision avec Bruno Lévy (INRIA Nancy Grand-Est) et Julie Digne
(CNRS, LIRIS). Agathe a commencé ses investigations lors de son stage de Master avec nous.
Une partie de son travail (du moins attendu !) consistera à généraliser les problèmes inverses que
nous avions définis pour des mesures continues via le transport optimal régularisé entropiquement
vers le cadre semi-discret. Son travail est financé par une subvention de l’Agence Nationale de la
Recherche (ANR), appelé ROOT (RegressiOn with Optimal Transport, for computer graphics and
vision). Cette ANR finance par ailleurs un second étudiant en thèse, Matthieu Heitz, qui travaille
sur les problèmes inverses dans le cadre du transport régularisé par l’entropie, que je co-encadre
avec Gabriel Peyré (CNRS, ENS), Marco Cuturi (ENSAE) and David Coeurjolly (CNRS, LIRIS).
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Réseaux de Neurones

La popularité du transport optimal est en train d’exploser, avec beaucoup de recherche dirigée
vers l’apprentissage par ordinateur, ayant même donné lieu à des conférences entières dédiées au
sujet [35]. En particulier, les réseaux de neurones ont bénéficié du transport optimal, surtout en
tant que fonction de perte entre les mesures de probabilités observées et prédites, soit avec de
simples machines de Boltzmann restreintes [121], des autoencoders[93] ou des réseaux antagonistes
génératifs [49] (les deux utilisant notre formulation du transport optimal par tranches [29]) ou
d’autres réseaux génératifs [73] pour en citer quelques-uns. En revanche, à ma connaissance ils
n’ont pas utilisé la géométrie du transport optimal, mais uniquement en tant que fonction perte.
J’investigue actuellement comment les réseaux de neurones profonds pourraient bénéficier de la
géométrie du transport optimal via le cadre du transport optimal régularisé par l’entropie, mais
cela pourrait aussi être envisagé dans le cadre du transport optimal par tranches [29] puisque cela
facilite la gestion de problèmes en haute dimension1.

Transport par tranche non équilibré

Le transport optimal non équilibré en 1D pour des mesures consistant en des diracs non
pondérés est beaucoup plus complexe que dans le cas équilibré. Ce problème partage des simi-
larités avec les problèmes d’alignements rencontrés, par exemple, en génomique, et résulte en des
algorithmes de complexité quadratique (comparé à linéaire pour le cas équilibré, en excluant le
tri des atomes nécessaire dans les deux cas). Je développe actuellement un algorithme rapide,
supportant déjà des centaines de milliers de Diracs en temps raisonnable.

5.2 Problèmes en Imagerie

Rendu Basé Vidéo

Dans la lignée des problèmes d’imagerie multi-vues, le rendu basé images a permis de rendre
des scènes réalistes et géométriquement complexes, simplement en interpolant intelligemment
et déformant une base de données éparse de photos prises depuis différents points de vue, en
utilisant possiblement une reconstruction 3D partielle de la scène qui sert de proxy [172]. Des
techniques similaires ont permis des applications populaires telles que les vidéos hyperlapse [95],
où une séquence vidéo très instable (par exemple, une longue trajectoire de camera capturée par
quelqu’un qui marche) est accélérée et stabilisée, ou le PhotoTourisme [173] qui propose des visites
d’endroits populaires largement pris en photos par la foule (voir Figure 5.1). Dans ce contexte, je
pense qu’il est opportun d’introduire la prochaine étape – celle du rendu basé vidéo. Je m’attends
à ce que cette généralisation du rendu basé image résulte en son propre ensemble de problèmes
de cohérence temporelle à résoudre (en particulier, pour les scènes dynamiques), et est le sujet de
notre étudiante en thèse Beatrix-Emőke Fülöp-Balogh, que je co-encadre avec Julie Digne.

1Lors de ma soutenance, le jury de mon HDR s’est inquiété du fait que le transport optimal par tranches
avec des tranches aléatoires pourrait souffrir d’une baisse du taux de convergence avec la dimensionalité, car la
convergence de l’integration par Monte Carlo dépend de la variance de l’intégrande, qui elle-même dépend ici
linéairement de la dimension.
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Figure 5.1: Le PhotoTourisme permet de naviguer dans une série de photographies capturées par
la foule en interpolant intelligemment les vues, un processus appelé rendu basé images. Voir une
démo à http://phototour.cs.washington.edu/

Holographie Générée par Ordinateur

En investiguant les problèmes de stabilisation multi-vues, j’ai pu travailler avec des vidéos
champs de lumière (light field) et d’autres données pour les écrans 3D passifs. Ma curiosité
vers les écrans passifs a été attisée par un excellent cours à Eurographics sur l’holographie com-
putationnelle [112]. Je m’adonne actuellement à l’holographie analogique, et envisage de tra-
vailler sur l’holographie générée par ordinateur dans un futur relativement proche. Cela corre-
spond à généraliser les images light field multi-vues pour encoder l’onde lumineuse comme figure
d’interférence (des combinaisons de light fields et d’holographie ont récemment été étudiés [170]).
Le rendu d’images de synthèse réalistes et de manière efficace pour l’holographie reste ouvert.

http://phototour.cs.washington.edu/
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