
Sliced Partial Optimal Transport

—

supplementary material

Nicolas Bonneel and David Coeurjolly

Univ. Lyon, CNRS

1 Notations

Given a set of points X = {xi ∈ R}i=1..m and Y = {yj ∈ R}i=1..n on the real line, m < n, the goal is to find an
injective assignment a : N→ N minimizing

∑
(xi − ya(i))

2.
For the sake of simplicity, we assume that points of X (resp. Y) are distinct. All these results hold without this

assumption by defining a total order on points with multiplicity (i.e. when xi = xj).

2 Warm-up

2.1 Miscellaneous

For convex cost, no such crossings can occur in the assign map (resvoling the crossing will always lead to lower cost).

2.2 Injective nearest neighbor assignment

We consider the nearest neighbor assignment t : N→ N between X and Y .

The nearest neighbor assignment can be obtained by a simple 2-sweep algorithm in O(n + m).

Proposition 1. If the t assignment X → Y is injective, then the optimal assignment a is given by t.

Proof. The nearest neighbor match already minimizes
∑

(xi− yt(i))
2. Hence, if t is injective, it trivially corresponds

to the optimal assignment a.

1

3 Reducing the ranges of X and Y

Let us consider the example:

Since x1 < y1, the assignment x1 → y1 (thus setting a(1) = 1) is optimal since any other assignment of x1 than y1
would have higher cost. We can then proceed with X = X \ {x1} and Y = Y \ {y1}:

We can repeat this process on both sides of X and Y (x1 < y1 on the left and xm > yn on the right). We finally end
up with a smaller optimal assignment problem:

The problem is not solved yet but reducing the ranges allows us to considerably reduce the size the problem using
trivial optimal assignments.

Proposition 2. If x1 < y1, the optimal assignment of X to Y is given by setting a(1) = 1 and solving the optimal
assignment of X \ {x1} to Y \ {y1}. Similarly, if xm > yn, we can set a(m) = n and solve the problem of X \ {xm}
to Y \ {yn}.
Proof. Let us prove the first assert, the proof for the second one is similar. By contradiction, let us assume that
x1 → yk with k > 1 (i.e. a(1) = k). Since no crossing can occur in the optimal assignment, the point y1 is not
assigned to any point in X. Since x1 < y1 < yk, (x1−y1)2 < (x1−yk)2 which contradicts the fact that the assignment
as minimal cost. So we necessarily have x1 → y1 in the optimal transport.

The algorithm iterates from the left to right until xi > yi, construct the assignment {xj → yj} of all 1 ≤ j < i,
and performs the same from the right. This preprocessing step can be done in O(m).

4 Case n = m+ 1

x1

y1 y2

xm

ym ym+1

We consider two assignments: The first one is from left to right, A : (x1, . . . , xm)→ (y1, . . . , ym), and the second
one is from right to left, B : (x1, . . . , xm)→ (y2, . . . , ym+1) (resp. in bold and dashed lines). At a point xi, we define
the two costs as

CA(j) =

j∑
i=1

(xi − yi)
2 and CB(j) =

i∑
i=m

(xi − yi+1)2 .

We are looking for the point yj in Y that is not assigned to any point in X by the optimal assignment a. E.g.

2

xj−1 xj

yjyj−1 yj+1

Let yj be such that
j = argmin

1≤i≤m
(CA(i) + CB(i)) .

Proposition 3. The optimal assignment a is obtained by assignments from A on the left of yj and from B on its
right.

Proof. First, by definition of yj , (CA(j) + CB(j)) is exactly the cost of the optimal assignment we are looking for.
By contradiction, let suppose that we have a point xk with k ≥ j associated with some point yk′ with k′ < j. As
the optimal assignment being a one-to-one and onto mapping from X to Y \ {yj}, there is a point xl with l < k that
is associated with some yl′ with l′ > j. By convexity of the cost function (Sec. 2.1), we have a contradiction since
assignments xk → yk′ and xl → yl′ are crossing.

The algorithm is now very simple and can be done in O(m): For all j, compute the CA(j) and CB(j), get the
index j minimizing the sum of CA(j) and CB(j), construct a.

Note: this algorithm is similar to a substep of the Hirschberg’s algorithm [?] to solve dynamic problems in
quadratic time but linear space.

5 Reduction Y using m

We describe here a simple preprocessing that can reduce the set Y in O(log n). Let us consider the following situation
(the nearest neighbor assignment t is given in magenta):

x1 xm

yl yr

We denote by yl (resp. yr) the nearest neighbor of x1 (resp. of xm). Then Y can be shrunk to obtain the following
Y ′:

x1 xm

yl yr

Lemma 1. In the optimal assignment, xm cannot be associated to a point yk with k < l. Similarly, x1 cannot be
associated to a point yk with k > r.

Proof. Let us suppose that we have xm → yk with k < l in the optimal assignment. If k < m we have a first
contradiction (as no crossings may occur in the optimal map, the assignment must be injective between points of
X and {y1 . . . yk}, which is only possible if k ≥ m). If k ≥ m, we have a second contradiction on the cost of
the assignment: Since t(1) = l, (x1 − yl)

2 ≤ (xm − yl)
2 (and by definition, x1 < xm), we have xm ≥ yl and

(xm − yk)2 = (xm − yl)
2 + (yl − yk)2 > (xm − yl)

2. Hence, the assignment xm → yl would reduce the cost, which is
a contradiction. The proof is similar to x1 that cannot be associated to a point yk with k > r.

Proposition 4. The optimal assignment problem of X to Y can be reduced to an assignment problem of X to
{ymax(0,l−m+1) . . . ymin(n,r+m−1)}.

3

Proof. Using Lemma 1, xr is associated in the optimal assignment to some yk with k ≥ l. Let us consider xr−1, it
is necessarily associated yk′ with k′ ≥ l − 1. Indeed, by contradiction, let assume that xr → yl and that xr−1 → yk′

with k′ < l − 1, since assignments cannot cross, points {yk′+1 . . . yl−1} are not optimally assigned to any point in
X. But as t(r − 1) > l (nearest neighbor assignments cannot cross too), we have (xr−1 − yk′)2 > (xr−1 − yl−1)2. So
xr−1 → yk′ is not optimal which contradicts the hypothesis. Similar arguments hold for points xr−2 to xl. Finally,
we have that xl is necessarily associated to a point yk′ with k′ ≥ max(0, l−m+1). Again, xl is necessarily associated
to a point yk′ with k′ ≤ min(n, l + m− 1), which ends the proof.

This proposition can be used as a preprocessing step and only requires to have the nearest neighbor assignment
t(1) and t(m) of x1 and xm, which can be done in O(log n). Note that or the other preprocessings, we may already
have the complete nearest neighbor assignemnt in O(n + m) which makes this preprocessing be in O(1).

6 Splitting the problem (Algorithm 2)

We prove in this section the correctness of Algorithm 2. First, let us suppose that we always extend Yk′ on both
sides (lines 16-17). Then, Algorithm 2 corresponds to Algorithm 1 where both options are applied (without the need
of computing the option costs). Hence, by correctness of Algorithm 1 at each step of Alg.2, for each sub-problem
(Xk, Yk), the optimal assignment of Xk will only consider points in Yk. Furthermore, by construction, all {Xk} form
a disjoint partition of X. Hence {Ak} sub-problems are independent and can be solved in parallel.

We now consider the special case of lines 13-14 whose objective is to only extend Yk on one side, leading to shorter
sub-problems. We thus are in the situation where the nearest neighbor of xm′ , yt(m′). Since yt(m′) ∈ Yk, fyt(m′) is

false) but there is no point in Xk whose nearest neighbor is t(m′) (for k < m′, nearest neighbors cannot cross so
we only need to check t(m′ − 1)):

xm′

xm′−1xr

yr′ yt(m′)

sk `k

Xk

Yk

We claim that we just need to extend Yk with y`k instead of adding both ysk and y`k , to obtain:

sk

Xk ∪ {xm′}

Yk

Let us suppose by induction that (Xk, Yk) is a valid optimal assignment sub-problem, meaning that in the optimal
assignment of X to Y , all points if Xk are assigned to some points of Yk. We say that YK is tight if |Xk| = |Yk|.

• Let suppose that Yk is tight

– Let us suppose that optimal assignment is the nearest neighbor one (i.e. a = t).

⇒ By hypothesis, we have t(m′) 6= t(m′− 1), so t(m′) is in fact greater or equal to `k. Hence xm′ can
only be optimally assigned to y`k in the sub-problem Xk ∪ {xm′} to Y (the only free spot is y`k and
for yj with j > `k the cost would be higher). So the sub-problem (Xk ∪ {xm′}, Yk ∪ {y`k}) is a valid
sub-problem (we can just extend Yk to its right).

4

– The case Yk is tight but a 6= t occurs when we have several non-injective assignments in t but a tight Yk.
This situation can only occur when the first point of Yk is y1 (the non-injective steps in Yk would have
required an extension on both sides but no more points exist at the left of Yk).

• If Yk is not tight, then there exists yq ∈ Yk which is not optimally assigned to any point in Xk. If such yq is
not unique, we consider the rightmost one. There are two options when we add xm′ :

– Either the optimal assignment of xm′ is y`k (a(m′) = `k) ;

– or the optimal assignment will shift all assignments for {yq+1, . . . , y`k−1} by one to the left (y is now
assigned) and we set a(m′) = `k − 1. Any other assignment of that would have skipped y has necessarily
a higher cost and is not optimal.

– For these two cases, ysk will never be considered and the optimal assignment of Xk∪{xm′} can be obtained
by solving the optimal assignment with Yk extended only on one at its right.

Finally, if t(m′) 6= t(m′−1), we just have to extend Yk on one side to define a valid optimal assignment sub-problem
of Xk ∪ {xm′} to Yk ∪ {y`k}, which ends the proof of the validity of Alg.2. �

7 Reduction Y using non-injectivity counters

We prove the reduction of Y using the number of times the nearest neighbor assignment t between X and Y is
non-injective.

Let p = card{t(i) = t(i + 1), ∀i < m}. Then,

Proposition 5. The optimal assignment of X to Y can be reduced to the optimal assignment problem of X to
Y ′ = {yj}j=max(1,t(1)−p)..min(t(m)+p,n).

⇒p = 3

Proof. The proof uses similar arguments as for Algorithm 2. Let us consider two sets X (|X| = m) and Y . If m = 1,
the proposition is true, a corresponds to the nearest neighbor assignment t. By induction, we suppose that the
proposition is true for X and Y , and we add an extra point xm+1.

• If t(m + 1) > min(t(m) + p, n), there is no collision in the nearest neighbor assignment of X ∪ {xm+1}
to Y . Thus, p remains the same, xm+1 is optimally assigned to yt(m+1) (any other assignment of xm+1

would have higher cost). Hence, the optimal assignment of X ∪ {xm+1} to Y can be reduced to Y ′ =
{yj}j=max(1,t(1)−p)..min(t(m+1)+p,n).

• Otherwise, we have two possibilities,

1. there exists xi in X such that t(i) = t(m + 1) (i.e. we have a collision). As t cannot cross, such i is
necessarily equal to m (i.e. t(m) = t(m + 1) hereafter).

We define p′ := p + 1. Hence, p′ is the new number on non-injectivity in t for the problem (X ∪
{xm+1}, Y). Furthermore, if we denote Y ′′ the extension of Y ′ by on point in Y on both sides. From
the correctness proof of Algorithm 2, we know that if the optimal assignment points of X belongs to
Y ′, then Y ′′ contains the optimal assignments of points X ∪ {xm+1}. By construction, we have Y ′′ =
{yj}j=max(1,t(1)−p−1)..min(t(m)+p+1,n) which is equal to {yj}j=max(1,t(1)−p′)..min(t(m+1)+p′,n), which proves
the proposition by induction (t(1) remains the same and t(m + 1) = t(m)).

2. There is no such xi. This means that the non-injectivity counter p′ when considering xm equals p. Further-
more, as no crossing occurs in t, we necessarily have t(m+1) = min(t(m)+1, n). By induction, the optimal
assignments a of X to Y consider points in Y ′. From Algorithm 2, we know that extending Y ′ by one only
on its right, denotes Y ′′, contains the optimal assignment of X∪{xm+1} (we are in the case of lines 13-14)).
As t(1) is unchanged and t(m+1) = min(t(m)+1, n), we have Y ′′ = {yj}j=max(1,t(1)−p′)..min(t(m+1)+p′,n),
and Y ′′ contains the optimal assignments of X ∪ {xm}, which completes the proof by induction.

5

6

