
Noname manuscript No.
(will be inserted by the editor)

Learning to Generate Wasserstein Barycenters

Julien Lacombe · Julie Digne · Nicolas Courty · Nicolas Bonneel

Received: date / Accepted: date

Abstract Optimal transport is a notoriously difficult
problem to solve numerically, with current approaches
often remaining intractable for very large scale appli-
cations such as those encountered in machine learning.
Wasserstein barycenters – the problem of finding mea-
sures in-between given input measures in the optimal
transport sense – is even more computationally demand-
ing as it requires to solve an optimization problem in-
volving optimal transport distances. By training a deep
convolutional neural network, we improve by a factor
of 80 the computational speed of Wasserstein barycen-
ters over the fastest state-of-the-art approach on the
GPU, resulting in milliseconds computational times on
512 × 512 regular grids. We show that our network,
trained on Wasserstein barycenters of pairs of measures,
generalizes well to the problem of finding Wasserstein
barycenters of more than two measures. We demonstrate
the efficiency of our approach for computing barycen-
ters of sketches and transferring colors between multiple
images.

Julien Lacombe
INSA Lyon, Univ. Lyon
Lyon, France
E-mail: jlacombe@protonmail.com

Julie Digne
CNRS, Univ. Lyon
Lyon, France

Nicolas Courty
CNRS, IRISA, Univ. Bretagne Sud
Vannes, France

Nicolas Bonneel
CNRS, Univ. Lyon
Lyon, France

Keywords Wasserstein barycenter · Optimal Trans-
port · Convolutional Neural Network · Color Transfer

1 Introduction

Optimal transport is becoming widespread in machine
learning, but also in computer graphics, vision and many
other disciplines. Its framework allows for comparing
probability distributions, shapes or images, as well as
producing interpolations of these data. As a result, it
has been used in the context of machine learning as a
loss (Frogner et al., 2015; Arjovsky et al., 2017), for
building a manifold for dictionary learning (Schmitz
et al., 2018), clustering (Mi et al., 2018) and metric
learning applications (Heitz et al., 2019), as a way to
sample an embedding (Liutkus et al., 2019) and transfer
learning (Courty et al., 2014), and many other applica-
tions (see Sec. 2.3). However, despite recent progress in
computational optimal transport, in many cases these
applications have remained limited to small datasets due
to the substantial computational cost of optimal trans-
port, in terms of speed, and also memory. Among all
Optimal Transport concepts, Wasserstein Barycenters
are particularly interesting for data analysis. Lacombe
et al. (2018a) use it for persistence diagram analysis.
Feydy et al. (2019a) used Wasserstein barycenters as
a probabilistic atlas of a set of density maps. It can
even help as a greedy approximation for solving PDEs
(Ehrlacher et al., 2020). The goal of our paper is to
provide an efficient way to compute such barycenters.

We tackle the problem of efficiently computing Wasser-
stein barycenters of measures discretized on regular
grids, a setting common to several of these machine
learning applications. Wasserstein barycenters are inter-
polations of two or more probability distributions under

2 Julien Lacombe et al.

optimal transport distances. As such, a common way
to obtain them is to perform a minimization of a func-
tional involving optimal transport distances or transport
plans, which is thus a very costly process. Instead, we
directly predict Wasserstein barycenters by training a
Deep Convolutional Neural Network (DCNN) specific
to this task.

An important challenge behind our work is to build
an architecture that can handle a variable number of
input measures with associated weights without needing
to retrain a specific network. To achieve that, we spec-
ify and adapt an architecture designed for and trained
with two input measures, and show that we can use
this modified network, without retraining, to compute
barycenters of more than two measures. Directly predict-
ing Wasserstein barycenters avoids the need to compute
a Wasserstein embedding (Courty et al., 2017), and our
experiments suggest that this results in better Wasser-
stein barycenters approximations. Our implementation
is publicly available1.

Contributions This paper introduces a method to com-
pute Wasserstein barycenters in milliseconds. It shows
that this can be done by learning Wasserstein barycen-
ters of only two measures on a dataset of random shapes
using a DCNN, and by adapting this DCNN to handle
multiple input measures without retraining. This pro-
posed approach is 80x faster than the fastest state-of-the-
art GPU library, and performs better than Wasserstein
embeddings.

2 Related Work

2.1 Wasserstein distances and approximations

Optimal transport seeks the best way to warp a given
probability measure µ0 to form another given probability
measure µ1 by minimizing the total cost of moving in-
dividual “particles of earth”. We restrict our description
to discrete distributions. In this setting, finding the opti-
mal transport between two probability measures is often
achieved by solving a large linear program (Kantorovich,
1942) – more details on this theory and numerical tools
can be found in the book of Peyré et al. (2019). This
minimization results in the so-called Wasserstein dis-
tance, the mathematical distance defined by the total
cost of reshaping µ0 to µ1. This distance can be used
to compare probability distributions, in particular in a
machine learning context. It also results in a transport
plan, a matrix P (x, y) representing the amount of mass

1 https://github.com/jlacombe/learning-to-generate-
wasserstein-barycenters

of µ0 traveling from location x in µ0 towards location y
in µ1.

However, the Wasserstein distance is notoriously dif-
ficult to compute – the corresponding linear program is
huge, and dedicated solvers typically solve this problem
in O(N3 logN), with N the size of the input measures
discretization. Recently, numerous approaches have at-
tempted to approximate Wasserstein distances. One
of the most efficient methods, the so-called Sinkhorn
algorithm introduces an entropic regularization, allow-
ing to compute such distances by iteratively perform-
ing fast matrix-vector multiplications (Cuturi, 2013)
Adding an entropic regularization simplifies drastically
the structure of the transport problem: the solution
can be computed as the fixed point of Sinkhorn itera-
tions, which simply alternate Bregman projections over
the set of marginal constraints Benamou et al. (2015).
Another possible acceleration is to use convolutions
in the case of regular domains (Solomon et al., 2015).
However, this comes at the expense of smoothing the
transport plan and removing guarantees regarding this
mathematical distance (in particular, the regularized
cost Wϵ(µ0, µ0) ̸= 0). These issues are partly addressed
by Sinkhorn divergences (Feydy et al., 2018; Genevay
et al., 2017). This approach symmetrizes the entropy-
regularized optimal transport distance, adding guaran-
tees on this divergence (now, the cost Sϵ(µ0, µ0) = 0
by construction, although triangular inequality still
does not hold) but also effectively reduces blur, while
maintaining a relatively fast numerical algorithm. They
show that this divergence interpolates between optimal
transport distances and Maximum Mean Discrepancies.
Sinkhorn divergences are implemented in the GeomLoss
library (Feydy, 2019), relying on a specific computa-
tional scheme on the GPU (Feydy et al., 2019b, 2018;
Schmitzer, 2019) and constitutes the state-of-the-art in
term of speed and approximation of optimal transport-
like distances. In general, the amount of entropy added
to the problem constitutes a trade-off between compu-
tational speed, robustness and blur, as lower entropy
induces smaller blur but reduced convergence speed
and increased numerical errors (unless dealt with at
additional computational cost, such as log-domain sta-
bilization techniques (Schmitzer, 2019)).

2.2 Wasserstein barycenters

The Wasserstein barycenter of a set of probability mea-
sures corresponds to the Fréchet mean of these measures
under the Wasserstein distance (i.e., a weighted mean
under the Wasserstein metric). Wasserstein barycen-
ters allow to interpolate between two or more proba-
bility measures by warping these measures (contrarily

https://github.com/jlacombe/learning-to-generate-wasserstein-barycenters
https://github.com/jlacombe/learning-to-generate-wasserstein-barycenters

Learning to Generate Wasserstein Barycenters 3

to Euclidean barycenters that blends them). These in-
terpolations can be computed using different methods,
often considering a regularization term, using subgra-
dients (Cuturi and Doucet, 2014), iterative Bregman
projections (Benamou et al., 2015), or convolutions
(Solomon et al., 2015; Janati et al., 2020). Similarly
to Wasserstein distances, Wasserstein barycenters are
very expensive to compute. An entropy-regularized ap-
proach based on Sinkhorn-like iterations also allows
to efficiently compute blurred Wasserstein barycenters.
Reducing blur via Sinkhorn divergence is also doable.
This can be done by iteratively minimizing a functional
via automatic differentiation tools – a direction taken
by the GeomLoss library (Feydy, 2019) – or by using
iterative projections with a convolutional approach sim-
ilar to Sinkhorn iterations (Janati et al., 2020), though
our experiments suggests the latter approach is signif-
icantly slower at equivalent quality (see Sec. 4.4). In
our approach, we rely on Sinkhorn divergence-based
barycenters to feed training data to a Deep Convolu-
tional Neural Network, and thus aim at speeding up
the generation of approximate Wasserstein barycenters.
Other fast transport-based barycenters include that of
sliced and Radon Wasserstein barycenters, obtained via
Wasserstein barycenters on 1-d projections (Rabin et al.,
2011b; Bonneel et al., 2015), which we compare to.

A recent trend seeks linearizations or Euclidean
embeddings of optimal transport problems. Notably,
Nader and Guennebaud (2018) approximate Wasser-
stein barycenters by first solving an optimal transport
map between a uniform measure towards n input mea-
sures, and then linearly combining Monge maps. This
allows for efficient computations – typically of the order
of half a second for 512x512 images. A similar approach
is taken within the documentation of the GeomLoss
library (Feydy, 2019)2, where a single step of a gradient
descent initialized with a uniform distribution is used,
which effectively corresponds to such linearization. We
use this technique in our work to train our network.
Wang et al. (2013), Moosmüller and Cloninger (2020)
and Mérigot et al. (2020) use a similar linearization,
possibly using a non-uniform reference measure, with
theoretical guarantees on the distorsion introduced by
the embedding. Instead of explicitly building an embed-
ding via Monge maps, such an embedding can be learned.
Courty et al. (2017) propose a siamese neural network
architecture to learn an embedding in which the Eu-
clidean distance approximates the Wasserstein distance.
Wasserstein barycenters can then be approximated by
interpolating within the Euclidean embedding, without
requiring explicit computations of transport plans. They

2 See https://www.kernel-operations.io/geomloss/_auto_
examples/optimal_transport/plot_wasserstein_barycenters_2D.html

show accurate barycenters on a number of datasets of
low resolution (28 × 28). However, in general, it is un-
clear whether Wasserstein metrics embed into Euclidean
spaces. Negative results were shown for 3d optimal trans-
port onto a Euclidean space (Andoni et al., 2016). Inter-
estingly, in the reversed direction, Wasserstein spaces
have been used to embed other metrics (Frogner et al.,
2019).

Fan et al. (2020) propose a model based on input
convex neural networks (ICNN) developed by Amos
et al. (2017) to approximate Wasserstein barycenters
of continuous input measures. Also in the continuous
setting, other neural networks based methods have also
been proposed to compute optimal transport barycen-
ters (Li et al., 2020; Korotin et al., 2021). While these
approaches make it possible to compute the Wasserstein
barycenter when only samples from the input distri-
butions are available, they require several minutes to
obtain a barycenter given samples from two 2D inputs
and are therefore not competitive in terms of runtime
in our setting.

2.3 Applications to machine learning

For its ability to compare probability measures, opti-
mal transport has met an important success in machine
learning. This is particularly the case of Wasserstein
GANs (Arjovsky et al., 2017) that compute a very effi-
cient approximation of Wasserstein distances as a loss
for generative adversarial models. The optimal trans-
port loss has also been used in the context of dictionary
learning (Rolet et al., 2016). Other fast approximations
have allowed to perform domain adaptation for transfer
learning of a classifier, by advecting samples via a com-
puted transport plan (Courty et al., 2014). Among these
approximations, Sliced optimal transport has been used
to sample an embedding learned by an auto-encoder, by
computing a flow between uniformly random samples
and the image of encoded inputs (Liutkus et al., 2019).

Regarding the Wasserstein barycenters we are inter-
ested in, they have been used for the task of learning a
dictionary out of a set of probability measures (Schmitz
et al., 2018), for combining subset posteriors (Srivastava
et al., 2015), for computing Wasserstein barycentric co-
ordinates of probability measures (Bonneel et al., 2016)
or for metric learning (Heitz et al., 2019). These have
been performed by automatic-differentiation of Wasser-
stein barycenters obtained through Sinkhorn iterations
and non-linear optimization, and have thus been limited
to small datasets, both due to speed and memory limita-
tions. An adaptation of k-means clustering for optimal
transport was proposed by Mi et al. (2018) and (Do-
mazakis et al., 2020). Backhoff-Veraguas et al. replaces

https://www.kernel-operations.io/geomloss/_auto_examples/optimal_transport/plot_wasserstein_barycenters_2D.html
https://www.kernel-operations.io/geomloss/_auto_examples/optimal_transport/plot_wasserstein_barycenters_2D.html

4 Julien Lacombe et al.

maximum a posteriori (MAP) estimation or Bayesian
model average, by computing Wasserstein barycenters of
posterior distributions (Backhoff-Veraguas et al., 2018)
using a stochastic gradient descent scheme. In the con-
text of reinforcement learning, Wasserstein barycenters
are used by Metelli et al. (2019) as a way to regular-
ize the update rule and offer robustness to uncertainty.
PCA in the Wasserstein space require the ability to com-
pute Wasserstein barycenters ; they have been studied
by Bigot et al. (2017) but could only be computed in
1-d where theory is simpler. They can be extended to
higher dimensions, by relaxing the definition of geodesics
(Seguy and Cuturi, 2015), with application to 2D images.
In the work of Dognin et al. (2019), Wasserstein barycen-
ters are used for model ensembling , i.e., averaging the
predictions of several models to build a more robust
model. Another application of Wasserstein barycenters
concerns the interpolation of persistence diagrams in
the context of topological data analysis (Lacombe et al.,
2018b).

In this work, we do not focus on a single application
but instead provide the tools to efficiently approximate
Wasserstein barycenters on 2-d regular grids.

3 Learning Wasserstein barycenters

This section describes our neural network and our pro-
posed solution to train it in a scalable way.

3.1 Proposed Model

Our model aims at obtaining approximations of Wasser-
stein barycenters from n ≥ 2 probability measures
{µi}i=1..n discretized on 512 × 512 regular grids, and
their corresponding barycentric weights {λi}i=1..n. Based
on the observation that the Sinkhorn algorithm is mainly
made of successive convolutions, we propose to directly
predict a Wasserstein barycenter through an end-to-end
neural network approach, using a Deep Convolutional
Neural Network (DCNN) architecture.

We propose a network consisting of n contractive
paths {φi}i=1..n and one expansive path ψ (see Fig. 1).
Importantly enough, n is not fixed and can vary at test
time. In fact, the contractive paths are n duplicates of
the same path with the same architecture and sharing
the same weights. The n contractive paths are made
of successive blocks, each block consisting of two con-
volutional layers followed by a ReLU activation. We
further add average pooling layers between each block
in order to decrease the dimensionality. The expansive
path is symetrically constructed, each block also being
made of 2 convolutional layers with ReLU activations.

To better invert average poolings, we use upsampling
layers with nearest-neighbor interpolation. Finally, to
recover an output probability distribution, we use a
softmax activation at the end of the expansive path.
All the 2D convolutions of our model use 3 × 3 kernels
with a stride and a padding equal to 1. The architecture
might look similar to the U-Net architecture introduced
by Ronneberger et al. (2015), because of the nature of
the contractive and expansive paths. However the simi-
larities end here, since our architecture uses a variable
number of contractive paths to handle multiple inputs.
The connections we use from the contractive paths to
the expansive path also highly differ: first, we take all
the feature maps from each contractive path and not
only a part of it as it is done in U-Net, and, second, we
compute a weighted sum of all these activations using
barycentric weights which results in a weighted feature
map which is then symmetrically concatenated to the
corresponding activations in the expansive path. Our
network is deeper than U-Net and we do not use the
same succession of layers nor the same downsampling
and upsampling methods which are respectively max-
pooling and up-convolutions in the case of U-Net. We
also use Instance Normalization (Ulyanov et al., 2016)
which has empirically shown better results than Batch
Normalization for our model. These normalization layers
are placed before each ReLU activation.

The connections going from the contractive paths
to the expansive path are defined as follows: after each
block in a contractive path φi at depth level j, we
take the resulting activations {Fij}i=1..n, compute their
linear combination F ′

j =
∑

i∈n λiFij , and concatenate
it symmetrically to the corresponding activations in the
expansive path (see figure 1). In our architecture we use
6 depth levels, chosen as a speed/quality trade-off (see
Fig. 14 in appendix for additional experiments).

3.2 Training

Our solution allows to generalize a network trained
for computing the barycenter of two measures to an
arbitrary number of input measures while remaining
fast to train.

Variable number of inputs. We expect our network to
produce accurate results without constructing an explicit
embedding whose existence remains uncertain (Andoni
et al., 2008). However, a Euclidean embedding trivially
generalizes to an arbitrary number of input measures. A
key insight to our work is that, since contractive paths
weights are shared, our network can be trained using
only two contractive paths for the task of predicting
Wasserstein barycenters of two probability measures.

Learning to Generate Wasserstein Barycenters 5

Conv+InstanceNorm+ReLU
Downsampling Upsampling

2D
 in

pu
t

n°

i1

Softmax

(1) (2) (3) (5) (6)

132

64

128

256
512 512

51
2x

51
2

Pr
ed

ic
te

d
B
ar

yc
en

te
r

1

128
256512512

51
2x

51
2

1

Contractive path φi (xn) Expansive path Ψ

(4)
Depth
 Level (1)(2)(3)(5)(6) (4)

Conv+InstanceNorm+ReLU

32

64

2D
 in

pu
t

n°

i0

132

64

128

256
512 512

51
2x

51
2

512 512
∑

Features concatenation

256 256 256

128128

6464

32 32

∑

∑λiFij∑ :
i

∑

{

{ {

{

∑
∑

{

∑

{

Fig. 1 Our model is divided into n contractive paths φi, sharing the same architecture and weights, and one expansive path ψ.
Blue rectangles represent feature maps and arrows denote the different operations we use (see legend). We train our network with
n = 2 as illustrated here, but by duplicating the contractive paths, we can adapt to the n measures barycenter problem at test
time, without needing to retrain the network.

Once trained, contractive paths can be duplicated to
the desired number of input measures. In practice, we
found this procedure to yield accurate barycenters (see
Sec. 4).

Loss function. Training the network requires comparing
the predicted Wasserstein barycenter to a groundtruth
Wasserstein barycenter. Ideally, such comparison should
be performed via an optimal transport cost – those
are ideal to compare probability distributions. However,
computing optimal transport costs on large training
datasets would be intractable. Instead, we resort to
a Kullback-Leibler divergence between the output dis-
tribution and the desired barycenter. KL divergence
enforces that mass should be present wherever the
groundtruth barycenter is nonzero (otherwise it causes
an extreme cost), but there can be mass at places where
the groundtruth barycenter is zero. It thus favors some
one-way consistency of the mass support, which can be
useful for line drawings. We also experimented with a
sliced Wasserstein loss, and it yielded poor numerical
results, with important visual artifacts.

Optimizer. To optimize the model parameters, we use a
stochastic gradient descent with warm restarts (SGDR)
(Loshchilov and Hutter, 2016). The exact learning rate
schedule we used for our models is shown in appendix
A, Fig. 12.

Training data. We strive to train our network with
datasets that would cover a wide range of input sketches.
To achieve this, we built a dataset made of 100k pairs of
512 × 512 random shape contours with random barycen-
tric weights and their corresponding 2D Wasserstein
barycenter. This dataset is itself divided into 3 distinct
sets: a training set (80k shapes), a validation set (10k
shapes) and a test set (10k shapes). Thereafter we call
this dataset ContoursDS. The 2D shapes are generated
in a Constructive Solid Geometry fashion: we randomly
assemble primitives shapes using logical operators and
detect contours in post-processing. A primitive corre-
sponds to a filled ellipse, triangle, rectangle or a line. We
assemble these primitives together by using the classical
boolean operators OR, AND, XOR, NOT. To generate
a shape, we initialize it with a random primitive. Then
we combine it with another random primitive using a
randomly chosen operator, and repeat this operation
d times (0 ≤ d ≤ 50) where d follows the probability
distribution d ∼ 1

3 (U(0, 50) + N (0, 2.5) + N (50, 2.5))
which promotes simple (d close to 0) and complex (d
close to 50) shapes. Finally, we apply a Sobel filter to
create contours. We thus create 10k random 2D shapes
from which we build 100k Wasserstein barycenters.

We then use the GeomLoss library (Feydy, 2019) to
build good approximations of Wasserstein barycenters
in a reasonable time, with random pairs of inputs sam-
pled from the set of generated shape contours. Given

6 Julien Lacombe et al.

two 2D input distributions µ1 and µ2 with their cor-
responding barycentric weights λ1 and λ2 = 1 − λ1,
their barycenter b∗ can be found by minimizing: b∗ =
arg minb λ1Sϵ(b, µ1) + λ2Sϵ(b, µ2) where Sϵ corresponds
to the Sinkhorn divergence with quadratic ground met-
ric, and ϵ the regularization parameter (we use ϵ =
1e−4). We use a Lagrangian gradient descent scheme
that first samples the distributions as b =

∑N
j=1 bjδxj

and then performs a gradient descent using x
(k+1)
j =

x
(k)
j + λ1v

µ1
j + λ2v

µ2
j where vµi

j is the displacement vec-
tor. This vector is computed as the gradient of the
Sinkhorn divergence with squared ℓ2 as the ground
cost function between points: vµi

j = − 1
bj

∇xjSϵ(b, µi).
These successive updates can be computationally ex-
pensive when inputs are large. GeomLoss operates in
the log domain for numerical stability, which prevents
efficient vectorized separable convolution. However, it
implements many other optimizations (GPU, multiscale,
kernel truncation) which makes it one of the fastest
library available. To speed up computations, we use a
linearized approach that performs a single descent step,
starting from a uniform distribution. In practice, this al-
lows to precompute one optimal transport map between
a uniform distribution and each of the input measures
in the database, and obtain approximate Wasserstein
barycenters by using a weighted average of these trans-
port maps. Since the training dataset needs only to be
generated once, it might be tempting to use more than
one iteration. However this would lead to an unreason-
able computation time increase. If we want to generate
N 2-way barycenters of M shapes, our approach requires
M×gradient step+N×combination (combinations are
trivial in practice), while, if we use K gradient steps,
it would require N ×K × 2. In our case M = 10k and
N = 80k, which means that going from 1 step to even
two steps (K = 2) would multiply the computation
time by 32. It has also been shown that the quality of
barycenters is only marginally improved by adding more
iterations (Feydy, 2020).

While it is quite obvious that our model trained with
an application-specific dataset will produce the best re-
sults for this application, our model trained exclusively
on ContoursDS achieves results that are close enough
and which can be in practice sufficient for the appli-
cations we consider. Figure 9 demonstrates this in the
context of color transfer. Interpolated color histograms
are clearly best predicted by our model trained with
the application-specific dataset; however the final color
transfer results are very similar to the ones obtained
using the histograms predicted by our model trained on
ContourDS.

In
p

u
t

1

λ1 = 0.4382 λ1 = 0.5863 λ1 = 0.4586 λ1 = 0.6573

In
p

u
t

2

λ2 = 0.5618 λ2 = 0.4137 λ2 = 0.5414 λ2 = 0.3427

G
eo

m
L

os
s

O
u

r
M

o
d

el
L

P
C

on
v

.
D

eb
ia

se
d

R
ad

on

Fig. 2 We illustrate 4 typical results, and comparisons to Ge-
omLoss (Feydy, 2019), a linear program (LP) via a network
simplex (Bonneel et al., 2011), regularized convolutional (Conv.)
barycenters (Solomon et al., 2015) with a regularization param-
eter of 10−3, regularized debiased barycenters (Janati et al.,
2020) also with a regularization parameter of 10−3 and Radon
barycenters (Bonneel et al., 2015). The parameter used for reg-
ularized methods is the smallest regularization we found that
did not introduce numerical instabilities.

4 Experimental Results

While our model is exclusively trained on our synthetic
ContoursDS dataset, at test time we also consider three
additional datasets : the Quick, Draw! dataset from
Google (2020), the Coil20 dataset (Nane et al., 1996)
and HistoDS, a dataset of chrominance histograms. The
Quick, Draw! dataset contains 50 million grayscale draw-
ings divided in multiple classes and has been created by
asking users to draw with a mouse a given object in a
limited time. The Coil20 is made of images of 20 objects
rotating on a black background and contains 72 images
per object for a total of 1440 images. We rasterized
these two datasets to 512 × 512 images. Finally, His-
toDS contains 100k 512 × 512 chrominance histograms
extracted from 10350 Flickr3 images of various content

3 https://www.flickr.com/

https://www.flickr.com/

Learning to Generate Wasserstein Barycenters 7

and sizes obtained using the Flickr API. Our method
was implemented in PyTorch (Paszke et al., 2019), and
uses Matplotlib for visualization (Hunter, 2007).

4.1 Two-way interpolation results

In Fig. 2, we show a visual comparison between barycen-
ters obtained with Geomloss and our method. Wassertein
barycenters are taken from the test dataset and the cor-
responding predictions are shown. We also compare
these results to classical approaches (linear program,
regularized barycenters) and to another approximation
method known as Radon barycenters (Bonneel et al.,
2015).

To further visually assess that the barycenters we
are approximating are close to the exact ones, we also
present a comparison with the method of Claici et al.
(2018) in Fig. 3. The number of points for Claici et al.’s
method is low, which makes the comparison hard, but
computing even this small number of points required 37
hours of computation, and adding more points would
have been untractable in practice. Input distributions
are taken from the Quick, Draw! dataset.

We also qualitatively validate the equivariance of
our network under translation, rotation and scaling of
the input measures in appendix B.

Inputs GeomLoss Our Model

Fig. 3 We superimpose the centroids (λ1 = λ2 = 0.5) found
by the method of Claici et al. (2018) (in red) using 100 Dirac
masses over the ones computed by GeomLoss and by our model,
on images from the Quick, Draw! dataset. The solution of Claici
et al. (2018) was found within 37 hours of computation

We compare our method with the Deep Wasserstein
Embedding (DWE) model developed by Courty et al.
(2017) on Quick, Draw! images. We propose two versions
of DWE. The first version relies on the exact original
architecture which can only process 28 × 28 images, re-
trained on a downsampled version of our shape contours

dataset – see Fig. 5 for this comparison. In the second
version, we adapt their network to process 512 × 512
inputs. The encoder and decoder of this second version
have the same architecture as the contractive and ex-
pansive paths that we use in our model without our
skip connections, but is used to compute the embedding
rather than directly predicting barycenters – see Fig. 6.
The main difference between our method and DWE,
besides layer sizes, lies in our n-way generalization and
the skip connections in our approach. This has radical
consequences: our method does not compute an em-
bedding of the shapes. DWE has thus theoretically a
larger scope, since it can compute barycenters directly
by exploiting the embedding. However the barycenter
quality is much lower from both numerical (Fig. 4) and
visual (Figs 5, 6) points of view.

In Fig.4, we show a numerical comparison of approx-
imation errors between our model and DWE adapted
to 512 × 512 images of our shape contours dataset, in
terms of KL-divergence and L1 distance. Our results
clearly show that our method is able to approximate
more accurately the Wasserstein barycenter on 512×512
input measures.

Finally, we evaluate how our network generalizes on
very different data using the Coil20 dataset (Nane et al.,
1996) that consists of grayscale photographs of objects
on a black background (Fig. 7). Results are of limited
quality, which indicates that for some applications re-
training on a case-specific dataset might be better.

4.2 N-way barycenters

Even if our model has been trained using only barycen-
ters computed from pairs of inputs, we can apply it to
predict barycenters of more than two measures. This sec-
tion illustrates N-way barycenters on 2-d sketch images
and color distributions.

Sketch interpolation. We display interpolations between
respectively three and five input measures in Fig.8,
which surprisingly tends to show that our model can
generalize what it learned on pairs of inputs, at least
partially. Additional results on Quick, Draw! are also
shown in appendix C, Fig. 15. A 100-way barycenter
comparison can be found in appendix Sec. C, Fig. 16.

Numerically when the number of inputs is greater
than 2, our model also achieve to find better approxi-
mations than the ones obtained with DWE, as shown
in Fig. 4.

Interpolating color distributions. We also propose color
transfer between images as another application of our

8 Julien Lacombe et al.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Ours

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

DW
E

KL divergence

2
3
5
10

0 1 2 3 4 5 6 7 8
Ours 1e 6

0

1

2

3

4

5

6

7

8

DW
E

1e 6 l1

2
3
5
10

0.0 0.1 0.2 0.3 0.4 0.5
Ours

0.0

0.1

0.2

0.3

0.4

0.5

DW
E

MMD

2
3
5
10

Fig. 4 Approximation error of our model compared to the ones of DWE (version adapted to handle 512 × 512 images), respectively
measured in terms of KL-Divergence, L1 distance, and Maximum Mean Discrepancy (MMD) (c), on images coming from our
synthetic test dataset. Each point corresponds to a barycenter. The x-axis represents the error measured between the GeomLoss
barycenter and the barycenter predicted by our model while the y-axis represents the one between the GeomLoss barycenter and
the barycenter predicted by DWE. The color of a point associated to a barycenter represents its number of inputs (2,3,5 or 10).

G
eo

m
L

os
s

O
u

rs
D

W
E

G
eo

m
L

os
s

O
u

r
M

o
d

el
D

W
E

Fig. 5 Interpolations between two 28 × 28 images from the
Quick, Draw! dataset using Geomloss, our model and the original
Deep Wasserstein Embedding (DWE) method from (Courty
et al., 2017). Our model directly considers 512 × 512 inputs and
its results are downsampled from 512 × 512 to 28 × 28

method in the n-way case, as performed in the litera-
ture (Solomon et al., 2015; Bonneel et al., 2015). More
particularly here we focus on a color grading application:
given n images, we are interested in the weighted inter-
polation of their color histograms. Then we alter the
color histogram of a target image so that it matches the
interpolated histogram in order to transfer colors. Based
on recommendations by Reinhard and Pouli (2011),
we consider images in the CIE-Lab space and we per-
form the transfer by modifying the luminance and the
chrominance channels independently. While the trans-
fer of luminance only requires 1D optimal transport
plan, chrominance has 2 dimensions. In order to trans-

G
eo

m
L

os
s

O
u

rs
D

W
E

G
eo

m
L

os
s

O
u

r
M

o
d

el
D

W
E

Fig. 6 Interpolations between two 512 × 512 images from the
Quick, Draw! dataset using Geomloss, our model and the Deep
Wasserstein Embedding (DWE) method from (Courty et al.,
2017) adapted to handle 512 × 512 images

fer it, we follow the procedure detailed in (Solomon
et al., 2015): we first compute the n 2D chrominance
histograms {µi}i=1..n and also ν, that of the target im-
age. These histograms are stored as 512 × 512 images.
We then interpolate the {µi}i=1..n using our model in
order to obtain their barycenter µ̂ for given weights.
Color transfer requires an explicit knowledge of the
transport plan π between ν and µ̂. In our method, π
is computed using the OT solver GeomLoss to retrieve
the dual potentials f and g which are combined yielding
π = exp 1

ϵ (f + g − C) · ν ⊗ µ̂ where C corresponds to
the cost matrix and with ϵ2 = 5.10−2. Note that for
this part we do not use Sinkhorn divergences and we

Learning to Generate Wasserstein Barycenters 9

Input 1 λ1 = 0.8 λ1 = 0.6 λ1 = 0.4 λ1 = 0.2 Input 2

G
eo

m
L

os
s

O
ur

s
G

eo
m

L
os

s
O

ur
s

Fig. 7 Interpolations between two 512 × 512 images from the
Coil20 dataset (Nane et al., 1996) using GeomLoss and our
model trained with synthetic shape contours. For visualization
purposes, white values represent high mass concentration, while
dark values represent low mass concentration. The second in-
terpolation in particular shows a failure case of our model due
to our training images being significantly different from these
images.

instead consider the regularized OT problem in order
to retrieve f and g. This transport plan π is used to
retrieve the chrominance T associated with the target
image: T (i) = 1

ν(i)
∑

j∈M πijj where i, j ∈ M the set of
all the possible discretized chrominance values.

After this color transfer step, similarly to (Bonneel
et al., 2015), we apply a post-processing technique from
(Rabin et al., 2011a) using iterative guided filtering in
order to reduce visual artefacts caused by the color trans-
fer. We repeat this color transfer for each image shown
in each of the pentagons of figure 9 (last column). This
figure presents a comparison of barycenter and color
transfer results obtained with GeomLoss, our model
trained on synthetic shape contours (ContoursDS) and
our model directly trained with chrominance histograms
extracted from images from the Flickr dataset (His-
toDS). Even if predicted chrominance histograms are
clearly better with HistoDS, the predictions made with
ContoursDS are good enough to obtain a consistent
and visually pleasing color transfer which is close to the
one obtained using GeomLoss. Additional results are
provided in appendix C, figure 18.

4.3 Embedding analysis

The connections between layers in the contractive paths
and expansive path prevent our network to explicitly pro-
vide an embedding. However, one can still analyze the in-
nermost layer and interpret it as an embedding by remov-

In
p

u
ts

G
L

(3
)

O
u

rs
(3

)
G

L
(5

)
O

u
rs

(5
)

Fig. 8 Wasserstein barycenters of three inputs (top rows) and
five inputs (bottom rows) from Quick, Draw!, respectively com-
puted with GeomLoss (GL) and with our model trained with only
pairs from our synthetic training dataset. Barycentric weights
are randomly chosen

ing these connections once the network has been trained.
We provide a visualization of a 2d UMap McInnes et al.
(2018) embedding of the innermost layer activations of
200 QuickDraw Google (2020) shapes (20 drawings each
from 10 randomly chosen classes: angel, bat, campfire,
flower, knee, octopus, parachute, pear, pencil, power
outlet) in Fig. 10. Even though important network con-
nections have been removed, similar shapes still roughly
cluster.

4.4 Speed

In order to assess computational times, we obtain aver-
age running time over 1000 barycenter computations –
on average, our model on GPU predicts barycenters of
two images in 0.0070 seconds. We compare the average
speed of our model with GeomLoss, also on GPU, in
two different settings. The first one considers the full
512 × 512 images – GeomLoss computes such barycen-
ters in 1.58 seconds. The second setting takes advantage
of the sparsity of our images and only uses the 2D coor-
dinates of the points with non-zero mass – in this case,
GeomLoss computes barycenters in 0.61 seconds. Our
method provides nearly 87× speedup compared with
this last approach. In comparison, an exact barycenter
computation of two (sparse) measures using the C++
implementation of Bonneel et al. (2011) based on a
network simplex ranges from 4 to 80 seconds for typical
shape contours images that contains few thousands of
pixels carrying mass. The time required to compute
barycenters using the implementation of (Claici et al.,
2018) depends on the number of iterations, in our set-

10 Julien Lacombe et al.

ν µ1 µ2 µ3 µ4 µ5
G

eo
m

Lo
ss

C
on

to
ur

sD
S

H
is

to
D

S

Fig. 9 Color grading obtained by transferring the colors of n = 5 images onto a target image. Results are shown in pentagons (Left:
interpolated chrominance histograms; Right: corresponding transfer results). The images corresponding to the target chrominance
histogram ν and to the histograms µi - which are interpolated to obtain a barycenter - are shown in top row. Each µi corresponds
to a vertex of the pentagon in a clockwise order beginning with i = 1 at the uppermost vertex. Each row presents the results for a
different method, from top to bottom: GeomLoss, our model trained on synthetic shape contours (ContoursDS) and our model
trained on chrominance histograms from Flickr images (HistoDS)

ting 100 iterations with the inputs shown in figure 3 require 37 hours while 50 iterations are achieved in 14

Learning to Generate Wasserstein Barycenters 11

Fig. 10 UMap representation of the activation of the inner-
most layer for 20 drawings of 10 classes of the QuickDraw
dataset Google (2020).

hours. The convolutional method of Solomon et al.
(2015) applied to our setting needs 4.7s on average with
a standard deviation of 2.7s and the debiased approach
(Janati et al., 2020) requires 41s on average (median of
28s) with a standard deviation of 40s. Note that the
runtimes associated to these last two methods - relying
on a PyTorch implementation on GPU - depend on the
value of the regularization parameter and on the conver-
gence criterion which we set to the values leading to the
visually sharpest barycenters with no numerical insta-
bilities. The convergence criterion we use corresponds
to the same used in (Janati et al., 2020), namely the
maximum relative change of the barycenters, set to 10−6

for debiased barycenters and to 10−8 for convolutional
ones. Finally a 512 × 512 Radon barycenter (Bonneel
et al., 2015) relying on a MatLab implementation re-
quires 0.53s on average for 720 projection directions,
but remains far from the expected barycenter. These
runtimes were measured with a CPU Intel(R) Core(TM)
i9-10900X CPU @ 3.70GHz and a NVIDIA GPU Geforce
GTX 1660.

5 Discussion and conclusion

While our method produces good approximations of
Wasserstein barycenters of n inputs, some shapes are
surprisingly difficult to handle. The barycenter of simple
translated and scaled shapes such as lines or ellipses
should theoretically also be lines or ellipses, but are fail-
ure cases for our model (Fig. 11), while more complex
shapes are well handled (Fig. 8). In addition, we rely
on a linearized barycenter to train our network (Nader
and Guennebaud, 2018; Wang et al., 2013; Moosmüller
and Cloninger, 2020; Mérigot et al., 2020), which in-
curs some error. This can be seen in appendix Sec. D,

G
eo

m
L

os
s

O
u

rs

2-circles 2-lines 5-circles 5-lines

Fig. 11 Wasserstein barycenters of sets of lines or ellipses
should result in lines (resp. ellipses). Our prediction for two-way
barycenters (here, with equal weights) of such shapes remains
correct (left). However, the predicted barycenter is highly dis-
torted for 5-way barycenters of simple shapes (right) although
it remains plausible for more complex shapes (see Fig. 8)

Fig. 19. While using more iterations of gradient descent
yields more accurate results and removes this linear-
ity, it also prevents easy combination and makes the
dataset generation intractable. Nevertheless, in many
cases our DCNN is able to synthesize a barycenter from
an arbitrary number of inputs. The main strength of
our approach lies in its capacity to be trained from only
2-inputs barycenters examples and to generalize to any
number of inputs. We showed that the results exceeded
the ones obtained by explicit Wasserstein Embedding
computation while having a very low computation time.
Hence, while it is not aimed at computing exact barycen-
ters, it sets a new milestone for fast and approximate
computation. We hope our fast approach will accelerate
the adoption of optimal transport in machine learning
applications.

Acknowledgements This work was granted access to the
HPC resources of IDRIS under the allocations 2020-
AD011011538 and 2020-AD011012218 made by GENCI.
We also thank the authors of all the images used in our
color transfer figures.

Funding Partial financial support was received from
the ANR ROOT (RegressiOn with Optimal Transport):
ANR-16-CE23-0009 and ANR AI chair OTTOPIA under
reference ANR-20-CHIA-0030

Conflicts of interest / Competing interests. The authors
have no conflicts of interest to declare that are relevant
to the content of this article.

Code availability Our implementation is publicly avail-
able at https://github.com/jlacombe/learning-to-
generate-wasserstein-barycenters

https://github.com/jlacombe/learning-to-generate-wasserstein-barycenters
https://github.com/jlacombe/learning-to-generate-wasserstein-barycenters

12 Julien Lacombe et al.

References

Amos B, Xu L, Kolter JZ (2017) Input convex neural
networks. In: International Conference on Machine
Learning, pp 146–155

Andoni A, Indyk P, Krauthgamer R (2008) Earth mover
distance over high-dimensional spaces. In: SODA,
vol 8, pp 343–352

Andoni A, Naor A, Neiman O (2016) Impossibility
of sketching of the 3d transportation metric with
quadratic cost. In: 43rd International Colloquium on
Automata, Languages, and Programming (ICALP
2016), Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein
gan. 1701.07875

Backhoff-Veraguas J, Fontbona J, Rios G, Tobar F
(2018) Bayesian learning with wasserstein barycenters.
arXiv preprint arXiv:180510833

Benamou JD, Carlier G, Cuturi M, Nenna L, Peyré G
(2015) Iterative bregman projections for regularized
transportation problems. SIAM Journal on Scientific
Computing 37(2):A1111–A1138

Bigot J, Gouet R, Klein T, López A, et al. (2017)
Geodesic pca in the wasserstein space by convex pca.
In: Annales de l’Institut Henri Poincaré, Probabilités
et Statistiques, Institut Henri Poincaré, vol 53, pp
1–26

Bonneel N, van de Panne M, Paris S, Heidrich W
(2011) Displacement Interpolation Using Lagrangian
Mass Transport. ACM Transactions on Graphics (SIG-
GRAPH ASIA 2011) 30(6)

Bonneel N, Rabin J, Peyré G, Pfister H (2015) Sliced and
radon wasserstein barycenters of measures. Journal
of Mathematical Imaging and Vision 51(1):22–45

Bonneel N, Peyré G, Cuturi M (2016) Wasserstein
Barycentric Coordinates: Histogram Regression Using
Optimal Transport. ACM Transactions on Graphics
(SIGGRAPH 2016) 35(4)

Claici S, Chien E, Solomon J (2018) Stochastic wasser-
stein barycenters. arXiv preprint arXiv:180205757

Courty N, Flamary R, Tuia D (2014) Domain adaptation
with regularized optimal transport. In: Joint Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, pp 274–289

Courty N, Flamary R, Ducoffe M (2017) Learn-
ing wasserstein embeddings. arXiv preprint
arXiv:171007457

Cuturi M (2013) Sinkhorn distances: Lightspeed com-
putation of optimal transport. In: Advances in neural
information processing systems, pp 2292–2300

Cuturi M, Doucet A (2014) Fast computation of wasser-
stein barycenters. In: International conference on ma-

chine learning, PMLR, pp 685–693
Dognin P, Melnyk I, Mroueh Y, Ross J, Santos CD,

Sercu T (2019) Wasserstein barycenter model ensem-
bling. arXiv preprint arXiv:190204999

Domazakis G, Drivaliaris D, Koukoulas S, Papayiannis
G, Tsekrekos A, Yannacopoulos A (2020) Clustering
measure-valued data with wasserstein barycenters.
arXiv preprint arXiv:191211801

Ehrlacher V, Lombardi D, Mula O, Vialard FX (2020)
Nonlinear model reduction on metric spaces. Ap-
plication to one-dimensional conservative PDEs in
Wasserstein spaces. ESAIM: Mathematical Modelling
and Numerical Analysis DOI 10.1051/m2an/2020013,
URL https://hal.inria.fr/hal-02290431

Fan J, Taghvaei A, Chen Y (2020) Scalable computations
of wasserstein barycenter via input convex neural
networks. arXiv preprint arXiv:200704462

Feydy J (2019) Geometric loss functions between sam-
pled measures, images and volumes. URL https:
//www.kernel-operations.io/geomloss/

Feydy J (2020) Geometric data analysis, beyond convo-
lutions. Theses, Université Paris-Saclay, URL https:
//tel.archives-ouvertes.fr/tel-02945979

Feydy J, Séjourné T, Vialard FX, Amari SI, Trouvé
A, Peyré G (2018) Interpolating between optimal
transport and mmd using sinkhorn divergences. arXiv
preprint arXiv:181008278

Feydy J, Roussillon P, Trouvé A, Gori P (2019a) Fast
and Scalable Optimal Transport for Brain Trac-
tograms. In: MICCAI 2019, Shenzhen, China, URL
https://hal.telecom-paris.fr/hal-02264177

Feydy J, Roussillon P, Trouvé A, Gori P (2019b) Fast
and scalable optimal transport for brain tractograms.
In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, Springer,
pp 636–644

Frogner C, Zhang C, Mobahi H, Araya-Polo M, Poggio T
(2015) Learning with a wasserstein loss. arXiv preprint
arXiv:150605439

Frogner C, Mirzazadeh F, Solomon J (2019) Learning
embeddings into entropic wasserstein spaces. arXiv
preprint arXiv:190503329

Genevay A, Peyré G, Cuturi M (2017) Learning genera-
tive models with sinkhorn divergences. arXiv preprint
arXiv:170600292

Google I (2020) The quick, draw! dataset. URL https:
//github.com/googlecreativelab/quickdraw-
dataset

Heitz M, Bonneel N, Coeurjolly D, Cuturi M, Peyré G
(2019) Ground Metric Learning on Graphs. Tech. Rep.
arXiv:1911.03117

Hunter JD (2007) Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering 9(3):90–

1701.07875
https://hal.inria.fr/hal-02290431
https://www.kernel-operations.io/geomloss/
https://www.kernel-operations.io/geomloss/
https://tel.archives-ouvertes.fr/tel-02945979
https://tel.archives-ouvertes.fr/tel-02945979
https://hal.telecom-paris.fr/hal-02264177
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset

Learning to Generate Wasserstein Barycenters 13

95, DOI 10.1109/MCSE.2007.55
Janati H, Cuturi M, Gramfort A (2020) Debiased

sinkhorn barycenters. In: International Conference
on Machine Learning, PMLR, pp 4692–4701

Kantorovich L (1942) On the transfer of masses (in
russian). In: Doklady Akademii Nauk, vol 37, pp 227–
229

Korotin A, Li L, Solomon J, Burnaev E (2021) Continu-
ous wasserstein-2 barycenter estimation without min-
imax optimization. arXiv preprint arXiv:210201752

Lacombe T, Cuturi M, OUDOT S (2018a) Large scale
computation of means and clusters for persistence
diagrams using optimal transport. In: Bengio S,
Wallach H, Larochelle H, Grauman K, Cesa-Bianchi
N, Garnett R (eds) Advances in Neural Information
Processing Systems, Curran Associates, Inc., vol 31,
URL https://proceedings.neurips.cc/paper/
2018/file/b58f7d184743106a8a66028b7a28937c-
Paper.pdf

Lacombe T, Cuturi M, Oudot S (2018b) Large scale
computation of means and clusters for persistence
diagrams using optimal transport. arXiv preprint
arXiv:180508331

Li L, Genevay A, Yurochkin M, Solomon J (2020) Con-
tinuous regularized wasserstein barycenters. arXiv
preprint arXiv:200812534

Liutkus A, Simsekli U, Majewski S, Durmus A, Stöter
FR (2019) Sliced-wasserstein flows: Nonparametric
generative modeling via optimal transport and diffu-
sions. In: International Conference on Machine Learn-
ing, PMLR, pp 4104–4113

Loshchilov I, Hutter F (2016) Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:160803983

McInnes L, Healy J, Melville J (2018) Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:180203426

Mérigot Q, Delalande A, Chazal F (2020) Quantitative
stability of optimal transport maps and linearization
of the 2-wasserstein space. Proceedings of Machine
Learning Research, vol 108, pp 3186–3196

Metelli AM, Likmeta A, Restelli M (2019) Propagating
uncertainty in reinforcement learning via wasserstein
barycenters. In: Advances in Neural Information Pro-
cessing Systems, pp 4333–4345

Mi L, Zhang W, Gu X, Wang Y (2018) Variational
Wasserstein clustering. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp
322–337

Moosmüller C, Cloninger A (2020) Linear optimal trans-
port embedding: Provable fast wasserstein distance
computation and classification for nonlinear problems.
2008.09165

Nader G, Guennebaud G (2018) Instant transport maps
on 2d grids. ACM Trans Graph 37(6)

Nane S, Nayar S, Murase H (1996) Columbia object
image library: Coil-20. Dept Comp Sci, Columbia
University, New York, Tech Rep

Paszke A, Gross S, Massa F, Lerer A, Bradbury J,
Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
Desmaison A, Kopf A, Yang E, DeVito Z, Raison M,
Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai
J, Chintala S (2019) Pytorch: An imperative style,
high-performance deep learning library. In: Wallach
H, Larochelle H, Beygelzimer A, d'Alché-Buc F, Fox
E, Garnett R (eds) Advances in Neural Information
Processing Systems 32, Curran Associates, Inc.,
pp 8024–8035, URL http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Peyré G, Cuturi M, et al. (2019) Computational opti-
mal transport. Foundations and Trends® in Machine
Learning 11(5-6):355–607

Rabin J, Delon J, Gousseau Y (2011a) Removing arte-
facts from color and contrast modifications. IEEE
Transactions on Image Processing 20(11):3073–3085

Rabin J, Peyré G, Delon J, Bernot M (2011b) Wasser-
stein barycenter and its application to texture mixing.
In: International Conference on Scale Space and Vari-
ational Methods in Computer Vision, Springer, pp
435–446

Reinhard E, Pouli T (2011) Colour spaces for colour
transfer. In: International Workshop on Computa-
tional Color Imaging, Springer, pp 1–15

Rolet A, Cuturi M, Peyré G (2016) Fast dictionary learn-
ing with a smoothed wasserstein loss. In: Artificial
Intelligence and Statistics, pp 630–638

Ronneberger O, Fischer P, Brox T (2015) U-net: Convo-
lutional networks for biomedical image segmentation.
In: International Conference on Medical image com-
puting and computer-assisted intervention, Springer,
pp 234–241

Schmitz MA, Heitz M, Bonneel N, Mboula FMN, Coeur-
jolly D, Cuturi M, Peyré G, Starck JL (2018) Wasser-
stein dictionary learning: Optimal transport-based
unsupervised non-linear dictionary learning. SIAM
Journal on Imaging Sciences 11(1)

Schmitzer B (2019) Stabilized sparse scaling algorithms
for entropy regularized transport problems. SIAM
Journal on Scientific Computing 41(3):A1443–A1481

Seguy V, Cuturi M (2015) Principal geodesic analysis
for probability measures under the optimal transport
metric. In: Cortes C, Lawrence N, Lee D, Sugiyama
M, Garnett R (eds) Advances in Neural Information
Processing Systems, Curran Associates, Inc., vol 28,
URL https://proceedings.neurips.cc/paper/

https://proceedings.neurips.cc/paper/2018/file/b58f7d184743106a8a66028b7a28937c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/b58f7d184743106a8a66028b7a28937c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/b58f7d184743106a8a66028b7a28937c-Paper.pdf
2008.09165
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2015/file/f26dab9bf6a137c3b6782e562794c2f2-Paper.pdf

14 Julien Lacombe et al.

2015/file/f26dab9bf6a137c3b6782e562794c2f2-
Paper.pdf

Solomon J, De Goes F, Peyré G, Cuturi M, Butscher
A, Nguyen A, Du T, Guibas L (2015) Convolutional
wasserstein distances: Efficient optimal transporta-
tion on geometric domains. ACM Transactions on
Graphics (TOG) 34(4):1–11

Srivastava S, Cevher V, Dinh Q, Dunson D (2015) Wasp:
Scalable bayes via barycenters of subset posteriors.
In: Artificial Intelligence and Statistics, PMLR, pp
912–920

Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance nor-
malization: The missing ingredient for fast stylization.
arXiv preprint arXiv:160708022

Wang W, Slepčev D, Basu S, Ozolek JA, Rohde GK
(2013) A linear optimal transportation framework for
quantifying and visualizing variations in sets of images.
International journal of computer vision 101(2):254–
269

A Learning Strategy

Instead of using a fixed learning rate or a decreasing learning
rate, we choose a learning rate schedule with warm restart
as proposed by Loshchilov and Hutter (2016). The learning
schedule is shown in Figure 12: the learning rate decreased and
is periodically restarted to its initial value, the period increasing
as the number of epochs grows. This schedule was chosen after
comparing with both Adam and SGD with stepwise schedules,
and yielded better convergence in practice.

Fig. 12 Learning rate schedule used to train our models (in
blue), following the SGDR method described by Loshchilov
and Hutter (2016). Our training runs for a total of 31 epochs.
Compared to Adam with a learning rate of 3.10−4 or to SGD
with stepwise schedules, SGDR has empirically shown a better
convergence in our context. Note that while the gap between
the final obtained KL divergence loss obtained using SGD with
stepwise schedules (0.798 for SGD1 and 0.688 for SGD2) and the
one obtained with SGDR (0.616) is significant, the one between
Adam (0.622) and the SGDR schedule used is smaller, such that
one may consider using Adam instead of SGDR

B Test of equivariance

Wasserstein barycenters are equivariant under rotation, transla-
tion and scaling. This amounts to Barycenter({T (µi), λi}i) =
T (Barycenter({µi, λi}i)) for T a rotation, translation or scal-
ing. We verify this behaviour qualitatively on the output of our
network on two examples shown in Fig. 13.

C Additional results

While the model presented in this paper uses 6 depth levels
(following the convention of figure 1), we provide additional
experiments showing the differences between our model with
different number of depth levels in figure 14. Note that while
the gap in performance is particularly important between the
model with 4 depth levels (DL), 5DL and 6DL, there is much
less difference between 6DL and 7DL.

We provide additional experiments showing barycenters of
5 sketches on Figure 15. The weights evolve linearly inside the
pentagon. As a stress test, we also show a barycenter of 100 cats
with equal weights in Fig. 16 and compare it with a barycenter
computed with GeomLoss. While both results recover more or
less the global shape of the cat, details are clearly lost and our
result looks much smoother.

In the debiasing approach of Janati et al. (2020), a single
iteration of Bregman projections to minimize the functional in
the variable d is used in their paper. However, their available
implementation uses 10 iterations. Fig. 17 shows the (minor)
difference in quality between these two approaches. Our com-
parisons were performed against the original implementation.

Finally, we provide an additional color transfer experiment
in figure 18 reproducing an experiment from Bonneel et al. (2015)
with our model trained with ContoursDS and HistoDS.

D Linearized barycenters

Fig. 19 shows the error introduced by using a linearized version
of Wasserstein barycenters (Nader and Guennebaud, 2018; Wang
et al., 2013; Moosmüller and Cloninger, 2020; Mérigot et al.,
2020). Our predicted barycenters reflect this error.

https://proceedings.neurips.cc/paper/2015/file/f26dab9bf6a137c3b6782e562794c2f2-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f26dab9bf6a137c3b6782e562794c2f2-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f26dab9bf6a137c3b6782e562794c2f2-Paper.pdf

Learning to Generate Wasserstein Barycenters 15

(a)µ0 (b) µ1 (c) barycenter of
{(µ0,

1
2), (µ1,

1
2)}

(d) barycenter of
translated mea-
sures

(e) barycenter of
rotated measures

(f) barycenter of
scaled measures

Fig. 13 To qualitatively assess the equivariance of our network, we produce barycenters of measures µ0 (a) and µ1 (b) with equal
weights as shown in (c), and barycenters of these measures translated by 120 (top) and 100 pixels (bottom) both horizontally
and vertically (d), rotated by 60 (top) and 45 (bottom) degrees (e) and scaled by a factor of 2 (top) and 1.4 (bottom) (f). The
barycenters of the transformed measures resemble the transformed barycenter of the input measures.

In
p

u
t

1

λ1 = 0.4382 λ1 = 0.5863 λ1 = 0.4586 λ1 = 0.6573

In
p

u
t

2

λ2 = 0.5618 λ2 = 0.4137 λ2 = 0.5414 λ2 = 0.3427

G
eo

m
L

os
s

4
D

L
5

D
L

6
D

L
7

D
L

Fig. 14 Comparisons between our model with different numbers
of depth levels (DL), following the convention of figure 1. The
corresponding final KL divergence losses obtained on the test
dataset are : 1.5975 for 4DL, 1.0550 for 5DL, 0.6176 for 6DL (the
model presented in this paper) and 0.5729 for 7DL. While the
gap in performance is both visually and numerically important
between 4DL and 5DL and 6DL, it is limited between 6DL and
7DL. The different associated training times for these models
are : 38h50m for 4DL, 48h44m for 5DL, 53h28m for 6DL and
64h05m for 7DL. These runtimes have been measured when
training the models with 2 NVIDIA GPU V100 SMX2 and
a CPU Intel(R) Xeon(R) Gold 6226 CPU @ 2.70GHz (HPC
resources of IDRIS)

16 Julien Lacombe et al.

Fig. 15 Interpolations between 5 inputs from Quick, Draw!,
shown as pentagons. Upper pentagon corresponds to GeomLoss
barycenters while the lower one shows predictions of our model
trained on our synthetic dataset

GeomLoss Our DCNN

Fig. 16 Stress test. We predict a barycenter of 100 cats of the
Quick, Draw! dataset, with equal weights

D
eb

ia
se

d
1i

te
r

D
eb

ia
se

d
10

it
er

Fig. 17 Comparisons when using a single or ten Bregman
projection steps to minimize the Sinkhorn divergence functional
in the debiased barycenter approach of Janati et al. (2020).
While using ten iterations makes it slower to converge, this leads
to sharper results and is the default approach adopted in the
authors’ implementation: we thus used this value in the rest of
the paper.

Learning to Generate Wasserstein Barycenters 17

ν µ1 µ2 µ3

G
eo

m
L

os
s

C
on

to
ur

sD
S

H
is

to
D

S

Fig. 18 Color grading obtained by transferring the colors of n = 3 images onto a target image, aiming at reproducing with our
method the results from (Bonneel et al., 2015), figure 12. Results are shown in triangles (Left: interpolated chrominance histograms;
Right: corresponding transfer results). The images corresponding to the target chrominance histogram ν and to the histograms µi -
which are interpolated to obtain a barycenter - are shown in top row. Each µi corresponds to a vertex of the triangle in a clockwise
order beginning with i = 1 at the uppermost vertex. Each row presents the results for a different method, from top to bottom:
GeomLoss, our model trained on synthetic shape contours (ContoursDS) and our model trained on chrominance histograms from
Flickr images (HistoDS)

18 Julien Lacombe et al.

input 1 input 2 Geomloss (1) Geomloss (10) Ours

λ1 = 0.4382 λ2 = 0.5618

Fig. 19 Wasserstein barycenter computed from a pair of in-
puts respectively using Geomloss with only one descent step,
Geomloss with 10 descent steps and using our model trained on
our synthetic training dataset

	Introduction
	Related Work
	Learning Wasserstein barycenters
	Experimental Results
	Discussion and conclusion
	Learning Strategy
	Test of equivariance
	Additional results
	Linearized barycenters

