
Code Replicability in Computer Graphics

NICOLAS BONNEEL, Univ Lyon, CNRS, France
DAVID COEURJOLLY, Univ Lyon, CNRS, France
JULIE DIGNE, Univ Lyon, CNRS, France
NICOLAS MELLADO, Univ Toulouse, CNRS, France

Fig. 1. We ran 151 codes provided by papers published at SIGGRAPH 2014, 2016 and 2018. We analyzed whether these codes could still be run as of 2020 to
provide a replicability score, and performed statistical analysis on code sharing.

Being able to duplicate published research results is an important process of
conducting research whether to build upon these findings or to compare with
them. This process is called “replicability” when using the original authors’
artifacts (e.g., code), or “reproducibility” otherwise (e.g., re-implementing
algorithms). Reproducibility and replicability of research results have gained
a lot of interest recently with assessment studies being led in various fields,
and they are often seen as a trigger for better result diffusion and trans-
parency. In this work, we assess replicability in Computer Graphics, by
evaluating whether the code is available and whether it works properly.
As a proxy for this field we compiled, ran and analyzed 151 codes out of
374 papers from 2014, 2016 and 2018 SIGGRAPH conferences. This analysis
shows a clear increase in the number of papers with available and opera-
tional research codes with a dependency on the subfields, and indicates a
correlation between code replicability and citation count. We further provide
an interactive tool to explore our results and evaluation data.

CCS Concepts: • Computing methodologies → Computer graphics; •
Software and its engineering→ Open source model.

Additional KeyWords and Phrases: Replicability, reproducibility, open source,
code review, siggraph

Authors’ addresses: Nicolas Bonneel, nicolas.bonneel@liris.cnrs.fr, Univ Lyon, CNRS,
Lyon, France; David Coeurjolly, david.coeurjolly@liris.cnrs.fr, Univ Lyon, CNRS, Lyon,
France; Julie Digne, julie.digne@liris.cnrs.fr, Univ Lyon, CNRS, Lyon, France; Nicolas
Mellado, nicolas.mellado@irit.fr, Univ Toulouse, CNRS, Toulouse, France.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART1 $15.00
https://doi.org/10.1145/3386569.3392413

1 INTRODUCTION
The ability to reproduce an experiment and validate its results is a
cornerstone of scientific research, a key to our understanding of the
world. Scientific advances often provide useful tools, and build upon
a vast body of previous work published in the literature. As such,
research that cannot be reproduced by peers despite best efforts
often has limited value, and thus impact, as it does not benefit to
others, cannot be used as a basis for further research, and casts
doubt on published results. Reproducibility is also important for
comparison purposes since new methods are often seen in the light
of results obtained by published competing approaches. Recently se-
rious concerns have emerged in various scientific communities from
psychological sciences [Open Science Collaboration et al. 2015] to
artificial intelligence [Hutson 2018] over the lack of reproducibility,
and one could wonder about the state of computer graphics research
in this matter.

In the recent trend of open science and reproducible research, this
paper aims at assessing the state of replicability of papers published
at ACM Transactions on Graphics as part of SIGGRAPH confer-
ences. Contrary to reproducibility which assesses how results can
be obtained by independently reimplementing published papers –
an overwhelming task given the hundred papers accepted yearly
to this event – replicability ensures the authors’ own codes run
and produce the published results. While sharing code is not the
only available option to guarantee that published results can be
duplicated by a practitioner – after all, many contributions can be
reimplemented from published equations or algorithm descriptions
with more or less effort – it remains an important tool that reduces
the time spent in reimplementation, in particular as computer graph-
ics algorithms get more sophisticated.

Submission ID: papers_262. 2020-04-29 18:11. Page 1 of 1–8. ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392413

1:2 • Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado

Our contributions are twofold. First, we analyze code sharing
practices and replicability in computer graphics. We hypothesize
strong influence of topics, an increase of replicability over time
similar to the trend observed in artificial intelligence [Hutson 2018],
and an increased impact of replicable papers, as observed in image
processing [Vandewalle 2019]. To evaluate these hypotheses, we
manually collected source codes of SIGGRAPH 2014, 2016 and 2018
papers and ran them, and when possible, assessed how they could
replicate results shown in the paper or produce reasonably similar
results on different inputs. Second, we provide detailed step-by-step
instructions to make these software packages run (in practice, in
many cases, code adaptations had to be done due to dependencies
having evolved) through a website, thus becoming a large code
review covering 151 codes obtained from 374 SIGGRAPH papers.
We hope this platform can be used collaboratively in the future to
help researchers having difficulties reproducing published results.
Our study shows that:

• Code sharing is correlated with paper citation count, and has
improved over time.

• Code sharing practices largely vary with sub-fields of com-
puter graphics.

• It is often not enough to share code for a paper to be replicable.
Build instructionswith precise dependencies version numbers
as well as example command lines and data are important.

2 PRIOR WORK
The impact of research involves a number of parameters that are
independent of the quality of the research itself, but of practices
surrounding it. Has the peer review process been fairly conducted?
Are the findings replicable? Is the paper accessible to the citizen?
A number of these questions have been studied in the past within
various scientific communities, which this section reviews.

Definitions. Reproducible research has been initiated in com-
puter science [Claerbout and Karrenbach 1992] via the automation
of figures production within scientific articles. Definitions have
evolved [Plesser 2018] and have been debated [Goodman et al. 2016].
As per ACM standards [ACM 2016], repeatability indicates the orig-
inal authors can duplicate their own work, replicability involves
other researchers duplicating results using the original artifacts
(e.g., code) and hardware, and reproducibility corresponds to other
researchers duplicating results with their own artifacts and hard-
ware – we will hence use this definition. We however mention that
various actors of replicable research have advocated for the opposite
definition: replicability being about answering the same research
question with new materials while reproducibility involves the orig-
inal artifacts [Barba 2018] – a definition championed by the National
Academies of Sciences [2019].

Reproducibility and replicability in experimental sciences.
Concerns over lack of reproducibility have started to emerge in
several fields of studies, which has led to the term “reproducibility
crisis” [Pashler and Harris 2012]. In experimental sciences, replica-
bility studies evaluate whether claimed hypotheses are validated
from observations (e.g., whether the null hypothesis is consistently
rejected and whether effect sizes are similar). In different fields of

psychology and social sciences, estimations of replication rates have
varied between 36% out of 97 studies with significant results, with
half the original effect size [Open Science Collaboration et al. 2015],
50%-54% out of 28 studies [Klein et al. 2018], 62% out of 21 Nature
and Science studies with half the original effect size [Camerer et al.
2018], and up to roughly 79% out of 342 studies [Makel et al. 2012].
In oncology, a reproducibility rate of 11% out of 53 oncology pa-
pers has been estimated [Begley and Ellis 2012], and a collaboration
between Science Exchange and the Center for Open Science (ini-
tially) planned to replicate 50 cancer biology studies [Baker and
Dolgin 2017]. Over 156 medical studies reported in newspapers,
about 49% were confirmed by meta-analyses [Dumas-Mallet et al.
2017]. A survey published in Nature [Baker 2016] showed large dis-
parities among scientific fields: respondents working in engineering
believed an average of 55% of published results are reproducible
(N = 66), while in physics an average of 73% of published results
were deemed reproducible (N = 91).

This has resulted in various debates and solutions such as reduc-
ing hypothesis testing acceptance thresholds top < 0.005 [Benjamin
et al. 2018] or simply abandoning hypothesis testing and p-values as
binary indicators [McShane et al. 2019], providing confidence inter-
vals and using visualization techniques [Cohen 2016], or improving
experimental protocols [Begley 2013].
While computer graphics papers occasionally include experi-

ments such as perceptual user studies, our paper focuses on code
replicability.

Reproducibility and replicability in computational sciences.
In hydrology, Stagge et al. [2019] estimate via a survey tool that 0.6%
to 6.8% of 1,989 articles (95% Confidence Interval) can be reproduced
using the available data, software and code – a major reported issue
being the lack of directions to use the available artifacts (for 89% of
tested articles). High energy physicists, who depend on costly, often
unique, experimental setups (e.g., the Large Hadron Collider) and
produce enormous datasets, face reproducibility challenges both in
data collection and processing [Chen et al. 2019]. Such challenges are
tackled by rigorous internal review processes before data and tools
are opened to larger audiences. It is argued that analyses should
be automated from inception and not as an afterthought. Closer to
our community is the replication crisis reported in artificial intelli-
gence [Gundersen and Kjensmo 2018; Hutson 2018]. Notably, the
authors surveyed 400 papers from top AI conferences IJCAI and
AAAI, and found that 6% of presenters shared their algorithm’s code,
54% shared pseudo-code, 56% shared their training data, and 30%
shared their test data, while the trend was improving over time. In a
recent study on the reproducibility of IEEE Transactions on Image
Processing papers [Vandewalle 2019], the authors showed that, on
average, code availability approximately doubled the number of
citations of published papers. Contrary to these approaches, we not
only check for code availability, but also evaluate whether the code
compiles and produces similar results as those found in the paper,
with reasonable efforts to adapt and debug codes when needed.

Efforts to improve reproducibility are nevertheless flourish-
ing from early recommendations such as building papers using
Makefiles in charge of reproducing figures [Schwab et al. 2000] to

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020. Submission ID: papers_262. 2020-04-29 18:11. Page 2 of 1–8.

Code Replicability in Computer Graphics • 1:3

various reproducibility badges proposed by ACM [ACM 2016] in col-
laboration with the Graphics Replicability Stamp Initiative [Panozzo
2016]. Colom et al. list a number of platforms and tools that help in
reproducible research [2018]. Close to the interest of the computer
graphics community, they bring forward the IPOL journal [Colom
et al. 2015] whose aim is to publish image processing codes via a
web interface that allows to visualize results, along with a complete
and detailed peer-reviewed description of the algorithm. They fur-
ther mention an initiative by GitHub [2016] to replicate published
research, though it has seen very limited success (three replications
were initiated over the past three years). In Pattern Recognition,
reproducible research is awarded with the Reproducible Label in
Pattern Recognition organized by the biennal Workshop on Repro-
ducible Research in Pattern Recognition [Kerautret et al. 2019, 2017].
Programming languages and software engineering communities
have created the Artifact Evaluation Committees for accepted pa-
pers [Krishnamurthi 2020], with incentives such as rewarding with
additional presentation time at the conference and an extra page in
the proceedings, with special recognition for best efforts.
Other initiatives include reproducibility challenges such as the

one organized yearly since 2018 by the ICLR conference in machine
learning [Pineau et al. 2019] that accepts submissions aiming at
reproducing published research at ICLR. In 2018, reproducibility
reports of 26 ICLR papers were submitted, out of which 4 were
published in the ReScience C journal.

Open access. Software bugs have had important repercussions
on collected data and analyses, hence pushing for open sourcing
data and code. Popular examples include Microsoft Excel that con-
verts gene names such as SEPT2 (for Septin 2) to dates [Ziemann
et al. 2016], or a bug in widely used fMRI software packages that
resulted in largely inflated false-positive rates, possibly affecting
many published results [Eklund et al. 2016]. Recently, Nature Re-
search has enforced an open data policy [Nature 2018], stated in
their policies as authors are required to make materials, data, code,
and associated protocols promptly available to readers without undue
qualifications, and proposes a journal focused on sharing high re-use
value data called Scientific Data [Scientific Data (Nature Research)
2014]. Other platforms for sharing scientific data include the Open
Science Framework [Center for Open Science 2015]. Related to code,
Colom et al. [2018] reports the websites mloss that lists machine
learning codes, RunMyCode for scientists to share code associated
with their research paper, or ResearchCompendia that stores data and
codes. Long-term code availability is also an issue, since authors’
webpages are likely to move according to institution affiliations so
that code might be simply unavailable. Code shared on platforms
such as GitHub is only available as long as the company exists which
can also be an issue, if limited. For long-term code storage, the Soft-
ware Heritage initiative [Di Cosmo and Zacchiroli 2017] aims at
crawling the web and platforms such as GitHub, Bitbucket, Google
code etc. for open source software and stores them in a durable
way. Recently, the Github Archive Program [Github 2020] pushed
these ideas further and propose a pace layer strategy where code is
archived at different frequencies (real-time, monthly, every 5 years),
with advertised lifespans up to 500 years and possibly 10,000 years.

Other assessments of research practices. Reproducibility of
paper acceptance outcome has been assessed in machine learning.
In 2014, the prestigious NIPS conference (now NeurIPS) has per-
formed the NIPS consistency experiment: a subset of 170 out of 1678
submissions were assigned to two independent sets of reviewers,
and consistency between reviews and outcomes were evaluated.
The entire process, results, and analyses, were shared on an open
platform [Lawrence 2014]. Decisions were inconsistent for 43 out of
166 reviewed papers (4 were withdrawn, 101 were rejected by both
committees, 22 were accepted by both committees). Other initiatives
for more transparent processes include the sharing of peer reviews
of published papers on platforms such as OpenReview [Soergel et al.
2013] or directly by journals [The Royal Society Publishing 2020],
and the post-publication monitoring for misconducts or retractions
on platforms such as PubPeer and RetractionWatch [Didier and
Guaspare-Cartron 2018].

3 METHOD
Our goal is to assess trends in replicability in computer graphics.
We chose to focus on the conference in the field with highest expo-
sure, ACM SIGGRAPH, as an upper bound proxy for replicability.
Although this hypothesis remains to be verified, this conference
more often publishes completed research projects as opposed to
preliminary exploratory ideas that are more often seen in smaller
venues which could explain lower code dissemination. To estimate
a trend over time, we focus on three SIGGRAPH conferences: SIG-
GRAPH 2014 (Vancouver, 127 accepted papers), 2016 (Anaheim, 119
accepted papers), and 2018 (Vancouver, 128 accepted papers). We
did not include SIGGRAPH 2019 (Los Angeles) since authors some-
times need time to clean up and publish their code after publication.
We did not include SIGGRAPH Asia nor papers published in ACM
Transactions on Graphics outside of the conference main track to
reduce variability in results and keep a more focused scope. We
chose a two-year interval between conferences in the hope to get
clearer trends, and to keep a tractable number of papers to evaluate.

We searched for source codes as well as closed-source binaries for
all papers. We restricted our search to original implementations and
reimplementations authored and released by the original authors
of the paper, excluding reimplementations by others, as we aim at
assessing replicability and not reproducibility (see Sec. 2). For each
paper, we report the objective and subjective information described
below.

Identifying and factual information. This includes the paper
name and DOI, ACM keywords, pdf, project and code or binaries
URLs if they have been found, as well as information indicating if
authors are from the industry, academia, or unaffiliated, for further
analysis. For papers, we include information as whether they can be
found on arXiv or other Open Archive Initiative providers we may
have found, in open access on the ACM Digital Library, or by other
means such as institutional web pages. Aside from ACM keywords,
we further categorize papers into 6 broad topics related to computer
graphics, and we also keep track of whether they relate to neural
networks. We defined these topics as:

Submission ID: papers_262. 2020-04-29 18:11. Page 3 of 1–8. ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:4 • Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado

• Rendering. This includes simulating light transport, real-time
rendering, sampling, reflectance capture, data-structures for
intersections, and non-photorealistic rendering.

• Animation and simulation. This includes character anima-
tion, motion capture and rigging/skinning, cinematogra-
phy/camera path planning, deformable models as well as
fluid, cloth, hair or sound simulation, including geometric or
topology problems related to these subjects.

• Geometry. This includes geometry processing and modeling,
for point-based, voxel-based and mesh-based geometries, as
well as topology, mapping, vector fields and shape collection
analysis. We also include image-based modeling.

• Images. This includes image and video processing, as well
as texture synthesis and editing, image segmentation, draw-
ing, sketching and illustration, intrinsic decomposition or
computational photography. We also included here image-
based rendering, which relies more on image techniques than
rendering.

• Virtual Reality. This category includes virtual and augmented
reality, 3d displays, and interactions.

• Fabrication. This includes 3d printing, knitting or caustic
design.

We strive to classify each paper into a single category to simplify
analyses. Both these categories and paper assignments to these cat-
egories can be largely debated. While they may be prone to errors
at the individual level, they still provide meaningful insight when
seen as statistical aggregates. These categories were used in our
analysis instead of ACM keywords for several reasons: first, we
counted more than 127 different ACM keywords which would make
overspecialized categories. The hierarchical nature of this taxon-
omy also makes the analysis more complicated. In Fig. 2 we show
the distribution of ACM keywords of papers involved in each of
our categories. Interestingly, this visualization exacerbates the lack
of ACM keywords dedicated to fabrication despite the increasing
popularity of this topic.
Information about code includes code license, presence of doc-

umentation, readme files and explicit mention of the code authors
(who usually are a subset of the paper authors), as well as build
mechanism (Makefile, CMakeLists, SCons, IDE projects, or other
types of scripts), and lists of dependencies. We notably indicate
whether library or software dependencies are open source (e.g.,
Eigen, OpenCV), closed source but free at least for research purpose
(e.g., mosek, CUDA or Intel MKL), or closed source and paying even for
research purpose (e.g., Matlab). Similarly, we ask whether the code
depends on data other than examples or input data (e.g., training
data or neural network description files) and their license.

One of our key contributions is that we report the undocumented
steps required to make the code run – from bug fixes to dependency
installation procedures. We believe this information is valuable to
the community as these steps are often independently found by
students relying on these codes sometimes after significant effort.
Subjective judgments on replicability. For papers without

published code, this includes information as to whether the pa-
per contains explicit algorithms and how much effort is deemed
required to implement them (on a scale of 1 to 5). For algorithms

Physical simulation
Animation

Simulation by animation

Motion capture

Shape modeling

Virtual reality

Geometric topology

Sound and music computing

Computer graphics

Graphics recognition and interpretation

Neural networks

Continuous simulation

Document scanning

Image manipulation

Motion processing

Partial differential equations

Procedural animation

Graphics systems and interfaces

Modeling and simulation

Motion path planning

Music retrieval

Real-time simulation

Algorithmic game theory and mechanism design

Computational control theory

Computer Graphics

Computer Vision

Computer vision

Computer vision problems

Computer-aided design

Control methods

Discretization

Engineering

Gaussian processes

Gestural input

Graphical user interfaces

Graphics input devices

Image and video acquisition

Integral Equations

Interest point and salient region detections

Learning paradigms

Machine learning

Machine learning algorithms

Machine learning approaches

Massively parallel and high-performance simulations

Mixed / augmented reality

Natural language generation

Nonconvex optimization

Perception

Performing arts

Physical Simulation

PhysicsReconstruction

Reinforcement learning

Robotic planning

Robotics

Scene understanding

Stochastic games

Volumetric models

(a) Animation

Shape modeling
Physical simulation

Geometric topology

Computer-aided manufacturing

Mesh geometry models
Parametric curve and surface models

Perception

Shape analysis
Computational geometry

Computer-aided design

Graphics recognition and interpretation

Graphics systems and interfaces

Mesh models

Animation

Architecture (buildings)

Compilers

Computer graphics

Document scanning

Emerging optical and photonic technologies

Graphical user interfaces

Graphics file formats

Graphics input devices

Haptic devices

Image and video acquisition

Image manipulation

Mesh generation

Motion capture

Motion processing

Nonconvex optimization

Randomness, geometry and discrete structures

Reflectance modeling

User studies

Volumetric models

(b) Fabrication

Shape modeling
Computational geometry

Randomness, geometry and discrete structures

Shape analysis

Mesh geometry models

Mesh models

Volumetric models

Parametric curve and surface models

Computer graphics

Physical simulation

Continuous optimization Mesh generation

Texturing

Computer-aided design

Design and analysis of algorithms

Discretization

Graphics input devices

Neural networks

Algebraic topology

Animation

Computations in finite fields

Computer-aided manufacturing

Convex optimization

Differential calculus

Graphics file formats

Graphics recognition and interpretation

Graphics systems and interfaces

Image manipulation

Interest point and salient region detections

Life and medical sciences

Machine learning

Mathematical optimization

Modeling and simulation

Nonconvex optimization

Partial differential equations

Perception

Point-based models

Probabilistic reasoning

Procedural animation

Spatial and physical reasoning

User interface design

(c) Geometry

Computational photography
Image manipulation

Image processing

Neural networks

Scene understanding
Computer graphics

Graphics systems and interfaces

Parametric curve and surface models

Rendering
Shape analysis

3D imaging

Computer vision

Fine arts

Graphics recognition and interpretation

Texturing

Video segmentation

Appearance and texture representations

Image representations

Image-based rendering

Reconstruction

Animation

Computer Graphics

Computer vision problems
Graphics input devices

Mixed discrete-continuous optimization

Perception

Point-based models

Reflectance modeling

Regularization

Shape modeling

Solvers

Virtual reality

Automatic Differentiation

Content ranking

Gestural input

Graphics Processors

Hardware Architecture

Hardware description languages and compilation

Image segmentation

Integrated and visual development environments

Interest point and salient region detections

Logic Design Machine learning

Matching

Mesh geometry models

Mixed / augmented reality

Motion processing

Non-photorealistic rendering

Performing arts

Randomness, geometry and discrete structures

Sound-based input / output

Transportation

Volumetric models

(d) Image

Reflectance modeling
Ray tracing

Texturing
Rendering

Graphics processors

Image manipulation

Neural networks
Rasterization

3D imaging

Animation

Graphics systems and interfaces

Image-based rendering

Massively parallel algorithms

Computational photography

Computer graphics

Epipolar geometry

Gaussian processes

Image and video acquisition

Image processing

Machine learning

Mesh models Non-photorealistic rendering

Virtual reality

Visibility

(e) Rendering

Virtual reality

Displays and imagers

Image manipulation

Rendering

Graphics systems and interfaces

Image processing

Perception

Graphics input devices

Human computer interaction (HCI)

3D imaging

Computational photography

Computations on matrices

Emerging optical and photonic technologies

Gestural input
Human-centered computing

Interaction techniques

Linear algebra algorithms

Mixed / augmented reality

Sensor devices and platforms

Shape modeling

Systems and tools for interaction design

(f) Virtual Reality

Fig. 2. Distribution of the ACM keywords per topic. The font size reflects
the number of papers associated with a keyword.

requiring little reimplementation effort (with a score of 5) – typically
for short shaders or short self-contained algorithms – this can give
an indication as to why releasing the code was judged unnecessary.
For papers containing code, we evaluate how difficult it was to repli-
cate results through a number of questions on a scale of 1 to 5. This
includes the difficulty to find and install dependencies, to configure
and build the project, to fix bugs, to adapt the code to other contexts,
and how much we could replicate the results shown in the paper.
We strived to remain flexible in the replicability score: often, the
exact input data were not provided but the algorithms produced
satisfactory results that are qualitatively close to those published
on different data, or algorithms relied on random generators (e.g.,
for neural network initializations) that do not produce repeatable
number sequences and results. Contrary to existing replicability
initiatives, we did not penalize these issues, and this did not prevent
high replicability scores.

We shared the task of evaluating these 374 submissions across 4
full-time tenured researchers (authors of the paper), largely expe-
rienced in programming and running complex computer graphics
systems. Reasonable efforts were made to find and compile the pro-
vided code, including retrieving outdated links from the WayBack
Machine [Tofel 2007], recreating missing Makefiles, debugging,
trying on multiple OS (compiling was tested onWindows 10, Debian
Buster, Ubuntu 18.04 and 19.10 and MacOS 10.151), or adapting the

1Ubuntu 14.04 and Windows 2012 virtual machines for very specific tests.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020. Submission ID: papers_262. 2020-04-29 18:11. Page 4 of 1–8.

Code Replicability in Computer Graphics • 1:5

code to match libraries having evolved. Efforts to adapt the code to
evolved libraries, compilers or languages are due to practical rea-
sons: it is sometimes impractical to rely on old Visual Studio 2010
precompiled libraries when only having access to a newer version,
or to rely on TensorFlow 1.4.0 requiring downgrading CUDA drivers
to version 8 for the sole purpose of having a single code run. We
chose to avoid contacting authors for clarifications, instructions or
to report bug fixes to protect anonymity. We also added the GitHub
projects to Software Heritage [Di Cosmo and Zacchiroli 2017] when
they were not already archived and gave the link to the Software
Heritage entry in our online tool.

4 DATA EXPLORATION
We provide the data collected during our review as a JSON file,
available as supplementary material. Each JSON entry describes
the properties of a paper (e.g., author list, project page, ACM key-
words, topics) and its replicability results (e.g., scores, replicability
instructions). All the indicators and statistics given in this paper
are computed from this data, and we provide in supplementary
materials all the scripts required to replicate our analysis.

We facilitate data exploration by providing an intuitive web inter-
face available at https://replicability.graphics (see Fig. 3) to visualize
collected data. This interface allows two types of exploration, either
the whole dataset or per paper.

Dataset exploration. Our dataset exploration tool is split into two
components: a table listing the reviewed papers, and two graphs
showing statistics about the table content. A first graph displays the
distribution of papers with respect to the code/pseudocode avail-
ability, and their replicability score. A second graph shows papers
availability, either as ACM Open Access or as a preprint provided
by the authors. The interactive table allows to filter the dataset by
the author name, paper title, publication year and/or by topic, and
to update the graphs according to the selection. It is also possible to
sort the paper by their properties and in particular their replicability
score or a documentation score between 0 and 2 (0: no documenta-
tion, 2: exhaustive documentation). Each paper is associated with a
dedicated webpage accessible directly from the table.

Per-paper exploration. The paper webpage gives a direct access to
the information extracted from the JSON file. It includes the links
to resources available online (Digital ACM library, preprint, code),
several information (e.g., paper topic, nature of the artifact, list of
the dependencies) and a breakdown of the replicability experiment
when code was available (scores and comments). In addition, the
paper webpage gives the Altmetric Attention Score2 and links to
the Altmetric webpage of the paper if available. This score measures
the overall attention a paper has received, including on social net-
works, which differs from academic citation scores. The comment
section mostly covers the steps that the reviewer had to follow in
order to try to replicate the paper, which includes details about the
dependencies management and updates, bug fixes or code modifi-
cations. We expose the exact revision number (for git projects) or
MD5 hash of the archive file (for direct download) of codes that
relate to the comments. The website allows for commenting scores

2https://www.altmetric.com/

and instructions, both as a user and as a paper author, as well as
adding new entries, for adding new or updated codes.

5 RESULTS AND ANALYSIS
This section analyzes both objective and subjective metrics. All
reported p-values were adjusted for multiple comparisons using the
false discovery rate control procedure proposed by Benjamini and
Hochberg [1995].

5.1 Objective analysis
Availability of papers. Papers are overall available. Over all 374 pa-
pers, only two are available only on the ACM Digital Library. No-
tably, ACM provides free access to all SIGGRAPH and SIGGRAPH
Asia proceedings though it is little advertised [ACM 2020]. Also,
27 are available as preprints on arXiv (9 only on arXiv), 17 on HAL
(7 only on HAL)3, 44 benefit from the ACM Open Access policy
–the other papers being available as preprints at least on the authors
website or other paper repositories.

Availability of code. Software packages were available for
151 papers, which consist of 133 papers for which source code was
provided plus 18 papers for which no source code was provided but
instead compiled software was provided. For the rest of the analysis,
we considered both compiled and open source software combined.
While open source research codes allow for adaptation, making it
easier to build upon them, and are thus ideal, binary software at
least allows for effortless method comparisons. Nevertheless, among
these software packages, we could not run 19 of them due to techni-
cal issues preventing the codes to compile or run, and 5 of them due
to lack of dedicated hardware (see Sec. 6). Among these 133 codes,
60 do not have license information, which could notably prevent
code dissemination in the industry, and 11 do not come with any
documentation nor build instructions.
We perform χ2 tests to analyze trends in code sharing. Overall,

codes or binaries could be found for 37 papers out of 127 (29.1%)
in 2014, 47 out of 119 (39.5%) in 2016, 67 papers out of 128 (52.3%)
in 2018. This increase is statistically significant between 2014 and
2018 (p = 1.3 10−3), though not between 2014 and 2016 (p = 0.13)
nor between 2016 and 2018 (p = 0.086). This trend is similar to that
observed in artificial intelligence [Gundersen and Kjensmo 2018;
Hutson 2018]. Results can be seen in Fig. 4. In two cases, we had
to retrieve the code from the WayBack Machine [Tofel 2007] due
to expired URLs. Further analysis per topic shows vastly different
practices, with 17.1% of papers sharing code for Fabrication, 26.9%
for Animation, 31.8% for Virtual Reality, 47.9% for Rendering, 51.9%
for Geometry and 57.9% for Images (Fig. 4).

We also analyzed the involvement of at least one author from the
industry on the release of codes or binaries. We found that overall,
papers involving the industry provided code or binaries 31.3% of the
times, while this was the case for 45.4% of purely academic papers –
a difference that is significant (p = 0.031). This could be explained
by strict rules imposed by employers, understandably worried about
industrial consequences of sharing a code.

3Some references or preprints may also be available on other OAI providers thanks to
database interconnections or local initiatives, we only report here the most significant
ones found by this study.

Submission ID: papers_262. 2020-04-29 18:11. Page 5 of 1–8. ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://replicability.graphics
https://www.altmetric.com/

1:6 • Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado

Fig. 3. We designed a web interface to explore our collected data allowing to see individual paper replicability and build instructions, available at https:
//replicability.graphics.

Fig. 4. We compute the percentage of papers that include either code or
binaries as a function of years and topic. We also show Clopper-Pearson
95% confidence intervals.

Fig. 5. We compute the median number of citations and its 95% confidence
intervals for papers sharing code (or executable) and for papers not sharing
code nor executable.

Given the sheer amount of deep learning codes available online,
we hypothesized that deep learning-related papers were more likely
to share code. We tested this hypothesis on our dataset, but we
found that they provided code only 44.6% of the times (25 out of
56), while this was the case 39.6% of the times for non-deep papers
(126 out of 318) – a non-significant difference (p = 0.48).

We finally found that, in the long term, sharing code results in
higher citations, with a median citation count of up to 67 in 2014
for papers sharing code compared to 43 for papers not sharing
code (see Fig. 5). A Mann-Whitney U-test gives this difference sig-
nificant (p = 0.045). This observation is similar to that observed in
image processing [Vandewalle 2019] though the effect is less pro-
nounced (they observed a doubling of citation rates). Few additional
information is given in Table 1.

Table 1. Additional quantitative data from our study.

2014 2016 2018 Total
Nb of papers 127 119 128 374
Nb of papers with codes 37 47 67 151
Nb of codes without license 16 24 20 60
Nb of codes with doc. score 0 6 16 14 36
Nb of codes flagged as “Deep” 4 4 17 25
Nb of codes with associated data 5 7 18 30

5.2 Subjective analysis
As replicability scores are subjective, we first perform an analy-
sis of variance (ANOVA), despite some limitations here (see Nor-
man [2010] for a full discussion), aimed at determining two things:
is there a dependence on the reviewer of the code on replicabil-
ity scores? And, does the year influence replicability (as it would
seem that older non-maintained codes are harder to replicate)? The
ANOVA is performed on the replicability score, taking only papers
with codes for which compiling was successful, and with two factors:
reviewer and year. The answer to both questions seems negative
(resp. p = 0.13 and p = 0.27).

To make the codes run, we had to modify source codes in 68 out
of 151 codes. These code alterations were deemed difficult (“easy to
fix bugs” score ≤ 2 out of 5) for 20 codes. The time spent to make
codes run, including time to debug and compile dependencies was
longer than 100 minutes for 27 codes.
In the years covered by this study, we found a total of 5 papers

with a Replicability Stamp from the Graphics Replicability Stamp
Initiative [Panozzo 2016]. While this number is too low to derive
meaningful statistics, one can note that out of these 5 papers, 4 get
the maximum score for results replication. This could be expected
because this initiative ensures that a script for each single result
shown in the paper is provided. A limitation is that these scripts are
only guaranteed to work at the time when the stamp is granted –a
limitation shared by the present study.

6 LIMITATIONS
Our analysis has a number of limitations. First, the data we collected
may only be partly reliable. While we spent reasonable efforts to
find, run and compile codes, it is possible that we missed codes, or
that additional efforts or contacting the authors for clarifications or
to report bugs would result in different outcome for a few papers.
Similarly, we could not fully evaluate codes that depend on specific
hardware (such as spatial light modulators, microcontrollers, Hall

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020. Submission ID: papers_262. 2020-04-29 18:11. Page 6 of 1–8.

https://replicability.graphics
https://replicability.graphics

Code Replicability in Computer Graphics • 1:7

effect sensors etc.) for 4 papers. Our analysis focused on assessing
the codes provided by the authors which only assesses replicability
but not reproducibility: there are instances for which papers were
successfully reimplemented by other teams, which falls out of our
analysis scope. It could also be expected that certain codes could be
available upon request ; in fact, in a few cases, the provided code
relied on data only available upon request, which we did not assess.

Second, the codes we found and assessed may have evolved after
the paper has been published, which we cannot control. Similarly,
the published code could be a cleaned-up version of the original
code, or even a full reimplementation.

Third, our focus on SIGGRAPH could hide amore negative picture
of the entire field. We believe that the exposure SIGGRAPH probably
gives biases our results, with a tendency to find more codes here
than in smaller venues. It would be an interesting future work to
compare replicability across computer graphics venues.

7 RECOMMENDATIONS
Our replicability evaluation led us to identify a number of issues.
First, the number of dependencies was often correlated with the
difficulty to compile – especially onWindows. Precompiled libraries
were sometimes provided for compilers that became outdated, or
some dependencies were no longer supported on recent hardware or
OS. The lack of precise dependencies version number was another
important issue we faced. Package managers for Python such as
pip or conda evolve and default to different library versions, and
build instructions or installation scripts did not directly work with
these new versions. Lack of instructions for running software raised
important frustration: default parameters were sometimes not pro-
vided, command line parameters not described, or results output as
numerical values in the console or written to files of undocumented
format with no clear ways to use. In one case we had to develop a
software for reading the output file and displaying results. Similarly,
input data were not always provided, or sometimes only provided
upon request. Finally, in some cases, the software implemented only
part of the method, producing results that did not match the quality
of the results shown in the paper (e.g., missing post-processing, or
only implementing the most important parts of the paper).
This leads us to issue several recommendations for the research

community in Computer Graphics to promote their research work
through the code replicability point of view.

For the authors. Sharing the code or any artifact to help the
replicability of the paper results is a good way to spread the con-
tributions of the paper, as shown in terms of citation numbers in
Sec. 5.1 and independently by Vandewalle [2019]. When shipping
the code as a supplementary material for the paper, several con-
cerns must be addressed: Accessibility of the source code (e.g., using
the Software Heritage archive when the article is accepted) ; Repli-
cability of the build process specifying the exact versions of the
software or libraries that must be used to build and execute the code
(for instance using container/virtualization services –docker4– or
package/configurations managements services –anaconda5, Nix6

4https://www.docker.com
5https://anaconda.org
6https://nixos.org

etc.); Clarity of the source code as a knowledge source (e.g., through
technical documentation and comments in the code); and, finally,
tractability of the coding process (authorship, clear licensing etc.).
Extra care should be given to codes that depend on rapidly evolv-
ing libraries. This is particularly the case of deep learning libraries
(TensorFlow, Pytorch, Caffe etc.). As an example, several syntax
changes occurred in pytorch over the past few years and caffe
appears not to be maintained anymore (e.g., pre-built binaries are
provided up to Visual Studio 2015, and the last commit on Github
was in March 2019) ; Python 2.7 is not maintained anymore as of
January 1st, 2020. We recommend limiting the number of depen-
dencies when possible – e.g., avoiding to depend on large libraries
for the sole purpose of loading image files – possibly shipping de-
pendencies with the source code (with integration into the project
build framework). Similarly, deep learning codes can require up to
several days of training: sharing pre-trained models together with
the training routines is a good way to ensure replicability.

For the conference program chairs. Not all research papers
need to be involved in a source code replicability effort. A paper
presenting a mathematical proof of the asymptotic variance of some
sampler is intrinsically reproducible and does not need source code.
On the contrary, for research papers for which it would make sense,
the source code should be considered as a valuable artifact when
evaluating a submission. This can be emphasized and encouraged
in the guidelines and submission forms. Asking the reviewers to
check the replicability of the article through the provided code is
an ultimate goal for targeting replicability but it may not be sus-
tainable for the entire community. Intermediate action could be
to communicate about the importance of paper replicability and
to allow authors to submit their (anonymous) code and data with
appropriate entries in the submission system. Furthermore, we ad-
vocate for a specific deadline for the submission of the code and
data materials, e.g. one week after the paper deadline. The objective
would be to let additional time for authors to sanitize their code
and encourage its publication, without interfering with the intense
paper polishing process happening right before the paper deadline,
nor with the reviewing process, since reviewers would only wait
for a short amount of time before getting the code.

For the publishers. Publishers already offer the possibility to
attach supplementary materials to published papers (videos, source
code, data. . .). Beside videos, other types of supplementary docu-
ments are not clearly identifiable. We would recommend to clearly
tag (and promote on the publisher library) supplementary data that
correspond to source codes. Independent platforms, such as Soft-
ware Heritage [Di Cosmo and Zacchiroli 2017], permit archiving
and attach unique identifiers to source codes as well as a timestamp.
Publishers could easily rely on these platforms to link to the source
code of a paper.

8 CONCLUSION
Our in-depth study of three years of ACM SIGGRAPH conference
papers showed a clear increase in replicability as authors are in-
creasingly sharing their codes and data. Our study also showed
that sharing code was correlated with a higher impact, measured

Submission ID: papers_262. 2020-04-29 18:11. Page 7 of 1–8. ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://www.docker.com
https://anaconda.org
https://nixos.org

1:8 • Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado

in terms of citation numbers. We developed a website which aims
at helping practitioners run existing codes on current hardware
and software generations, with build instructions for 151 codes we
found online when we could run them. Contrary to existing replica-
bility stamps, our replicability scores are non-binary but on a 1-to-5
integer scale, less strict in the sense that results sufficiently close
those shown in the paper on different data were deemed appropriate,
but sometimes inconsistent with these stamps when software could
not be run anymore on current hardware and software generations.
In the future, we hope to see interactions with these replicability
stamp initiatives for which we share the common goal of spreading
open research.

9 ACKNOWLEDGMENTS
We thank Roberto Di Cosmo for insightful discussions and the
reviewers for their constructive feedback. This work was funded
in part by ANR-16-CE23-0009 (ROOT), ANR-16-CE33-0026 (CAL-
iTrOp), ANR-15-CE40-0006 (CoMeDiC) and ANR-16-CE38-0009 (e-
ROMA).

REFERENCES
ACM. 2016. Artifact Review and Badging. https://www.acm.org/publications/policies/

artifact-review-badging (accessed Dec. 2019).
ACM. 2020. Open Access to ACM SIGGRAPH-Sponsored Content. https://www.

siggraph.org/learn/conference-content/ (accessed Apr. 2020).
Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature News 533,

7604 (2016), 452.
Monya Baker and Elie Dolgin. 2017. Cancer reproducibility project releases first results.

Nature News 541, 7637 (2017), 269.
Lorena A Barba. 2018. Terminologies for reproducible research. arXiv preprint

arXiv:1802.03311 (2018).
C Glenn Begley. 2013. Reproducibility: Six red flags for suspect work. Nature 497, 7450

(2013), 433.
C Glenn Begley and Lee M Ellis. 2012. Drug development: Raise standards for preclinical

cancer research. Nature 483, 7391 (2012), 531.
Daniel J Benjamin, James O Berger, Magnus Johannesson, Brian A Nosek, E-J Wagen-

makers, Richard Berk, Kenneth A Bollen, Björn Brembs, Lawrence Brown, Colin
Camerer, et al. 2018. Redefine statistical significance. Nature Human Behaviour 2, 1
(2018), 6.

Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289–300.

Colin F Camerer, Anna Dreber, Felix Holzmeister, Teck-Hua Ho, Jürgen Huber, Magnus
Johannesson, Michael Kirchler, Gideon Nave, Brian A Nosek, Thomas Pfeiffer, et al.
2018. Evaluating the replicability of social science experiments in Nature and Science
between 2010 and 2015. Nature Human Behaviour 2, 9 (2018), 637.

Center for Open Science. 2015. Open Science Framework. https://www.osf.io (accessed
Dec. 2019).

Xiaoli Chen, Sünje Dallmeier-Tiessen, Robin Dasler, Sebastian Feger, Pamfilos Fokianos,
Jose Benito Gonzalez, Harri Hirvonsalo, Dinos Kousidis, Artemis Lavasa, Salvatore
Mele, et al. 2019. Open is not enough. Nature Physics 15, 2 (2019), 113–119.

Jon F Claerbout and Martin Karrenbach. 1992. Electronic documents give reproducible
research a new meaning. In SEG Technical Program Expanded Abstracts 1992. Society
of Exploration Geophysicists, 601–604.

Jacob Cohen. 2016. The earth is round (p<. 05). InWhat if there were no significance
tests? Routledge, 69–82.

Miguel Colom, Bertrand Kerautret, and Adrien Krähenbühl. 2018. An Overview of
Platforms for Reproducible Research and Augmented Publications. In International
Workshop on Reproducible Research in Pattern Recognition. Springer, 25–39.

Miguel Colom, Bertrand Kerautret, Nicolas Limare, Pascal Monasse, and Jean-Michel
Morel. 2015. IPOL: a new journal for fully reproducible research; analysis of four
years development. In 2015 7th International Conference on New Technologies, Mobility
and Security (NTMS). IEEE, 1–5.

Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and How
to Preserve Software Source Code. In iPRES 2017: 14th International Conference on
Digital Preservation (2017-09-25). Kyoto, Japan.

Emmanuel Didier and Catherine Guaspare-Cartron. 2018. The new watchdogs’ vision
of science: A roundtable with Ivan Oransky (Retraction Watch) and Brandon Stell

(PubPeer). Social studies of science 48, 1 (2018), 165–167.
Estelle Dumas-Mallet, Andy Smith, Thomas Boraud, and François Gonon. 2017. Poor

replication validity of biomedical association studies reported by newspapers. PloS
one 12, 2 (2017), e0172650.

Anders Eklund, Thomas E Nichols, and Hans Knutsson. 2016. Cluster failure: Why
fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of
the national academy of sciences 113, 28 (2016), 7900–7905.

Github. 2016. Call for replication repository. https://github.com/ReScience/
call-for-replication (accessed Dec. 2019).

Github. 2020. Github Archive Program. https://archiveprogram.github.com/ (accessed
Jan. 2020).

Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. 2016. What does research
reproducibility mean? Science translational medicine 8, 341 (2016).

Odd Erik Gundersen and Sigbjørn Kjensmo. 2018. State of the art: Reproducibility in
artificial intelligence. In Thirty-Second AAAI Conference on Artificial Intelligence.

Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis.
Bertrand Kerautret, Miguel Colom, Daniel Lopresti, Pascal Monasse, and Hugues Talbot.

2019. Reproducible Research in Pattern Recognition. Springer.
Bertrand Kerautret, Miguel Colom, and Pascal Monasse. 2017. Reproducible Research in

Pattern Recognition. Springer.
Richard A Klein, Michelangelo Vianello, Fred Hasselman, Byron G Adams, Reginald B

Adams Jr, Sinan Alper, Mark Aveyard, Jordan R Axt, Mayowa T Babalola, Štěpán
Bahník, et al. 2018. Many Labs 2: Investigating variation in replicability across
samples and settings. Advances in Methods and Practices in Psychol. Sci. 1, 4 (2018).

Shriram Krishnamurthi. 2020. About Artifact Evaluation. https://www.artifact-eval.
org/about.html (accessed Apr. 2020).

Neil D. Lawrence. 2014. Managing Microsoft’s Conference Management Toolkit with
Python for NIPS 2014. https://github.com/sods/conference (accessed Apr. 2020).

Matthew C Makel, Jonathan A Plucker, and Boyd Hegarty. 2012. Replications in
psychology research: How often do they really occur? Perspectives on Psychological
Science 7, 6 (2012), 537–542.

Blakeley B McShane, David Gal, Andrew Gelman, Christian Robert, and Jennifer L
Tackett. 2019. Abandon statistical significance. The American Statistician 73, sup1
(2019), 235–245.

Engineering National Academies of Sciences, Medicine, et al. 2019. Reproducibility and
replicability in science. National Academies Press.

Nature. 2018. Reproducibility: let’s get it right from the start. Nature Communications
9, 1 (2018), 3716. https://doi.org/10.1038/s41467-018-06012-8

Geoff Norman. 2010. Likert scales, levels of measurement and the “laws” of statistics.
Advances in health sciences education 15, 5 (2010), 625–632.

Open Science Collaboration et al. 2015. Estimating the reproducibility of psychological
science. Science 349, 6251 (2015), aac4716.

Daniele Panozzo. 2016. Graphics replicability stamp initiative. http://www.
replicabilitystamp.org/ (accessed Dec. 2019).

Harold Pashler and Christine R Harris. 2012. Is the replicability crisis overblown? Three
arguments examined. Perspectives on Psychological Science 7, 6 (2012), 531–536.

Joelle Pineau, Koustuv Sinha, Genevieve Fried, Rosemary Nan Ke, and Hugo Larochelle.
2019. ICLR Reproducibility Challenge 2019. ReScience C (2019).

Hans E Plesser. 2018. Reproducibility vs. replicability: a brief history of a confused
terminology. Frontiers in neuroinformatics 11 (2018), 76.

Matthias Schwab, N Karrenbach, and Jon Claerbout. 2000. Making scientific computa-
tions reproducible. Computing in Science & Engineering 2, 6 (2000), 61–67.

Scientific Data (Nature Research). 2014. Recommended Data Repositories. https:
//www.nature.com/sdata/policies/repositories (accessed Dec. 2019).

David Soergel, Adam Saunders, and Andrew McCallum. 2013. Open Scholarship and
Peer Review: a Time for Experimentation. ICML 2013 Peer Review Workshop (2013).
https://openreview.net/ (accessed Dec. 2019).

James H Stagge, David E Rosenberg, Adel M Abdallah, Hadia Akbar, Nour A Attallah,
and Ryan James. 2019. Assessing data availability and research reproducibility in
hydrology and water resources. Scientific data 6 (2019).

The Royal Society Publishing. 2020. Open Peer Review. https://royalsocietypublishing.
org/rspa/open-peer-review (accessed Jan. 2020).

Brad Tofel. 2007. Wayback’for accessing web archives. In Proceedings of the 7th Interna-
tional Web Archiving Workshop. 27–37.

Patrick Vandewalle. 2019. Code availability for image processing papers: a status
update. https://lirias.kuleuven.be/retrieve/541895$$DVandewalle_onlinecode_TIP_
SITB19.pdf

Mark Ziemann, Yotam Eren, and Assam El-Osta. 2016. Gene name errors are widespread
in the scientific literature. Genome biology 17, 1 (2016), 177.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020. Submission ID: papers_262. 2020-04-29 18:11. Page 8 of 1–8.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.siggraph.org/learn/conference-content/
https://www.siggraph.org/learn/conference-content/
https://www.osf.io
https://github.com/ReScience/call-for-replication
https://github.com/ReScience/call-for-replication
https://archiveprogram.github.com/
https://www.artifact-eval.org/about.html
https://www.artifact-eval.org/about.html
https://github.com/sods/conference
https://doi.org/10.1038/s41467-018-06012-8
http://www.replicabilitystamp.org/
http://www.replicabilitystamp.org/
https://www.nature.com/sdata/policies/repositories
https://www.nature.com/sdata/policies/repositories
https://openreview.net/
https://royalsocietypublishing.org/rspa/open-peer-review
https://royalsocietypublishing.org/rspa/open-peer-review
https://lirias.kuleuven.be/retrieve/541895$$DVandewalle_onlinecode_TIP_SITB19.pdf
https://lirias.kuleuven.be/retrieve/541895$$DVandewalle_onlinecode_TIP_SITB19.pdf

	Abstract
	1 Introduction
	2 Prior work
	3 Method
	4 Data Exploration
	5 Results and Analysis
	5.1 Objective analysis
	5.2 Subjective analysis

	6 Limitations
	7 Recommendations
	8 Conclusion
	9 Acknowledgments
	References

