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Fig. 1. We demonstrate that 2D Sobol’ sequences constructed with polynomials 𝑝 and 𝑝2 + 𝑝 + 1 have a characteristic matrix 𝐾 =𝑀𝑝2+𝑝+1
𝑀−1

𝑝 that can be
obtained with a simple recursive algorithm. This is illustrated using polynomials of degrees 𝑒 = 5 and 2𝑒 = 10, where each colored block has dimensions
𝑒 × 𝑒 . They produce high-quality (1, 2)-sequences (with quality factor 𝑡 = 1) under mild conditions on 𝐾 ’s blocks and 𝑝 (bottom). The quality factor 𝑡 of each
point set is indicated in the upper-right corner of each patch (only 256 points are shown). We use these (1, 2)-sequences to construct higher-dimensional
low-discrepancy sequences with high-quality 2D and 4D projections.

Low-discrepancy sequences, and more particularly Sobol’ sequences are

gold standard for drawing highly uniform samples for quasi-Monte Carlo

applications. They produce so-called (𝑡, 𝑠 )-sequences, that is, sequences of
𝑠-dimensional samples whose uniformity is controlled by a non-negative

integer quality factor 𝑡 . The Monte Carlo integral estimator has a conver-

gence rate that improves as 𝑡 decreases. Sobol’ construction in base 2 also

provides extremely fast sampling point generation using efficient xor-based

arithmetic. Computer graphics applications, such as rendering, often require

high uniformity in consecutive 2D projections and in higher-dimensional

projections at the same time. However, it can be shown that, in the classical

Sobol’ construction, only a single 2D sequence of points (up to scrambling),
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constructed using irreducible polynomials 𝑥 and 𝑥 + 1, achieves the ideal

𝑡 = 0 property. Reusing this sequence in projections necessarily loses high

dimensional uniformity. We prove the existence and construct many 2D

Sobol’ sequences having 𝑡 = 1 using irreducible polynomials 𝑝 and 𝑝2+𝑝+1.

They can be readily combined to produce higher-dimensional low discrep-

ancy sequences with a high-quality 𝑡 = 1, guaranteed in consecutive pairs of

dimensions. We provide the initialization table that can be directly used with

any existing Sobol’ implementation, along with the corresponding generator

matrices, for an optimized 692-dimensional Sobol’ construction. In addition

to guaranteeing the (1, 2)-sequence property for all consecutive pairs, we

ensure that 𝑡 ≤ 4 for consecutive 4D projections up to 2
15

points.
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1 Introduction
Integrating a function using quasi-Monte Carlo consists in evalu-

ating it at well-chosen uniformly distributed sample points, and

averaging these values. Sobol’ sequences arise as the cornerstone of

quasi-Monte Carlo, by producing extremely well-distributed sam-

pling points whose uniformity drastically improves the convergence

rate, compared to classical Monte Carlo methods. These points are

constructed using a fast and compact recursive algorithm involv-

ing polynomials and matrices. Sobol’ sequences have thus been

widely adopted in computer graphics, notably for rendering where

efficiency is paramount. Their mathematical beauty, their connec-

tions to Pascal matrices (or Sierpinsky triangle) and Galois theory

also make them appealing to the mathematician, but their diffi-

culty comprehending may discourage others. This paper gives new

fundamental mathematical insights on Sobol’ sequences, exploring

particular pairs of polynomials and new Sobol’ matrix constructions,

with practical and provable benefits in terms of quasi-Monte Carlo

integration error.

Sobol’ sequences produce a sequence of samples in arbitrary di-

mension bymultiplying Sobol’ matrices with a base-𝑏 representation

of the sample index, where one Sobol’ matrix is used per dimension.

To compute a Sobol’ matrix, a polynomial 𝑝 of degree 𝑒 and an ini-

tialization matrix of size 𝑒 × 𝑒 (often called direction vectors in prior

work) are required. The (triangular) Sobol’ matrix is recursively

constructed column by column, where the next column is computed

as a linear combination of the previous 𝑒 columns weighted by the

polynomial coefficients (plus a shifted column), with all operations

performed modulo 𝑏 (or over Galois Field 𝐺𝐹 (𝑏)). The uniformity

of the produced sample points is determined by a non-negative

integer parameter 𝑡 , where 𝑡 = 0 corresponds to the best achievable

quality, and the quasi-Monte Carlo integral estimator converges

with a rate roughly proportional to 𝑏𝑡 (see [Lemieux 2009] page 157,

and [Niederreiter 1988]).

An 𝑠-dimensional set with 𝑏𝑚 samples with quality 𝑡 is called a

(𝑡,𝑚, 𝑠)-net (see Fig. 2). If such a point set is a (𝑡,𝑚, 𝑠)-net for all𝑚,

then it is a (𝑡, 𝑠)-sequence. We are particularly interested in the case

𝑠 = 2, not only for producing 2D points for 2-dimensional problems,

but most importantly to control 2-dimensional projections of higher-

dimensional problems [Joe and Kuo 2008] arising for example in

computer graphics such as rendering.

It has been demonstrated that, in base 𝑏 = 2, and when consider-

ing 2D points, matrices that generate (0, 2)-sequences are inherently
related by a Pascal matrix [Ahmed et al. 2023; Hofer and Suzuki

2019]. Consequently, the only pair of polynomials that produce 𝑡 = 0

using Sobol’ construction are 𝑥 and 𝑥 + 1. The space of 𝑡 = 0 se-

quences is thus extremely limited, when𝑏 = 2. One possible solution

is to increase 𝑏, as suggested in [Ostromoukhov et al. 2024], which

allows for additional polynomials that generate 𝑡 = 0 sequences.

However, the effect on the integration error for 𝑡 ≠ 0 becomes

more significant due to the 𝑏𝑡 factor in the convergence rate. In

addition, base 𝑏 = 2 allows for extremely fast implementations us-

ing vectorized xor-based arithmetic, which is not the case when

𝑏 > 2. For practical reasons, Sobol’ polynomials and initialization

matrices have thus been optimized mostly in base 𝑏 = 2 [Joe and

Kuo 2008], though consecutive dimensions typically produce in-

creasing 𝑡 values as dimension increases which limits their use for

rendering [Christensen et al. 2018].

Focusing on the case 𝑏 = 2, in this paper we show that there

exist many (1, 2)-sequences that can be constructed from pairs of

irreducible polynomials 𝑝 and 𝑝2 +𝑝 +1. These 2D sequences can be

combined to produce higher dimensional (𝑡, 𝑠)-sequences of high-
quality 𝑡 = 1 in consecutive 2D projections, which is the best quality

achievable for 𝑏 = 2 aside from the single 𝑡 = 0 pair mentioned

above. We also observed that, in practical integration problems,

the quasi-Monte Carlo convergence rate did not differ significantly

between 𝑡 = 0 and 𝑡 = 1 in base 2 (see Fig. 3), making 𝑡 = 1 a com-

pelling compromise. Our use of a standard 𝑏 = 2 Sobol’ framework

makes our sequences readily usable in production renderers already

using Sobol’ sequences, by simply replacing existing polynomials

and initializations with ours. In our quest to prove the quality of

our polynomials, we discovered a new recursive construction of

Sobol’ matrices, derived by iteratively squaring polynomials. This,

in turn, led to the identification of interesting patterns that charac-

terize these sequences. This paper explores the depths of this new

construction and demonstrates how our sequences can be applied

to quasi-Monte Carlo rendering. Code and data are available at

https://github.com/liris-origami/OneTwoSobolSequences.
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Fig. 2. The definition of a (𝑡,𝑚, 2)-net of 𝑛 = 2
𝑚 samples is that all dyadic

intervals of area 2
𝑡 /2

𝑚 contain 2
𝑡 points. As such, a (0, 4, 2)-net (top) has

exactly one (=2
0) point in each interval of volume 1/2

4, a (1, 4, 2)-net has
exactly two points (=2

1) in each interval of volume 1/2
3 (middle), and a

(2, 4, 2)-net has four points on intervals of volume 1/2
2 (bottom). Increasing

𝑡 thus reduces uniformity constraints and produces larger gaps and clusters
in the distribution.

2 Related work
We summarize fundamentals about Sobol’ construction [Sobol’ 1967]

and refer the reader to reference books [Dick and Pillichshammer

2010; Lemieux 2009; Niederreiter 1992] for in-depth discussions.

Sobol’ construction. To construct (𝑡, 𝑠)-sequences, Sobol’ proposed
a solution based on primitive polynomials. Given 𝑠 primitive poly-

nomials 𝑝0, . . . , 𝑝𝑠−1 in the Galois Field of prime base 𝑏 called𝐺𝐹 (𝑏)
(think of it as the set of integers modulo 𝑏), Sobol’ constructs 𝑠 upper
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Fig. 3. Experimental validation in 2D of the impact of the 𝑡 value of a Sobol’ sequence on various metrics (from left to right, the generalized 𝐿2 discrepancy
[Hickernell 1998] and Monte Carlo integration errors on random Gaussians and Heaviside functions). We randomly select a pair of Sobol’ polynomials from
the first thousand entries of Joe and Kuo [2008], we evaluate the metrics for each sample count and plot error distribution (box plots) per values 𝑡 (box plot
colors) observed for that sample count (64 realizations for each 𝑡 ). We observe a strong correlation between the observed 𝑡 value of the point set and its quality
for Monte Carlo integration, while 𝑡 = 1 appears as a good compromise in quality compared to 𝑡 = 0.

triangular matrices 𝑀𝑝0
, . . . , 𝑀𝑝𝑠−1

, one per dimension, which are

used to obtain each coordinate of the 𝑖𝑡ℎ sample point x𝑖 in the

sequence. Specifically, the 𝑘𝑡ℎ coordinate of the 𝑖𝑡ℎ sample point, x𝑘𝑖 ,
is obtained using a matrix-vector product between matrix𝑀𝑝𝑘 and

the base 𝑏 decomposition of the sample point index 𝑖 interpreted

as a column vector, denoted 𝑖 hereafter, 𝑞 =𝑀𝑝𝑘 𝑖 with 𝑖 =
∑
𝑗 𝑖 𝑗𝑏

𝑗
.

The sample point coordinate is now

x𝑘𝑖 =
∑︁
𝑗

𝑞 𝑗𝑏
− 𝑗 .

The construction of the upper triangular invertible matrix𝑀𝑝𝑘 us-

ing the primitive polynomial 𝑝𝑘 uses a recursive formula to obtain

a column given its 𝑒 previous columns, where 𝑒 is the degree of the

polynomial 𝑝𝑘 . The initialization of this recursion, an 𝑒 × 𝑒 upper
triangular matrix at the top-left corner of matrix𝑀𝑝𝑘 , provides addi-

tional degrees of freedom in addition to the chosen polynomial. We

base our construction on matrix blocks instead of the more common

column-wise recursion, as proposed by Faure and Lemieux [2016],

that we briefly describe in Sec. 4.1.

Joe and Kuo numerically optimized top-left 𝑒 × 𝑒 blocks, resulting
in improved Sobol’ sequences on consecutive projections [Joe and

Kuo 2008]. Matrices can be directly obtained without Sobol’ recur-

rence using an integer linear program solver, but this limits their

use to only moderately large problem [Paulin et al. 2022a].

Faure and Lemieux showed that the larger set of irreducible poly-

nomials can be used instead of primitive polynomials [Faure and

Lemieux 2016; Sloane 2001]. Irreducible polynomials are similar to

prime numbers, meaning they cannot be factored into products of

other non-constant polynomials. Faure and Lemieux showed that

the parameter 𝑡 of the resulting (𝑡, 𝑠)-sequence is bounded by the

sum of the polynomial degrees minus one. A simple way to obtain

(0, 𝑏)-sequences in base 𝑏 consists of using the first 𝑏 irreducible

polynomials 𝑝0 (𝑥) = 𝑥 , 𝑝1 (𝑥) = 𝑥 + 1, . . . , 𝑝𝑏−1 (𝑥) = 𝑥 + 𝑏 − 1,

each of degree 1. The theorem by Faure and Lemieux then shows

that 0 ≤ 𝑡 ≤ ∑
𝑖 (𝑑𝑒𝑔(𝑝𝑖 ) − 1) = 0. However, this produces a unique

sequence (up to sample permutations), related to those produced

by Faure [1982], which limits its use in more general settings that

require sample diversity. Ostromoukhov et al. [2024] used a construc-

tion with quadruplets of irreducible polynomials in base 𝑏 = 3 to

achieve progressive point sets of excellent consecutive projections.

LDS and projective LDS in Computer Graphics. In rendering appli-

cations, low-discrepancy sequences can have a significant impact

on path-tracing performance [Christensen et al. 2018; Jarosz et al.

2019; Keller 2004, 2013]. When the sampling pattern defined on the

canonical domain [0, 1)𝑠 is mapped to a pixel (or a group of pixels),

decorrelating the pattern across different pixels typically requires

a scrambling procedure. Owen’s scrambling is usually considered,

as it preserves the 𝑡 value of the point set [Owen 1995]. Due to the

nature of the rendering equation, several authors have explored pro-

jective strategies aimed at achieving highly uniform consecutive 2D

projections. Achieving high-quality in 2D projections often comes at

the cost of degrading uniformity in higher dimensions [Ahmed and

Wonka 2020; Kollig and Keller 2002; Paulin et al. 2021; Perrier et al.

2018]. Notably, the ZeroTwo sequence uses the first two Sobol’ di-

mensions repeatedly with random permutations [Pharr et al. 2023],

while padded 4D Sobol’ repeats and shuffles samples of the first

four dimensions [Burley 2020]. These provide ideal behavior in con-

secutive 2 or 4D projections, but behave similarly to white noise

in higher dimensions. Some methods are dedicated to generating

point sets rather than sequences [Ostromoukhov et al. 2024; Paulin

et al. 2022a], or are not low discrepancy [Paulin et al. 2020; Reinert

et al. 2016]. Our new construction enables the definition of complete

(𝑡, 𝑠)−sequences with guaranteed high-quality (i.e. (1, 2)-sequences)
2D projections.

3 Overview of our construction
We first focus on 2-dimensional Sobol’ sequences. Our goal is thus

to obtain Sobol’ matrices𝑀𝑝0
and𝑀𝑝1

for two polynomials 𝑝0 and

𝑝1. In our framework, we may use standard Sobol’ construction

to generate these matrices using respectively polynomials 𝑝0 and

𝑝1 and initialization matrices 𝐷𝑝0
and 𝐷𝑝1

: our contribution is to

provide simple conditions for these initialization matrices to yield

high-quality parameter 𝑡 = 1 Sobol’ sequences (see Fig. 4). This

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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section describes an overview of this process, while Sec. 4 details

proofs. In the following, we assume modulo 2 arithmetic, and all

values involved are binary.

We consider a matrix 𝐾 =𝑀𝑝1
𝑀−1

𝑝0

that uniquely represents a 2D

Sobol’ sequence up to a permutation of points, called characteristic

matrix (denoted 𝐶 by Ahmed et al. [2023]). We show that when

𝑝1 = 𝑝2

0
+ 𝑝0 + 1, where 𝑝0 is a degree 𝑒 polynomial and 𝑝1 thus has

degree 2𝑒 , 𝐾 has a peculiar form, and can be obtained recursively

from a decomposition into square blocks 𝐴, 𝐵 and 𝐶:

𝐾 (𝑖 ) =

[
𝐴 𝐵

0 𝐶

]
→ 𝐾 (𝑖+1) =


𝐴 𝐵 𝐴 + 𝐵 𝐴

0 𝐶 𝐶 0

0 0 𝐴 𝐴 + 𝐵
0 0 0 𝐶

 .
where each block 𝐴, 𝐵 or 𝐶 has size 2

𝑖−1𝑒 . This produces a matrix

𝐾 of arbitrary size, doubling its size at each iteration. Our paper

introduces conditions on 𝐾 (1)
and 𝐾 (2)

, that lead to conditions

on the Sobol’ initialization matrices 𝐷𝑝0
and 𝐷𝑝1

, for our Sobol’

sequences to be (1, 2)-sequences. We note that the initialization

𝐾 (1)
, of size 2𝑒 × 2𝑒 , is 𝐾 (1) = 𝐷𝑝1

𝐷−1

𝑝0

, where we denote 𝐷𝑝0
the

2𝑒 × 2𝑒 matrix obtained by extending the 𝑒 × 𝑒 matrix 𝐷𝑝0
to 2𝑒 × 2𝑒

using standard Sobol’ iterations.

To obtain Sobol’ initialization matrices, we thus first generate a

random invertible triangular 𝑒×𝑒 matrix𝐷𝑝0
whichwe extend to 2𝑒×

2𝑒 using Sobol’ iterations. We then use a matrix 𝐾 (1)
satisfying our

conditions (see next), and easily obtain 2𝑒 × 2𝑒 initialization matrix

𝐷𝑝1
= 𝐾 (1)𝐷𝑝0

. Matrices𝑀𝑝0
and𝑀𝑝1

, and 2D sample coordinates

are then obtained using standard Sobol’ procedures, from 𝑝0, 𝑝1 =

𝑝2

0
+ 𝑝0 + 1, 𝐷𝑝0

and 𝐷𝑝1
.

To generate higher-dimensional Sobol’ sequences, we combine

pairs of dimensions but further require that 𝑝0 and 𝑝1 = 𝑝2

0
+ 𝑝0 + 1

be irreducible polynomials so as to guarantee that the resulting

𝑠-dimensional sequence is a (𝑡, 𝑠)-sequence [Faure and Lemieux

2016].

We claim the following contributions.

Theorem 3.1. The sequence of iterations

𝐾 (𝑖 ) =

[
𝐴 𝐵

0 𝐶

]
→ 𝐾 (𝑖+1) =


𝐴 𝐵 𝐴 + 𝐵 𝐴

0 𝐶 𝐶 0

0 0 𝐴 𝐴 + 𝐵
0 0 0 𝐶

 , (1)

where each matrix block 𝐴, 𝐵, 𝐶 , is of size 2
𝑖−1𝑒 × 2

𝑖−1𝑒 , produces
the characteristic matrix of a 2D Sobol’ sequence given by a degree 𝑒
polynomial 𝑝 , and degree 2𝑒 polynomial 𝑝2 + 𝑝 + 1.

Corollary 3.2. A 2D Sobol’ sequence given by polynomials 𝑝
and 𝑝2 + 𝑝 + 1 only depends on the degree of the polynomial and
initialization matrices, and does not depend on the coefficients of 𝑝
themselves, up to a permutation of samples.

This corollary is readily justified since the recursive construction

of theorem 3.1 does not involve polynomial coefficients, but merely

polynomial degrees. As such, a pair 𝑝0 of degree 𝑒 and 𝑝1 = 𝑝2

0
+𝑝0+1

with given initialization matrices would result in the same sequence

as 𝑝′
0
of degree 𝑒 and 𝑝′

1
= 𝑝′2

0
+𝑝′

0
+1 for another pair of initialization

matrices.

A B

C

A B A + B A

C C

A A + B

C

A B A + B A B A + B A B

C C C C C

A A + B A A + B

C C

A B B A + B

C C C

A A + B

C

···

𝐷𝑝 𝐷𝑝2

𝐷𝑝2+𝑝+1
= 𝐾 (1)𝐷𝑝2

𝐾 (1) 𝐾 (2) 𝐾 (3)

Only used for proofs (Theorem 3.3)

Alg. 1

Alg. 2

Classical Sobol’ construction

𝑀𝑝 𝑀𝑝2+𝑝+1

Fig. 4. Overview. We introduce a recursive construction of the characteristic
matrix associated with a pair of polynomials (𝑝, 𝑝2 + 𝑝 + 1). We use it in
proofs to obtain conditions for generating (1, 2)-sequences based on the
first iteration alone of this recursion. From characteristic matrices meeting
these conditions, we derive Sobol’ initialization matrices 𝐷𝑝 and 𝐷𝑝2+𝑝+1

,
which in turn allows to construct the corresponding Sobol’ matrices 𝑀𝑝
and𝑀𝑝2+𝑝+1

generating (1, 2)−sequences in base 2.

Theorem 3.3. Iterations 𝐾 (𝑖 ) → 𝐾 (𝑖+1) characterize Sobol’ (1, 2)-
sequences if and only if both conditions are met:

• (P): corank(𝑇 ) ≤ 1 for any rectangular (𝑤 −1) ×𝑤 submatrix
𝑇 of 𝐾 (2) anchored at its first row

• (Q): corank(𝐶′) ≤ 1 for any square submatrix 𝐶′ of block 𝐶
in 𝐾 (1) obtained by removing any consecutive set of 𝑘 columns
and the last 𝑘 rows of 𝐶 .

These results allow us to pre-compute many matrices 𝐾 (1)
satis-

fying the conditions of theorem 3.1 for a given polynomial degree 𝑒

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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and infer pairs of irreducible polynomials and initialization matrices

that produce Sobol’ (1, 2)-sequences.
In the process of proving these theorems, we discovered new

insights on Sobol’ constructions for more general polynomials:

• Polynomials 𝑝 and 𝑝2
will produce the same Sobol’ matrices,

given proper initialization matrices (see lemma 4.1).

• This property allows building general Sobol’ matrices in a

recursive way by doubling their size at each iteration via

polynomial squaring.

• The characteristic matrix can also be constructed recursively.

The goal of Sec. 4 is to provide mathematical proofs for the claims

we summarized in this overview section. The practitioner may thus

skip Sec. 4 at first read and jump to the description of our algorithms

in Sec. 5. Specifically, sections 4.1 and 4.2 prove lemma 4.1 related to

polynomials 𝑝 and 𝑝2
yielding the same matrices. This in turns helps

proving in Sec. 4.3 that characteristic matrices can be constructed

recursively. When applied to polynomials 𝑝 and 𝑝2 + 𝑝 + 1, Sec. 4.4

proves that the characteristic matrix has the recursive construction

of Eq. 1 and thus proves Theorem 3.1. Finally, Sec. 4.5 and our

supplementarymaterials prove Theorem 3.3 that explicits conditions

under which the characteristic matrices generate (1, 2)-sequences.

4 Construction of (1, 2)-sequences in base 2

We first recall a construction of Sobol’ matrices based on matrix

blocks by Faure and Lemieux [2016] in Sec. 4.1, which will serve

as a basis for the next sections describing our proof. Our proof

first consists of introducing a new recursive construction of Sobol’

matrices by squaring polynomials in Sec. 4.2. We then show that

a similar squaring procedure can be obtained for characteristic

matrices in Sec. 4.3. We then show, using this construction, that

the characteristic matrix for polynomials 𝑝 and 𝑝2 + 𝑝 + 1 has a

specific form exhibiting a self-similar pattern in Sec. 4.4. We finally

show that ranks of characteristic matrices with this self-similar

pattern are necessarily such that the produced 2D sequences are

(1, 2)-sequences in Sec. 4.5.

4.1 Block-based recursive construction
We first briefly describe a block-based 1-D Sobol’ construction as

described by Faure and Lemieux [2016].

For a given irreducible polynomial 𝑝 (𝑥) = 𝑥𝑒 + ∑𝑒−1

𝑖=0
𝑎𝑖𝑥

𝑖
and

upper 𝑒 × 𝑒 invertible triangular initialization matrix 𝐷𝑝 , Faure and

Lemieux [2016] rewrite Sobol’ iterations in terms of block matrices:

𝑀𝑝 =

©­­­­«
𝐵1,1 𝐵1,2 𝐵1,3 . . .

0 𝐵2,2 𝐵2,3 . . .

0 0 𝐵3,3 . . .

.

.

.
.
.
.

.

.

.
. . .

ª®®®®¬
,

where the blocks 𝐵𝑖, 𝑗 , of size 𝑒 × 𝑒 , are defined according to the

following recursive procedure:

𝐵1,1 = 𝐷𝑝 ; 𝐵𝑖,𝑖 = 𝐷𝑝𝐹
𝑖−1

𝑝

𝐵𝑖, 𝑗 =

{
𝐵𝑖, 𝑗−1𝑄𝑝𝐹𝑝 when 𝑖 = 1

𝐵𝑖, 𝑗−1𝑄𝑝𝐹𝑝 + 𝐵𝑖−1, 𝑗−1𝐹𝑝 elsewhere.
(2)

Here, 𝑄𝑝 is an 𝑒 × 𝑒 lower triangular Toeplitz matrix involving

the coefficients (𝑎𝑖 )𝑖 of polynomial 𝑝 :

𝑄𝑝 =

©­­­­­­«

𝑎0 0 0 . . . 0

𝑎1 𝑎0 0 . . . 0

𝑎2 𝑎1 𝑎0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑒−1 𝑎𝑒−2 𝑎𝑒−3 . . . 𝑎0

ª®®®®®®¬
. (3)

Matrix 𝐹𝑝 of size 𝑒 × 𝑒 is defined as

𝐹𝑝 = (𝐼𝑑𝑒 + 𝑅𝑝,2) (𝐼𝑑𝑒 + 𝑅𝑝,3) . . . (𝐼𝑑𝑒 + 𝑅𝑝,𝑒 ), (4)

where 𝐼𝑑𝑒 is an identity matrix of size 𝑒 × 𝑒 , and 𝑅𝑝,𝑘 are matrices

of size 𝑒 × 𝑒 with zeros everywhere except in the first 𝑘 − 1 entries

of the 𝑘-th column, given by the coefficients (𝑎𝑒−(𝑘−1) , . . . , 𝑎𝑒−1) of
polynomial 𝑝 .

We introduce a new recursion to build Sobol’ matrices inspired

by the construction of Faure and Lemieux [2016].

4.2 Sobol’ construction by squaring polynomials
In the following, we introduce a squared superscript notation to

clarify matrix sizes when appropriate, e.g.,𝑀
[2𝑒 ]
𝑝 denoting the Sobol’

matrix of polynomial 𝑝 restricted to the first 2𝑒 rows and 2𝑒 columns.

We observe that the Sobol’ matrix𝑀𝑝2 of a squared polynomial

(although not irreducible) is identical to the Sobol’ matrix 𝑀𝑝 of

the original polynomial, provided that the initialization matrix 𝐷𝑝2

coincides with the top-left corner of𝑀𝑝 . We formalize this:

Lemma 4.1. The Sobol’ matrix𝑀𝑝 generated by a polynomial 𝑝 of
degree 𝑒 and initialization matrix 𝐷𝑝 is identical to the Sobol’ matrix
𝑀𝑝2 of polynomial 𝑝2 and initialization matrix

𝐷𝑝2 =𝑀
[2𝑒 ]
𝑝 =

(
𝐷𝑝 0

0 𝐷𝑝

) (
𝐼𝑑𝑒 𝑄𝑝𝐹𝑝
0 𝐹𝑝

)
, (5)

corresponding to the top-left 2𝑒 × 2𝑒 submatrix of𝑀𝑝 .
Matrices 𝑄𝑝2 and 𝐹𝑝2 of Faure and Lemieux [2016] can be obtained

by applying a Kronecker product (or tensor product) with the matrix

𝐼𝑑2 =

(
1 0

0 1

)
to matrices 𝑄𝑝 and 𝐹𝑝 :

𝑄𝑝2 =𝑄𝑝 ⊗ 𝐼𝑑2, 𝐹𝑝2 = 𝐹𝑝 ⊗ 𝐼𝑑2 . (6)

where 𝑄𝑝2 and 𝐹𝑝2 are of size 2𝑒 × 2𝑒 .

This lemma brings a new recursive construction of Sobol’ matri-

ces, doubling their sizes at each iteration by squaring polynomials,

illustrated in Fig. 5.

In our development, we first note that, while 𝐹𝑝 can have a com-

plicated form, its inverse can be expressed much more easily, as an

upper triangular Toeplitz matrix:

𝐹 −1

𝑝 =

©­­­­­­«

1 𝑎𝑒−1 𝑎𝑒−2 . . . 𝑎1

0 1 𝑎𝑒−1 . . . 𝑎2

0 0 1 . . . 𝑎3

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . 1

ª®®®®®®¬
, (7)

where we ignore signs in modulo 2 arithmetic. This is obtained by

observing that matrices 𝐼𝑑𝑒 + 𝑅𝑝,𝑘 are their own inverses, and that
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0 𝑀
[𝑒 ]
𝑝 𝑌 (1)

𝑀
[𝑒 ]
𝑝 𝑋 (1)𝑀

[𝑒 ]
𝑝 = 𝐷𝑝

𝑀
[2𝑒 ]
𝑝 𝑋 (2)

𝑀
[2𝑒 ]
𝑝 𝑌 (2)

0

𝑀
[2𝑒 ]
𝑝

. . . . . .

.
.
.
.
.
.

𝑋 (1) =𝑄𝑝𝐹𝑝 𝑋 (𝑖 ) = 𝑋 (𝑖−1) ⊗ 𝐼𝑑2

𝑌 (1) = 𝐹𝑝 𝑌 (𝑖 ) = 𝑌 (𝑖−1) ⊗ 𝐼𝑑2

𝑒

2𝑒

4𝑒

0 𝐾
[𝑒 ]
𝑞,𝑟 𝑌

′(1)

𝐾
[𝑒 ]
𝑞,𝑟 𝑋

′(1)𝐾
[𝑒 ]
𝑞,𝑟 =𝐷𝑟𝐷

−1

𝑞

𝐾
[2𝑒 ]
𝑞,𝑟 𝑋 ′(2)

𝐾
[2𝑒 ]
𝑞,𝑟 𝑌 ′(2)

0

𝐾
[2𝑒 ]
𝑞,𝑟

. . . . . .

.
.
.
.
.
.

𝑋 ′(1) = 𝐷𝑞 (𝑄𝑞 +𝑄𝑟 𝐹𝑟 𝐹 −1

𝑞 )𝐷−1

𝑞 𝑋 ′(𝑖 ) = 𝑋 ′(𝑖−1) ⊗ 𝐼𝑑2

𝑌 ′(1) = 𝐷𝑞 (𝐹𝑟 𝐹 −1

𝑞 )𝐷−1

𝑞 𝑌 ′(𝑖 ) = 𝑌 ′(𝑖−1) ⊗ 𝐼𝑑2

𝑒

2𝑒

4𝑒

Fig. 5. In contrast to the column-by-column Sobol’ approach [Sobol’ 1967], and the block formulation of Faure and Lemieux [2016] (Sec. 4.1), we present a
novel recursive construction for Sobol’ matrices (left) and characteristic matrices (right) by squaring polynomials. The construction of matrix𝑀𝑝 follows from

lemma 4.1, Eq. (5), while the construction of 𝐾 [2𝑒 ]
𝑞,𝑟 is obtained from Eq. (8). Matrices 𝑋 (𝑖 ) , 𝑌 (𝑖 ) , 𝑋 ′(𝑖 ) and 𝑌 ′(𝑖 ) provide compact representations of expressions

involving 𝐷𝑝 , 𝐹𝑝 , and𝑄𝑝 , using the distributivity of the Kronecker product over matrix multiplication.

inverting 𝐹𝑝 then merely reverses the order of the multiplication:

𝐹 −1

𝑝 = (𝐼𝑑𝑒 + 𝑅𝑝,𝑒 ) . . . (𝐼𝑑𝑒 + 𝑅𝑝,2).

Proof of Lemma 4.1. The relation between𝐷𝑝2 and𝐷𝑝 is simply

obtained by running Faure and Lemieux’ iterations for one block of

columns. We may now assume that the top-left 2𝑒 × 2𝑒 submatrices

of𝑀𝑝 and𝑀𝑝2 coincide. We also note that for a polynomial 𝑝 (𝑥) =
𝑥𝑒 +∑𝑒−1

𝑖=0
𝑎𝑖𝑥

𝑖
, given modulo-2 arithmetic cancelling odd degrees,

𝑝2 (𝑥) = 𝑥2𝑒 + ∑𝑒−1

𝑖=0
𝑎𝑖𝑥

2𝑖
. This, in turn, leads to 𝑄𝑝2 = 𝑄𝑝 ⊗ 𝐼𝑑2,

and similarly, to 𝐹 −1

𝑝2
= 𝐹 −1

𝑝 ⊗ 𝐼𝑑2 and thus 𝐹𝑝2 = 𝐹𝑝 ⊗ 𝐼𝑑2 (the

inverse of the Kronecker product being the Kronecker product of the

inverse matrices), and finally,𝑄𝑝2𝐹𝑝2 = (𝑄𝑝𝐹𝑝 ) ⊗ 𝐼𝑑2. The recursive

construction of Eq. (2) thus produces the same matrices whether

using 𝑄𝑝2 and 𝐹𝑝2 or 𝑄𝑝 and 𝐹𝑝 .

□

4.3 Block-based characteristic matrices
For a pair of dimensions with Sobol’ matrices𝑀𝑞 and𝑀𝑟 , we base

our analysis on the characteristic matrix 𝐾 = 𝑀𝑟𝑀
−1

𝑞 as defined

by Ahmed et al. [2023] , which uniquely characterizes Sobol’ 2D

sequences up to a permutation of samples. When the polynomials 𝑞

and 𝑟 are of the same degree 𝑒 , we may build a characteristic matrix

of size 2𝑒 by applying one iteration of Faure and Lemieux’ block

construction:

𝐾
[2𝑒 ]
𝑞,𝑟 =𝑀

[2𝑒 ]
𝑟

(
𝑀

[2𝑒 ]
𝑞

)−1

=

(
𝐷𝑟 0

0 𝐷𝑟

) (
𝐼𝑑𝑒 𝑄𝑟 𝐹𝑟
0 𝐹𝑟

) ((
𝐷𝑞 0

0 𝐷𝑞

) (
𝐼𝑑𝑒 𝑄𝑞𝐹𝑞
0 𝐹𝑞

))−1

=

(
𝐷𝑟 0

0 𝐷𝑟

) (
𝐼𝑑𝑒 𝑄𝑞 +𝑄𝑟 𝐹𝑟 𝐹 −1

𝑞

0 𝐹𝑟 𝐹
−1

𝑞

) (
𝐷𝑞 0

0 𝐷𝑞

)−1

=

(
𝐾

[𝑒 ]
𝑞,𝑟 0

0 𝐾
[𝑒 ]
𝑞,𝑟

) (
𝐼𝑑𝑒 𝐷𝑞 (𝑄𝑞 +𝑄𝑟 𝐹𝑟 𝐹 −1

𝑞 )𝐷−1

𝑞

0 𝐷𝑞 (𝐹𝑟 𝐹 −1

𝑞 )𝐷−1

𝑞

)
. (8)

where we used the identity

(
𝐴 𝐵

0 𝐶

)−1

=

(
𝐴−1 −𝐴−1𝐵𝐶−1

0 𝐶−1

)
for

invertible𝐴 and𝐶 , and where𝐾
[𝑒 ]
𝑞,𝑟 = 𝐷𝑟𝐷

−1

𝑞 is the 𝑒×𝑒 initialization
block for this characteristic matrix, obtained from the initializations

of𝑀𝑞 and𝑀𝑟 .

This construction considers polynomials 𝑞 and 𝑟 of the same

degree, but we can use lemma 4.1 to square our first polynomial

and then consider 𝑞 = 𝑝2
and 𝑟 = 𝑝2 + 𝑝 + 1 of the same degree. We

thus consider this construction using 𝑒 = 2𝑒 .

Also, this construction merely produces a matrix of size 2𝑒 given

polynomials of degree 𝑒 . However, it can be used recursively by

considering lemma 4.1, doubling the size of the matrix at each itera-

tion by squaring polynomials. By lemma 4.1, the effect of squaring

polynomials on all matrices involved is merely a tensor product

with 𝐼𝑑2. We also illustrate this process in Fig. 5.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Sobol’ Sequences with Guaranteed-Quality 2D Projections • 7

4.4 The special case (𝑝, 𝑝2 + 𝑝 + 1)
The construction for characteristic matrices in Sec. 4.3 is general,

and applies to any pair of polynomials. In this section, we show the

special case when 𝑞 = 𝑝2
, and 𝑟 = 𝑝2 + 𝑝 + 1.

First, we note that applying lemma 4.1 for using 𝑞 = 𝑝2
in place of

𝑞 = 𝑝 leads to an extended initialization matrix 𝐷𝑝2 which inverse

can be expressed:

𝐷−1

𝑝2
=

(
𝑀

[2𝑒 ]
𝑝

)−1

=

(
𝐼𝑑𝑒 𝑄𝑝
0 𝐹 −1

𝑝

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
. (9)

We thus now consider that our polynomials have degree 2𝑒 and

we seek to apply our characteristic matrix construction to obtain a

matrix 𝐾
[4𝑒 ]
𝑞,𝑟 of size 4𝑒 × 4𝑒 .

It can then be shown (see Appendix A.1) that 𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
has a

particular form:

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
=

(
𝐼𝑑𝑒 𝐹𝑝
0 𝐼𝑑𝑒

)
. (10)

The resultingmatrix is also its own inverse: 𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
= 𝐹𝑝2𝐹 −1

𝑝2+𝑝+1

.

Combining Eq. (9) and (10) (see Appendix A.2), we have:

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
𝐷−1

𝑝2
= 𝐷−1

𝑝2

(
𝐼𝑑𝑒 𝐼𝑑𝑒
0 𝐼𝑑𝑒

)
. (11)

Similarly, we have

(𝑄𝑝2 +𝑄𝑝2+𝑝+1
𝐹𝑝2+𝑝+1

𝐹 −1

𝑝2
)𝐷−1

𝑝2
= 𝐷−1

𝑝2

(
𝐼𝑑𝑒 𝐼𝑑𝑒
𝐼𝑑𝑒 0

)
, (12)

where we further use the properties of the product of our Toeplitz

matrices, see Appendix A.3 for details.

Putting all together, and considering the initially given matrix

𝐾
[2𝑒 ]
𝑝2,𝑝2+𝑝+1

has size 2𝑒 since we considered 𝑝2
and 𝑝2+𝑝+1 of degree

2𝑒 , we see that the recursive construction of 𝐾 becomes

𝐾
[4𝑒 ]
𝑝2,𝑝2+𝑝+1

=

(
𝐾

[2𝑒 ]
𝑝2,𝑝2+𝑝+1

0

0 𝐾
[2𝑒 ]
𝑝2,𝑝2+𝑝+1

)©­­­«
𝐼𝑑2𝑒

(
𝐼𝑑𝑒 𝐼𝑑𝑒
𝐼𝑑𝑒 0

)
0

(
𝐼𝑑𝑒 𝐼𝑑𝑒
0 𝐼𝑑𝑒

)ª®®®¬ .
(13)

Lemma 4.1 indicates that this procedure becomes recursive by

squaring polynomials, allowing to double the size of 𝐾 at each

iteration. We rewrite these iterations using the following notation

involving blocks 𝐴, 𝐵,𝐶 of size 2
𝑖𝑒 × 2

𝑖𝑒 , doubling their size at each

iteration:

𝐾 (𝑖 ) =

[
𝐴 𝐵

0 𝐶

]
→ 𝐾 (𝑖+1) =


𝐴 𝐵 𝐴 + 𝐵 𝐴

𝐶 𝐶 0

𝐴 𝐴 + 𝐵
𝐶


with the 2𝑒 × 2𝑒 initial matrix

𝐾 (1) = 𝐾 [2𝑒 ]
𝑝2,𝑝2+𝑝+1

= 𝐷𝑝2+𝑝+1
𝐷−1

𝑝2

= 𝐷𝑝2+𝑝+1

((
𝐷𝑝 0

0 𝐷𝑝

) (
𝐼𝑑𝑒 𝑄𝑝𝐹𝑝
0 𝐹𝑝

))−1

,

for any given 𝑒 × 𝑒 upper triangular invertible matrix 𝐷𝑝 and 2𝑒 ×
2𝑒 upper triangular invertible matrix 𝐷𝑝2+𝑝+1

giving the degrees

of freedom for the generated sequences. 𝐷𝑝2 is here obtained by

running standard Sobol’ iterations to extend the 𝑒 × 𝑒 matrix 𝐷𝑝 to

obtain the next 𝑒 rows and columns.

4.5 Rank of submatrices
Let us denote by 𝑇 𝑗,𝑤 a square 𝑤 × 𝑤 submatrix of 𝐾 starting

at column 1 ≤ 𝑗 < 𝑚 − 𝑤 . Ahmed et al. [2023] showed that

(𝑀𝑝 , 𝑀𝑞) is a (0, 2)−sequence if and only if all submatrices𝑇 𝑗,𝑤 have

nonzero determinant (modulo 2). In our settings, we define 𝑇 𝑗,𝑤

𝑤 1

𝑗

𝑇 𝑗,𝑤

𝑇 𝑗,𝑤

𝐾

as the rectangular submatrix of 𝐾 starting at

column 𝑗 and of size (𝑤 − 1) ×𝑤 . A first claim

is that a (1, 2)-sequence is characterized by

a matrix 𝐾 having all submatrices 𝑇 𝑗,𝑤 rank-

deficient by at most 1 (see Appendix A.4). If

we denote corank(𝑇 𝑗,𝑤): =𝑤 −1−rank(𝑇 𝑗,𝑤)
the rank deficiency of matrix 𝑇 𝑗,𝑤 , a (1, 2)-
sequence is thus characterized by the property

that all submatrices𝑇 𝑗,𝑤 of𝐾 have a corank of at most 1. We call this

property P. Ranks need to be computed in 𝐺𝐹 (2), e.g., the matrix
1 1 0 0

1 0 1 1

0 1 1 1

 has rank 2 in 𝐺𝐹 (2) (because the third column

is the sum of the previous two, modulo 2) although it has rank 3

over the integers. This can be obtained numerically using Gaussian

elimination.

Since matrix 𝐾 is an infinite-sized matrix, systematic numerical

evaluation of ranks for all possible submatrices of𝐾 quickly becomes

intractable.

We instead benefit from our recursive construction of 𝐾 to prop-

agate properties across iterations. We show by induction that if

property P holds for matrix 𝐾 (2)
, and an additional property Q

holds for the block 𝐶 of 𝐾 (1)
, then properties P and Q necessarily

hold for all 𝐾 (𝑖 )
, 𝑖 ≥ 1.

Property Q states that all submatrices 𝐶′
of 𝐶 obtained by re-

moving 1 ≤ 𝑡 < 𝑚 consecutive columns and the last 𝑡 rows have

corank(𝐶′) ≤ 1. It is easy to verify that property Q holds for 𝐾 (𝑖 )
,

𝑖 ≥ 1, if it holds for 𝐾 (1)
, since the recursive procedure transforms

𝐶 into a block triangular matrix

(
𝐴 𝐴 + 𝐵
0 𝐶

)
, where 𝐴 is full rank.

Verifying by induction that property P holds for 𝐾 (𝑖 )
, 𝑖 ≥ 1,

provided that it holds for 𝐾 (2)
(and thus 𝐾 (1)

) is more involved.

Given amatrix of the form𝐾 (𝑖 )
, we iterate our construction to obtain

𝐾 (𝑖+1)
and 𝐾 (𝑖+2)

; 𝐾 (𝑖+2)
has 8× 8 blocks, each of size 2

𝑖−1𝑒 × 2
𝑖−1𝑒 .

From 𝐾 (𝑖+2)
, we extract matrices 𝑇 𝑗,𝑤 that overlap any number

1 ≤ 𝑏 ≤ 8 of consecutive blocks horizontally and either 𝑏 or 𝑏 − 1

blocks vertically. We symbolically perform Gaussian elimination

on 𝑇 𝑗,𝑤 to exhibit block triangular structures for which ranks can

be easily obtained [Meyer 1973]. Specifically, we seek to have any

number of blocks on the diagonal with full rank, and, at most, 1

block fulfilling property P or Q by hypothesis to conclude that

corank(𝑇 𝑗,𝑤) ≤ 1 . Given the sheer number of cases, we refer the

reader to the supplementary materials for the exhaustive list of

cases, and show one typical case in Fig. 6 on a submatrix 𝑇 =

𝑇 𝑗,𝑤 overlapping 4 blocks (out of 8) of 𝐾 (𝑖+2)
. The base case of the

induction is tested numerically on matrix 𝐾 (2)
(if it holds for 𝐾 (2)

it also holds for 𝐾 (1)
).
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Fig. 6. Example of an (𝑠 − 1) × 𝑠 submatrix𝑇 (in red) of 𝐾 (𝑖+2) overlapping
4 consecutive blocks horizontally and vertically. Gaussian elimination is
performed (here by addition and permutation of blocks of columns) to
exhibit a block triangular structure, where one block (in orange) has non-
zero determinant, and another block (in pink) whose corank is smaller than
1 since 𝐾 (𝑖+1) satisfies P by hypothesis. This proves that this particular
submatrix 𝑇 also has corank(𝑇 ) ≤ 1. In supplementary materials, we
exhaustively list all cases for rectangular submatrices𝑇 included in 𝐾 (𝑖+2)

to conclude that 𝐾 (𝑖+2) then satisfies P.

5 Experimental results
In this section, we outline practical aspects of our method. First, we

provide a brief overview of the process for generating polynomials

and initialization matrices for Sobol’ sequences, with a focus on

ensuring high-quality 2D projections. Next, we present a concrete

example demonstrating how the proposed method can be integrated

into a typical physically-based rendering (PBR) framework, using

PBRT [Pharr et al. 2023] as a case study.

5.1 Constructing projective (1, 2)-sequences
In our construction, we cannot use all irreducible polynomials as

Faure and Lemieux do [Faure and Lemieux 2016], because we focus

on pairs of polynomials (𝑝𝑖 , 𝑝𝑖+1) such that 𝑝𝑖+1 = 𝑝2

𝑖 + 𝑝𝑖 + 1. We

found 346 such pairs of irreducible polynomials of degree up to

𝑒 = 16 (2𝑒 = 32). This allows for 692D sampling with guaranteed-

quality 2D projections, and more precisely (1, 2)-sequences for con-
secutive pairs of dimensions. The property of (1, 2)-sequences for
each pair is guaranteed by Theorem 3.1, provided that the appropri-

ate initialization matrices are provided.

First, we precompute a set of candidate characteristic matrices

K𝑒 for each degree 𝑒 of the polynomials we are considering. Note

that by Corollary 3.2, at this stage we do not need the specific

polynomials involved, but only their degrees. The construction of

this collection consists in a random search for matrices𝐴, 𝐵,𝐶 of size

𝑒 × 𝑒 by verifying that 𝐾 (2)
satisfies property P and that 𝐶 satisfies

property Q (see Sec. 4.5 and Algorithm 1). Exploring the space of

all matrices 𝐴, 𝐵, 𝐶 that satisfy P and Q, respectively, becomes

infeasible for large 𝑒 , as the search space grows exponentially with

𝑒 . For 𝑒 ∈ {1, 2, 3, 4, 5}, we found 2, 6, 40, 1688, and 727 matrices,

respectively. For higher degrees, we leverage the fact that doubling

a matrix in K𝑒 by squaring the polynomial as described in Eq. (1),

provides a candidate matrix for K2𝑒 . These matrices are available in

the supplementary material.

Then, each characteristic matrix inK𝑒 is used to define two Sobol’

matrices for each pair of irreducible polynomials (𝑝, 𝑝2 + 𝑝 + 1) of

ALGORITHM 1: Constructing K𝑒 .
Result: A set of candidate characteristic matrices K𝑒 .
while true do

Draw a random upper triangular matrix 𝐴 with 1 on the

diagonal and a random square matrix 𝐵, both of size 𝑒 × 𝑒 ;
Draw a random triangular matrix𝐶 of size 𝑒 × 𝑒 satisfying the

property Q;

Construct 𝐾 (2)
of size 4𝑒 × 4𝑒 using Eq. (1);

if 𝐾 (2) satisfies the property P then
Append 𝐾 (1)

to K𝑒 ;
end

end

degrees 𝑒 and 2𝑒 respectively (Theorem 3.1). We construct the ini-

tialization matrices 𝐷
[𝑒 ]
𝑝 and 𝐷

[2𝑒 ]
𝑝2+𝑝+1

as follows: we draw a random

non-singular upper triangular matrix𝐷
[𝑒 ]
𝑝 of size 𝑒×𝑒 , and expand it

to 𝐷
[2𝑒 ]
𝑝2

using standard Sobol’ iterations for polynomial 𝑝 , and con-

struct 𝐷
[2𝑒 ]
𝑝2+𝑝+1

using 𝐷
[2𝑒 ]
𝑝2+𝑝+1

= 𝐾 [2𝑒 ]𝐷 [2𝑒 ]
𝑝2

where the characteristic

matrix 𝐾 [2𝑒 ]
is drawn from K𝑒 (see Algorithm 2).

Finally, we convert the initialization matrices 𝐷
[𝑒 ]
𝑝 and 𝐷

[2𝑒 ]
𝑝2+𝑝+1

into a set of direction vectors for Sobol’ construction, which is

compatible with the format of Joe and Kuo [2008].

ALGORITHM 2: Constructing many (1, 2)−sequence initialization
matrices

Data: a degree 𝑒 , a set of candidate characteristic matrices K𝑒 .
Result: A collection of tuples

{(
𝑝, 𝐷

[𝑒 ]
𝑝 𝑎𝑛𝑑𝐷

[2𝑒 ]
𝑝2+𝑝+1

)}
while true do

forall pairs of irreducible polynomials 𝑝 and 𝑝2 + 𝑝 + 1 of degrees
𝑒 and 2𝑒 respectively do

Create random non-singular upper triangular matrix 𝐷
[𝑒 ]
𝑝

of size 𝑒 × 𝑒 ;
Expand 𝐷

[𝑒 ]
𝑝 to 𝐷

[2𝑒 ]
𝑝2

using Sobol’ construction with 𝑝 ;

Draw a characteristic matrix 𝐾 [2𝑒 ]
from K𝑒 ;

Compute 𝐷
[2𝑒 ]
𝑝2+𝑝+1

= 𝐾 [2𝑒 ]𝐷 [2𝑒 ]
𝑝2

;

Append

(
𝑝, 𝐷

[𝑒 ]
𝑝 , 𝐷

[2𝑒 ]
𝑝2+𝑝+1

)
to the result;

end
end

5.2 Further improvements
For each pair of polynomials (𝑝𝑖 , 𝑝𝑖+1) we can generate a large num-

ber of possible initializations, as outlined in Algorithm 2, which all

satisfy our conditions for generating (1, 2)-sequences. Consequently,
we enforce additional criteria to enhance our multi-dimensional

construction. In the context of computer graphics, we aim to achieve

higher quality not only for consecutive pairs of dimensions but also

for 4-tuples of dimensions, which group consecutive pairs. We se-

lect only solutions with guaranteed reasonably-good 𝑡 ≤ 4 for 4D

projections up to 2
15

points. We further seek to achieve low 𝑡 for di-

mensions that are close to (𝑖, 𝑖 + 1). Specifically, pairs of dimensions
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Fig. 7. We compare consecutive 2D projections for the first 12 dimensions of several constructions: (a) Sobol’ with Joe and Kuo initializations [Joe and Kuo
2008], (b) Faure and Lemieux [2016; 2019], (c) the first two Sobol’ dimensions, repeated with a random permutation of sample indices [Pharr et al. 2023], (d)
the Cascaded Sobol’ approach of Paulin et al. [2021] (not sequence) (e) the Quad-optimized LDS in GF(3) by Ostromoukhov et al. [2024], and (f) our approach.
Here, orange squares designate guaranteed (0, 2)-progressive or (0, 2)/(1, 2)-sequence properties. Blue squares designate optimized 4-tuples of dimensions.
Green squares designate additional optimizations, supported by our optimization process (See details in Sec. 5.2). For low discrepancy projections, the factor 𝑡
of each point set is numerically computed and indicated in the upper-right corner of each patch.

are progressively added by proposing pairs of matrices generated

from characteristic matrices. Accepting a new pair of matrices re-

quires that, within the 6D block of dimensions involving the last 4D

block and the new pair, all-pairs 2D values of 𝑡 ≤ 3 for any𝑚 ≤ 8.

Further, for the 4D block involving the last pair of dimensions and

the new pair, the 4D value of 𝑡 ≤ 4 for𝑚 ≤ 15 and 𝑡 ≤ 3 for𝑚 ≤ 10.

Pairs of polynomials of degree lower than 𝑒 = 12 (involving the

first 36 dimensions) were further inspected manually to ensure high

quality. This optimization process is inspired by the pioneering

works of Joe and Kuo [2008] and Faure and Lemieux [2019]. It is also

close to the optimization described by Ostromoukhov et al. [2024].

Visualization of 2D projections for our resulting sequence can be

seen in Fig. 7 while discrepancy and integration errors for 2D and

4D projections can be seen in Fig. 10. In Figure 8, we further analyze

the experimental 𝑡 values any 2D projections, for various sample

counts, up to 100D. While our construction provides better 𝑡 values

for nearly consecutive pairs (see histograms), the experimental 𝑡

values for distant polynomials are only slightly worse than Sobol’s.

It is important to note that, aside from the optimization crite-

ria, our construction behaves like any other Sobol’ construction.

Specifically, some remote pairs of dimensions or n-tuples beyond

the optimized 4-tuples mentioned earlier may exhibit “good” or

“bad” values of 𝑡 , which fall outside the control of our optimiza-

tion process. This limitation is also present in the aforementioned

optimizations [Faure and Lemieux 2019; Joe and Kuo 2008; Ostro-

moukhov et al. 2024].

For dimensions greater than 692, the standard Joe and Kuo ini-

tializations can be used, provided they do not reuse our optimized

polynomials. To assist with this, we provide a complementary initial-

ization table for reference, along with the corresponding initializa-

tion matrices, integrating Joe and Kuo’s dimensions for dimensions

greater than 692 that excludes our polynomials.

5.3 Renderings
We evaluate our sequence with PBRT-v4 [Pharr et al. 2023] used

as a per-pixel path tracer. PBRT constructs paths by combining 1D

and 2D random variables. When sampling 1D variables, we sample

2 of our dimensions and keep one of them cached for the next

1D variable. Constructing a path involves sampling a pixel (2D),

time (1D) and the lens (2D). Evaluating direct lighting additionally

requires selecting the light source (1D) and a point on that light

source (2D). Evaluating one bounce of indirect lighting requires

selecting the material (1D) and sampling a direction from it (2D).

In this setting, rendering with direct lighting uses 11 dimensions
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Fig. 8. Up to 100 dimensions, we show the experimental 𝑡 values for each 2D projection pair (𝑖, 𝑗 ) of Sobol’ sequences with Joe and Kuo (top) and our
(1, 2)-sequences (bottom) for𝑚 = 6,𝑚 = 8, and𝑚 = 12. The last column corresponds to the maximum 𝑡 values over𝑚 ∈ {2, .., 12}. The histograms highlight
the distributions of 𝑡 values for close pairs (i.e., |𝑖 − 𝑗 | ≤ 4) and all pairs. While most pairs have comparable 𝑡 values with only a small degradation far from
the diagonal, our construction shows a significant improvement for close consecutive pairs (with 𝑡 ≤ 1 by construction for pairs (2𝑖, 2𝑖 + 1)).

involving 6 optimized pairs, while rendering with one bounce of

indirect lighting requires 17 dimensions (9 pairs), two bounces of

indirect lighting require 23 dimensions (12 pairs), etc. We did not use

Russian roulette nor spectrum sampling. We compare our results to

those of other samplers in Fig. 12, focusing on rendering error. We

used Owen scrambling for all methods.

Our sequences with guaranteed 𝑡 = 1 2D projections perform

similarly to the base-3 progressive point sets of quad-optimized

𝐺𝐹 (3) [Ostromoukhov et al. 2024] and the base-2 point sets of

Cascaded Sobol’ [Paulin et al. 2021]. This result is in agreement

with other discrepancy and integration results in Fig. 10 and Fig. 9.

Padding 4D Sobol’ samples with random shuffling [Burley 2020]

yields better results than padding in 2D (ZeroTwo [Pharr et al. 2023]).

While our high-dimensional behavior is guaranteed low-discrepancy

and padded 4D Sobol’ has poor discrepancy convergence (see Fig. 11),

our renderings remain similar in most cases.

Working with𝐺𝐹 (2) arithmetic is also faster than𝐺𝐹 (3). Addi-
tions in 𝐺𝐹 (2) can be computed with a binary xor in parallel on

32 values whereas 𝐺𝐹 (3) requires modulo arithmetic and tabulated

operations on scalar values [Ostromoukhov et al. 2024]. Generating

8D points is roughly four time slower with quad-optimized 𝐺𝐹 (3)
(798ms vs 201ms respectively, for 16M samples, on a Ryzen 3900X).

In our tests, when rendering a Cornell box at 256spp at 1k resolution,

sampling (in base-2) takes at least 75% of the total render time in

PBRT, while the more complex SanMiguel scene results in 15% of

the time spent in sampling. Easy-to-use precompiled matrices and

fast point generation functions are available in the supplementary

materials, as well as the modified PBRT source code.

6 Conclusions
We designed a theoretical construction of 2D Sobol’ sequences with

𝑡 = 1 using 𝑝 and 𝑝2 + 𝑝 + 1, while remaining low-discrepancy in

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 9. In 2D and 4D, we evaluate the samplers quality with respect to the generalized 𝐿2 discrepancy measure [Hickernell 1998] and integration errors (MSE)
for random Gaussians and random Heavisides integrands (results averaged over 64 Owen-scrambled point sets). Although Sobol’ [1967]/Joe and Kuo [2008]
and Faure and Lemieux [2016] sequences are of high quality for the pair (0, 1) and the quadruple (0, 1, 2, 3) , higher discrepancies and integration errors can be
observed for the pair (14, 15) and the quadruple (12, 13, 14, 15) . In contrast, quad-optimized LDS in𝐺𝐹 (3) [Ostromoukhov et al. 2024] and our sequences
show comparable results, with our sequences more easily computed in𝐺𝐹 (2) .

higher dimensions. In practice, we found many solutions of unique

characteristic matrices, in contrast to the unique solution for 𝑡 = 0.

We used 346 such pairs to produce a 692D sequence having at most

𝑡 = 1 in 2D consecutive projections. In the process of proving 𝑡 = 1,

we discovered a new recursive construction for Sobol’ matrices and

for characteristic matrices. However, the availability of pairs of ir-

reducible polynomials in the form 𝑝 and 𝑝2 + 𝑝 + 1 is limited, and

their degrees quickly increase. In practice, we use polynomials of

up to degree 2𝑒 = 32 to produce 692 dimensions, while the construc-

tion of Faure and Lemieux [2016] uses at maximum polynomials

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 10. Generalized 𝐿2 discrepancy [Hickernell 1998] of consecutive 2D pairs (left) and quadruples of dimensions (right) of the first 36 dimensions of Sobol’
using tables of Joe and Kuo [2008] (red), quad-optimized projection in𝐺𝐹 (3) [Ostromoukhov et al. 2024] (blue), Faure and Lemieux [2016] (magenta), and our
sequences (green). We observe comparable results to the quad-optimized projection in𝐺𝐹 (3) while staying in𝐺𝐹 (2) , both improving over Joe and Kuo.
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Fig. 11. For (𝑡, 𝑠 )-sequences only, we compare their generalized 𝐿2 discrep-
ancy in higher dimensions (from 2D to 32D, by increasing order of the
polynomials). We observe similar results for all LDS sequences, while our se-
quence has highly uniform 2D projections (see Fig. 10-left). ZeroTwo [Pharr
et al. 2023] and Padded 4D [Burley 2020] are not LDS in higher dimensions
and thus do not offer the same convergence rate.

of degree 13 to produce 1377 dimensions. While low-degree poly-

nomials may appear desirable since they are guaranteed to reduce

𝑡 for high-dimensional integration problems, as 𝑡 is bounded by

sums of polynomial degrees, this does not mean that 𝑡 is neces-

sarily large when the degree is large (in fact, our solution could

lead to 𝑡 = 1 in 2D for arbitrarily large polynomial degrees). We

have found that the quality of our sequence remains competitive for

moderately high-dimensional integration problems arising in path

tracing, despite our use of higher-degree polynomials. Our use of a

base-2 construction remains an advantage in rendering where effi-

ciency is critical, and base-2 allows for both efficient sampling and

Owen scrambling [Burley 2020; Owen 1995]. Our sampler produces

a sequence, which is ideal for progressive rendering. Our use of stan-

dard Sobol’ construction makes integration into existing renderers

already supporting Sobol’ extremely lightweight. We nevertheless

intend to explore 𝑏 > 2 within our framework to discover 𝑡 = 0

sequences in higher dimensions, which remains a gold standard for

numerical integration.
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A Additional derivations

A.1 Proofs of Eq. (10)
Starting from eq. 4 and 𝐹 −1

𝑝 = (𝐼𝑑𝑒 + 𝑅𝑝,𝑒 ) . . . (𝐼𝑑𝑒 + 𝑅𝑝,2), we have:

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
=

(𝐼𝑑2𝑒 + 𝑅𝑝2+𝑝+1,2) . . . (𝐼𝑑2𝑒 + 𝑅𝑝2+𝑝+1,2𝑒 ) (𝐼𝑑2𝑒 + 𝑅𝑝2,2𝑒 ) . . . (𝐼𝑑2𝑒 + 𝑅𝑝2,2)

To simplify the notations, we denotes 𝑅′
𝑘
= (𝐼𝑑2𝑒 +𝑅𝑝2+𝑝+1,𝑘 ) and

𝑅′′
𝑘
= (𝐼𝑑2𝑒 + 𝑅𝑝2,𝑘 ). Hence, we have:

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
=

𝑅′
2
. . . 𝑅′𝑒−1︸      ︷︷      ︸
(𝑖 )

𝑅′𝑒 . . . 𝑅
′
2𝑒−1

𝑅′
2𝑒𝑅

′′
2𝑒𝑅

′′
2𝑒−1

. . . 𝑅′′𝑒︸                                 ︷︷                                 ︸
(𝑖𝑖 )

𝑅′′𝑒−1
. . . 𝑅′′

2︸       ︷︷       ︸
(𝑖𝑖𝑖 )

(14)

In the following, we will use this illustration for 𝑅′
𝑘
(the column of

index 𝑘 contains the (𝑘 −1) highest degree coefficients of 𝑝2 +𝑝 +1):

𝐼𝑑

𝐼𝑑

0

𝑝
2
+
𝑝

0 0

1

Note that by definition of 𝑅′
𝑘
and 𝑅′′

𝑘
matrices, we can only consider

polynomials 𝑝2 + 𝑝 and 𝑝2
respectively, as the constant factor is

dropped by construction.

Let us first consider the first innermost product in part (𝑖𝑖) of
Eq. (14) involving the 𝑝2 + 𝑝 and 𝑝2

polynomials 𝑅′
2𝑒𝑅

′′
2𝑒 :

𝐼𝑑

𝑝
2
+
𝑝

10

𝐼𝑑

𝑝
2

10

=

𝐼𝑑

𝑝

0

10

𝑒

as 𝑝2 + 𝑝2
coefficients cancel out for rows greater or equal to 𝑒 . We

denote by𝑈1 the resulting matrix. Let us now consider the product

𝑈2 = 𝑅′
2𝑒−1

𝑈1 𝑅
′′
2𝑒−1

:

𝐼𝑑

𝑝
2
+
𝑝

1

1

0

0

00

0

𝐼𝑑

𝑝

0

10

𝐼𝑑

𝑝
2

0

0 1

1

0

0

0

which simplifies to

𝐼𝑑 𝑝
𝑝

1

1 0

00

00

0

If we repeat this process for all triplets of matrices 𝑅′
𝑘
𝑈2𝑒−𝑘 𝑅

′′
𝑘
for

the 𝑘 indices of (𝑖𝑖), we end up with the matrix𝑈𝑒 :

𝐼𝑑

𝐼𝑑

𝐹 −1

𝑝

0

Indeed, for each product 𝑅′
𝑘
𝑈2𝑒−𝑘 𝑅

′′
𝑘
, all 𝑝2

coefficents vanish, lead-

ing to a triangular upper-right block with shifted 𝑝 coefficients as

in Eq. (7).

Let us now consider the product between (𝑖𝑖) and the (𝑖) and
(𝑖𝑖𝑖) parts in Eq. (14). First, we observe that

𝑅′′𝑒−1
𝑅′′𝑒−2

=

𝐼𝑑

𝐼𝑑

0

0

𝑝
2
𝑝

2

10

1

By doing such products for all matrices of (𝑖𝑖𝑖), we obtain an upper-

left block which corresponds to the first 𝑒 × 𝑒 entries of 𝐹 −1

𝑝2+𝑝 .

𝑅′′𝑒−1
. . . 𝑅′′

2
=

(
𝐹 −1

𝑝2
0

0 𝐼𝑑𝑒

)
.

For products in (𝑖), we use the fact that

(
𝑅′

2
. . . 𝑅′𝑒−1

)−1

= 𝑅′−1

𝑒−1
. . . 𝑅′−1

2
= 𝑅′𝑒−1

. . . 𝑅′
2
=

(
𝐹 −1

𝑝2+𝑝 0

0 𝐼𝑑𝑒

)
,

as 𝑅′
𝑘
is its own inverse and using a similar construction as for (𝑖𝑖𝑖).

Thus, using the inverse of a block matrix, we obtain

𝑅′
2
. . . 𝑅′𝑒−1 =

(
𝐹𝑝2+𝑝 0

0 𝐼𝑑𝑒

)
,

which equals to

(
𝐹𝑝2 0

0 𝐼𝑑𝑒

)
as no coefficients for the 𝑝 term are

present in the upper-left block.

We finally have

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
=

(
𝐹𝑝2 0

0 𝐼𝑑𝑒

) (
𝐼𝑑𝑒 𝐹 −1

𝑝

0 𝐼𝑑𝑒

) (
𝐹 −1

𝑝2
0

0 𝐼𝑑𝑒

)
=

(
𝐹𝑝2 0

0 𝐼𝑑𝑒

) (
𝐹 −1

𝑝2
𝐹 −1

𝑝

0 𝐼𝑑𝑒

)
=

(
𝐼𝑑𝑒 𝐹𝑝
0 𝐼𝑑𝑒

)
.

which concludes Eq. (10). The last step uses the observation that, for

the upper-right block, 𝐹𝑝2𝐹 −1

𝑝 =

((
𝐹𝑝2𝐹 −1

𝑝

)−1

)−1

=

(
𝐹𝑝𝐹

−1

𝑝2

)−1

=(
𝐹𝑝𝐹

−1

𝑝 𝐹 −1

𝑝

)−1

= 𝐹𝑝 .
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A.2 Proofs of Eq. (11)
First, combining Eq. (9) and (10), we have:

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
𝐷−1

𝑝2
=

(
𝐼𝑑𝑒 𝐹𝑝
0 𝐼𝑑𝑒

) (
𝐼𝑑𝑒 𝑄𝑝
0 𝐹 −1

𝑝

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
(15)

=

(
𝐼𝑑𝑒 𝑄𝑝 + 𝐼𝑑𝑒
0 𝐹 −1

𝑝

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
(16)

=

(
𝐼𝑑𝑒 𝑄𝑝
0 𝐹 −1

𝑝

) (
𝐷−1

𝑝 𝐷−1

𝑝

0 𝐷−1

𝑝

)
(17)

=

(
𝐼𝑑𝑒 𝑄𝑝
0 𝐼𝑑𝑒

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

) (
𝐼𝑑𝑒 𝐼𝑑𝑒
0 𝐼𝑑𝑒

)
(18)

= 𝐷−1

𝑝2

(
𝐼𝑑𝑒 𝐼𝑑𝑒
0 𝐼𝑑𝑒

)
, (19)

leading to Eq. (11). Starting from Eq. (16), we also have

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
𝐷−1

𝑝2
=

(
𝐼𝑑𝑒 𝑄𝑝 + 𝐼𝑑𝑒
0 𝐹 −1

𝑝

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
(20)

=

(
𝐼𝑑𝑒 𝑄𝑝+1

0 𝐹 −1

𝑝

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
, (21)

that will be used later.

A.3 Proofs of Eq. (12)
Let us now prove the following statement:

(𝑄𝑝2 +𝑄𝑝2+𝑝+1
𝐹𝑝2+𝑝+1

𝐹 −1

𝑝2
)𝐷−1

𝑝2
= 𝐷−1

𝑝2

(
𝐼𝑑𝑒 𝐼𝑑𝑒
𝐼𝑑𝑒 0

)
.

From now on, we make explicit the size of the matrices using [𝑒]
or [2𝑒] superscripts. First, by definition, 𝑄

[2𝑒 ]
𝑝2

is

𝑄
[2𝑒 ]
𝑝2

=

©­­­­­­­­«

𝑎0 0 0 . . . 0

0 𝑎0 0 . . . 0

𝑎1 0 𝑎0 . . . 0

0 𝑎1 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑒−1 0 𝑎𝑒−2 . . . 𝑎0

ª®®®®®®®®¬
. (22)

We decompose 𝑄
[2𝑒 ]
𝑝2

into 𝑒 × 𝑒 blocks:

𝑄
[2𝑒 ]
𝑝2

=

(
𝑄

[𝑒 ]
𝑝2

0

𝑄
[𝑒 ]
𝑝2

𝑄
[𝑒 ]
𝑝2

)
. (23)

Similar to 𝑄
[2𝑒 ]
𝑝2

, 𝑄
[𝑒 ]
𝑝2

is also Toeplitz. Furthermore, we have

𝑄
[𝑒 ]
𝑝+𝑞 =𝑄

[𝑒 ]
𝑝 +𝑄 [𝑒 ]

𝑞 and 𝑄
[𝑒 ]
𝑝𝑞 =𝑄

[𝑒 ]
𝑝 𝑄

[𝑒 ]
𝑞 ,

for any polynomial 𝑝 and 𝑞 of degree 𝑒 . The same holds for 𝑄
[𝑒 ]
𝑝+𝑞

and 𝑄
[𝑒 ]
𝑝𝑞 matrices. Now,

(𝑄𝑝2 +𝑄𝑝2+𝑝+1
𝐹𝑝2+𝑝+1

𝐹 −1

𝑝2
)𝐷−1

𝑝2
=

=𝑄𝑝2𝐷−1

𝑝2
+𝑄𝑝2+𝑝+1

𝐹𝑝2+𝑝+1
𝐹 −1

𝑝2
𝐷−1

𝑝2

using Eq. (9) and 21 with 𝑇 =

(
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
=

((
𝑄

[𝑒 ]
𝑝2

0

𝑄
[𝑒 ]
𝑝2

𝑄
[𝑒 ]
𝑝2

) (
𝐼𝑑𝑒 𝑄

[𝑒 ]
𝑝

0 𝑄
[𝑒 ]
𝑝

)
+

(
𝑄

[𝑒 ]
𝑝2+𝑝+1

0

𝑄
[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝2+𝑝+1

) (
𝐼𝑑𝑒 𝑄

[𝑒 ]
𝑝+1

0 𝑄
[𝑒 ]
𝑝+1

))
𝑇 . (24)

First, we observe that 𝑄
[𝑒 ]
𝑝 =𝑄

[𝑒 ]
𝑝+1

. The first factor can be rewritten

(
𝑄

[𝑒 ]
𝑝2

𝑄
[𝑒 ]
𝑝3

𝑄
[𝑒 ]
𝑝2

𝑄
[𝑒 ]
𝑝2
𝑄

[𝑒 ]
𝑝 +𝑄 [𝑒 ]

𝑝2
𝑄

[𝑒 ]
𝑝

)
+

(
𝑄

[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝3+1

𝑄
[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝+1

+𝑄 [𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝+1

)
,

since 𝑄
[𝑒 ]
𝑝2
𝑄

[𝑒 ]
𝑝 = 𝑄

[𝑒 ]
𝑝3

and 𝑄
[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝 = 𝑄

[𝑒 ]
𝑝3+𝑝2+𝑝 . Furthermore,

for any polynomial 𝑝 and 𝑞 of degree 𝑒 , we have

𝑄
[2𝑒 ]
𝑝𝑞 =𝑄

[2𝑒 ]
𝑝 𝑄

[2𝑒 ]
𝑞

=

(
𝑄

[𝑒 ]
𝑝 0

𝑄
[𝑒 ]
𝑝 𝑄

[𝑒 ]
𝑝

) (
𝑄

[𝑒 ]
𝑞 0

𝑄
[𝑒 ]
𝑞 𝑄

[𝑒 ]
𝑞

)
=

(
𝑄

[𝑒 ]
𝑝𝑞 0

𝑄
[𝑒 ]
𝑝 𝑄

[𝑒 ]
𝑞 +𝑄 [𝑒 ]

𝑝 𝑄
[𝑒 ]
𝑞 𝑄

[𝑒 ]
𝑝𝑞

)
.

Hence, the first factor of Eq. (24) is

(
𝑄

[𝑒 ]
𝑝2

𝑄
[𝑒 ]
𝑝3

𝑄
[𝑒 ]
𝑝2

𝑄
[𝑒 ]
𝑝3

)
+

(
𝑄

[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝3+1

𝑄
[𝑒 ]
𝑝2+𝑝+1

𝑄
[𝑒 ]
𝑝3+1

)
=

(
𝑄

[𝑒 ]
𝑝+1

𝑄
[𝑒 ]
1

𝑄
[𝑒 ]
𝑝+1

𝑄
[𝑒 ]
𝑝3

+𝑄 [𝑒 ]
𝑝3+1

)
=

(
𝑄

[𝑒 ]
𝑝+1

𝐼𝑑𝑒

𝐹 −1

𝑝 0

)
,

using the fact that 𝑄
[𝑒 ]
𝑝 = 𝐹 −1

𝑝 from the construction of both matri-

ces.
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Finally,

(𝑄𝑝2 +𝑄𝑝2+𝑝+1
𝐹𝑝2+𝑝+1

𝐹 −1

𝑝2
)𝐷−1

𝑝2
=

(
𝑄

[𝑒 ]
𝑝+1

𝐼𝑑𝑒

𝐹 −1

𝑝 0

)
𝑇

=

(
𝑄

[𝑒 ]
𝑝+1

𝐼𝑑𝑒

𝐹 −1

𝑝 0

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
=

(
𝑄

[𝑒 ]
𝑝 + 𝐼𝑑𝑒 𝐼𝑑𝑒

𝐹 −1

𝑝 0

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
=

(
𝐼𝑑𝑒 𝑄

[𝑒 ]
𝑝 + 𝐼𝑑𝑒

0 𝐹 −1

𝑝

) (
0 1

1 0

) (
𝐷−1

𝑝 0

0 𝐷−1

𝑝

)
= 𝐷−1

𝑝2

(
𝐼𝑑𝑒 𝐼𝑑𝑒
𝐼𝑑𝑒 0

)
,

which concludes the proof of Eq. (12).

A.4 (1, 2)−sequences and corank 1 submatrices of 𝐾
Let us consider two Sobol’ matrices𝑀𝑝 and𝑀𝑞 of size𝑚×𝑚 forming

a (𝑡,𝑚, 2)-net. We denote𝐾 =𝑀𝑞𝑀
−1

𝑝 . First we remind that the pairs

of matrices (𝑀𝑝 , 𝑀𝑞) and (𝐼𝑑𝑚, 𝐾) generate the same point set (up

to indices permutation). Let K𝑡
𝑘
the (𝑚 − 𝑡) ×𝑚 matrix consisting

of the first 𝑘 rows of 𝐼𝑑𝑚 and the first𝑚 − 𝑘 − 𝑡 rows of 𝐾 :

K𝑡
𝑘
=

𝐼𝑑𝑘

𝐾 ′ 𝐾 ′′

0

𝑘

𝑘

𝑚 − 𝑘

𝑚 − 𝑘 − 𝑡

LemmaA.1 (Niederreiter [1992] (p. 73) and Paulin et al [2022b]).

𝑀𝑝 and𝑀𝑞 is a (𝑡,𝑚, 2)−net if and only if for all 𝑘 ∈ {1, . . . ,𝑚}, K𝑡
𝑘

has corank 𝑡 .

From block-wise rank computation (the corank of a block trian-

gular matrix with one full rank diagonal block is the corank of the

other diagonal block [Meyer 1973]), we have

corank(K𝑡
𝑘
) = corank(𝐾 ′′) .

Focusing on (1, 2)-sequences, matrices 𝐾 ′′
for all𝑚 and all 𝑘 of

size (𝑚 − 𝑘 − 1) × (𝑚 − 𝑘) are exactly the 𝑇 𝑗,𝑤 matrices involved

in the property P (see Sect. 4.5). As a consequence, if each such

matrices 𝑇 has corank 1, we can conclude that 𝐾 characterizes a

(1, 2)−sequence.
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