
MotionLab: A Matlab toolbox for extracting and
processing experimental motion capture data for

neuromuscular simulations

Anders Sandholm, Nicolas Pronost, and Daniel Thalmann

Ecole Polytechnique Fédérale de Lausanne, Virtual Reality Laboratory
anders.sandholm, nicolas.pronost, daniel.thalmann@epfl.ch

Switzerland

Abstract. During the last years several neuromuscular simulation plat-
forms have been developed, from commercial tools to open-source based
solutions to pure in-house solutions which are not public available. A ma-
jor problem in running neuromuscular simulations in any of these tools
are that there exist an infinitive number of motion capture laboratory se-
tups. In this paper, the authors present a Matlab toolbox that provides
a solution for this problem. The toolbox can easily be setup for any
new experiment with minimal changes to the simulation environment.
The toolbox provides powerful pre-simulation features such as filtering,
markers evaluations and calculations of new marker setups. After that
a simulation has been performed, results can be read back and several
post-simulation features are available to validate the simulation.
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1 Introduction

Today the field of neuromuscular simulations is used to understand the under-
laying dynamics of living beings movement, from gait research, treatment of
patient with gait problem [7], to teaching physicians and developing ergonomic
furniture [6]. During the last years several platforms have been developed, from
commercial tools [12, 3] to open-source based solutions [2] and pure in-house
solutions which are not public available. The expansion of this field has also
allowed the accessibility to neuromusculoskeletal models that are capable to
describe different levels of complexity [13, 14, 3, 8]. This development of more
detailed models and simulation tools has given researchers and physicians better
and more powerful tools to create advanced simulations and even to execute
different what if scenarios or to evaluate different simulation results before the
physical treatment has even started. Today there also exist several motion cap-
ture and force plate systems which produce and present data in different ways,
some compatibles with only a few or specific tools. Comparability issues may
also occurred between labs and experiments where laboratory coordinate sys-
tem or number of force plates often required different setup protocols. This gives
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researchers a great freedom to carry out experiments and simulations in their
own lab, but sometimes appears to be very problematic for changing the lab
setup or sharing data with other groups/laboratories. In this paper, the authors
present a Matlab toolbox that provides a solution for these problems. Currently
the toolbox supports the open source platform OpenSim [3] but the toolbox can
be easily extended to support other platforms. The toolbox can be setup for any
new experiment with minimal changes to the simulation environment. Moreover,
new models can be used in new simulations and input data can be easily shared
in the C3D format [9] along with a few Matlab files. The toolbox also provides
powerful pre-simulation features such as filtering, markers evaluations and cal-
culations of new marker setups. After that a simulation has been performed the
results can be read back into the toolbox and several post-simulation features
are available to validate the simulation such as matching evaluation of muscu-
lar excitations against EMG patterns or plotting normalized parameters to a
specific joint angle.

2 Data acquisition

2.1 Motion capture

Motion capture is a technique where high speed digital cameras are used to cap-
ture the 3D motion performed by a subject. There are several systems that can be
used but most commonly the subject is fitted with either passive or active mark-
ers. The passive markers are often covered with an infrared reflective material
and then attached to the subject on predefined anatomical landmarks. During
the motion capture each camera produces infrared flashes and the reflected light
from the markers is captured by the camera. In an active marker motion cap-
ture system, the subject is fitted with small lights sources, often LEDs, and the
cameras do not use a synchronized flash, instead they capture the direct light
from the LEDs. The two systems operate well for motion capture, but the use
of active markers involves a lot of wiring, which could hinder the subject to
perform a natural movement. The use of passive markers is simpler, but requires
more complex hardware and calibration/optimization of the synchronized flash
system. To capture a motion in three dimensions, a minimum of three cameras
have to see each tracked marker. In Figure 1 a motion capture is shown, here
the subject has been fitted with passive reflective skin markers, the subject is
also standing on two force plates and is fitted with surface mounted electromyo-
graphy (EMG) sensors.
Due to the large range of different motion captures that are performed, there is
not a single protocol to follow. Parameters such as marker protocols, sampling
frequencies, how large space the motion take (for example crouch is confined
to a small volume, while running needs a larger volume), speed of the motion,
direction of the motion and the used equipments must be taken into account to
setup the musculoskeletal simulation. However, most motion capture session can
be divided up into six steps.
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– Studio setup, number of cameras, coordinate systems.
– Force plate setup, number of force plates, coordinate systems.
– Calibration of the motion capture/force plate system.
– Capture of movement performed by the subject.
– Remove ghost markers
– Post-processing of data, calculating trajectories from the tracked markers.

Even if the same motion capture protocol is used, due to the calibration of the
motion capture system and individual differences between the subjects, to filter
the data and to change the coordinate system are often required before the
motion capture can be used in a simulation.

Fig. 1. Static motion cap-
ture

Fig. 2. Motion capture of
crouch

Fig. 3. Motion capture
marker setup defined in
this study

Marker set : Before any motion capture can be performed, marker sets have
to be defined so the system will be able to capture the desired motion. Several
well known marker sets currently exist such as the gait analysis sets from Helen
Hayes Hospital (HHS) [10] and from Cleveland Clinic (CCS) [11].
The CCS uses clusters of three markers to determine the knees and ankles co-
ordinate systems. These clusters are on the lower portion of the lateral sides of
thighs and shanks. This ensures that only a small amount of skin movements
will be recorded for these markers.
The HHS was developed for video analysis of the lower extremity kinematics
in order to minimize the motion capture time for the patient and reduce the
number for tracked trajectories. To determine the lower limbs kinematic, a 10
cm wand is attached to each thigh and shank and records the three-dimensional
motion of each leg. In this paper, we defined a new motion capture marker set
that combines properties from the CCS and HHS and which support state of
the art neuromuscular models and simulation platforms. The marker set can be
seen in Figure 3. It contains 4 clusters, each contains 4 markers attached to a
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single plate. The plates are fixated to the subject’s thighs and shanks, additional
skin markers are attached to the pelvis, thighs, shanks and feet. Enough markers
have been used to create a redundant system for each degree of freedom. The
upper body contains a minimum of 3 markers on torso and head, depending on
joint specification between pelvis-torso and torso-head. The recommended pro-
tocol starts with a static trial where the subject stands in a neutral pose where
all markers are visible to the cameras. Using this trial the neuromuscular model
can be scaled to represent the subject. Then, the skin markers on the thighs
and the shanks can be removed because only the clusters, which contain less
skin artifacts, will be used in the simulation. However, the authors recommend
that all markers are kept during the motion capture, so if a cluster plates moves,
a new static trial can directly be captured. Using this marker set a subset of
markers can be selected so both the CCS and the HHS can be produced.

Force plates : A force plate is an instrument that measures the force and mo-
ment applied on it. Placed on the ground, it can so measure the ground reaction
of someone or something walking, standing, running ... on it (see Figure 1. There
are many different types and brands of force plates that are used in motion anal-
ysis laboratories. The main brands today are AMTI and Kistler. Both of these
platforms measure the ground reaction force (GRF) but the AMTI measure also
the ground reaction moment (GRMo). GRF and GRMo are most commonly
sampled at 2000Hz and are described in a local coordinate system for each force
plate.

Electromyography : Electromyography (EMG) is a method for recording and
evaluating the activation of muscles. It detects the electrical potential generated
by muscle cells when these are activated and at rest. There are two main kinds
of EMG, surface EMG (see Figure 1) and needle EMG which measure the mus-
cle potential inside a muscle. EMG has been used in several applications, such
as clinical use in diagnosis of neurological and neuromuscular problems. In neu-
romuscular simulations, EMG signals can be used either to drive a simulation,
so called forward dynamic or be used as a validation data where the simulated
muscular excitation pattern has to be correlated to the captured EMG signal. In
the presented framework, both surface EMG and internal EMG are supported.

Motion capture lab setup : A major problem while exchanging motion
capture data today is that most of the motion analysis labs have different se-
tups/coordinate systems. Even if the same marker set and protocol are used,
there can be differences in sampling frequencies, coordinate systems and even
differences between different brands of EMG, force platforms and motion capture
systems. In Figure 4 a typical motion lab setup is showed with the coordinate
system of the motion capture and force plate displayed. Due to the fact that
three coordinate systems are used, one for the motion capture and one for each
force plate, the data have to be translated into the coordinate system of the
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neuromuscular model (see Figure 4). In this paper, the authors will use the
model coordinate system to show how the motion capture can be translated us-
ing a rigid body transformation into model coordinate system and how the GRF
and GRMo are calculated into the motion capture coordinate system and then
translated again into the model coordinate system.
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F

Fig. 4. Laboratory coordinate system Fig. 5. Neuromuscular model coordi-
nate system

3 OpenSim environment

OpenSim [3, 2] is an open-source platform for modeling, simulating, and analyz-
ing neuromusculoskeletal systems. Since its creation, hundreds of people have
begun to use this platform in a wide variety of applications, including biome-
chanics research, medical device design, orthopedics and rehabilitation science,
neuroscience research, ergonomic analysis and design, sports science, computer
animation, robotics research, and biology and engineering education. OpenSim
technology makes it possible to develop customized controllers, user-defined anal-
ysis, contact models and neuromusculoskeletal models among other things. So
the audience involves people from biomechanics scientists and clinicians to de-
velopers who need tools for modeling and simulating motion and forces for neu-
romusculoskeletal systems. Such bio-simulations consist of several steps in order
to analyze subject-specific models and motions (see Figure 6).

3.1 Workflow

OpenSim guides users through steps to create a dynamic simulation. As input,
OpenSim usually takes a dynamic model of the musculoskeletal system and
experimentally-measured kinematics, reaction forces and moments.

Scale : In a first step, a generic model is scaled to match the anthropometry of
an individual subject. The dimensions of each body segment are scaled based on



6 Anders Sandholm, Nicolas Pronost, and Daniel Thalmann

Fig. 6. Steps for generating a muscle-driven simulation of a subject’s motion with
OpenSim

relative distances between pairs of markers obtained from a motion-capture sys-
tem and the corresponding virtual marker locations in the generic model. During
this process mass properties, muscle fiber lengths and tendon slack lengths are
also scaled. In addition to scaling the model, this step can be used to adjust the
locations of virtual markers so that they better match the experimental data.

Inverse Kinematics (IK) : In the second step, an IK problem is solved to de-
termine the coordinate values (joint angles and translations) that best reproduce
the raw marker data obtained from motion capture. The solver is formulated as
a frame-by-frame weighted least-squares problem that minimizes the differences
between the measured marker locations and the model’s virtual marker locations,
subject to joint constraints [4].

Residual Reduction Algorithm (RRA) : Due to experimental error and
modeling assumptions, measured ground reaction forces and moments are often
inconsistent with the model kinematics. The RRA is thus applied to make the
model coordinates from IK more dynamically consistent. Indeed, in the absence
of experimental and modeling errors, no residual force has to be added to relate
the gravitational acceleration of the segments and the ground reaction forces. In
practice, this is never the case. The RRA consists of two passes : (i) to alter mass
centers of the model (mainly torso) so that excessive leaning in the left-right or
fore-aft directions is corrected, and (ii) to alter the kinematics of the model to be
more consistent with the ground reaction data for example by applying residual
forces and moments on the six degrees of freedom between the model and the
world.

Computed Muscle Control (CMC) : The purpose of CMC is to compute a
set of muscle excitations that produces a coordinated muscle-driven simulation
of the subject’s movement. CMC uses a static optimization criterion to distribute
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forces across synergistic muscles and proportional-derivative control to generate
a forward dynamics simulation including the state equations representing the
activation and contraction of the muscles.

Forward Dynamics (FD) : The next step consists in performing a forward
dynamics simulation from the muscle excitations computed by the CMC. As
in CMC and RRA, a 5th order Runge-Kutta-Feldberg integrator is used. In
contrast to CMC, which used PD controllers in a closed-loop system to ensure
tracking of the desired trajectories, the FD simulation is an open-loop system.
That is, it blindly applies the recorded actuator controls with no feedback or
correction mechanism to help ensure accurate tracking.

Inverse Dynamics (ID) : The inverse dynamics process derives generalized
forces (e.g., net forces and torques) at each joint responsible for a given move-
ment. Given the kinematics (e.g., states or motion) describing the movement of
a model and a portion of the kinetics (e.g., external loads) applied to the model,
an inverse dynamics analysis can be performed. Classical mechanics mathemat-
ically expresses the mass-dependent relationship between force and acceleration
with equations of motion. The ID solves these equations to yield the net forces
and torques at each joint which produce the movement.

4 Matlab Toolbox

The design of the OpenSim MotionLab Matlab toolbox was done so that, with
a minimum of setup time, data from a motion capture can be used in an Open-
Sim simulation. The toolbox can also be used to generate the required OpenSim
files which then can be loaded into the OpenSim GUI. The MotionLab toolbox
main features are i) reading motion capture data from C3D files, ii) calculating
ground reaction force, iii) translating motion capture data into model coordinate
system, iv) applying noise reduction of simulation data, v) processing EMG data
and processing/plotting simulation results.
Before the toolbox can be used, the path to the toolbox has to be added to
the Matlab system path and C3DServer from Motion Lab Systems [9] has to
be installed. After the desired motion capture has been performed, the marker
trajectories have to be labeled and exported into a C3D file.
Because of the wide varieties of laboratories and motion capture setups when
it comes to number of force plates, coordinate system orientations, marker sets
and EMG setups, the MotionLab toolbox requires a Matlab file session setup.m.
This file describes each motion capture session such as which marker set has
been used, number of force plates, translation between the different coordinate
systems and which analog channels are used.
In the following example the authors will denote Matlab variables as this and
Matlab function calls as this.
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4.1 Toolbox setup

The session setup.m contains several parameters that describe the motion cap-
ture session, the authors will outline the most important parameters and what
they describe.

session.FP.prefix = ’FP’,’FP’,’FP’,’FP’,’FP’,’FP’;
session.FP.suffix = ’Fx’,’Fy’,’Fz’,’Mx’,’My’,’Mz’;
The session.FP describe the channel names of the AMTI force plate, in this ex-
ample two force plates are used and Matlab will extract the channels FP1Fx,
FP2Fx, FP1Fy, FP2Fy ... FP2Mz.

session.mcDirection.fp2Model(direction,:) = [-1 -3 -2];
session.mcDirection.mc2Model(direction,:) = [-1 -3 -2];
The mcDirection describe the rigid body transformation between the motion
capture and the model, and between the force plate and the model. These trans-
formations depend on which direction the model faces, here given as an index
direction. If the subject would face -Wy direction we can extract the translation
from figure 4 and 5, the force plates x-direction correspond to the -x-direction
in the model, force plate y-direction correspond to the -z-direction in the model
and force plate z-direction correspond to -y-direction in the model. Using these
transformations, data from the motion capture and the force plates can be trans-
lated into the coordinate system of the model.

session.EMGChannels{1}= {’TA’ ,’Tibialis anterior’, {’tib ant r’}};
session.EMGChannels{2}= {’SOL’ ,’Soleus’, {’soleus r’}};
The EMGChannels specify the name of the analog EMG channels that are stored
in the C3D file, the corresponding muscle name and the corresponding actuators
in the OpenSim model, here showing two channels.

session.markers(1)=struct(’name’,{’TRX’},’ikWeight’,{5},’ikUsed’,{1});
session.markers(2)=struct(’name’,{’RAM’},’ikWeight’,{25},’ikUsed’,{1});
session.markers(3)=struct(’name’,{’LAM’},’ikWeight’,{25},’ikUsed’,{1});
The markers specify the markers that are used in the current motion capture.
First the name, RTPL, then how large weight the marker should be in the IK.
Some marker sets use different markers to scale the model and to drive the IK,
to do this the parameter ikUsed can be used to disable a marker for the IK
process.
When the session setup.m file has been created, the toolbox can be used to
extract the motion capture data and carry out a simulation. Either the tool-
box is used through the Matlab command window, or used in a simulation
script/function. In both case some initial variables have to be set:

c3dFileDynamic = ’Crouch 0004.c3d’;
c3dFileStatic = ’REF 02.c3d’;
The c3dFileDynamic and c3dFileStatic specify the dynamic and static motion
capture files, if no c3dFileStatic file is specified the first frames of the dynamic
trial will be used to scale the model.
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osimModelFile = ’2392 3DAH.osim’;
The osimModelFile variable specifies which model will be used in the simulation.
The toolbox assumes that the model exists in the same directory as the C3D
files.

4.2 Motion capture data

Before we can extract the motion capture data, a C3DStruct has to be created.
This structure contains all the information from the session setup.m, the model
file, which direction the model faces and which C3D file should be extracted.
In the following example the static data will be used, but the dynamic motion
capture is extracted in the exact same way.
C3dStruct = extractC3d(c3dFileStatic,type, direction);

The function takes three arguments, the c3dFileStatic is the C3D file name, type
specifies if it is a ’static’ or ’dynamic’ trial and direction specifies which direction
the subject faces: Wx, -Wx, Wy or -Wy.
The toolbox has now all the information to extract the motion capture and to
convert it into the model coordinate system:
motionData = extractMarkers(C3dStruct);

This will extract all markers from the C3D file that are specified in the ses-
sion.markers and translate them into the model coordinate system.
A major problem during motion capture is markers that have gaps in their tra-
jectories. Most common motion capture softwares can interpolate small marker
gaps, but when the gaps become larger than 10 frames it is hard to perform accu-
rate interpolations. These gaps can create inaccurate IK solutions and therefore
each trajectory should be checked so no gaps exists. In our MotionLab toolbox
this is done in the function:
[motionData,C3dStruct] = checkMarkers(motionData, C3dStruct);

which checks each trajectory and removes the trajectory if it contains a gap.

Fig. 7. Blue graph: unfiltered motion
capture data. Red: Kalman smoothed
(experimental noise ratio = 1 / 1000,
order = 3). Green: Low-pass filtered
(cutoff frequency = 6Hz)

Fig. 8. Black: unfiltered EMG signal.
Red: high-pass (10Hz), rectified, low-
pass (6Hz) EMG signal
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Filtering : A major problem with motion capture is that all signals contain
noise. It is therefore important to carry out filtering to minimize the noise, so a
more stable IK solution can be reached. The problem is to determine how much
smoothing is needed. Not enough and the IK solution will contain noise, too
much smoothing and important translation/rotation will be smoothed out. It is
necessary to analyze the data before so the right type of smoothing is carried out.
In the MotionLab toolbox two different smoothing techniques are implemented:
[motionData,C3dStruct] = lpMCSmoother(motionData, C3dStruct,cutHz);

[motionData] = kalmanMCSmoother(motionData, noise, order);

The lpMCSmoother performs a low-pass filtering on the motion capture data,
this type of filter is a very robust way to smooth motion capture data. The
main drawback with low-pass filters is that it is hard to choose a cutoff fre-
quency that removes the noise but preserves the desired motion. More complex
smoothing algorithms are needed, one of them is the Kalman smoothing [1,
5] that is a recursive filter based on linear dynamical system. The Kalman
smoother,kalmanMCSmoother, requires three parameters, the motion capture
data (motionData), the experimental noise ratio (noise) and the order of the
filter (order), the drawback is that the Kalman smoother is less robust and
requires more computation time. In figure 7 the differences between unfiltered
motion capture data, Kalman smoothed and low-pass filter (cutHz = 6Hz) are
shown. Both the low-pass and the Kalman smooth the data, but where the low-
pass filter smooths out small changes in the kinematics the Kalman smoother
preserves them.
In the final step the marker data is saved to the OpenSim file format [2], this is
done by calling the function:
motionData = saveMarkers(C3dStruct, motionData);

4.3 Ground Reaction Force

To be able to run the RRA and the CMC tools, OpenSim uses the ground re-
action forces which are captured with the motion capture session. The problem
is that most commercial motion capture software are not able to process the
force platform data, instead they save the raw signal to the C3D file, still in the
coordinate system of the force platform. We so need to calculate the Center of
Pressure (CoP) along side the force and moment in the motion capture coordi-
nate system. To be able to calculate the center of pressure the toolbox requires
the exact coordinates of each force plates stored in the C3D file, ordered from
the top left corner and then clockwise. The toolbox also requires that the force
platform is calibrated so that forces and moments are given in the true origin
and not in the geometric origin of the force plate. To calculate the CoP and
reaction force, we assume that the true origin exists at O located at (a,b,c)
(see figure 4) and that the force plate is oriented in the (Wx, Wy-plane) which
means that the z component of the center of pressure will always be equal to 0.
The moment around the true origin can then be written as equation 1 :
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M = [x− a, y − b, z − c]× [Fx, Fy, Fz] + [0, 0, Tz] (1)

Equation 1 can be rewritten as equation 2 :

⎡
⎣
Mx

My

Mz

⎤
⎦ =

⎡
⎣

0 c y − b
−c 0 −(x− a)

−(y − b) x− a 0

⎤
⎦
⎡
⎣
Fx

Fy

Fz

⎤
⎦+

⎡
⎣

0
0
Tz

⎤
⎦ (2)

And then into equation 3 :

⎡
⎣
Mx

My

Mz

⎤
⎦ =

⎡
⎣

(y − b)Fz + cFy

−cFx − (x− a)Fz

(x− a)Fy − (y − b)Fx + Tz

⎤
⎦ (3)

From equation 3, we extract the Center of Pressure (x, y, Tz) shown in equation
4, (where z = 0);

x = −My + cFx

Fz
+ a

y =
Mx − cFy

Fz
+ b

Tz = Mz − (x− a)Fy + (y − b)Fx

(4)

In the MotionLab toolbox, calculation of the CoP and translation of the data
into model coordinate are implemented in:
[GRF, CoP, GRMo, GRMx] = extractKinematics(C3dStruct);

The function extracts the force plate information from the C3D file specified
in the C3DStruct, calculates center of pressure by using equation 4 and then
translates the force data into the model coordinates using the translation vector
stored in C3dStruct.transVec(i).fp2model where i is the direction the motion is
performed in Wx, -Wx, Wy, -Wy. The force data is returned as a structure and
saved to an OpenSim file named keySta.osimFile kinematic.mot in the simula-
tion directory C3dStruct.dirPath.

4.4 Electromyography

The use of EMG can be a powerful tool, but the signal in its raw form needs
some pre-processing before it can be used (see figure 8) in inverse dynamics or
be used to verify simulation results. The MotionLab toolbox currently supports
several filtering, such as high-pass, low-pass, Kalman and band-pass filtering.
The toolbox can also normalize and rectify an EMG signal. The EMG tool is
called through the function:
[rawEMG, filteredEMG] = extractEMG(C3dStruct, filter, input);

The processed EMG data is returned to the workspace and saved to an OpenSim
file named keySta.osimFile EMG.mot in the simulation directory C3dStruct.dirPath.
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4.5 Calling OpenSim from Matlab

After that the motion capture, force plate and EMG data have been extracted,
the toolbox can generate the required files to execute the different simulation
phases in OpenSim.
The first phase is always to perform a scale of the generic model to a spe-
cific subject. This is done by calling setupScale(C3dStruct) which gener-
ates the scale setup file and then executes the scale tool. Similarly function-
ality exists for the IK process. The function setupIK(C3dStruct) generates the
IK setup file along side with the IK Task.xml file which contains the weight
for each marker specified in session.markers. Similarly functionality exists for
CMC, RRA and ID. In setupRRA(C3dStruct) and setupCMC(C3dStruct) the
pelvis center of mass is first extracted from the model file and inserted in the
RRA Actuators.xml and CMC Actuators.xml file before the setup file is gener-
ated and the tool executed. The inverse dynamics is called in the same manner
through setupID(C3dStruct) and the forward dynamics through
setupFD(C3dStruct). Each tool checks so the prerequisites are meet, for exam-
ple that a scaled model exists for the IK tool and that the IK has been executed
before the RRA tool is executed. If a tool does not reach a solution the toolbox
raises an error and halts further function executions.

4.6 Post-processing simulation result

After a simulation has been carried out the MotionLab toolbox can extract the
simulation result back into Matlab:
result = extractResult(C3dStruct,’type’);

where type defines which result should be extracted: ’ik’, ’cmc’,...,’fd’. This en-
ables Matlab to be used as a powerful tool to carry out validation of simulations
and plotting/correlation of variables.

5 Application: a crouch motion

In this section the authors will show an example where the MotionLab toolbox
was used to extract motion capture data, to carry out a simulation and to plot
data from a neuromuscular simulation. This example is not intended to be used
in any medical or scientific conclusion, only as a MotionLab toolbox example.
The subject was a healthy male, early 30 with no neuromuscular medical his-
tory. Motion captures were performed using a Qualisys motion capture system.
Two AMTI force plates were arranged so the subject could place one foot on
each force plate. The labs coordinate system was arranged as in figure 4. First,
a static reference frame was captured where the subject was standing upright
without performing any movement. The subject was then asked to perform a
crouching movement from a standing position without lifting his heels. After the
motion capture Qualisys Track Manager was used to remove ghost markers, to
label each marker and to export the motions into the C3D format.
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The session setup.m file was created as in section 4.1 and saved in the same
directory as the static and dynamic C3D files.
The MotionLab toolbox can be used in two ways, either in matlab script/functions
or as we will do in this example, by calling each function from the Matlab Com-
mand Window. The first task is to extract the information from the static pose,
to save the data and to call the OpenSim scaling tool. For more details about
each MotionLab tool see section 4.

staticC3d = extractC3d(c3dFileStatic,’static’, ’-Wy’);

staticMotionData = extractMarkers(staticC3d);

[staticMotionData,staticC3d] = checkMarkers(staticMotionData, staticC3d);

staticMotionData = kalmanMCSmoother(staticMotionData, 1000, 3);

staticMotionData = saveMarkers(staticC3d, staticMotionData);

If no errors has occured all the necessary information has been extracted from
the C3D file and saved in the OpenSim format, we can now execute the scale
function by calling runScale(staticC3d);. This will save the setup file needed
to carry out the scale and execute the OpenSim scaling tool. The OpenSim scale
tool will generate a new OpenSim model that will describe the motion captured
subject (see figure 5) where a unscaled generic model and a scaled subject-specific
model are shown.
When a scaled model has been generated it is now time to extract the dynamic
motion.

dynamicC3d = extractC3d(c3dFileDynamic,’dynamic’, ’-Wy’);

dynamicMotion = extractMarkers(dynamicC3d);

[dynamicMotion,dynamicC3d] = checkMarkers(dynamicMotion, dynamicC3d);

[dynamicMotion] = kalmanMCSmoother(dynamicMotion, 1000, 3);

dynamicMotion = saveMarkers(dynamicC3d, dynamicMotion);

[GRF, CoP, GRMo, GRMx] = extractKinematics(dynamicC3d);

The final command will extract the ground reaction force and calculate the cor-
rect center of pressure using equation 4. All the desired information is then ex-

Fig. 9. Left: Unscaled model, Right:
Scaled model

Fig. 10. Red: right knee angle, Blue:
left knee angle after Inverse kinematic
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tracted to carry out the IK operation, this is done by calling runIK(dynamicC3d);.
This command will save a setup file for the OpenSim IK tool and in the last
stage call the tool. The resulting left and right knee angles can be seen in figure
10. All other tools can in the same way be called from the MotionLab toolbox,
in this example we choose to call the RRA and the CMC tool. The RRA tool is
called by using the function runRRA(dynamicC3d).
For more information about RRA see section 3.1. To calculate muscle activa-
tion and muscle forces the CMC tool is called using runCMC(dynamicC3d), see
figure 5. The CMC solution can then be read back into MotionLab and plot-
ted/analyzed by using the function result = extractResult(C3dStruct,’CMC’).
In figure 12 CMC muscle activation and corresponding filtered EMG are shown
for the muscle vastus medialis.

Fig. 11. Visualization of muscle acti-
vation during a crouch motion, blue:
rested, red: activated

Fig. 12. Red = High-pass (10Hz), rec-
tified, low-pass (6Hz) EMG signal. Pur-
ple: CMC muscle activation for vastus
medialis

6 Conclusion

We have in this paper described the functionality and the principal considera-
tions behind the MotionLab Matlab toolbox ; and shown how it can be setup for a
motion capture session with minimum alterations. The authors have also shown
that the toolbox is fully interlinked with the OpenSim platform and its data
formats. We believe that the toolbox can be a powerful tool for providing func-
tionality, such as advanced filtering and analyzes of both simulated parameters
and motion capture signals such as EMG. Further work include more advanced
filtering, plotting and visualization and support for other simulation platforms
such as Anybody and Simm.
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