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Figure 1: Some steps of our analysis method. From a retargeted and/or interpolated motion (1), our system automatically maps the motion
(2) on a mechanical skeleton including masses and inertias information (3). Then we estimate support phases (4), and solve the physical laws,
computing resulting forces. We finally validate the motion (5) or not (6) by comparison with literature and experimental data.

Abstract

Retargeting and interpolation methods may introduce physical inac-
curacies in virtual human animation. This paper presents a method
for evaluating the dynamical correctness of retargeted and interpo-
lated motions. We determine resulting forces and torques at joints,
with special attention to the ground reaction forces. With this inten-
tion, we propose an automatic creation of the biomechanical model
of the character upgraded with the masses and inertias of the limbs
and the motion mapping on this model. Then using support phase
recognition, we compute resulting forces and torques by an inverse
dynamics method.
We evaluate how the retargeting and the interpolation methods
change the physics of the motions by using the results of our anal-
ysis on artificial and real motions and using literature and experi-
mental data from force plates. Our evaluation relies on the study of
several retargeting and interpolation parameters such as the global
size of the character, the relative ratios of limbs, the structure of
the model, the length of step, the motion style and the character
velocity.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Motion analysis, dynamics-based validation, biome-
chanics

1 Introduction

Synthesising realistic character motion remains one of the great
challenges in computer graphics. It seems that obeying physical
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laws is an important criterion of plausibility of motion, which is
why the dynamics of human gait have been studied for a long time
for animation purposes [Van de Panne et al. 1992; Hodgins 1998;
Faure et al. 1997]. The first method to produce such physically re-
alistic motions is to animate characters from captured motion data
that are intrinsically valid. These motions are adapted to different
representations of the character, to various environments or to addi-
tional constraints. The kinematic and kinetic adaptations (by inter-
polation, edition, retargeting or blending) may introduce physical
inaccuracies in virtual human animation. It is thus necessary to be
careful when such methods are used, for example using relatively
small adaptations [Gleicher and Litwinowicz 1998] or performing
modifications within a well-defined class of behaviours [Kovar and
Gleicher 2004]. Whenever the modifications introduce visually ap-
parent errors in the physics of motion, dynamics improvements may
be added as a post-process or may correct the adaptation algorithm.
To this end, Safonova and Hodgins [Safonova and Hodgins 2005]
have proposed a method for analysing the correctness of some phys-
ical properties in linear interpolated motions.

In this paper, we present a method of dynamics-based validation
of retargeting and interpolating algorithms. We study the dynami-
cal correctness of the algorithms through the change in the physics
of the adapted motions. This validation relies on the creation of
a biomechanical skeleton, i.e a skeleton including information of
masses and inertias, and the computation of the resulting forces and
torques. Analysing dynamics requires a high number of parame-
ters constraining the motion (including ground support phases) and
concerning the subject (including masses and inertias). Our goal
is thus twofold: (1) the description of an automatic, generic and
stand-alone computation process of the dynamics of a locomotion
including the evaluation of these parameters, (2) the application of
this process for validating a motion adaptation algorithm with the
separation of the influence of the retargeting part and the interpola-
tion part.

The remainder of this paper is structured as follows: section 2
reviews the related works and our contributions, followed by an
overview of our method in section 3. The process used for the cre-
ation of the biomechanical model of the skeleton is outlined in sec-
tion 4. Issues concerning dynamics-based analysis are developed in
section 5. Finally, validation results are presented in section 6. In
section 7, we summarise our contributions, discuss the validation
approach and outline possible future research directions.



2 Related works and contributions

Skeleton adaptation and motion interpolation are components of
many different approaches for editing [Boulic and Thalmann 1992;
Gleicher and Litwinowicz 1998], retargeting [Gleicher 1998; Choi
and Ko 2000] or blending [Park et al. 2002; Kovar et al. 2002] hu-
man animations. These works aim at producing visually correct
motions and do not focus on dynamics correctness. To address this
goal, two complementary methods have been proposed: to intro-
duce physical simulation during the adaptation and to correct the
motion after the adaptation.

The first method has been the most explored starting with the joint
use of space-time constraints on positions and forces [Popović and
Witkin 1999]. To reduce the complexity of the optimisations, Fang
and Pollard [Fang and Pollard 2003] have proposed a new formula-
tion of the dynamical constraints especially accurate for managing
contacts. The optimisation of the forces at the joints involves im-
portant computing times. To reduce this complexity, constraints on
moment of forces have been added including the mechanical con-
straints and the motion style [Liu and Popović 2002; Abe et al.
2004]. The zero moment point can then be used to maintain the
balance [Tak et al. 2000; Tak and Ko 2005; Zordan and Hodgins
2002]. The method has been extended not to use an iterative process
searching optimal solutions at each frame. This method is called
dynamics filtering [Yamane and Nakamura 2003]. The authors use
a double filtering of the parameters to verify dynamical constraints.
The first filtering predicts the next vector state according to kine-
matical and dynamical constraints such as the respect of the ZMP
and the initial posture or the limitation of angular moments. The
second filtering corrects the residual inconsistencies between the
positions, velocities and accelerations. Another possibility con-
sists in extending the pose control graph of generating models with
given postures from motion captures. This method can be used to
take into account local contacts and collisions [Zordan and Hod-
gins 2002; Arikan et al. 2005]. Oshita and Makinouchi [Oshita and
Makinouchi 2001] have added masses controlling a subset of the
degrees of freedom. In these approaches, the method adds angular
moments to those computed by the controllers. These moments can
be computed for example as an impulse to return to the initial mo-
tion by motion graph [Arikan et al. 2005] or by blending [Zordan
et al. 2005] methods.

The second method is more recent, only few works studied physics
in interpolated movements. From the idea of determining the kine-
matic naturalness of a motion [Reitsma and Pollard 2003; Ren et al.
2005], some researchers study the dynamic naturalness. For exam-
ple, Safonova and Hodgins [Safonova and Hodgins 2005] propose
an analysis of the conservation of basic physical properties in inter-
polated motions such as linear and angular momentum, static bal-
ance or friction on the ground. They suggest small modifications
to the standard interpolation technique that in some circumstances
produce significantly natural looking motions.

In this work, we propose a generic method for validating a method
of motion adaptation through the change in the forces and torques
at joints. This dynamics analysis is independent of the method of
motion adaptation. The resulting forces and torques are compared
with biomechanical literature. Moreover we pay special attention to
the resulting ground reaction forces, because we can compare them
with experimental data from force plates. Our approach relies on a
representation of the character including masses and inertias infor-
mation, that allows to solve the fundamental laws of physics. The
process defining this representation is guided by choices and scal-
ings in anthropometrical tables [DeLeva 1996] and linear regression
laws [Vaughan et al. 1999]. Our validation algorithm relies on the
study of several retargeting and interpolation parameters such as

the global scale of the character, ratios of limbs, the structure of
the skeleton, the length of step, the motion style and the charac-
ter velocity. Thus our contribution can be summarised as follows:
the evaluation, for validation purposes, of the resulting forces and
torques applied at the joints of the automatically computed biome-
chanical skeleton.

3 Overview of our system

The overview of our system is given in Figure 2.

scaled anthropometrical
table

Biomechanical model recognition
support phase

Dynamics analysis

Resulting forces and torques

Raw motion
(motion capture data)

Mechanical model

retargeted motion

Morphology adaptation

Motion interpolation

interpolated motion

model             motion
dimensional      joint−angle

Mapping algorithm

Figure 2: Analysis system overview. Inputs are a raw (captured)
motion and a mechanical chain describing the human skeleton. Out-
puts are the resulting forces and torques at joints.

In [Pronost et al. 2006], we presented a retargeting algorithm and
a motion interpolation process. Now, the questions we want to an-
swer are:

• Are the adapted motions physically valid ?

• If so, what are the limits of the method ?

• And are these limits due to the retargeting or to the interpola-
tion ?

In this paper, we try to answer these questions and illustrate them
on our adaptation methods but the analysis is generic and suitable
for any method (interpolation, edition, retargeting, blending).

To solve the fundamental laws of physics, and thus analyse the dy-
namics, we need to evaluate the parameters concerning the subject.
The first step is to convert the raw motion data into a joint-angle mo-
tion because angular accelerations at joints are needed. We start by
defining the articular centers, built from external landmarks. The
kinematical chains describing the number of degrees of freedom
and the hierarchy of the human skeleton is defined thanks to these
landmarks. The motion is then mapped to the human skeleton. The
skeleton is thus improved by adjusting the lengths of the limbs. We
further attach all the required information such as masses, lengths,
circumferences and inertias of limbs, to the model by using anthro-
pometrical tables and regression laws.

To solve the fundamental laws of physics, we also need to evalu-
ate the parameters constraining the motion, i.e. the external forces



acting on the body. So finally, using support phase recognition,
we compute resulting forces and torques by an inverse dynamics
method.

4 Creation of the biomechanical model

In this section, we present the process that is used to create the
biomechanical model of the character. We start by defining the me-
chanical model describing the hierarchy and the degrees of freedom
of the skeleton (in 4.1). Then we need to associate the nodes of this
skeleton to articular centers, we define them from the landmarks
data (in 4.2). Finally, we upgrade the skeleton with the masses and
inertias of the limbs (in 4.3).

4.1 Mechanical model of the skeleton

The Denavit-Hartenberg representation [Hartenberg and Denavit
1955] and its modified notation [Khalil and Kleinfinger 1986] has
become a standard for representing robots and for modelling their
motions. This representation is a systematic approach to assign-
ing and labelling an orthonormal (x,y,z) coordinate system to each
robot joint. It is then possible to relate one joint to the next and
ultimately to assemble a complete representation of a robot’s ge-
ometry. Four parameters are used to define a linear transformation
matrix between two successive coordinate systems associated with
each joint. These parameters are the length of the link d j , the dis-
tance a j , the rotation α j and the angle θ j between the joints.
The modified representation is adapted within the framework of the
representation of a virtual human skeleton. Indeed, the hierarchy of
our skeleton is directly incorporated in the representation, as well
as the expression of the position and the orientation of a joint in the
parent reference frame.
Our system computes, for the whole motion, average values of dis-
tances between the articulations. These values define the translation
parameters d j and a j . We just have to provide the rotational param-
eters α j and θ j .

4.2 Definition of the articular centers

We compute the articular centers for two reasons: to map the mo-
tion on an angular-based skeleton and to use the anthropometrical
tables describing physical properties from distances between artic-
ular centers. Some researchers have focused on problems related to
estimation of the joints of a skeleton from magnetic data [O’Brien
et al. 2000; Kirk et al. 2005], from optical marker data [Silaghi et al.
1999; Zordan and Van Der Horst 2003] and also for interaction pur-
poses [Oore et al. 2002; Shin et al. 2001].
In our approach, articular centers are not computed from the evolu-
tion of the relative positions of limbs but from the landmarks. At
each frame, we have to compute the three-dimensional positions
P(a) for each articular system a that we want to simulate. We use
the set of the three-dimensional positions of the landmarks P(l).
We just have to associate at least one P(l) with one P(a). The main
interest is that it helps us to define a very accurate position of an ar-
ticular center (see example below) or a virtual position like the root
of the skeleton (using pelvis landmarks, for example). Moreover,
it allows us to define articular centers and then a model from any
marker set.
Example: the knee. We place 4 motion capture landmarks on the
lateral epicondyles and the medial epicondyles of femurs and tibiae.
We compute the average value of these four points, and consider it

as the articular center of the knee. The knee articulation is then de-
fined by this point and the rotation axes depending on 3D positions
of the neighbouring articular centers.

4.3 Attaching masses and inertias

Physical information that are necessary and sufficient to enable us
to solve the problem of inverse dynamics are the masses and iner-
tias of the limbs. Other biomechanical information may be added
to take into account additional constraints [Liu et al. 2005], such
as muscles activation preferences, elastic mechanism and variable
stiffness at joints.

Since anthropometrical tables are different depending on the gender
of the character, we provide this information. For the same reason,
we have to assign semantics to the skeleton, i.e. associate a segment
between two articulation systems to a human limb. The semantics
can be given manually or assigned automatically if the articular sys-
tems have preset labels.
We model limbs by using cylinders of homogeneous density be-
cause most of the anthropometrical tables and laws use this rep-
resentation. From the evaluation of the lengths of the limbs (a j
parameters), we are able to estimate the total human height H and
mass M by using tables described in [DeLeva 1996]. We use lin-
ear regression laws [Vaughan et al. 1999] to estimate masses and
inertias for each limb l:

• Mass
ml = a.M +b.ll .c

2
l + c (1)

where ml is the mass of limb l, ll its length, cl its circumfer-
ence and (a,b,c) three coefficients depending on the gender
and the limb.

• Inertia
Il = a.M.(b.l2

l + c.c2
l )+d (2)

where Il is the inertia of limb l, and (a,b,c,d) four coefficients
depending on the gender and the limb.

These equations are well established for lower-limbs. For the up-
per body, masses are directly assigned by proportional values from
scaled tables, and inertias are computed thanks to the radius of gy-
ration:

Il = ml .(ll .rl)
2 (3)

where rl is the radius of gyration expressed as a percentile of ll .

5 Dynamics analysis

The inverse dynamics problem was studied for a long time for ani-
mation purposes [Ko and Badler 1996]. Because solving dynamics
needs angular acceleration data, we compute articular trajectories
during the motion. Thus, we project the motion to the skeleton (sec-
tion 5.1), that is to say, we geometrically reconstruct the postures
according to the motion and the biomechanical model.

5.1 Articular trajectories

In this section, we address the mapping issue going from 3D po-
sitions of articular centers to the joint-angle posture of the charac-
ter. In general, mapping a motion to a physical model is an under-
constrained problem and optimisation requires additional metrics
to find a unique posture, for example with optimised-based IK



approaches [Zhao and Badler 1994] or spatial constraints [Bindi-
ganavale and Badler 1998] to preserve end effector positions.

We solve the mapping problem for each articular system (i.e. co-
localised Denavit-Hartenberg joints set) in sequence by using direct
geometrical reconstruction, i.e. computing the rotation matrix be-
tween the current and the next articular center allowing to be the
closest possible to the desired position.

• If the articulation is a pin joint, the dot product between the
normalised vectors representing the limbs gives the cosine of
the required angle θ ′

j . We add θ ′
j to it’s initial value defined

by the mechanical model.

• If the articulation is a spherical joint, we must choose the rota-
tion matrix among an infinity of solutions. But we often have
additional constraints which reduce the number of solutions.
For example if the next articulation is a pin joint, we can de-
termine the future error and then choose the rotation matrix
minimising it. Average values can also be computed as long
as the next articulations are pin joints for minimising the suc-
cessive errors. If we do not have additional constraints, we
compute the minimal rotation compared to the previous refer-
ence frame.

5.2 Support phase recognition

To solve the inverse dynamics problem, we need to know exter-
nal forces that are applied to the system. For locomotion, these
forces are: gravity, ground reaction forces and aerodynamic fric-
tion forces. The application of gravity is straightforward and we
suppose that aerodynamic friction forces are negligible. We focus
here on the determination of the ground reaction forces. This deter-
mination is performed in two steps. In the first step, we define the
ground contacts i.e. the heels strikes and toes off. The second step
consists in applying Newton’s second law of motion to determine
the resulting forces and torques.

We determine the start of the heels contacts and the end of the toes
contacts, and then we apply the appropriate inverse dynamics reso-
lution according to the stance phase (see 5.3). Recent works [Ike-
moto et al. 2006] show the limits of using speed and height methods
to discriminate foot plants. speed and height are methods based on
thresholds (of speed and vertical amplitude) below which the feet
are assume to be in support. They use instead a learning method
based on the training of limbs positions in hand-labeled motions.
Here, to be rather generic, we studied four recognition methods
with four sets of possible support joints. We present in this section
the used principles and results of these methods with our previous
example of foot support: toes and heels.

Our reference method is a hand-labeled estimation, called visual,
that will serve to compare the methods described hereafter. We
evaluate the speed and height methods. We add a configuration-
based method, called con f ig, which uses particular relative joints
configurations (toes and heels) at full extension and flexion. These
configurations are detected as local maxima for extension and
crossing coordinates for flexion. These three methods predict which
frames are the start and the end of the ground contact.

We present in Table 1, the evaluations of these recognition methods
through the four following criteria.

Number of failures. We assume that the visual method never fails.
The speed and con f ig methods never failed with the set of 12 mo-
tions, and the height method has a 66% rate of returning a valid
result.

method/criterion Nb failures Error S.D. S.D. norm.
speed 0 2.3 1.6 0.50
height 16 5.6 2.4 0.41
config 0 9.7 2.1 -

Table 1: Results (in frames, except for the normalised S.D.) are
established in comparison with the visual reference method. We
evaluate the methods on 12 different locomotions, so on 12×2(left-
right)×2(flexion-extension)= 48 contacts.

The average error is: ē =
∑N

i=1 |Fre fi−Fevali |

N , where Fre fi is the ref-
erence frame of the contact i (defined by visual), Fevali is the eval-
uated frame, and N is the number of contacts (48 in our example).
This is the mean difference, in frames, of the resulting heels strikes
and toes off evaluations. Errors for speed and height methods are
acceptable, but for con f ig, a value of 9.7 (i.e. 0.17 s) is quite large.

The standard deviation of the error is: sd =

√

∑N
i=1(ei−ē)2

N , where
ei is the error of contact i, and ē is its average error. This criterion
shows the stability of the recognition algorithms. We note again
the good accuracy of the speed-based methods, height-based and
configuration-based are acceptable.

The normalised standard deviation of thresholds values is: sdn =
∑p

i=1 sd(threshold)

p.threshold
, where sd(threshold) is the standard deviation of

the values of the threshold, threshold is their average error, and p is
the number of parameters (2 in our two methods speed and height).
This criterion shows the stability of the speed and the amplitude
thresholds. We see here the main interest in the con f ig method,
since we do not need any threshold. None of both others seems
really better. But we can note that the thresholds are rather stable,
which enables us to integrate average values for any locomotion
(see Table 2).

heel strike toe off
height (%) 13.0 13.37
speed (m/s) 0.73 0.39

Table 2: Average values of thresholds. Amplitudes are in percentile
of the maximum elevation of the foot during the walk cycle.

We performed the same statistical calculations for three other con-
figurations of support points: ankle and toe, heel alone and ankle
alone. Results show the importance of the methods using the heel
(in extension phase detection) and the toe (in flexion phase detec-
tion). Our recognition algorithm uses the most adapted method ac-
cording to its quality and to the configuration of the skeleton. In our
configuration, heel and toe, the most adapted method is the speed
method.

5.3 Resulting forces and torques

In this section, we apply Newton’s second law of motion. Thanks to
the knowledge of the ground support phases and the biomechanical
model of the skeleton, we are able to compute the resulting forces
and torques acting at the joints: toes, heels, knees, hips, shoulders,
elbows and hands. To accomplish these computations, we provide
an inverse dynamics process using only a few key steps.

The structure of Newton’s second law of motion depends on
the external forces applied to the body. We solve it according
to the external forces which are the ground reaction forces. For
locomotions, there are three different states: single support, double



support and no support.

Linear form of Newton’s second law:

The summation of external forces acting on a limb l is equal to the
product of its mass ml (supposed constant) by the acceleration ~a of
its center of gravity Gl :

∑−−−−→Forcesl = ml .~aGl (4)

- single support

During single support phase we recursively solve the linear form of
Newton’s second law from free effectors (foot not in support and
hands) to the support foot. Only the gravity acts on the free limbs
as an external force, we can solve the equation for these limbs and
calculate the force acting on the next limb, and so on.

- double support

When the character is in double support phase, the previous solving
algorithm can not be directly applied because the two ground reac-
tion forces −−→FR1 and −−→FR2 are unknown. But the acceleration of the
center of gravity G of the whole system leads to the equation:

−−→FR1 +
−−→FR2 +(−~g).∑ml = (∑ml).~aG (5)

where (−~g).∑ml is the total weight of the character. To solve this
two-unknowns equation, we use the angular expression of Newton’s
law expressed at point G:

−−−→G O1 ×
−−→FR1 +

−−−→G O2 ×
−−→FR2 = [I]G.~̇ωG (6)

where O1 and O2 are the known positions of support, [I]G the iner-
tia matrix and ~̇ωG the angular acceleration vector. The angular mo-
mentum term is equal to zero because there is no localised momen-
tum at these support points. With these two equations we are able
to compute the ground reaction forces and then iteratively solve the
linear equation from supports to hips.

- no support

During a flying phase, the computation is straightforward, there is
no additional force, then we solve for the four chains independently
from free segments to the trunk. This case is useful for running
movements and jumps. We thus obtain the internal forces for any
locomotion style.

Angular form of Newton’s second law:

The summation of external torques acting on a limb l is equal to the
rate of change of its angular momentum:

∑
j
(
−−−→Gl O j ×~Fj/l)+∑

j

~C j/l = [I]Gl .
~̇ωGl (7)

where O j is the application point at joint j of the external force ~Fj/l

acting on l, and ~C j/l is the angular momentum at O j .

We can thus use the following algorithm to solve the angular
equation at each articulation a associated to a limb l.

for all articulation a do

weightl = {O.O, O.O, -g . ml}
Moment due to weighta = |−→aGl | × weightl

Moment due to forcea−1 = |
−−−−−→
a(a−1)| × forcea−1

torquea = [I]Gl .
~̇ωGl - Moment due to forcea−1 -

Moment due to weighta - torquea−1
done

6 Experimental results

We have finally reached our analysis objective that is to compute
the resulting joint forces and torques. In this section, we answer the
questions presented in section 3, with a special focus on the Ground
Reaction Forces (GRF).

6.1 Self-coherent validation

The first question is: are the adapted motions physically valid ? To
answer this question, we apply direct adaptations, i.e. we apply
the retargeting on an known real morphology and we only use real
data of this character to interpolate the motion. Figure 3 shows the
comparison of the GRF of such direct adapted motions with force
plates measures of same characters.
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Figure 3: Top left: a 55.4kg man, top right: a 79.6kg man, bottom:
a 58.2kg woman. The black plots are 3 ground reaction forces (in
Newton) measured by force plates for these characters. The blue
plots are analysed ground reaction forces from normal locomotions
with the biomechanical data of the same characters.

The experimental measures show that the first character produces
an almost constant GRF, related to an immutable style of locomo-
tion. Our direct adaptation process does not have difficulties repro-
ducing the same movement and thus the same GRF. In the second
experimentation, the style of the capture locomotions is variable,
the adapted GRF thus have identical local maxima but different
characteristics of the motion (see 6.3). The third experimentation
shows irregular captured GRF, the resulting adapted force is dif-
ferent while remaining valid on the maximum amplitudes, results
probably due to the shifting of velocity (see 6.3.3).

We analyse different styles of locomotions and pay attention to the
GRF (Figure 12 and Figure 4). We compare these analysis results
with data described in literature [Vaughan et al. 1999; Faure et al.
1997; Apkarian et al. 1989]. Our dynamics analysis of locomotions
gives valid results compared with literature and real measures. We
observe a few well-known properties. The range (in Newtons) for
the vertical force is almost three times that of the fore-aft force.
This vertical force also has the double hump generally observed
in biomechanics, and exceeds body weight at two different times
during the stance phase. The lateral force has a range of less than
one tenth of the vertical force. During most of the stance phase, this
force is negative, which means that the ground is pushing inward on



the character’s foot. The fore-aft force acts in a backward direction
during the first half of the support, and becomes the opposite as
the character pushes off. We verify other known biomechanical
properties such as support duration and torques values.
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Figure 4: Left: Resulting forces (in N) at left toe for 6 real analysed
locomotions. Right: Torques (in N.m) at left knee for the same
locomotions. A full gait cycle is plotted from a right heel strike to
the next one.

We show here results only on the left GRF and on the torques at left
knee, but we made the same validation on forces and torques at all
the other joints. We so assume that our process answer positively
to our first question concerning the validation. There remains the
next two questions: what are the limits of the method, and are these
limits due to the retargeting or to the interpolation ? We then study
separately their influence on the GRF and we determine their limits.

6.2 Influence of retargeting

In order to study the influence of retargeting on the physical real-
ism of the adapted motion, we observe the resulting forces when
we change the morphology of the targeted character. So this study
recover how the retargeting algorithm changes the physics of the
motion, but has no relation to how the real physics change when the
morphology change. For that, we plan to capture locomotions and
foot strike force data for real subjects corresponding to the changed
physical parameters.

6.2.1 Global scale

We retarget one non-interpolated motion on 8 different morpholo-
gies and examine the GRF (Figure 5(a)). All limbs are scaled from
half to double size of the initial skeleton. Results shows that the
global size of the character has a huge influence on the dynamics,

indeed the masses are the main parameters in equation (4). In order
to be able to compare these GRF, we have to normalize them. We
looked for the relation between the scale on the morphology and
the scale on the GRF minimising the root mean square (RMS) cu-
mulated error (order 1). We show this relation in Figure 5(b), and
we observe that this relation is a linear function. We also compare
the GRF with experimental data of real characters. We verified this
relation by experimental data on several locomotions and subjects
between 0.7 and 1.2 scales. Under 0.7 and over 1.2, we suppose
that this relation is still valid.
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Figure 5: Influence of a global scale. We retarget one locomotion
on 8 morphologies: x0.5, x0.7, x0.8, x1.0, x1.2, x1.3, x1.5 and
x2.0. The resulting GRF (in Newtons) are linearly dependant of the
scale.

6.2.2 Femur/Tibia ratio

In this section we study the influence of the modification of rela-
tive lengths of limbs. This influence is useful to evaluate the initial
errors in the articular centers estimations. Here, we change the fe-
mur/tibia length ratio without changing the global length of the leg.
Resulting GRF are plotted in Figure 6(a). We present in Figure 6(b)
the RMS cumulated errors between GRF of the retargeted and the
original motions. We can not compare the results with many exper-
imental data, because most of the observed ratios are close. These
ratios lie between 0.7 and 1.3, and RMS errors in this range are
quite small (approximately 3 Newtons). When we observe the 0.6
ratio error, we can suppose that retargeting a locomotion out of this
range probably produces a non valid motion.
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Figure 6: Influence of the femur/tibia ratio. We retarget one loco-
motion with 8 ratios: 0.6, 0.7, 0.8, 0.9, 0.95, 1.1, 1.2 and 1.3. Our
initial ratio is 0.95.

We can note another logical but important phenomenon of which
we must be careful. When a motion is adapted, the movements
of the heaviest limbs are the most influent. We can easily observe
this phenomenon if we change the upper/lower body ratio (not pre-
sented in this paper), because the trunk has much more mass than
others limbs.



6.2.3 Structure of the skeleton from degrees of freedom

In this section we change the structure of the skeleton. We retarget
one locomotion on two skeletons with 38 and 26 degrees of free-
dom. They differ by the following articulations: elbows, knees and
ankles where the spherical joints (3 dof) become pin joints (1 dof).
Figure 7 shows the cumulated 3D distances between the positions
of centers of gravity of all the 11 limbs.
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Figure 7: The sum of the Euclidean distances (in meters) of the
positions of the centers of gravity of limbs during the cycle between
a 38 dof and a 26 dof skeleton.

The average error value is 0.22 meters, so 2 cm per limbs. This
value is not small, but is it significant ? The resulting GRF are
plotted in Figure 8(a) and we present in Figure 8(b) the RMS errors
between the GRF of the two retargeted motions.
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Figure 8: Influence of the structure of the skeleton. We plot the 3D
GRF (in blue: the 38 dof model, in black: the 26 dof model) and
their RMS errors during the locomotion cycle.

The lateral error is very small and this is logical because during lo-
comotion the linear acceleration of limbs on this axis is low. If we
retarget a locomotion on a more restrictive skeleton (less dof), the
influence on the fore-aft axis is more important than on the vertical
axis. Thus when we retarget a motion, we must be careful of the
fore-aft acceleration of limbs. In this example, the higher GRF dif-
ference is equivalent to a modification of the weight of the character
by 2.5 kilogrammes.

6.3 Influence of the interpolation

In order to study the influence of the interpolation on the physi-
cal realism of the adapted motion, we observe the GRF when we
change locomotor parameters of the motion. We present three of
these parameters which can be modified independently.

6.3.1 Length of step

In this section we study the influence of the modification of the
length of the step. This influence is useful to evaluate the footskate
corrections often used in adaptation methods. These corrections
mainly change the articular trajectories by an inverse kinematics
method but also the position of the foot, and so the length of the
step. We change the initial length of the step ls, creating 8 new
lengths l = α × ls with α = 0.6 to 1.3. The resulting GRF are
plotted in Figure 9(a) and RMS cumulated errors in Figure 9(b).
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Figure 9: Influence of the length of the step. We interpolate the
locomotion with eight α values: 0.6, 0.7, 0.8, 0.9, 0.95, 1.1, 1.2
and 1.3.

These figures show that there is no apparent correlation between the
lengths of step and the GRF. That can be due to two reasons: (1) the
interpolation is correct, the GRF are not linearly correlated with the
length of step, or (2) the interpolation is incorrect and we can not
know how the GRF evolves. In regard to the interpolation method,
the first solution can be valid because the interpolation is not linear,
but based on a discrete database of motions. To be sure, we plan to
acquire more force plates measures including a large range of step
length data.

6.3.2 Motion style from posture

In this section we want to change the motion style. We choose to
use the rest posture of the character which is driven by the erect
percentile Er of the character. We test 8 erect percentiles E = θ ×
Er with θ = 0.8 to 1.15. The resulting GRF are plotted in Figure
10(a) and RMS cumulated errors in Figure 10(b).
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Figure 10: Influence of the motion style. We interpolate the loco-
motion with eight θ values: 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1 and
1.15.

We observe that if we interpolate the motion on a more bent style,
errors are not significant. On the other hand, the interpolation on
a very erect style increases the error. We explain this phenomenon
assuming that high erect postures prevent doing large steps. If we



force it, the interpolation may introduce GRF errors. We conclude
that interpolating to less erect styles of locomotion is safer.

6.3.3 Character velocity

In this section we change the velocity vi of a walk, creating 8 veloc-
ities v = γ ×vi with γ = 0.67 to 1.33. The resulting GRF are plotted
in Figure 11(a) and RMS cumulated errors in Figure 11(b).
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Figure 11: Influence of the speed. We interpolate one walk with
eight γ values: 0.67, 0.75, 0.83, 0.92, 1.0, 1.1, 1.22 and 1.33.

When we decrease the speed, the error increases but the physical
properties are preserved. When the speed increases, the amplitude
of the double hump during support phase increases up to invalid val-
ues. At this time, the interpolation process must change the motion
style to a running locomotion (not managed in our approach).

7 Conclusion

In this paper, we have presented a method of dynamics-based anal-
ysis of retargeted and interpolated locomotions with the aim of vali-
dating the used adaptation algorithm. In this method, we first define
the human model as a biomechanical representation of the charac-
ter. This representation is created by improving a given mechani-
cal model of the skeleton using anthropometrical tables and regres-
sion laws. The second stage consists in defining a transformation
process which enables us to work with a joint-angle motion. Fi-
nally, using support phase recognition, we check the correctness of
the forces and torques with special attention to the ground reaction
forces.

This process is automatic, generic and independent of the adap-
tation method. Here, the process is applied to retargeted and in-
terpolated locomotions, but it can be used on real motions or on
edited or blended motions. We have presented this approach as a
post-process for dynamics analysis, but the method used could be
performed in real-time during the adaptation algorithm. Thus, we
plan to implement our algorithm directly in our adaptation method.
We also have to try to overcome the standard limitation of inverse
dynamics such as the uniform distribution of masses or the joint
and air frictions, to improve our inverse dynamics algorithm. Thus,
our future work is to orient the analysis and the synthesis of mo-
tions through the forces and torques for examples of energetic cost
estimation, effort-based interpolations or motion recognition and
classification.
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Figure 12: Ground reaction force on the right foot during support phase. First: a running locomotion of a normal adult male. Second: a
one-foot jump (handball shooting). Third: a bent walk of a man. Fourth: a walk of a 2 year old child. Fifth: a normal walk of a woman.


