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Abstract
In this paper we address the problem of cre-
ating accurate joint models from real motions
while allowing scalability. We propose an
automatic method to model, scale and simulate
non-idealized joints from the external motion
of markers. We demonstrate the method on the
human knee joint modeling for musculoskeletal
analysis and for character animation. The
resulting joints, called correlative joints, are
character and motion independent and rely on
linear combinations of degrees of freedom cal-
culated from multiple regression laws. We show
that by using such models, inverse kinematics
solvers find better solutions when tracking
motions and solving constraints. Importing
correlative joints into new models involves
only minimal requirements on landmarks loca-
tions and no costly additional computations.

Keywords: Virtual Human, Motion Analy-
sis and Modeling, Biomechanics, Animation

1 Introduction

Accurate track of human joint kinematics is in-
strumental for investigation of biomechanical
mechanisms and motion simulation. Designing
the mechanical behavior of a joint relies par-
tially on the minimization of the modeling er-
rors while retaining controllability. To be use-
ful in simulation, a kinematic model has to be a
good compromise between generality and accu-
racy. Indeed, both in biomechanics and anima-
tion, generality is required to allow the models

to be scalable to any subjects or virtual charac-
ters. Different levels of accuracy may therefore
be required, from a natural looking to biome-
chanically validated motion.

Generality is usually provided by the possi-
bility of matching data of a model to an exper-
imental one. Hence, to model joint kinematics
amounts to study scaled properties of a generic
model. And then to ensure enough generality
without loss of accuracy becomes a challenging
problem.

In this paper we present a method to model
accurate joint kinematics from real motions
while allowing to be easily reused on any sub-
ject or virtual character. We can describe it as
a functional method to compute joint kinemat-
ics which produces generic models. We demon-
strate the method on the human knee, hence cre-
ating a highly correlative joint. We show that us-
ing this model, inverse kinematics (IK) solvers
find better solutions. Results are presented both
on the subject used to create the model and
on several others where the model is scaled to
match their morphologies. Improving IK track-
ing is crucial as it is a fundamental step of a
biomechanical motion analysis and is one of the
most used technique in animation to impose pos-
tures and constraints.

2 Related work

Joint kinematics and its measurement during a
movement is an important requirement in the or-
thopedic and rehabilitation fields [1] as much
as in animation [2]. In many laboratories, mo-



tion analysis systems can accurately measure
3D rotation of joints, and especially the knee
joint [3, 4] which is intensively studied for its
preponderant role in our daily activities.

For quantifying joint motion, theInterna-
tional Society of Biomechanics recommends
the calculation proposed by Grood and Sun-
tay [5]. Regarding angular displacements, their
model needs as input the relative orientation be-
tween the Cartesian bone-embedded anatomi-
cal frames (BAFs). Several calibration proce-
dures were proposed to transform 3D positions
of markers as measured by standard motion cap-
ture systems into BAFs orientation [6, 7]. The
most commonly used method to describe rota-
tions of a joint is the Eulerian or Cardanic de-
scription, which decomposes the position of a
limb with regard to its parent (orvice versa)
into three sequential rotations along three pre-
defined axes named flexion/extension, abduc-
tion/adduction and internal/external axial rota-
tion [5]. These three pre-defined axes are also
known as anatomical axes and can be defined by
palpation of external anatomical landmarks [6].
Due to localisation errors leading to misorien-
tation and overestimation of angular trajecto-
ries [8], researchers proposed different methods
to measure joint kinematics. Methods which use
both anatomical and functional calibration [9]
are reported to be more repeatable than methods
based only on anatomical calibration. And as
Reinschmidtet al. [10] showed, the agreement
between skin and bone markers based kinemat-
ics for ab/adduction and internal/external knee
rotation ranged from good to virtually no agree-
ment, and in some subjects, the errors exceed
the actual motion. In these latter experiments,
joint kinematics are very accurately tracked but
on the other hand, using bicortical pins orin vivo
medical imaging [11] to create models requires
equipment, invasive procedure and time that one
can most of the time not afford. Moreover, such
methods can not be applied on animated virtual
humans.

Musculoskeletal models including different
joint descriptions have already been proposed
and validated in literature [12]. For instance,
Yamaguchi and Zajac [13] proposed a planar
static model of the knee joint. A pathway for
the instantaneous center of rotation was chosen
that gives realistic orientations of the femur rel-

ative to the tibia. Techniques to model joints
from surfaces have also been developed [14, 15].
By contrast, we do not want to model joints
with any prior knowledge of inner constraints
but from its external motion. Moreover, the re-
sulting models have to be scalable to any real
subject or animated character.

We demonstrate the whole process on the hu-
man knee (section 3) by creating a joint consist-
ing of three rotational DoF and three correlative
translational DoF. The three translations defin-
ing the position of the joint center are thereby
moving along with the posture. The objective is
to automatically determine these relationships.
The input data are 3D positions of reflective
markers from mocap which are fixed to the skin
of real subjects (section 3.1). Multiple linear
regression laws are then applied to model the
correlative DoFs of the knee joint (section 3.2).
Even knowing the artifact issue raised above, we
show the robustness of our method on tracking
results during an IK operation (section 3.3). We
have embedded multiple linear relationships be-
tween DoFs in the biomechanics platformOpen-
Sim [12] and ran simulations (section 4.1). The
procedure to benefit from our models to animate
virtual characters is presented in section 4.2
and more examples on creating correlative joints
from motion data are showed in section 4.3.

3 Correlative knee joint creation
procedure

3.1 Experimental set-up

In an articulated mechanical system, a six-
component structure describes the transforma-
tion to go from a local body reference frame
to the next one. In animated and biomechani-
cal systems, the three translational components
are often constants, defining an idealized joint.
Unfortunately some joints can not reasonably
be modeled with such approximation, they have
to integrate moving centers of rotation to bet-
ter represent the kinematics. As seen in sec-
tion 2, knee joints greatly benefit from non-
idealized kinematics. In this paper we demon-
strate the procedure on the human knee by mod-
eling the posture-dependent position of the knee
joint center (KJC). The procedure is generic and



Figure 1: (left) Mocap setup. (middle) Virtual
skin marker set. (right) Local refer-
ence frame.

may be applied to any body part and any joint of
a mechanical system as soon as external markers
can be located and tracked.

To develop the knee model, we used seven
skin markers placed on anatomical landmarks
(see Figure 1) : RGT (great trochanter), RLFE
(lateral femur epicondyle), RMFE (medial fe-
mur epicondyle), RTT (tibial tuberosity), RFH
(fibula head), RMEDMAL (medial malleolus)
and RLATMAL (lateral malleolus). The local
reference frame which defines also the three ro-
tational DoF, is defined as follows (see right of
Figure 1) :
- Z: The line parallel to a line connecting RMFE
and RLFE, pointing to the right;
- Y: The line parallel to a line lying in the plane
defined by the two RFE’s and RGT, orthogonal
to the Z-axis, pointing cranially;
- X: The line perpendicular to Y and Z, pointing
anteriorly.

We captured different kinds of motions in or-
der to study the influence of the movement on
the kinematics of the knee joint and on the gen-
erality of our models. Regular gaits and crouch
motions have been captured. We divided the
crouch motions into 6 sub-motions: with0◦ be-
tween the feet, with30◦, 60◦, 90◦, 120◦ and fi-
nally almost180◦ (as much as possible for the
subject). We captured six subjects performing
10 gaits and5 crouches of each kind. This leads
to more than30, 000 frames (i.e. elements of
relationship) per subject. Moreover, we cap-
tured one standing motion for each subject for
scaling purpose and for determining the rotation

axes as previously described. Crouch motions
have been chosen as they involve a large range
of knee bending, thus we will be able to evaluate
our method over this large range.

3.2 Method

The first step consists in calculating the elements
of the relationships from the motions. The pro-
cedure is depicted in Figure 2. Firstly, the stand-
ing motion of the subject is used to define the
local coordinate system of the knee. A free joint
(six DoF) is then placed at the knee. The three
rotations are defined around these three local
axis and the three translations are defined along
the three local axis of the parent joint, the hip.
Finally, we run an IK solver driven by the po-
sitions of the seven markers over time. For this
task, we used the IK tool of OpenSim [12] where
the same weight is used for the seven markers.
As a result, we get for each frame, the local KJC
positions and the three local angular trajectories.
We obtain for each subject10 datasets of gait
and6 × 5 datasets of crouch motion.

The second step consists in modeling these in-
dependent sequences by multiple variable func-
tions. If linear relationships exist, the following
equations will describe the three dimensional
position (Tx, Ty, Tz) of the KJC according to
the three angular values (α1, α2, α3) around (~x,
~y, ~z) such that :

Tx = c1x × α1 + c2x × α2 + c3x × α3 + c4x

Ty = c1y × α1 + c2y × α2 + c3y × α3 + c4y

Tz = c1z × α1 + c2z × α2 + c3z × α3 + c4z

(1)
To determine the three sets of coefficients (c1,
c2, c3, c4), we calculate multiple linear regres-
sion laws on the datasets. Multiple regression
solves for the unknown coefficients by minimiz-
ing the sum of the squares of the deviations of
the data (angular trajectories) from the model
(KJC positions) using a least-squares fit. The
algorithm is as follows:

1. create the column matrix of
experimental data E :
E = Tx(f), f ∈ [1 · · ·F ] (respectively Ty

and Tz ) where F is the number of frames
of the motion

2. create the 3 column matrices



Figure 2: Overview of the analysis procedure used for all subjects, motions and sub-motions, leading
to 10 + 6 × 5 datasets per subject relating KJC positions to angular trajectories.

of angular trajectories
α1(f)
α2(f)
α3(f)

, f ∈ [1 · · ·F ]

3. create the design matrix M :

M =







1 α1(1) α2(1) α3(1)
...

...
...

...
1 α1(F ) α2(F ) α3(F )







4. solve the equation :
C = M \ E
where C = [c4xc1xc2xc3x ] (respectively y

and z )

5. validate the result
valid = (max(|M×C−E|) < |min(E)|)

In our study, all the resulting regression laws
were validated: the maximums of the absolute
values of the deviation of the data were always
smaller than the minimums of the data values.
This certifies that the model accurately follows
the data and that linear functions are enough to
model such joints. Mathematical justifications
to solve the equation of item 4 can be found in
theMatlab’s backslash operator documentation.

Table 1 presents the coefficients computed
from the crouch motions. We do not show the
coefficients specific to the sub-motions (differ-
ent degrees between the feet), but the section 3.3
presents the modeling variations using a global-
based law and a sub-motion-based law.

We can notice here the importance of the
c4 values which represent the constant compo-
nents of the KJC position. These values are
strongly related to the morphology of the sub-
ject. The taller the subject, the larger thec4

value. This property shows already that the laws
are subject-specific,i.e. one cannot directly use

a correlative joint on any subject/virtual charac-
ter. Nevertheless, this information can be used
to develop simpler models. Indeed, the constant
termsc4 are definitively a good guess for set-
ting a three DoF idealized joint. The following
section presents evaluations of the laws regard-
ing to sub-motions and simulation results of the
kinematics of the leg.

3.3 Evaluation

In the first part of this section we present the ac-
curacy induced by modeling the knee joint by
multiple linear functions. Table 2 shows the av-
erage deviation between the KJC positions from
IK and the positions estimated from the linear
functions described from equation 1. The mean
deviation is about1.55 mm for gait motions
and1.32 mm for crouch motions. If we use a
sub-motion specific function (i.e. using coeffi-
cients generated with the corresponding angles
between the feet), the mean deviation decreases
to 0.98 mm (∼ 26% less). That indicates that as
expected, the sub-motion models are more accu-
rate as they are more specific and that the bene-
fit is not neglegible. It will certainly also be the
case for other subsets of motion such as for lo-
comotion consisting of gait (speed-dependent),
run, jump, side-walk, etc.

In Figure 3, we propose visualizations of the
deviations in the crouch models. The three axes
define the 3D space of the knee joint orienta-
tion. The color represents the deviation, from
blue (minimal deviation in the subject dataset) to
red (maximal deviation). We can notice that the
deviation is mainly homogeneously distributed.
All postures are equally well modeled. The an-
gular trajectories are closed to each others for
a given subject, facilitating the linear relation-



Subject1 Subject2 Subject3 Subject4 Subject5 Subject6
Tx

c1x 0.0573 0.1142 0.0496 0.0322 -0.0007 0.0404
c2x 0.0361 0.0340 0.0470 0.0328 0.0348 0.0351
c3x 0.0582 0.3426 0.0788 0.1105 -0.0297 0.0203
c4x 0.0748 0.0691 0.0783 0.0637 0.0713 0.0878

Ty

c1y 0.0306 0.0501 0.0657 0.0613 0.1460 0.1001
c2y -0.0442 -0.0366 -0.0364 -0.0143 -0.0260 -0.0585
c3y -0.1055 -0.1093 0.0330 0.0044 0.1869 0.2011
c4y -0.5035 -0.4274 -0.4920 -0.4662 -0.5105 -0.5310

Tz

c1z -0.0199 -0.0100 0.0362 -0.0536 0.0000 -0.0586
c2z 0.0210 0.0515 0.0116 0.0376 0.0148 0.0277
c3z -0.2218 -0.1856 0.0142 -0.2319 -0.0292 -0.3299
c4z 0.0346 0.0414 0.0318 0.0260 0.0292 0.0347

Table 1: Multiple regression coefficients for the crouch motions

Subject1 Subject2 Subject3 Subject4 Subject5 Subject6
Crouch 1.3 / 1.1 2.0 / 1.4 0.9 / 0.7 1.1 / 0.9 1.6 / 1.0 1.0 / 0.8
Gait 1.1 / - 0.9 / - 1.5 / - 1.7 / - 3.1 / - 1.0 / -

Table 2: Average deviation (mm) between the positions of KJCfrom IK and the correlative positions
from the regression laws (motion specific / sub-motion specific).

ships. Even if more complex equations might be
defined, it seems that to use linear relationships
is enough to model such joint kinematics, as the
validation step of the algorithm tended to show.

4 Results

4.1 Integration and simulation in
OpenSim

In order to demonstrate the capabilities of the
method, we present in this section quantitative
results on motion analysis. We want to show
improvements in the tracking of captured mo-
tions, using the IK tool embedded inOpen-
Sim. Results proposed in this section are ob-
tained with theInterior Point Optimizer method
(IPOPT), but equivalent results have been calcu-
lated with Feasible Sequential Quadratic Pro-
gramming (FSQP) [16] and a Jacobian-based
method. To evaluate the tracking, we use the
sum of the frame-by-frame RMS distance be-
tween the experimental markers and the virtual
markers (attached to the model and moved by

the IK solution).
To take into account our new joint descrip-

tion, we have implemented a new kind of con-
straint inOpenSim. This constraint describes the
linear relationship between one DoF and others
(no limitation on the number and the kinship).
Let us consider the correlative DoFX which de-
pends on the values ofn other DoFsY1···n :

X = (
n

∑

i=1

ci × Yi) + cn+1 (2)

wherec1···n+1 are scalars.
We do not require these DoFs to be all differ-
ent but each of them has to be different fromX.
This new feature enables us to directly deal with
multiple linear relationships. Then for instance
to model the crouch-specific knee,c1···n+1 are
set to the values of table 1.

We proceed several simulations with this fea-
ture. Firstly, we compared three models of the
knee joint. One that we call3DOF, is made
of two translational and one rotational DoF. Its
rotation axis was determined by a planar static
model and the two translations depend on the ro-



Figure 3: Deviation between the positions of KJC from IK and the positions modeled by multiple
linear functions (crouch motions of the six subjects).

tational value and are described by splines [13].
A second, called1DOF is made of only one
rotational DoF, around the same axis than the
previous model. The last one is ours (3+DOF)
made of three rotational and three correlative
translational DoF. The location of the KJC of the
1DOF model is set to the default position from
the 3DOF model which has been biomechani-
cally validated. We did not use thec4 values to
place this KJC as we indeed want to compare
our model to validated literature models.

In table 3, we present average values of IK
errors during the track of mocap data using
these three models. Errors were obtained on
10 gaits and10 crouches that are different from
the motions used to create our models. The re-

ported RMS errors are not normalized by nei-
ther the number of frames nor the number of
markers. The error differences between the gaits
and the crouches mainly come from the number
of frames (a complete crouch takes more time
to perform than a gait cycle). As expected, we
observe that the 3DOF error is lower than the
1DOF error and that the 3+DOF error is lower
than both of them. We present error values only
for one subject, but the same experiment was
done on the others. Results show that IK errors
are reduced by :

- 44(±8)% between 3+DOF and 1DOF for
gait motions

- 31(±5)% between 3+DOF and 3DOF for
gait motions



- 71(±9)% between 3+DOF and 1DOF for
crouch motions

- 66(±6)% between 3+DOF and 3DOF for
crouch motions

This demonstrates the benefit induced by our
model. Indeed, such large improvements of IK
tracking have a direct influence on the motion
analysis accuracy and on the naturalness of ani-
mated motions.

Subject1 1DOF 3DOF 3+DOF
Gait 3.02 2.48 1.19
Crouch 272.94 261.46 76.34

Table 3: Average values of RMS distances (m).

The previous results were obtained by apply-
ing the knee model to the corresponding subject
and motion. Now, we study what happens if a
specific knee model is used to simulate another
subject or the same subject but on another kind
of motion. We therefore set up two experiments.

In the experiment 1, we scale the model of
subject 2 to subject 1 (denotedmodel1from2)
and track gaits and crouches of subject 1. To
scale the model, we update the coefficients as
follows:

cidscaled =
cid

(s1+s2)

2 ,

i ∈ [1, 2, 3, 4], d ∈ [x, y, z]
(3)

with

s1 = |
−−−−−−−−−−−−−−−−−→
RGTmodel1RLFEmodel1|

|
−−−−−−−−−−−−−−−−−→
RGTmodel2RLFEmodel2|

s2 = |
−−−−−−−−−−−−−−−−−−−→
RMFEmodel1RLFEmodel1|

|
−−−−−−−−−−−−−−−−−−−→
RMFEmodel2RLFEmodel2|

This scaling method is based on the same
approach that classical methods in the litera-
ture [12] where such linear scaling function has
been validated over the range of human bodies.

We then compare both tracking results of
model1from2 and the specific model of subject
1 (denotedmodel1). The table 4 shows the re-
sulting errors from10 gaits and10 crouches. We
first see that the error using a scaled model is, as
expected, larger than the error using our specific
model. We also notice that the scaled error is
much lower than the error of the 3DOF model.
That implies that one can use a generic 3+DOF
model to perform analysis on another subject;

IK results will still be better than a scaled 3DOF
model from literature. This property was ver-
ified by carrying out the same experiment on
the other models/subjects/motions, not detailed
here.

Subject 1 model1 model1from2

Gait 76.34 87.35
Crouch 1.19 2.10

Table 4: Experiment 1 : tracking errors (m) of
model1 andmodel1from2.

In theexperiment 2, we use the 3+DOF model
defined from gait motions to track crouch mo-
tions andvice versa. The results on subject 1
are presented in table 5. The error induced by
a model defined from a different kind of motion
is about40% for gait and70% for crouch. On
the other hand, the errors are still lower than the
error from the 3DOF model, thus showing the
benefit of our models. Gaits are better tracked in
the experiments as there is less angular trajecto-
ries to extrapolate from a crouch model than the
opposite.

Subject1 3+DOF gait 3+DOF crouch
Gait 1.19 1.68
Crouch 130.34 76.34

Table 5: Experiment 2 : tracking errors (m) of
motion specific models.

4.2 Application to virtual character
animation

In this section we give information about how
to use our correlative joints in virtual charac-
ter animation. We denotemodelcorr the model
on which we have created correlative joints and
modelanim the model of the virtual character we
want to animate.

Firstly, the correlative joints frommodelcorr

have to be defined with the same orientation than
modelanim as follows:

1. To choose three anatomical markers on the
parent body of the joint onmodelcorr (for
example RGT, RMFE and RLFE for the
knee);



Figure 4: The virtual markers are placed on the predefined anatomical landmarks (left) and used to
animate the lower limb during gait (middle) and crouch motions (right).

2. To place three virtual markers on
modelanim on the equivalent landmarks
(see left of Figure 4);

3. To scale the coefficients of the relation-
ships according to the respective markers
distances (as in equation (3));

4. To create the local coordinate system from
the markers for both models (as in sec-
tion 3.1 for the knee);

5. To apply the two successive transforma-
tions to compute the local joint orientation
in modelanim.

The proper behavior of the joint will depend on
the accuracy of the markers positioning. This is-
sue, which is also shared by motion analysis se-
tups, could become tricky for not-really-human
characters.

Secondly, the animation engine has to be able
to evaluate equation 1 when the value of a DoF
involved in a correlative joint changes. The im-
plementation of this ability depends on the en-
gine, but most of them provide script program-
ming which can be used for this purpose. As
a consequence, when editing a motion, either
from mocap or keyframing, inverse and direct
kinematics solvers will benefit from the correla-
tive joint feature (see Figure 4).

While creating or editing a new motion in-
volving a correlative joint, the animator does not
require necessarily to create a motion specific
model as described in this paper. Indeed, as soon
as the model has been created on a sufficient
range of value, the model is valid for any mo-
tion within this range (see experiment 2). Then

assuming that correlative models have been cre-
ated from biomechanical datasets and accurate
motion analysis (for instance using bicortical
pins), the development of realistic virtual char-
acter animations is straight forward and without
additional cost.

4.3 More correlative joints from motion

We have demonstrated the method on the human
knee joint. This joint is mechanically complex
and a high-degree model (3 rotations and 3 cor-
relative translations) was necessary to represent
its kinematics. Our method can also be used to
model simpler joints. The Figure 5 illustrates
three of our experiments in retrieving lower and
higher pair joints from the motion of external
markers placed over the different body parts.

(a) (b) (c)

Figure 5: Lower and higher pair mechanisms
modeled with correlative joints.

An helical joint is a one rotational DoF lower
pair mechanism providing a single-axis transla-
tion. The typical illustration is the screw-bolt
system (Figure 5(a)). The translation is gener-



ated by the geometry of the threads on the rod.
The relationship between the rotation of the bolt
and its translation is linear if the threads are
homogeneous. Using our method we can au-
tomatically create a joint describing this kine-
matics from the motion of markers attached to
the screw and the bolt (without prior knowledge
of the threads). The correlative translationT is
then given by :T = α × R + c, whereR is
the rotation of the bolt.α and c are constants
determined by the regression law. They can re-
spectively be associated to the thread-pitch and
the root-location parameters.

A transmission is a system providing speed
and torque conversions from a rotating source
to another device using gear ratio. The typical
illustration is a tandem of gears (Figure 5(b)).
The rotation of the powered gear is transmitted
to the next one through the contact of tooth. The
relationship between the two rotations is linear.
Our method can as well create this higher pair
joint from motion. The correlative rotationRb

of the second gear is :Rb = β × Ra. β is cal-
culated by the regression law and corresponds to
the gear ratio.

The Figure 5(c) shows a combination of these
two types of joint within a more complex sys-
tem. This bow drawing compass with a lateral
wheel has only one input parameter: the wheel
rotation. This rotationR drives the rotations of
the two legs(Rleg1, Rleg2), the rotation of the
rod Rrod attached toleg1 and going through
leg2, and the translationT of the wheel along
the rod. Our method automatically calculates
the relationships (α1 to α5) between these pa-
rameters andR providing us with the kinemati-
cal model of the compass :



















Rleg1 = α1 × R

Rleg2 = α2 × R

Rrod = α3 × R

T = α4 × R + α5

The resulting model consists of three transmis-
sion joints and one helical joint. Using this
model, to solve the IK problem where the dis-
tance between the two legs is a constraint will
only involve the optimization of the rotation of
the wheelR. In this case, an analytic solu-
tion can even be used as the dimension of the
problem is now the same size as the constraint.
These examples show the ability of the method

to retrieve and simulate as well simple kinemat-
ical models. We can also notice that even if the
model is defined in a particular coordinate sys-
tem, there is no need to know in advance the
respective direction of the translations and rota-
tions involved in the relationships. The user has
only to decide the DoFs that will be in control
and the correlative ones.

5 Conclusion

In this paper we have presented a method to cre-
ate an accurate and scalable model of a joint
from the motion of external markers. The com-
puted joint can be reused on any real subject
or virtual character with only minimal require-
ments on anatomical landmarks. To perform di-
rect and inverse computational approaches, no
costly additional algorithm is involved. Only
the evaluation of equation 1 has be added, com-
posed of few additions and multiplications.
Many complex biological joints can be modeled
using our technique. We demonstrated that the
human knee joint can be modeled using a correl-
ative joint. And we believe that most of human
joints, even complex as the shoulder, will bene-
fit from such mechanical description.
We showed that by using our model, inverse
kinematics solvers find better solutions both on
the subject used to create the model (error re-
duced by53 up to80%) and on others subjects
where the relationships were scaled to match
the new morphologies (error reduced by25 up
to 41%). Biomechanical simulations will better
match the experimental data allowing more ac-
curate estimation of forces, muscle activations
etc. And character animation will benefit in
more natural motions with no major cost.
Finally, we remind the good performances of
our model compared to 1DOF and 3DOF mod-
els of literature. We believe that this work con-
tributes to the development of reliable methods
of simulation for animation and biomechanical
analysis.
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