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Optimal Transport theory consists in finding a map T pushing forward an
input measure p to a target measure v, which minimizes a “transport cost”.
This cost often consists in the sum of the squared distances travelled by
all particles during their motion. Formally, the Monge problem consists in
minimizing :

min C%( mln/ |z — T(x)|*dp(x)

such that T#p = v. This, for instance, allows to define the “displacement
interpolation” between probability measures. This theory has seen many ap-
plications in computer graphics, but more generally in machine learning,
medical and astro imaging, simulation (from fluids to the early stages of the
universe), and operational research.

Recently, methods have been developed to efficiently compute the optimal
transport map (and displacement interpolation) in the case where v is a
(weighted) sum of Diracs, and pu is absolutely continuous [2] [I]. This is per-
formed by computing and optimizing for a Power Diagram of the target
measure (that is, a weighted Voronoi Diagram) for which effective algorithms
exist. It is often referred to as semi-discrete optimal transport. A symmetri-
zed semi-discrete transport is currently under development by a collaborator
of the project, allowing for continuous-continuous transport based on the
semi-discrete approach and Centroidal Power Diagrams [3].

At the same time, the notion of Wasserstein barycenter has been developed.
Given a set of input measures {p;};—1. n along with weights {w; };=1. n, this
consists in finding a “barycenter” measure i defined similarly to a Euclidean

barycenter :
N

i = argmin,, Z w; C? (114, 1)
i=1

In this framework, the displacement interpolation of two measures is exactly
the barycenter between these two measures, with weights w; = 1 — ¢ and



wg = t. However, contrary to displacement interpolation, very few numeri-
cal techniques exist for the barycenter problem and the geometric method
described above does not hold.

The goal of this internship is to investigate how Wasserstein barycenters can
be characterized geometrically. Specifically, the student will need to study
how the symmetrized semi-discrete algorithm extends to more than two input
measures and if time permits, implements this algorithm in 2-d or 3-d.

The project will be supervised by Nicolas Bonneel and Julie Digne (compu-
ter science junior researchers at LIRIS), and will be performed in collabo-
ration with Bruno Levy (computer science senior researcher at INRIA) and
Jean-Marie Mirebeau (applied math junior researcher at Orsay mathematics
laboratory).
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