
Practical Assignment 1

OO programming in games

February 13, 2012

In this assignment, you will program a simple game using basics C++ and object oriented program-
ming concepts.

Blackjack

The game works as follows (basics rules of play only). Players are dealt cards with point values. Each
player tries to reach a total of 21 (called Blackjack) without exceeding that amount. Numbered cards
count as their face value. An ace counts as either one or 11 (whichever is best for the player), and any
jack, queen or king counts as 10.

The computer is the house and it competes against one to seven players. At the beginning of the
round, all participants (including the house) are dealt two cards. The players can see all of the cards,
except one of the house’s cards. But the house has to reveal directly the second card if it makes its hand
a blackjack. Next, each player gets the chance to take one additional card at a time for as long as the
player likes (called hit). If the player’s cards exceed 21, the player loses (busts). When all players stop
taking additional cards, the house reveals its hidden card and takes automatically additional cards as
long as its total is 16 or less. If the house busts, all players who have not busted before win. Otherwise,
the player wins if its total is greater than the house’s. If totals are the same, it is a tie (push) (Fig. 1).

• The use of the following class hierarchy is advised, small adjustments are allowed if justified (by
comments in the code).

Class Base class Description

Card None A playing card
Hand None A collection of Card objects
Deck Hand A Hand that has extra functionalities

such as shuffling and dealing
GenericPlayer Hand A generic player is mostly represented

by its hand
Player GenericPlayer A human player
House GenericPlayer The computer player, i.e. the house
Game None A game

• The header files of Hand, GenericPlayer and Deck and the main file are given in Appendix.

• Write the game with only public member functions and protected data members.

• Each instance of Card is unique. Do not create several instances of the same card. When moving
cards from the deck to the player’s hand, move pointers, do not copy objects. A hand thus contains
a vector of pointers to Card objects.

• A player can be seen as a hand with a name.

• The deck will deal cards to generic players. A Deck object will so have a member function to deal
cards that is polymorphic and will work with either a Player and a House.

• The game contains a deck of cards, the house and several players.

1

Figure 1: The blackjack game.

• You can shuffle a vector of objects using the random shuffle function of the algorithm library.

• You will need among others:

– an enumeration type describing the rank of a card

– an enumeration type describing the kind (suit) of a card

– indications that a card is visible or not and that a player is busted

– functions to flip a card, add a card to a hand, clear a hand, get the value of a hand, shuffle
deck, deal cards, etc.

• The pseudo-code of the game loop (Game::play()) is:

Deal players and the house two cards

Hide the house’s first card if not Blackjack

Display players’ and house’s hands

Deal additional cards to players

Reveal house’s first card

Deal additional cards to house

If house is busted

Everyone who is not busted wins

Else

For each player

If player is not busted

If player’s hand > house’s hand

Player wins

Else if player’s hand < house’s hand

Player loses

2

Else

Tie game

Else Player loses

Move everyone’s cards back into deck

Submitting your work

The submission deadline is Sunday February 19 at 11:59pm. To send us your work, you will use the
CS-UU submission system available at http://www.cs.uu.nl/docs/submit. Please DO NOT send
your assignment by email.

Design your code in an object-oriented fashion. So, use classes and inheritance where appropriate.
Please include sufficient comments to the code so that at least the role of each function and class in
your program is clear. Include as much error checking as appropriate. If your project does not compile
and run in both debug and release mode, there will be no grading.

Please make sure to clean your solution (no temporary files and no .sdf). The assignment consists
of the solution file (.sln), the project files (.vcxproj) and the source files (.cpp and .h). Create a .zip
or .rar archive of your assignment files and upload it using the submission system. After a successful
submission you should receive a confirmation email in your student email account. If not, please contact
Jeroen Fokker.

Appendix

Main

#include ”Game.h”

using namespace std;

int main(){

cout << ”Welcome to Blackjack” << endl;

// Number of players
int numPlayers = 0;
while (numPlayers < 1 || numPlayers > 7) {

cout << ”How many players? (1 − 7): ”;
cin >> numPlayers;

}

// Player names
vector<string> names;
string name;
for (int i=0; i<numPlayers; i++) {

cout << ”Enter player name: ”;
cin >> name;
names.push back(name);

}
cout << endl;

// Play the game
Game game(names);
char again = ’y’;
while (again == ’y’ || again == ’Y’) {

game.play();

3

cout << endl << ”Do you want to play again? (y/n): ”;
cin >> again;

}

system(”pause”);
return 0;

}

Hand header

#ifndef HAND HEADER
#define HAND HEADER

#include <vector>
#include <string>
#include <iostream>

#include ”Card.h”

class Hand {

public:

// constructor and destructor
Hand();
virtual ˜Hand();

// adds a card to the hand
void add(Card ∗);

// clears hand of all cards
void clear();

// get hand value
int getTotal() const;

protected:

std::vector<Card ∗> cards ;
};

#endif

GenericPlayer header

#ifndef GENERICPLAYER HEADER
#define GENERICPLAYER HEADER

#include ”Hand.h”
#include <string>
#include <iostream>

class GenericPlayer : public Hand {

public:

4

// constructor and destructor
GenericPlayer(const std::string& name = ””);
virtual ˜GenericPlayer();

// indicates if player wants to hit
virtual bool isHitting() const = 0;

// is player busted
bool isBusted() const;

// annouces that player busts
void bust() const;

// print the hand with name
virtual void printHand() const = 0;

protected:
std::string name ;

};

#endif

Deck header

#ifndef DECK HEADER
#define DECK HEADER

#include <string>
#include <iostream>

#include <algorithm>

#include ”Hand.h”
#include ”GenericPlayer.h”

class Deck : public Hand {

public:

// constructor and destructor
Deck();
virtual ˜Deck();

// create the deck of 52 cards
void populate();

// shuffle cards
void shuffle();

// deal one card to a hand
void dealOneCard(Hand&);

// give cards to generic player as long as not busted and asks for it
void giveCards(GenericPlayer&);

};

#endif

5

