The Visual Computer
https://doi.org/10.1007/s00371-021-02379-w

ORIGINAL ARTICLE

®

Check for
updates

Optimizations for predictive-corrective particle-based fluid simulation
on GPU

Samuel Carensac’ - Nicolas Pronost! @ - Saida Bouakaz'

Accepted: 5 December 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The use of particles-based simulations to produce fluid animations is nowadays a frequently used method by both the
industrial and research sectors. Although there are many variations of the smoothed particle hydrodynamics (SPH) algorithm
currently being used, they all have the common characteristic of being highly parallel in nature. They are therefore frequently
implemented on graphics processing units (GPUs) to benefit of high computation capacities of modern GPUs. However,
such optimizations require specific optimizations to make use of the full capacity of the GPU, with sometimes optimizations
being contradictory to optimizations used in CPU implementations. In this paper, we explored various optimizations on a
GPU implementation of a recent particle-based fluid simulation algorithm using an iterative pressure solver. In particular, we
focused on CPU optimizations that have not been thoroughly studied for GPU implementations: the indexing for the neighbor’s
structure, the frequency of the sorting of the fluid particles, the use of lookup tables for the kernel function computations and
the use of a warm-start to improve the performance of the iterative pressure solver. We show that some of these optimizations
are only effective for very specific hardware configurations and sometimes even impact the performance negatively. We also
show that the warm-start reduces the computation time but introduces a cyclic instability in the simulation. We propose a
solution to reduce this instability without requiring to modify the implementation of the fluid algorithm.

Keywords Fluid simulation - SPH - Animation - GPU

1 Introduction

Nowadays, the use of simulations to produce fluid anima-
tions is widespread due to the high level of visual realism
they allow. One of the main challenges limiting the use of
simulation-based fluid animations is the high computation
time needed in particular for lengthy animations or anima-
tions covering a large space. Among the multiple models
to simulate a fluid, the Lagrangian particle-based approach
has received a high level of interest for its ability to handle
complex virtual environments containing various objects and
fluid with extremely variable properties. The most common

B Nicolas Pronost
nicolas.pronost@univ-lyonl1.fr

Samuel Carensac
samuel.carensac.research@gmail.com

Saida Bouakaz
saida.bouakaz @univ-lyonl.fr

Université de Lyon, Université Claude Bernard Lyon 1,
CNRS LIRIS UMR 5205, Villeurbanne, France

Published online: 10 January 2022

Lagrangian algorithm used in fluid simulation, the Smooth-
ed Particles Hydrodynamics (SPH), requires the use of very
small simulation steps which greatly limits the possibility
of interactive simulations. This limitation is due to the direct
computation of the pressure forces between the fluid particles
that is unstable for large simulation steps. To reduce the over-
all computation time, an approach consists in replacing the
direct computation by iterative processes that progressively
compute a better approximation of the pressure forces, thus
improving the fluid stability. This approach allows for the
use of larger simulation steps by compensating the increased
computation time necessary for each simulation step by low-
ering the frequency at which the computations are done. This
approach also allows for a better control of the fluid proper-
ties, such as the fluid incompressibility, through the use of
thresholds that the user can select to obtain the desired level of
stability required in their experiments. This approach is used
in the predictive—corrective SPH algorithm (PCISPH) [27]
through a predictive—corrective process that iterates within
one simulation step until the density of the fluid is within a
given margin of error from the desired density. This algo-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-021-02379-w&domain=pdf
http://orcid.org/0000-0003-4499-509X

S. Carensac et al.

rithm has been further extended in the divergence-free SPH
(DFSPH) [6] by adding a second predictive—corrective pro-
cess which ensures that the average divergence within the
fluid stays null. However, even those more advanced algo-
rithms are still far from producing interactive large-scale
simulations.

The SPH algorithm requires the computation of phys-
ical properties such as the density at every fluid particle
for each simulation step. Consequently, the SPH algorithm,
regardless of the pressure solver, is, usually, naturally par-
allelizable. This is why, most research publications using
the SPH algorithm present results using multi-threaded CPU
implementations. However, even recent high-end CPU usu-
ally only have 52 or less cores, which is way lower than the
hundreds of thousands of particles used in a single simulation.
Looking at current GPU, we can see that even relatively cheap
consumer-grade cards offer thousands of cores making them
highly desirable for highly parallelizable workloads. This
is why, in this last decade, numerous works proposed GPU
and multi-GPU implementations of SPH algorithms that are
20 times faster or more than a sequential CPU implementa-
tion [13-15]. Although those GPU implementations can be
extremely similar to the CPU implementations, the technical
differences between CPU and GPU can lead to some opti-
mizations that are efficient on CPU but have a wildly different
impact on a GPU implementation. This paper aims to study
the impact of various optimizations on a GPU implementa-
tion of a SPH algorithm that is using an iterative pressure
solver, specifically the DFSPH algorithm.

2 Previous works

The Lagrangian approach to physically simulate fluids is
nowadays commonly used through the SPH algorithm for
its simplicity of handling free surfaces. The initial SPH algo-
rithm [24] has received multiple improvements, notably the
commonly used delta-SPH algorithm [2] which adds a dif-
fusive term to improve the stability of the pressure field in the
fluid. The ISPH algorithm [10] departs further from the initial
SPH algorithm by using a linear system to compute the pres-
sure in the fluid improving further the stability by allowing
true incompressibility of the fluid at the cost of the scalability
of the algorithm. Another approach proposed in the PCISPH
algorithm [27] is to replace the direct computation of the
pressure forces by an iterative predictive—corrective process
to enforce a constant density condition on the fluid. This
approach was extended in the IISPH [20] and DFSPH [6], the
later adding a second predictive—corrective process enforcing
a divergence-free condition further improving the stability of
the fluid. The high stability of the DFSPH enables the use
of larger simulations steps lowering the computation time
needed for the whole simulation. The higher stability of this

@ Springer

algorithm has been used to handle simulations such as highly
viscous fluids [7,29] or recent boundary models [8,30].

To our knowledge, there are only few works studying the
optimizations of SPH implementations that are independent
from a specific SPH algorithm [9,11]. A large number of
those optimizations have been focused on the algorithms and
data structures used for the neighbors search. The two most
common structures used to find the particles neighborhoods
are a hash-table or a cell linked list using a uniform grid [19]
but some works have explored the use of multi-resolution
structures [31]. One large difference between existing SPH
implementations is whether each particle stores its neighbors
or not. This choice is mostly a trade-off between computation
time and memory space, especially for predictive—corrective
SPH algorithms [9,19]. Some recent works achieved to
reduce the computation time used for the neighbor list con-
struction using a Verlet list [9,32] or to compress the neighbor
list to reduce the memory impact while not having to re-
explore the data structure [3]. We refer the reader to the state
of the arts [21,22] for a proper overview of the structures
employed in the neighbor search. An optimization often asso-
ciated with the neighbor search is the use of a space filling
curve to sort the particles. Recent works prefer to use a Mor-
ton curve (also called Z curve) to sort the particles instead
of the linear XYZ curve to improve the cache hit rate [19].
Sometimes the Hilbert curve is also used but does not seem
to be superior to the Morton curve [3]. The use of each curve
can be further optimized by accessing consecutive cells as a
single block when looking for a particle neighborhood. This
can be done trivially for the XYZ curve [11] or by using spe-
cialized algorithms like the BigMin-LitMax algorithm for the
Morton curve [3]. However, we were unable to find existing
works replicating these experiments on a GPU implementa-
tion.

The execution times can be reduced by using appropri-
ate data structures and memory management. One of such
optimizations used in nearly every implementation is the use
of a Structure of Array (SoA) to store the particle data. This
simple optimization can improve the performance of particle-
based systems on both CPU [4] and GPU [9]. It is possible
to further improve the data structure by using wider primi-
tive types that fit the size of a unitary data access for a given
architecture. This can be done by simply padding the data
structure or even better by using the larger primitive type
to store data that are often accessed together [9,11]. In the
DFSPH approach, Bender et al. [6] propose to use a lookup
table instead of directly computing the values of the kernel
function and report a 30% reduction in the computation times
for a multi-threaded CPU implementation. They also use
a warm-start mechanism for the predictive—corrective loop.
This optimization is commonly used for iterative processes
and is also used by other PCISPH-based algorithms [20].

Optimizations for predictive-corrective...

However, these works do not study the exact performance
gains offered by that system.

Some optimizations were proposed to fit the existing
memory types and access patterns of current GPUs. Goswami
etal. [14] have proposed to use the higher performance shared
memory by transferring the data from the global memory into
it before running the desired computation. This technique has
been improved by Huang et al. [18] by properly distributing
the particles between thread groups. When using an approach
storing the neighbors list for each particle, we can improve
the performance by interleaving the neighbors of each parti-
cle [9]. This technique improves the performance as modern
GPUs stream block locally adjacent data over warps of 32
threads. Billota et al. show that it is even possible to improve
the performance even further by interleaving groups of neigh-
bors [9]. The performance can be further improved by using
a multi-GPU system. Each GPU is given a slice, preferably
dynamic [25,28], of the fluid to handle and data is transferred
with the CPU depending on the particle displacement during
a simulation step. Specialized data structures are used due
to the need of synchronization and transfer between each
GPU [9,28].

3 Divergence-free smoothed particle
hydrodynamics (DFSPH) on GPU

3.1 DFSPH overview

In this work, we use the DFSPH algorithm proposed by
Bender et al. [6]. We must note that we did not use the
Courant—Friedrich-Levy (CFL) rule, used to determine the
maximal time-step, because we did not want dynamic time-
steps. Indeed, as we need a high level of repeatability between
experiments in order to test the optimizations, a constant
time-step is necessary. Algorithm 1 shows the details of
one simulation step and Algorithms 2 and 3 describe the
predictive—corrective process, respectively, for the constant
density solver and the divergence-free solver. The algorithms
for the two predictive—corrective solvers show how the warm-
start mechanism is integrated (lines 2 to 4 and line 11 of both
algorithms).

We have chosen the DFSPH algorithm for its stability and
speed of simulation while having relatively large simulation
steps. The DFSPH benefits from a large stability increase rel-
atively to the previous IISPH algorithm. We refer the reader
to the original publication for more details on the DFSPH
algorithm [6].

Algorithm 1 DFSPH step

1: for all particles i do
2: find Neighborhood N;

3: for all particles i do
4: compute densities p; = Y_m;W;;
5: compute factors o; = pi

i

15 my VWi [P+ X |y v Wi ||
: correctDivergenceError(«, v)

7: for all particles i do

8: compute non-pressure forces acceleration acc;
9: for all particles i do

10: v; += At *xacc;

11: correctDensityError(a, v)

12: for all particles i do

13: Xi += At *xv;

[=))

Algorithm 2 Constant density solver
1: function CORRECTDENSITYERROR(, V)

2: for all particles i do
3: apply warm-start K; = «;, K; = «;
4: correct velocity v; —= At ij(% + %)VW,--
J J
5: for all particles i do
6: predict pf = p; + At Y m; (v} — v;?)VW,-j
7: while (pj,‘vg —po > n) V (iter <2)do
8: for all particles i do
F— Pi—po
9: K,’:p'AtpoOli,Kj:ijArz aj
10: update v; —= Athj(’;—jf + ’;—;)V‘/V,-j
11: update warm-start += K}
12: for all particles i do
13: predict p* = p; + Ar Y m;(vf — v’;)VW,-j
14: compute p;,, = % >0

Algorithm 3 Divergence-free solver
1: function CORRECTDIVERGENCEERROR(¢x, V)

2: for all particles i do
3: apply warm-start K" = «;, K}’ = K}’
. K! KY
4: correct velocity v; —= At ij(pf’, + #)VW,-j
J J
5: for all particles i do
6: predict %’;" =Y m; —v;))VW;;
7: while (22)40, > %) v (iter < 1) do
8: for all particles i do
9: K;’:A%%’;"ai,K}'=A%%‘;"aj
vk
10: predict v; —= At ij(% + T;)VW,-J-
11: update warm-start k; += K; ‘
12: for all particles i do
13: predict %‘;f =Y mj(—vj))VW;j
14: compute (%)avg = % %‘;"

@ Springer

S. Carensac et al.

3.2 Implementation

For the experiments of this paper, we have implemented the
DFSPH algorithm on GPU with CUDA. Our implementa-
tion is based on the CPU OpenMP implementation of the
DFSPH algorithm found in the SPlisHSPlasH library [5]. To
be specific, we used the DFSPH implementation from the
1.3.1 version of the library. We chose this library because
the OpenMP structure of the code makes it relatively easy
to convert into a GPU implementation. Moreover, the library
contains a physics engine, multiple algorithms for surface
tension, collisions and viscosity and also multiple SPH algo-
rithms making comparisons and tests easier.

However, our implementation differs from a CPU imple-
mentation on the following points. The SPlisHSPlasH library
uses an external library to handle the neighbors search (Algo-
rithm 1, line 2). This library uses a compact hashing structure.
We implemented a cell linked list approach using a counting
sort [17] to fill the structure. Also, as mentioned earlier, our
implementation does not use the dynamic time-step using the
CFL rule. We should also note that we reorganized various
parts of the computation to minimize the number of GPU
kernels and the number of global memory accesses.

On top of these modifications, we also implemented two
optimizations that may have an impact on the simulations.
The first one is the interleaving of the neighbors inside
the structure storing the neighbors of all the particles. This
simple optimization can offer a large improvement in the
performance, although we did not used the group interleav-
ing mentioned in [9]. The second one is the use of the
CUDA-OpenGL interoperability which allows the usage in
the CUDA kernels of buffers allocated by OpenGL. We allo-
cated the position and velocity buffers this way since they
are used to render the fluid.

The last well-studied optimization we implemented is the
padding of the vector structure used to store the position and
the velocity [9,11]. Since the GPU accesses the data in pack-
ets of 4, 8 or 16 bytes, it is better to use structures that have
one of these sizes. But a position or a velocity is only com-
posed of 3 floating points in a 3D simulation, meaning that
when using standard single floating point precision (i.e., 4
bytes), the total size of the structure is 12 bytes thus wasting
4 bytes with each access. The optimization consists in adding

a fourth value to the structure where an often used value will
be stored. This value gets then loaded for free. In practice, the
mass of a particle can be added to the position structure and
its density to the velocity structure. We have implemented
this optimization in our framework and tested with both a
single floating point precision and a double floating point
precision and with three GPUs: a consumer-grade GeForce
GTX 1070, a more recent GeForce GTX 2070 Super and a
professional-grade Quadro 4000k. The scenario used for this
study is a dam-break with approximately 288k particles over
5 seconds of simulation. We report the average computation
times in Table 1 and a frame of each configuration is shown
in Fig. 1. We can see that the use of the padded structure
does not bring benefits in most cases. When using a single
floating point precision, this optimization reduces the perfor-
mances by 10% for the 2070 and the Quadro cards and has no
impact on the 1070. In double precision, there is no impact
for the Quadro and 1070, but on the 2070 card, the opti-
mization improves the computation time by 15%. Since the
single floating point precision provides significantly better
performance, especially on consumer-grade cards, most of
the following experiments will use this precision. And there-
fore, the padding optimization will not be used. Our results
conflict significantly with the results of Bilotta et al. [9] that
showed a 50% reduction of the computation time on a GTX
750 card with single precision. But as we can see in our exper-
iments, the outcome greatly depends on the card and recent
cards show less benefits for this optimization. In regards to
these conclusions, we chose not to use this optimization in
the remainder of our simulations.

In our experiments, we took the original multi-thread CPU
implementation from the SPlisHSPlasH library [5] as ref-
erence. These reference simulations were obtained using a
double Intel(R) Xeon(R) E5-2623v3 (total of 8 cores) and
using a more recent Intel(R) Xeon(R) W-2255 (10 cores). The
results for the dam-break experiment are reported in Table 1.
We can see that there is a very significant improvement
by using a GPU implementation. Even the Quadro 4000k,
released in 2013, equals or outperforms a recent high-grade
CPU. If we compare the most recent of each category, the
GTX 2070 Super and Xeon W-2255, both of them released in
2019, we can see an improvement factor of 4 even when using
double precision. However, NVidia’s consumer-grade GPU,

Table 1 Average computation

. . 32 bits 32 bits padded 64 bits 64 bits padded
time (in seconds) of a
dam-break simulation with 288k Gp(y GeForce 1070 84 82 216 216
particles on CPU and GPU,
depending on the floating point GPU GeForce 2070 Super 316 34.9 219 196
precision and the usage of the GPU Quadro 4000k 456 525 752 791
padding optimization CPU Xeon E5-2623v3 - 1198 -
CPU Xeon W-2255 - 810 -

@ Springer

Optimizations for predictive—corrective...

1160 ms

(a)

245ms i 37 ms

(b) (c)

Fig. 1 Frames of a dam-break simulation with 288k particles on a CPU (Xeon W-2255) 64 bits, b GPU (GTX 2070 Super) 64 bits and ¢ GPU

(GTX 2070 Super) 32 bits

the GeForce lineup, is made to use single precision float-
ing points. With that precision, we observe an improvement
factor of 25 compared to the multi-threaded CPU implemen-
tation using hardware of the same generation.

4 Optimizations

In this section, we will study various optimizations that have
yet to be studied on GPU and evaluate their impact on our
implementation. Our experiments use a dam-break scenario
with the following dimensions : a (16;8;4) solid box con-
taining the fluid which is initialized as a (6;6;4) cube with
particles organized on a regular grid. All dimensions are
given in meters and the vertical axis is the Y-axis. The fluid
particle size is fixed at 0.025m. This setup gives a simula-
tion with around 1.1 million fluid particles and 420k solid
particles (using Akinci et al. boundaries model [1]). Unless
specified otherwise the following parameters are applied : a
fixed time-step of 3ms, a density of 1000kg/m>, a viscos-
ity of 0.01, a density threshold of 0.01% and a divergence
threshold of 0.1%.

Every value reported in our experiments is an average over
5 seconds of simulation. Also, as the number of iterations of
the density and divergence solvers varies between simula-
tions, it is required to normalize them before reporting the
average. On average this simulation scenario uses 12 den-
sity iterations and 2 divergence iterations every simulation
step and the values reported are normalized to fit those val-
ues. Finally, with these particular parameters, usually around
120 fluid particles will tunnel through the border of the solid
rectangle. These particles are removed from the simulation,
although the time taken to remove them is not taken into
account in the timings. This loss of particles is due to our
choice of enforcing a constant time-step and to not fine-tune
the parameters used for the boundary handling. These choices

have been made to make the experiment more repeatable and
easy to reproduce. Similarly, our results only report the com-
putation times used by the physical simulation, the rendering
times are not reported.

We used two different graphic cards : a consumer-grade
GeForce GTX 1070 and a professional-grade Quadro 4000k.
Unless specified otherwise the presented results are obtained
with a single floating point precision implementation using
the GeForce card.

4.1 Neighbor structure index

Our first interest is to study the impact on computation time
of the type of space filling curve used for the neighbor search
structure. This optimization affects the neighbors search step
(see Algorithm 1, line 2). We compare computation times
obtained with the two most common curves : the linear
XYZ curve [11] and the Morton Z-order curve [19], but
we also studied a Hilbert curve [3]. As there are multiple
ways to define a Hilbert curve when considering 3 dimen-
sions [16] and we chose to use the one implemented by John
Skilling [26] for the ease of reproducibility of our experi-
ments. An illustration of a 2D representation of each of these
three curves is given in Fig. 2.

We start by comparing the computation time observed for
one simulation step for each curve. Our goal is to evaluate the
absolute benefits of the more complex curves without hav-
ing them penalized by their cost. In practice, we removed the
time used to build the neighbor list of each particle and to sort
the particle data and the neighbor list following the curve of
interest at each simulation step. We also measured the com-
putation time when the order of the particles is randomized
at each simulation step.

The results are presented in the first row of Table 2. As
expected, we can see that the organized curves perform better.
However, we can also see that the difference between each

@ Springer

S. Carensac et al.

16 17 18 19 20 21 22 23 8 9 | 12==13
24 25 26 27 28 29 30 31 10 11 14 15
32 33 34 35 36 37 38 39 32 33 36 38
40 41 42 43 44 45 46 47 34 35 37 39
48 49 50 51 52 53 54 55 40 41 44 45
56 57 58 59 60 61 62 63 42 43 46 47

(a)

16 17 20 22 0 1 | 14—+15+16 | 19—+20-21
18 19 21 23 3 2 | 13==12 | 17==18 | 23==22
24 25 28 29 -+ 7 8 | 11 | 30==29 | 24==25
26 27 30 31 5 6 9==10 | 31 | 28=—=27--26
48 49 52 54 58 57 54 53 32 35 36 37
50==51" | 53=ix55 59 56 55 52 33 34 39 38
56 57 60 61 60 61 50 51 46 45 40 41

58 59 62 63 63 62 49 48 47 44 43 42

(b) (c)

Fig.2 2D curves corresponding to the indexes used in our experiments: a XYZ curve, b Morton curve, ¢ Hilbert curve

Table 2 Computation time (in
ms) for the different space

filling curves

Randomized XYZ Morton Hilbert
GeForce 32 bits neighbors sorted 600.2 294.7 302.8 285.7
GeForce 32 bits neighbors XYZ XXX 294.7 307.6 298.3
Quadro 32 bits neighbors sorted XXX 2403.9 2343.7 2170.0
Quadro 32 bits neighbors XYZ XXX 2403.9 2532.5 2420.1

curve is very different from what one would expect looking
at the CPU results reported in previous works [3,19]. On the
GeForce card, the Morton curve does not bring any perfor-
mance gain relatively to a simple XYZ curve. The Hilbert
curve fares a bit better as we observed a reduction of approx-
imately 3%. The results are better for two curves when using
the Quadro card and in particular, the Hilbert curve offers an
improvement of around 10%. Those results are quite lack-
luster considering that constructing a sorted neighbor list
is considerably more complex with those two curves com-
pared to the XYZ curve. The main reason is that the fastest
algorithm to explore the 27 cells surrounding a particle is a
simple triple nested iteration loop. As such, for the Morton
and Hilbert curves more complex algorithms must be used
because the cost of sorting the neighbor list after construction
overrides any benefit the curve may have brought. Not sort-
ing the neighbor list is not an option as having the neighbor
list sorted is really important to obtain better performance.
This can be easily seen by looking at the computation times
obtained if the order of the neighbors is simply obtained by
exploring the neighbors cells by using simple triple nested
loops when storing the neighbors (see second row of Table 2).

Table 3 reports the construction times (including the sort-
ing of particles) for the sorted neighbors list of our current
implementation when executed on the GeForce 32 bits card.
We can observe that the difference in construction time
with the complex curves surpasses the benefit we may have
observed above for the Morton curve and roughly equals the

@ Springer

benefit observed with the Hilbert curve. However, we must
consider that we have not optimized the construction of the
sorted neighbors list. Currently, we use a simple iteration on
each of the 27 neighboring cells, select the one with the lower
index not yet explored and we repeat that process until every
cell is explored. This is a naive approach and algorithms have
been developed to improve that exploration when a Morton
curve is used [3]. As our earlier experiments showed no ben-
efit in using the Morton curve, we have not implemented this
algorithm. However, as the current total computation time
with the Hilbert curve is close to the time obtained with the
XYZ curve, it would be interesting to use a better exploration
algorithm.

The XYZ curve has one last advantage compared to the
others. In our experiment, we added a special XYZ curve
denoted as XYZ-advanced (see Table 3). This is a linear curve
that uses the fact that the cells are separated in 9 groups
of 3 continuous cells to remove one of the iteration loops,
as proposed in [11]. This optimization only gives a small
reduction of the computation time as long as the 27 cells
are explored in the order of the curve when not using that
optimization. Maybe, this kind of optimization would have
a larger impact with indexes that have chains of cells longer
than 3.

In this paper, we refer at the Hilbert curve as “Hilbert-
storage” as the indexes of the cells are relatively expensive to
compute and as such they are precomputed in a lookup table
that uses the XYZ curve to find the corresponding cell values.

Optimizations for predictive—corrective...

Table 3 Neighbors list construction time (in ms) on a Geforce 32 bits card

XYZ XYZ-advanced XYZ-storage Morton Morton-storage Hilbert-storage
27.2 25.0 30.6 29.1 344 36.4
Fig.3 Evolution of the average 500

computation time depending on

475

the number of time-steps
between data sort

450
425

400

Timestep computation time (ms)

375
350
325
300 . T . .)
0 100 200 300 400 500
Timestep between sort
e XY Z Morton Hilbert

The goal was to study if the usage of this lookup table was the
reason for the slightly longer construction times when using
the Hilbert curve. We implemented the other two curves in the
same manner. We can see that the cost of such an operation
is around 10% of the construction time for the XYZ curve
and 15% for the Morton curve, bringing the Morton curve
computation time close to the ones using the Hilbert curve.
The difference is due to our simple cell neighbor exploration
that will require less memory accesses for the XYZ index than
any other index. Still, the cost of precomputing the index is
relatively low. This observation is important in particular in
the case of curves that are complex to compute such as the
studied Hilbert curve. We would like to note that this result
implies that such lookup table could be used to make viable
any curve no matter the complexity of its construction, and
that perhaps another 3D Hilbert curve, or even a novel curve
that is impossible to generate procedurally, would give better
results.

4.2 Particles sorting frequency

There is one additional parameter we did not consider in the
previous experiments that may explain the discrepancy with
previous CPU results: the frequency of the sorting of the
particle data. This optimization affects again the neighbors
search step (see Algorithm 1, line 2). In our experiments,
we have observed that sorting the particle data (positions,
velocities...) only takes a negligible computation time. For
example in our damn-break scenario, sorting all the particle

data only takes between 3ms and Sms, so around 1 — 2% of
the computation step. Existing works rarely specify the sort-
ing frequency of their data. A notable exception is the work
of Thmsen et al. [19] which indicates that sorting the data
every 100th steps is sufficient. However, Durand et al. [12]
show that sorting at every step still brings some benefit on
CPU. The DFSPH implementation provided in the SPlisH-
SPlasH library [5] sorts the data every 500th steps. To test that
parameter we used the same dam-break scenario and noted
the average simulation step computation time for each index
for various sort frequencies (see Fig. 3). Interestingly we can
observe that the behavior observed with the linear XYZ index
is different from the Morton and Hilbert indexes. Although
the more complex indexes required more computation time
initially due to the complexity of building an ordered neigh-
bor list, we can see that they are more robust to less ordered
data. If we use the sorting frequency used in the SPlisH-
SPlasH library, we can see that the XYZ index is now 50ms
slower than the other two. However, we want to note that
there is no sorting frequency that gives any significant, if any
at all, computation time reduction over just sorting at every
simulation step. This is because sorting the data is fast and
any reduction in the cache hit rate will significantly worsen
the computation time. Consequently, sorting the data at every
time-step, or 2 if a gain of around 1.5ms is desirable, while
using the XYZ index, seems the better configuration.

@ Springer

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

S. Carensac et al.

Table 4 Kernel precomputation
time (in ms)

Direct computation

Global memory

Constant memory

401.9 317.1
546.1 555.1
2663.5 2526.1
4290.3 4039.6

GeForce 32 bits 317.7
GeForce 64 bits 824.8
Quadro 32 bits 2437.7
Quadro 64 bits 4407.1

4.3 Kernel precomputation

In this section, we study the usage of a precomputed lookup
table for the kernel values as proposed by Bender et al. [5].
This optimization consists in sampling the kernel values at
regular intervals and then using a lookup table to obtain
the kernel values when required instead of using the actual
kernel computation. In their paper, which uses a CPU multi-
threaded implementation, this optimization allows for a
reduction of the global simulation time of around 30% with
1000 sampling values. This optimization affects nearly every
step of the DFSPH algorithm, except the neighbors search
step, as it replaces the computation of W;; and VW;; by
memory lookups (see Algorithms 1, 2 and 3). The main lim-
itation of this optimization on a GPU implementation is that
the cost of memory access relative to the cost of the direct
computation is heavier on GPU than on CPU which may nul-
lify the benefit of skipping the kernel computation. However,
as noted in [9] the GeForce lineup of graphics card is only
suited for single precision floating point computation. On
such cards, double precision floating point computation may
run as much as 32 times slower which will probably favor
the use of a lookup table. On the Quadro card the double pre-
cision floating point computation is only 2 times slower than
the 32 bits computation so the use of a lookup table may not
be as advantageous. There are two ways to implement such
system for GPU using CUDA. The lookup table can either
be stored in global memory or in constant memory. The con-
stant memory is supposed to allow better cache access which
should give better performances. However, since the con-
stant memory is limited to a maximum of 64KB or 128KB
on recent architectures and even only 1000 sampling values
would already use 8KB or 16KB depending on the chosen
floating point precision. As mentioned earlier we use a cubic
spline for our kernel as commonly done in SPH frameworks.
As the cubic spline is relatively fast to compute, it may favor
the direct computation while heavier kernels such as a quintic
spline may lead to more advantageous results for the lookup
table. In our experiments, we use 3 different configurations :
direct kernel computation, lookup tables using global mem-
ory and lookup tables using constant memory. And similarly
to previous works, we use 1000 sampling points.

The results are shown in Table 4. We can see that the
results fit our expectations. On a GeForce 32 bits implemen-

@ Springer

tation, the use of the lookup table gives no reduction of the
computation time and even increases it by close to 25% if we
only use a global memory implementation. However, on the
double floating point precision implementation, the use of the
lookup table reduces the computation time by around 33% for
both implementations. More surprisingly, the global memory
implementation was slightly faster than the constant mem-
ory one with a 64 bits implementation every time we run this
test. On the Quadro card, the impact of using a lookup table
is less important. Similarly to the GeForce card, in the single
floating point precision implementation, we also observe a
raise of the computation time if a lookup table using global
memory is used and no variation when using the constant
memory. This time however, the increase is less noticeable
(around 3%). As expected, the cost of using double floating
point precision computation being lower on Quadro cards,
the benefit of using the lookup table is also lower: 3% for
the global memory implementation and 8% for the constant
memory implementation.

To conclude on this experiment, we would recommend
to use a constant memory implementation if either double
floating precision or both precision are used since it does not
cost any computation time even if a single precision imple-
mentation is also used. However, if only the single precision
is of interest it is possible to save some constant memory
space with no computation cost by not using this optimiza-
tion. Seeing as the cubic spline is one of the simplest kernels
we can extrapolate our results by stating that if any more
complex kernels are used it is then recommended to use the
constant memory implementation regardless of the floating
point precision.

5 DFSPH warm-start

In this experiment, we aim to study the impact of the
warm-start mechanism commonly used with the DFSPH
algorithm [6]. The warm-start mechanism is visible in the
algorithms of both the constant density solver (see Algo-
rithm 2, lines 3, 4 and 11) and the divergence-free solver (see
Algorithm 3, lines 3, 4 and 11). To visualize the importance
of warm-start, Fig. 4a shows the evolution over time of the
computation time per time-step in a dam-break scenario. We
can see the huge benefit brought by the warm-start resulting

Optimizations for predictive—corrective...

ALY A
N T~

500 -

Timestep computation time (ms)

0 T T T T

0 1 2 3 4
Time(s)
e \Warmstart =0 Warmstart
(a)
45
40
35
-
§ 30
[*} 25 -4
s
= 20 A
E 15 J | Y
5 4 —
0 T
0 1 2 3 4
Time (s)
e density == divergence
(b)

Fig.4 a Computation time for each time-step during a dam-break with
and without warm-start. b Iteration count over time for each solver with
warm-start

in a global reduction of the computation time by a factor of 4.
However, we can notice that the warm-start can introduce a
certain level of instability in the duration of the time-steps. If
we look at the evolution of the number of iterations used for
the density and divergence solvers (see Fig. 4b), we can see
that the variations in computation time are due to variations
in the number of iterations used by both solvers. It is inter-
esting to note that those oscillations are not just some noise
as we can see that they have quite a large period (around 10
to 15 iterations). In the following section, we will try to eval-
uate the impact of those oscillations and see if we can reduce
them by changing the DFSPH parameters.

5.1 Instability in warm-start

The oscillations in the simulation time are problematic for
interactive applications. Indeed, each time the simulation
spikes the inter-activeness of the simulation will drop result-
ing in an inconsistent user interaction. However, as even
the shortest simulation step takes already more than 200m.s
for 1.1M particles, interactive applications may be limited.
However, these oscillations create a cyclic compression—
decompression motion in the fluid. The amplitude of that

12000

10000 |

8000 A i
l

6000 1 l

Force (N)

4000 \ = H =

2000
|

0.5 1 15 2

-2000
Time (s)

e——\Warmstart e=no-warmstart

(a)

35

3 4
25 f

AW
os |]

05 0.2 0.4 06 0 1

Normalized value

Time (s)

e——iter_density e——fy
(b)

Fig. 5 a Evolution of the vertical component of the force on a sphere
immersed in a fluid at rest. b Normalized value of the force f, and
number of iterations of the divergence solver

motion is small, around 10-20% of the radius of the parti-
cles but it still generates significant instabilities to the forces
generated when a solid is interacting with the fluid. To illus-
trate that problem, we use another simulation where a sphere
is entirely immersed in a fluid at rest and we will study the
evolution of the sum of the forces applied by the fluid on
the sphere for each simulation step. We are using a sphere
with a radius of 0.5m making sure the solid particles used
to discretize the sphere are placed tangent to the surface
on the inside of the sphere so that the simulated volume is
close to correct. The force shows similar levels of instabil-
ity on all three dimensions but to simplify the visualization
of our results we only report the vertical component of the
force (fy). Figure 5a shows a comparison of the evolution
of the force f) between implementations using warm-start
or not. We can see that the instability has extreme conse-
quences on the force applied by the fluid on the sphere. At
some time-step, the error on the force is around 100% of the
expected value. Also by normalizing the force and iteration
count values we can observe a nearly perfect fitting of the
evolution of both values (see Fig. 5b) illustrating their tight
dependence. The close fitting of the instability with the iter-
ation count leads us to believe that it is possible to improve
the stability of the current warm-start method by manipulat-

@ Springer

S. Carensac et al.

Table 5 Results of the warm-start study for every tested configurations of the predictive—corrective algorithm

No warm-start Warm-start
Density threshold 0.1 0.01 0.1 0.01 0.005 0.0025 0.001 0.0001 0.1 0.01
Divergence threshold 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.01
Avg computation time 170 1046 82 165 218 308 400 898 188 196
Standard deviation (Fy) 247 4 2569 2512 2408 2464 2445 2496 2527 655
Iteration density 12.20 100.00 2.88 11.80 17.40 24.79 35.58 100.00 3.18 12.93
Iteration divergence 1.00 1.00 1.31 1.08 1.08 1.08 1.08 1.08 10.65 1.89

‘Warm-start
Density threshold 0.001 0.0001 0.1 0.01 0.001 0.1 0.01 0.001 0.0001 0.0001
Divergence threshold 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.001 0.0001
Avg computation time 850 904 553 296 669 1095 1057 1560 1045 1776
Standard deviation (Fy) 702 854 1161 67 24 1198 39 25 36 55
Iteration density 78.44 100.00 2.67 14.43 59.47 2.66 13.23 57.56 100.00 100.00
Iteration divergence 1.20 1.42 56.92 10.49 4.62 100.00 100.00 100.00 9.11 100.00

Table 6 Standard deviation of the vertical component of the force
applied on a fully immersed sphere depending on the precision required
for the density and divergence solvers

Density divergence 0.1 0.01 0.001 0.0001
0.1 2568 2512 2444 2495
0.01 2526 655 701 853
0.001 1161 67 24 36
0.0001 1197 38 25 55

ing high-level parameters of the DFSPH algorithm. These
parameters would be the ones having the most impact on
the number of iterations of the predictive—corrective solvers,
such as the density and divergence thresholds (see Sect. 5.2)
or the minimum number of iterations for each solver (see
Sect. 5.3). The outcomes from such experiment are useful
when the fluid simulation is part of a larger simulation, when
the user only has access to the high-level parameters or when
the user has no knowledge or access to the inner working of
the fluid simulation.

5.2 Improving stability through precision

To study in detail the impact of the warm-start on the stability
of the forces produced by the fluid, we studied the possibil-
ity of improving the stability when using the warm-start by
increasing the required precision for the density solver or
the divergence solver. The results are presented in Table 5.
We first observe that trying to solve the problem of the vari-
ation of the number of iterations of the density solver by
setting a stricter density target does not work. Indeed, we
can see that even setting the target all the way to 0.0001%
does not improve the stability even though each time-step

@ Springer

required 100 iterations of the density solver with the force
still presenting a standard deviation of 50% of its average
value. This particular configuration illustrates very well the
negative impact of the warm-start. The number of iterations
of both solvers is the same as when the warm-start is not
used but the level of stability of the force is very different.
However, by modifying the desired precision of the diver-
gence solver we can improve the stability. Table 6 shows
the force stability for each combination of the two precision
parameters. Our first observation is that even when using a
precision of 0.0001% for both solvers (which requires 100
iterations for both solvers) it is still not possible to replicate
the same level of stability observed when the warm-start is
not used. This means thatif a high level of stability is required
for a simulation, i.e., where a fluid is interacting with solid
objects, not using a warm-start, implemented in its current
form, will produce better results than using it. However, if the
computation time is as important as the stability, not using
a warm-start is not a realistic option. Indeed, in Table 6, we
can see that any combination using at least 0.01% for the
density precision and 0.001% for the divergence precision
allows the forces standard deviation to stay close to 1% or
even below. In particular, that exact configuration offers sim-
ulation steps that are still 3 times faster than when not using
any warm-start. However, those parameters only give good
computation times because the fluid is at rest. We can see that
even with our initial 0.1% divergence target, the divergence
solver may require a large number of iterations at the start
of a dam-break simulation (see Fig. 4b). During our exper-
iments, we have observed that if there is a large amount of
turbulence or a global compression of the fluid (e.g., when
the fluid hits the opposite wall in a dam-break scenario), the
number of iterations of the divergence solver will increase.

Optimizations for predictive-corrective...

Table 7 Results for the study of the impact of forcing higher minimum iteration count for the divergence solver

No warm-start Warm-start
Density threshold 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01
Divergence threshold 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Min divergence iter 1 2 3 1 2 3 5 1 2 3 5
Avg computation time 170 173 182 82 101 113 134 165 214 223 240
Standard deviation (Fy) 247 4114 4012 2569 1525 2192 2192 2512 149 114 186
Iteration density 12.20 11.92 11.68 2.88 3.20 3.29 3.28 11.80 15.67 16.28 15.05
Iteration divergence 1.00 2.00 3.00 1.31 2.00 3.00 5.00 1.08 2.00 3.00 5.00

If we were to use an even more restrictive threshold, the sim-
ulation could require 100 iterations of the divergence solver
which would greatly increase the computation time. The best
solution to this problem would most likely be to use an adap-
tive threshold for each solver, with the threshold getting more
restrictive when there is a low amount of motion in the fluid.
However, we did not explore that solution yet.

5.3 Improving stability through iteration count

If we look once again at the evolution of the number of
iterations of each solver during the dam-break simulation
(see Fig. 4b), we can see that the divergence solver requires
only one iteration for many simulation steps. One iteration
is our minimum and is hard-coded in the solver. We can
see in Table 5 that when the fluid is at rest only simula-
tions with a threshold of 0.001% or lower use a significant
number of iterations. Since it reduces the standard devia-
tion to 1% while only using 10 iterations, it may be possible
to represent a pseudo-adaptive threshold by increasing the
minimum number of iterations of the divergence solver. The
results of this approach are presented in Table 7. We can see
that as expected increasing the minimum number of itera-
tions greatly improves the stability of the forces. Using at
least 2 divergence iterations reduces the standard deviation
of the forces from 50% to 3% when using our initial 0.01%
and 0.1% values and using at least 3 iterations reduces it to
2%. However, we can see that using a significantly higher
minimum number of iterations does not bring any further
improvement and may even reduce the stability. To illus-
trate the problem we ran two additional experiments. The
first one consisted in using a density threshold of 0.1%. We
observed that augmenting the minimum number of itera-
tions brought lower benefits, reducing the standard deviation
from 25% to 15% and using more iterations degraded the
force stability. By repeating this experiment without using
warm-start, we were able to see that any increase in the
minimum number of iterations augments the standard devi-
ation of the force. However, it is important to note that the
observed instability seemed significantly different from the

one observed when the warm-start is used. Indeed, as men-
tioned earlier the instability introduced by the warm-start
is of relatively low frequency. For example with our initial
0.01% and 0.1% parameters, each oscillation takes between
15 and 30 simulation steps. The observed instability when
not using warm-start is due to a very high-frequency noise.
In these experiments, the force varies between its highest and
lowest value at each simulation step.

Therefore, we would recommend, when using the current
warm-start implementation, keeping the original thresholds
of 0.01% and 0.1% while using a minimum of 3 iterations for
the divergence solver instead of the minimum of 1 used in the
SPlisHSPlasH library [5] when simulating solids interacting
with a fluid. If the stability if more important than the exe-
cution time, it is probable that deactivating the warm-start is
currently the best solution. However, if there is no solid in the
simulation using a minimum of 1 iteration allows for better
performance with no real downside since the instability is not
large enough to generate noticeable artifacts on the scale of
the entire fluid. A better solution would be to find the values
for adaptive thresholds for both solvers. However, a better
approach would be to investigate why the current warm-start
approach introduces the instabilities.

6 Conclusion

In this paper, we have studied the impact of two general opti-
mizations on a GPU implementation of a SPH algorithm.
We showed that the use of a Morton curve for the sorting of
the particle data is not necessarily the best choice despite its
widespread use in recent SPH frameworks. In particular, we
showed that in our implementation using a simple XYZ curve
while sorting the data at nearly every simulation step is the
best choice performance-wise. We also showed that the use of
alookup table to access the kernel function values can greatly
reduce the computation time, particularly on double float-
ing point precision implementation. This result echoes the
results that were observed with multi-threaded CPU imple-
mentations in previous works. Finally, we showed that even

@ Springer

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

S. Carensac et al.

though necessary to produce reasonable computation times,
the use of a warm-start mechanism in predictive—corrective
SPH algorithms, at least in its current conception, greatly
decreases the stability of the fluid, especially when the fluid is
interacting with solids. Although we showed that it is possible
to reduce this instability to reasonable levels by increasing the
minimum number of iterations, itis only a temporary solution
that can still be used on systems where the fluid simulation is
already fully integrated. We would encourage future works
to study in detail the reason behind the instability brought by
the warm-start. Similarly, further works are still needed to
properly study the impact of the various space filling curves.
First, as noted in [3] the use of the space filling curves can
bring other advantages that a direct reduction of the compu-
tation times, such as a better compression rate. Secondly, our
conclusions may be limited to our current implementation
with our interleaved neighbors storage structure. Repetition
of these experiments in other GPU implementations, like
GPUSPH or DualSPHysics, would be required for any further
conclusions. Finally, as we showed that the use of a precom-
puted space filling curve has a relatively low impact on the
computation time, even in our naive unoptimized implemen-
tation, using more complex space filling curves might bring
significant benefit to the simulation even if they cannot be
procedurally generated. Finally, we would like to note that
the studied optimizations are not specific to the mathemati-
cal discretization of the Navier—Stokes equations used in the
DFSPH algorithm. Instead, they relate to the memory usage
and the iterative schemes used for the pressure solver of the
SPH algorithm. As such, the outcomes of our work should
be applicable to any fluid simulation using similar iterative
schemes such as the PCISPH [27], the IISPH [20] or the
PBF [23] algorithms.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-021-02379-
w.

Declarations

Declarations The code used for our experiments can be found in the
following repository: https://gitlab.liris.cnrs.fr/npronost/sph_dynamic_
window.

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner,
M.: Versatile Rigid-fluid Coupling for Incompressible SPH. ACM
Trans. Graph. 31(4), 1-8 (2012). https://doi.org/10.1145/2185520.
2185558

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

. Bender,

. Antuono, M., Colagrossi, A., Marrone, S., Molteni, D.: Free-

surface flows solved by means of SPH schemes with numerical
diffusive terms. Comp. Phys Commun. 181(3), 532-549 (2010).
https://doi.org/10.1016/j.cpc.2009.11.002

. Band, S., Gissler, C., Teschner, M.: Compressed Neighbour Lists

for SPH. Comput. Graph. Forum. 39(1), 531-542 (2020)

. Baruffa, F., Iapichino, L., Hammer, N.J., Karakasis, V.(2017):

Performance optimisation of smoothed particle hydrodynamics
algorithms for multi/many-core architectures. In: 2017 Interna-
tional Conference on High Performance Computing & Simula-
tion (HPCS) pp 381-388 . https://doi.org/10.1109/HPCS.2017.64
ArXiv: 1612.06090

J.(2017): SPlisHSPlasH is an open-source library
for the physically-based simulation of fluids.: Interactive-
ComputerGraphics/SPlisHSPlasH . https://github.com/Interactive
ComputerGraphics/SPlisHSPlasH. Publisher: Interactive Com-
puter Graphics

. Bender, J., Koschier, D.(2015): Divergence-free smoothed par-

ticle hydrodynamics. In: Proceedings of the 14th ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation -
SCA ’15, pp. 147-155. ACM Press . https://doi.org/10.1145/
2786784.2786796. http://dl.acm.org/citation.cfm?doid=2786784.
2786796. Event-place: Los Angeles, California

. Bender, J., Koschier, D.: Divergence-Free SPH for incompressible

and viscous fluids. IEEE Trans. Vis. Comput. Gr. 23(3), 1193-1206
(2017). https://doi.org/10.1109/TVCG.2016.2578335

. Bender, J., Kugelstadt, T., Weiler, M., Koschier, D.(2019): Volume

Maps: an implicit boundary representation for SPH. In: Motion,
Interaction and Games, MIG 19, pp. 1-10. Association for Com-
puting Machinery, New York, NY, USA . https://doi.org/10.1145/
3359566.3360077

. Bilotta, G., Zago, V., Hérault, A.(2019): Design and imple-

mentation of particle systems for meshfree methods with high
performance. In: S. Chickerur (ed.) High Performance Parallel
Computing. IntechOpen https://doi.org/10.5772/intechopen.
81755. https://www.intechopen.com/books/high-performance-
parallel-computing/design-and-implementation-of-particle-sys
tems-for-meshfree-methods-with-high-performance

Cummins, S.J., Rudman, M.: An SPH projection method. J. Com-
put. Phys. 152(2), 584-607 (1999)

Dominguez, J.M., Crespo, A.J., Gémez-Gesteira, M.: Optimiza-
tion strategies for CPU and GPU implementations of a smoothed
particle hydrodynamics method. Comput. Phys. Commun. 184(3),
617-627 (2013)

Durand, M., Raffin, B., Faure, F.(2012): A packed memory array to
keep moving particles sorted. In: 9th Workshop on Virtual Reality
Interaction and Physical Simulation (VRIPHYS), pp 69-77. The
Eurographics Association . https://hal.inria.fr/hal-00762593
Goswami, P, Eliasson, A., Franzén, P.(2015): Implicit incompress-
ible SPH on the GPU. In: VRIPHYS

Goswami, P., Schlegel, P., Solenthaler, B., Pajarola, R.(2010):
Interactive SPH simulation and rendering on the GPU. In: Proceed-
ings of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’10, pp. 55-64. Eurographics Associ-
ation, Goslar Germany, Germany . http://dl.acm.org/citation.cfm?
id=1921427.1921437

Harada, T., Koshizuka, S., Kawaguchi, Y.(2007): Smoothed parti-
cle hydrodynamics on GPUs. In: Computer Graphics International,
40: 63-70. SBC Petropolis

Haverkort, H.(2017): How many three-dimensional Hilbert curves
are there? J. Comput. Geom. 8(1): 206-281. https://doi.org/10.
20382/jocg.v8ilalO. https://jocg.org/index.php/jocg/article/view/
3036

Hoetzlein, R.C., Devtech, G.(2014): Fast fixed-radius nearest
neighbors: Interactive million-particle fluids . Presenters: _:n2083

https://doi.org/10.1007/s00371-021-02379-w
https://doi.org/10.1007/s00371-021-02379-w
https://gitlab.liris.cnrs.fr/npronost/sph_dynamic_window
https://gitlab.liris.cnrs.fr/npronost/sph_dynamic_window
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1016/j.cpc.2009.11.002
https://doi.org/10.1109/HPCS.2017.64
http://arxiv.org/abs/1612.06090
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1145/2786784.2786796
http://dl.acm.org/citation.cfm?doid=2786784.2786796
http://dl.acm.org/citation.cfm?doid=2786784.2786796
https://doi.org/10.1109/TVCG.2016.2578335
https://doi.org/10.1145/3359566.3360077
https://doi.org/10.1145/3359566.3360077
https://doi.org/10.5772/intechopen.81755.
https://doi.org/10.5772/intechopen.81755.
https://www.intechopen.com/books/high-performance-parallel-computing/design-and-implementation-of-particle-systems-for-meshfree-methods-with-high-performance
https://www.intechopen.com/books/high-performance-parallel-computing/design-and-implementation-of-particle-systems-for-meshfree-methods-with-high-performance
https://www.intechopen.com/books/high-performance-parallel-computing/design-and-implementation-of-particle-systems-for-meshfree-methods-with-high-performance
https://hal.inria.fr/hal-00762593
http://dl.acm.org/citation.cfm?id=1921427.1921437
http://dl.acm.org/citation.cfm?id=1921427.1921437
https://doi.org/10.20382/jocg.v8i1a10
https://doi.org/10.20382/jocg.v8i1a10
https://jocg.org/index.php/jocg/article/view/3036
https://jocg.org/index.php/jocg/article/view/3036

Optimizations for predictive—corrective...

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Huang, K., Ruan, J., Zhao, Z., Li, C., Wang, C., Qin, H.: A gen-
eral novel parallel framework for SPH-centric algorithms. Proceed.
ACM Comput. Gr. Int. Tech. 2(1), 1-16 (2019). https://doi.org/10.
1145/3321360

Thmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH
implementation on multi-core CPUs. Comput. Gr. Forum. 30(1),
99-112 (2011)

Thmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner,
M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Gr.
20(3), 426435 (2014)

Thmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner,
M.(2014): SPH Fluids in Computer Graphics. Eurographics
2014 - State of the Art Reports p. 22 pages . https:/
doi.org/10.2312/EGST.20141034. http://diglib.eg.org/handle/10.
2312/egst.20141034.021-042. Artwork Size: 22 pages Publisher:
The Eurographics Association

Koschier, D., Bender, J., Solenthaler, B., Teschner, M.(2019):
Smoothed particle hydrodynamics techniques for the physics based
simulation of fluids and solids. Eurographics 2019 - Tutorials p. 41
pages . https://doi.org/10.2312/egt.20191035. ArXiv: 2009.06944
Macklin, M., Miiller, M.: Position based fluids. ACM Trans. Gr.
(TOG) 32(4), 1-12 (2013)

Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput.
Phys. 110(2), 399-406 (1994)

Rustico, E., Bilotta, G., Herault, A., Del Negro, C., Gallo, G.:
Advances in Multi-GPU smoothed particle hydrodynamics sim-
ulations. IEEE Trans. Parallel Distrib. Syst. 25(1), 43-52 (2014)
Skilling, J.(2004): Programming the Hilbert curve. In: AIP Con-
ference Proceedings, 707: 381-387. AIP, Jackson Hole, Wyoming
(USA) . https://doi.org/10.1063/1.1751381. http://aip.scitation.
org/doi/abs/10.1063/1.1751381. ISSN: 0094243X

Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible
SPH. ACM Trans. Gr. 28(3), 1-6 (2009). https://doi.org/10.1145/
1531326.1531346

Verma, K., Szewc, K., Wille, R.(2017): Advanced load balanc-
ing for SPH simulations on multi-GPU architectures. In: 2017
IEEE High Performance Extreme Computing Conference (HPEC),
IEEE, pp 1-7, Waltham, MA . https://doi.org/10.1109/HPEC.
2017.8091093. http://ieeexplore.ieee.org/document/8091093/
Weiler, M., Koschier, D., Brand, M., Bender, J.(2018): A physically
consistent implicit viscosity solver for SPH fluids. In: Computer
Graphics Forum, vol. 37, pp. 145-155. Wiley Online Library .
Issue: 2

Winchenbach, R., Akhunov, R., Kolb, A.: Semi-analytic boundary
handling below particle resolution for smoothed particle hydrody-
namics. ACM Trans. Gr. (TOG) 39(6), 1-17 (2020)
Winchenbach, R., Kolb, A.: Multi-level memory structures for
simulating and rendering smoothed particle hydrodynamics. Com-
put. Gr. Forum 39(6), 527-541 (2020). https://doi.org/10.1111/cgf.
14090

Winkler, D., Rezavand, M., Rauch, W.: Neighbour lists for
smoothed particle hydrodynamics on GPUs. Comput. Phys. Com-
mun. 225, 140-148 (2018). https://doi.org/10.1016/j.cpc.2017.12.
014

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

lation.

Samuel Carensac is currently a
research engineer at Ubisoft after
being one at the University Claude
Bernard Lyon 1, France. He recei-
ved his Ph.D. degree in computer
science from the University of
Lyon (INSA Lyon), France, in
2019. His research interests incl-
ude fluid simulation, physics-based
animation, character animation and
Al

Nicolas Pronost is an assistant
professor at the University Claude
Bernard Lyon 1, France. He recei-
ved his Ph.D. degree in computer
science from the University Ren-
nes 1, France, in 2006 after which
he worked as a postdoctoral resea-
rcher at the Zhejiang University of
Hangzhou, China, and the EPFL,
Switzerland, and then as an assis-
tant professor at the Utrecht Uni-
versity, The Netherlands. His res-
earch interests include physics-
based animation, soft body defor-
mation and musculoskeletal simu-

Saida Bouakaz received the Ph.D.
degree from Joseph Fourier Uni-
versity, Grenoble, France. Curren-
tly, she is a Full Professor in the
Department of Computer Science,
Claude Bernard University Lyonl
France. Her research interests inc-
lude computer vision and com-
puter graphic. The current empha-
sis of her work is the recognition
of human motion, gesture recog-
nition and computer animation.

@ Springer

https://doi.org/10.1145/3321360
https://doi.org/10.1145/3321360
https://doi.org/10.2312/EGST.20141034
https://doi.org/10.2312/EGST.20141034
http://diglib.eg.org/handle/10.2312/egst.20141034.021-042
http://diglib.eg.org/handle/10.2312/egst.20141034.021-042
https://doi.org/10.2312/egt.20191035
http://arxiv.org/abs/2009.06944
https://doi.org/10.1063/1.1751381
http://aip.scitation.org/doi/abs/10.1063/1.1751381
http://aip.scitation.org/doi/abs/10.1063/1.1751381
https://doi.org/10.1145/1531326.1531346
https://doi.org/10.1145/1531326.1531346
https://doi.org/10.1109/HPEC.2017.8091093
https://doi.org/10.1109/HPEC.2017.8091093
http://ieeexplore.ieee.org/document/8091093/
https://doi.org/10.1111/cgf.14090
https://doi.org/10.1111/cgf.14090
https://doi.org/10.1016/j.cpc.2017.12.014
https://doi.org/10.1016/j.cpc.2017.12.014

	Optimizations for predictive–corrective particle-based fluid simulation on GPU
	Abstract
	1 Introduction
	2 Previous works
	3 Divergence-free smoothed particle hydrodynamics (DFSPH) on GPU
	3.1 DFSPH overview
	3.2 Implementation

	4 Optimizations
	4.1 Neighbor structure index
	4.2 Particles sorting frequency
	4.3 Kernel precomputation

	5 DFSPH warm-start
	5.1 Instability in warm-start
	5.2 Improving stability through precision
	5.3 Improving stability through iteration count

	6 Conclusion
	References

