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Abstract—Modern service-based systems are characterized by
applications composed of heterogeneous services provided by
multiple, untrusted providers, and deployed along the (multi-)
cloud-edge continuum. This scenario of increasing pervasiveness,
complexity, and multi-party service recruitment urgently calls for
solutions to increase applications privacy and security, on the one
hand, and guarantee that applications behave as expected and
support a given set of non-functional requirements, on the other
hand. Certification schemes became the widespread means to
answer this call, but they still build on old-fashioned assumptions
that hardly hold in today’s services world. They assume that
all actors involved in a certification process are trusted “by
definition”, meaning that certificates are supposed to be correct
and be safely usable for decision-making, such as certification-
based service selection and composition. In this paper, we depart
from such unrealistic assumptions and define the first certification
scheme that is completely transparent to the involved actors and
significantly more resistant to misbehavior (e.g., collusion). We
design a blockchain-based architecture to support our scheme, re-
defining the actors and their roles. The quality and performance
of our scheme are evaluated in a case study scenario.

Index Terms—assurance, blockchain, certification, cloud, secu-
rity, service

I. INTRODUCTION

More than a decade ago, service-based architecture went
mainstream and applications used to be implemented as pre-
cise compositions of services exposing a structured, fine-
grained interface. Today, a “service” is not necessarily a
server-side software exposing some APIs. It can also be a set
of heterogeneous devices, an opaque data source, an ML-based
service, or an entire distributed system [1]. Service-based
systems are widespread and at the basis of modern, smart
ecosystems, from agriculture [2] to smart energy grids [3]
and transportation [4], to name but a few. This scenario of
increasing pervasiveness, complexity, and long (software) sup-
ply chains urgently calls for solutions to increase application
security, on the one hand, and to ensure that the application and
its security countermeasures work as expected and demonstrate
compliance to non-functional requirements, on the other hand.

In the last decade, security assurance, in general, and
certification, in particular, became the premier solution to

answer this call [5]. Certification schemes provide the means
to evaluate whether a target (composite) application supports
a given non-functional property and, eventually, release a
certificate. Along the years, new certification schemes have
been introduced to meet the peculiarities of distributed sys-
tems, from the application (the focus of this paper) [6], [7]
to the infrastructure layer [8], [9], and, recently, machine
learning [10], [11]. Despite these innovations, the majority
of existing certification schemes follow a trust model which
is increasingly questioned [5], [12], [13], [14], taking for
granted that participating actors are honest. In detail, existing
schemes assume that Certification Authorities (CAs) honestly
manage the scheme, and other actors (e.g., service providers,
cloud users) fully trust the certification process executed in an
opaque manner by accredited bodies. Certificates are supposed
to be unforgeable, accurate, and a sound basis for decision-
making (e.g., selection, composition). This assumption hardly
holds in the real world where services are recruited from
multiple, untrusted providers across national and regulatory
boundaries. In turn, this assumption impacts on the quality
of certification as a whole and certification-based decision-
making, leading to bad decisions and sub-optimal certification-
based life cycle management. In addition, it may create market
distortions, for instance, by falsely increasing the legitimacy
of a certified provider and service [13], [15], [16].

The certification scheme in this paper aims to fill in the
above gap, departing from the assumption of blind trust. Our
scheme is trustworthy, completely open and transparent to
any involved actors. It is executed within a blockchain as a
set of smart contracts, ensuring that certification evidence is
collected from the real world using specific countermeasures
to nullify colluding actors; on- and off-chain storage then
guarantees traceability and immutability of all actions that
brought to the release of a certificate.

The contribution of our paper is twofold. We first de-
sign a blockchain-based certification architecture to support
our certification scheme, mapping the actors and their roles
in traditional certification to actors and components in the
blockchain. We then move the entire certification process on
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Fig. 1. Traditional certification [5].

the blockchain as a set of smart contracts, including specific
constructs to increase transparency and prevent collusion.

The remainder of this paper is organized as follows. Sec-
tion II discusses the state of the art while Section III its
gaps. Section IV describes the certification process, while its
implementation and results in a case study are described in
Section V. Section VI presents an experimental evaluation
of the proposed approach. Section VII discusses the main
findings. Section VIII describes related work, while Section IX
draws our conclusions.

II. TRADITIONAL CERTIFICATION SCHEME

A certification scheme implements the certification process
to verify whether a target of certification ToC (e.g., a cloud
service) supports a given non-functional property p (e.g.,
confidentiality) according to some evidence {ev} (e.g., testing,
monitoring) on the ToC behavior [5], [7]. The certification
process in Figure 1 begins when a Cloud Service Provider
(CSP) asks a Certification Authority (CA) to certify one of its
services (ToC) for a given property (p). The CA prepares the
certification model CM, defined as follows [7].

Definition 1. A certification model CM is a tuple ⟨p, ToC, E ,
F , signatureCA⟩, where i) p is the non-functional property
to be certified on ii) the target ToC according to iii) an
evidence collection model E detailing the (test-based) evidence
to be collected from ToC; iv) F is a Boolean function
evaluating the collected evidence; v) signatureCA is the
signature of the CA that prepared CM.

Second, evidence {ev} is concretely collected by an ac-
credited lab from ToC and, upon successful evaluation (i.e.,
F({ev})=✓), a certificate C is finally awarded, as follows.

Definition 2. Let CM be a certification model and {ev}
the evidence collected according to it. The corresponding
certificate C is a tuple ⟨CM, {ev}, signatureAL⟩, where

i) CM is the certification model followed by the accredited
lab; ii) {ev} is the collected evidence; iii) signatureAL is
the signature of the accredited lab that collected evidence.

Signatures on CM and C bind the two artifacts to the actor
who created CM (CA) and the one who executed it (accredited
lab), making such artifacts traceable. The process should be
then re-executed according to the ToC life cycle [17].

Example 1. Let us consider a Machine Learning as-a-Service
cloud service s1 (e.g. [10]). It receives data from end users,
trains, and deploys an ML model on users behalf. Being
training and inference data two of the most important assets,
the CSP wants to certify the service for property confiden-
tiality-in-transit (pconf). The CA prepares a certification model
CM=⟨pconf, s1, {t1, . . .}, AND, signatureCA⟩, where t1
is a test case part of E analyzing the libraries used in s1
looking for CVEs affecting pconf, and AND is the evaluation
function requiring all evidence to be successfully collected.
The CA delegates evidence collection according to CM.E
to an accredited lab. For instance, the evidence collected
according to t1 contains the list of CVEs found in s1. Let
us assume that such list is empty and CM.F({ev})=✓, a
certificate C is finally awarded to the service.

III. MOTIVATIONS AND SCENARIO

Existing certification schemes builds on 5 main Assump-
tions as follows.
A1) Honest behavior of all actors. All actors act honestly

not attempting to break the certification scheme rules [7].
A2) Complete trust in the CA and accredited lab. Fol-

lowing Assumption A1, CA and accredited lab are fully
trusted in their activities, from the definition of a correct
certification model to the collection of evidence.

A3) Opaque certification process. There are no verifiable,
open guarantees on the process that brought to the award-
ing of a certificate except the trust in the accredited lab
according to Assumption A2.

A4) Undefined life cycle of certification artifacts. The
integrity of certification artifacts (i.e., certification model,
evidence, certificate) is an open challenge [12]. Artifacts
can be tampered compromising their truthfulness and
impacting on the soundness of certification-based life
cycle management.

A5) Chain of trust from the CA to the certificate. The chain
of trust links a certificate to its certification model and
CA and accredited lab. Following Assumptions A3 and
A4, no verifiable guarantees link real collected evidence
to its certificate and certification model.

Let us consider the increasingly prevalent multi-cloud sce-
nario [18]. CSPs across different countries and regulations
release services and share resources. End users and CSPs
implement composite applications (applications in the follow-
ing) recruiting services implemented by themselves and other
CSPs. In this scenario, service selection and composition are
grounded on certified non-functional properties [5], [7]. Each
CSP has its “go-to” CA and accredited lab for this purpose.



CSPs, CAs, and accredited labs do not have any strong
trust relationships, but should trust each other (questioning
A1, A2) in a blind manner (questioning A3, A5), assuming
that certification artifacts can circulate safely across countries
and regulations silos (questioning A4). Although appealing,
the lack of trust between CSPs is one of the main hurdles
towards multi-cloud applications [18]. Only a fraction of cer-
tificates is really trusted in practice, depending on each actor’s
point of view. The confidence in the application behavior is
thus only partial. A CSP may build an application choosing
services certified by a trusted CA (if any), or not certified
at all, discarding services whose non-functional properties are
stronger but come from an untrusted CA or lab.

Altogether, Assumptions A1–A5 reduce the practical value
of certification, negatively impacting on applications sound-
ness. In the remainder of this paper, we show how to move
from a blind-trust to a fully trustable, blockchain-based certi-
fication scheme finally relaxing Assumption A1–A5.

Example 2. Let us extend Example 1 to the composite, multi-
cloud scenario. Different, cross-country CSPs join their forces
and provide certified services to build an ML application
working on sensitive data. There is no trust relationship
between the CSPs. The fact that services to be selected are
certified for confidentiality is of little usage due to the lack of
trust and transparency of the certification process, making it
difficult to create a secure, trustworthy application.

IV. BLOCKCHAIN-BASED CERTIFICATION

Our blockchain-based certification scheme builds on a loose
federation of multiple actors. It implements the certification
process as a set of smart contracts on a blockchain. The latter
is public and permissionless due to the need of public access,
following the best practices in literature [19].

Figure 2 shows the actors and their correspondence in
traditional certification (in bold). They are: i) CA managing
identities in the blockchain (CA Block. in Figure 2); ii) CAs
in charge of the certification process (CA Cert. in Figure 2
and CA in the following); iii) CSPs developing services to
be certified (CSP and s1–s5 in Figure 2); iv) blockchain, its
oracles and storage, implementing the certification process
(Blockchain, Oracles, and Evid. Storage in Figure 2).

Figure 3 shows the 4-step process of our approach.
It consists of an initial preparatory step (Section IV-A) and

three steps forming the certification process (Section IV-B–
IV-D). In the first step (Step (0) in Figure 3), the architecture
is deployed. It includes the blockchain, a storage to save
evidence, and a set of oracles provided by some oracle
providers. Oracles are computing nodes collecting evidence
off-chain [20], mimicking accredited labs. Each actor is iden-
tified and receives a public/private key pair from CA Block.
Finally, smart contracts supporting the certification processes
are deployed (i.e., inserted) in the blockchain (Table I(b)).

A certification process (Steps (1)–(3) in Figure 3) starts
when a CSP wants to certify one of its services. It asks a
CA to prepare a certification model CM as a smart contract
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Fig. 2. Blockchain-based certification.

(Table I(a)), which is deployed in the blockchain with full
visibility (Step (1) in Figure 3) (Assumptions A3, A4). The
CSP executes such contract, collecting evidence from the
service (Step (2) in Figure 3). Evidence is concretely collected
through oracles; a policy guarantees that colluding actors do
not impact on evidence correctness (Assumptions A1, A2).
Finally, collected evidence {ev} is evaluated using evaluation
function CM.F : if the output is ✓, a certificate C is released
(Step (3) in Figure 3). C is a smart contract pointing to {ev}
stored off-chain. All certification artifacts (i.e., CM, C, {ev})
and the process at the basis of their creation are traceable and
immutably stored (Assumptions A3, A4, A5).

In the following, we detail each of the above steps.

A. Bootstrap

Step Bootstrap is executed once to set up the blockchain
(Step (0) in Figure 3). First, oracles are made available by
oracle providers representing accredited labs. Oracles are the
bridge executing actions in a trusted manner outside the
blockchain. We assume that every actor agrees that the avail-
able oracles are part of the blockchain, without necessarily
trusting such oracles.

Second, two smart contracts are deployed by a
CA of choice: VRFv2SubscriptionManager and
VRFv2Consumer. They are used later during certification.

Third, each CA deploys its version of contract Probes. It
lists the probes the CA implemented through oracles. A probe
is a testing script collecting evidence from a target; each probe
is referenced by a function in Probes.

Finally, each CA deploys contract Coordinator. It is
used to manage oracle execution and evidence collection
during certification.

Example 3. Following Example 2, let us assume the pres-
ence of two CAs (CA1 and CA2) and three accredited labs
(AL1–AL3). Each lab provides 5 oracles increasing certifi-
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TABLE I
SMART CONTRACTS.

Name Depl. Step Usage Steps Description

CertificationModel Step (1) Steps (1)–(3) Certify a property on a target
CertificationModelExecution Step (1) Steps (1)–(3) Execute a CertificationModel
Certificate Step (3) Step (3) Final certification process artifact

(a) Core contracts

Name Depl. Step Usage Steps Description

VRFv2SubscriptionManager,
VRFv2Consumer

Step (0) Step (1) Generate verifiable random numbers

Probes Step (0) Step (2) Expose probes as functions then sent to oracles for execution
Coordinator Step (0) Steps (1), (2) Define the policy for probes execution and retrieve their result

(b) Supporting contracts

cation robustness (e.g., against collusion), denoted as o1,
. . . , o15, where o1, . . . , o5 belong to AL1 and so on.
Two probes are implemented: HTTPS-Strength checking
that HTTPS is well-configured in the target service, and
HTTPS-Heartbleed checking the presence of vulnerability
Heartbleed. During Step Bootstrap, CA1 deploys contracts
VRFv2SubscriptionManager and VRFv2Consumer,
both CAs deploy contracts Probes and Coordinator.
Each contract Probes contains functions executeHTTPS-
Strength and executeHTTPS-Heartbleed referenc-
ing the respective probe implemented in oracles.

B. Preparation

The certification process starts when a CSP wants to obtain
a certificate for one of its services. The CSP selects a CA that
prepares a CM (Step (1) in Figure 3). CM is defined in terms
of contract CertificationModel, as follows.

Definition 3. Let CM be a certification model in Defini-
tion 1, the corresponding contract CertificationModel

is a tuple ⟨p, ToC, {probe1, . . . , proben}, policy, F,
signatureCA⟩, where

• p, ToC, F are the counterparts of the same elements in
CM;

• {probe1, . . . , proben} is the set of probes to be used
to collect evidence, corresponding to CM.E;

• policy defines how probes {probei} are spread to
oracles and their results aggregated (Definition 4); and

• signatureCA is the signature of the CA that prepared
and deployed the contract.

Element {probe1, . . . , proben} specifies the probes to be
used to collect evidence, as functions implemented in the con-
tract Probes defined by the current CA. The same probei

in a CertificationModel is executed by multiple oracles
to increase redundancy and prevent collusion, as specified in
element policy as follows.

Definition 4. A policy policy is a pair ({o1, . . ., on}, Agg),
where

• {o1, . . ., on} is the set of the chosen oracles for contract



CertificationModel, that is, each probe therein is
executed on all selected oracles (fan-out); and

• Agg is function taking as input the evidence collected
by each probe and oracle and returning as output an
individual evidence for each probe (fan-in).

The CA instantiates element policy by invoking a func-
tion in contract Coordinator. The oracles are randomly
selected using verifiable number generation through contracts
VRFv2SubscriptionManager and VRFv2Consumer.

Finally, contract CertificationModel is deployed to-
gether with contract CertificationModelExecution:
the latter drives the execution of the former.

Example 4. Following Example 3, let us assume that
CSP1 asks CA1 to certify service s1 for property con-
fidentiality-in-transit. CA1 deploys contract Certifica-
tionModel as ⟨confidentiality-in-transit, s1,
{HTTPS-Strength}, policy, AND, signatureCA1⟩.
AND indicates Boolean AND. policy is instantiated through
contract Coordinator, and is defined as ({o1, o4, o15},
Mode), meaning that each probe in CertificationModel
(i.e., HTTPS-Strength) will be executed by the three or-
acles, and the collected evidence retrieved as the mode of
evidence returned by each oracle.

C. Evidence Collection

The CSP triggers the collection of evidence by invoking a
specific function in contract CertificationModelExe-
cution (Step (2) in Figure 3). The latter retrieves the neces-
sary information stored in contract CertificationModel
and invokes the functions corresponding to probes Certi-
ficationModel.{probe1, ..., proben}. We recall
that each probei is concretely a function in contract Probes.
Requests are then forwarded from Probes to oracles Cer-
tificationModel.policy.{oi} via contract Coordi-
nator. Each selected oracle oi finally executes each probe
CertificationModel.{probei} outside the blockchain.

Next, collected evidence {ev} is retrieved back on chain.
Using contracts Coordinator and Probes, the set of
evidence collected by each oracle for each probe is aggregated,
retrieving an evidence for each individual probe according
to CertificationModel.policy.Agg in Definition 4.
Each concrete evidence ev consists of a Boolean result
indicating the success (✓) or failure (✗) of the corresponding
probe, and additional data, called extradata, providing detailed
insights on the Boolean result (e.g., the output of test cases).
Evidence is then stored: extradata are saved permanently off-
chain in JSON format while their hash on-chain.

Example 5. Following Example 4, CSP1 triggers evidence
collection. Function executeHTTPS-Strength in Exam-
ple 3 is invoked, which, in turn, executes the corresponding
probe in oracles o1, o4, o15 (fan-out). We recall that oracles
are the only means to execute actions off-chain. Let us assume
that AL3 is colluding with CSP1 retrieving fake evidence from
s1. o1 and o4 both collect evidence {(✗, weak ciphers)},

meaning that the property is not supported, opposed to o15

collecting {(✓, HTTPS ok)}. Evidence is aggregated (fan-
in) according to CertificationModel.policy.Mode,
returning {(✗, weak ciphers)} thus nullifying collusion.

D. Evaluation and Award

The result of evidence collection is retrieved according
to CertificationModel.F, taking as input {ev} and
returning ✓ in case of success, ✗ otherwise (Step (3) in
Figure 3). If the output is positive (✓), a new smart contract
representing the certificate C is deployed as follows.

Definition 5. Let CertificationModel be the exe-
cuted contract in Definition 3 and {evi} the collected evi-
dence. The corresponding contract Certificate is a tu-
ple ⟨address(CertificationModel), {hash(evi)},
signatureCSP⟩, where

• address(CertificationModel) is the blockchain
address of CertificationModel;1

• {hash(evi)} is a set containing the hash of each
evidence evi stored off-chain;

• signatureCSP is the signature of the CSP that trig-
gered the process in Step (2).

We note that in traditional certification, the accredited lab
affixes its signature to the certificate. Here, the CSP affixes its
signature, because it is the actor that started the process and
thus inserted the transaction in the blockchain. The chain of
trust and its guarantees are still preserved (Section VII-A).

Example 6. Following Example 5, evidence {(✗, weak
ciphers)} is aggregated using function Certifica-
tionModel.F defined as AND (see Example 4). The output
is ✗, meaning that a certificate cannot be released. Later, let
us then assume that s1 supports the property and collected
evidence is {(✓, HTTPS ok)}. The output of the aforemen-
tioned function is ✓: a contract Certificate is created and
deployed in the blockchain. It includes the on-chain address
of contract CertificationModel in Example 4 and the
hash of evidence stored off-chain.

V. WALKTHROUGH AND IMPLEMENTATION

We present a complete walkthrough of our approach im-
plemented on Ethereum, the permissionless public blockchain
with smart contracts that has the broadest adoption [21]. We
implemented smart contracts using language Solidity v0.8.7
and wallet application Metamask.2 We relied on the Ethereum
test network Sepolia for practical reasons.3 All artifacts are
available at https://doi.org/10.13130/RD UNIMI/FBGMZY.

The walkthrough is based on Examples 3–6, targeting a
static website hosted on a Content Delivery Network (CDN)
with automatic HTTPS setup. We performed all actions on
behalf of each actor.

1An address is the transaction/contract identifier.
2https://metamask.io/
3https://ethereum.org/developers/docs/networks#sepolia

https://doi.org/10.13130/RD_UNIMI/FBGMZY
https://metamask.io/
https://ethereum.org/developers/docs/networks#sepolia


1 Contract CertificationModelExecution
// The CM to execute.

2 CM;
3 Constructor (CertificationModel)
4 CM ← CertificationModel;
5 end

// Launch evidence collection.
6 Function runCertModel public onlyCSP
7 CM.run();
8 end

// Retrieve evidence from oracles.
9 Function retrieveEvidence public onlyCSP

10 CM.retrieveEvidenceBack();
11 end

// Evaluate evidence and release
certificate.

12 Function evaluateAndCreate public onlyCSP
13 result ←evaluationFuncAND();
14 if result =✓ then
15 Cert ←new();
16 Cert.cert model ←address(CM);
17 Cert.evid ←store(CM.evidence);
18 end
19 end

// Evaluation function.
20 Function evaluationFuncAND private
21 counter ← 0;
22 foreach evidence[j]∈ CM do
23 if evidence[j]=✓ then
24 counter ←counter +1;
25 end
26 end
27 if counter =CM.evidence.length() then
28 return ✓;
29 else
30 return ✗;
31 end
32 end

Fig. 4. Pseudocode of contract CertificationMod-
elExecution.

Step (0): Bootstrap. We assumed that 5 oracles have been
deployed and are available. They are implemented using
ChainLink and ChainLink Any API, a popular solution in
industry and academia [20]. All supporting contracts in Ta-
ble I(b) are configured and deployed on the blockchain.

Step (1): Preparation. The CA defines contract Cer-
tificationModel as ⟨confidentiality-in-tran-
sit, web server, {Observatory, Vuln-Scan-Host,
Vuln-Scan-Web, HTTPS-Strength, HTTPS-Heart-
bleed}, policy, AND, signatureCA⟩, where

• confidentiality-in-transit and web
server represent the property p and the target
ToC, respectively;

• Observatory is a probe evaluating the compliance to
Mozilla Observatory best practices, which can impact
confidentiality.4 It returns ✓ when the latter are followed;

4https://observatory.mozilla.org/

Listing 1. Evidence collected by HTTPS-Strength.
1 {
2 "status": 1,
3 "data": {
4 "Certificate not trusted by": [],
5 "Protocol setup": {
6 "Versions": {
7 "Supported versions": ["tlsv1_2", "tlsv1_3"]
8 }
9 }

10 }
11 }

• Vuln-Scan-Host and Vuln-Scan-Web are probes
looking for vulnerabilities in the hosting server and the
web technologies it uses, respectively. They return ✓
when vulnerabilities are not found;

• HTTPS-Strength and HTTPS-Heartbleed are
probes inspecting the HTTPS setup looking for com-
pliance to best practices and vulnerability Heartbleed,
respectively. They return ✓ when best practices are
followed and vulnerability Heartbleed is not found;

• policy is defined as ({o1, . . . , o5}, Median), where all
oracles are selected and fan-in performed using median;

• AND is the evaluation function F requiring all evidence
to be successfully collected (i.e., all probes returning ✓).

The CA then deploys contract CertificationModel
with corresponding CertificationModelExecution.
Finally, the CA funds oracles computation, sending them the
required amount of tokens LINK.5 Figure 4 shows the pseu-
docode of contract CertificationModelExecution.
Function modifier onlyCSP restricts function execution to
the CSP only (lines 6, 9, 12 in Figure 4).

Step (2): Evidence Collection. The CSP invokes function
CertificationModelExecution.runCertModel
(lines 6-8 in Figure 4), executing probes through oracles. Col-
lected evidence is retrieved back from oracles invoking Cer-
tificationModelExecution.retrieveEvidence
(lines 9-11 in Figure 4). This function aggregates
evidence collected by oracles for each probe following
CertificationModel.policy.Median. Listing 1
shows the evidence retrieved by HTTPS-Strength. The
Boolean result is ✓ (1 in line 2 in Listing 1), while extradata
indicate that the X.509 certificate is trusted by anyone and the
two most recent protocol versions are supported (TLSv1.2
and TLSv1.3 in lines 3-10 in Listing 1).

Step (3): Evaluation and Award. Retrieved evidence is then
evaluated invoking function CertificationModelExe-
cution.evaluateAndCreate (lines 12-19 in Figure 4).
It aggregates the result of individual probes using aggregation
AND (Boolean AND) (line 13 in Figure 4) and, upon success,
awards a certificate in the form of contract Certificate
(lines 14-18 in Figure 4). According to our scenario, such
certificate can be awarded. Listing 2 shows its JSON repre-
sentation. Line 2 in Listing 2 shows the on-chain address of

5The currency used in ChainLink.

https://observatory.mozilla.org/


the corresponding contract CertificationModel, while
lines 3-9 contain the off-chain hash of collected evidence.

Listing 2. Contract Certificate represented in JSON format.
1 {
2 "cert_model_addr":

"0x6a40960f63e60e9801236700b7397a69d851C71d",↪→
3 "hashed_evidence": {
4 "Observatory": "dd17b3d1f793a9f422fdb1af2b76a5b376716 ⌋

950c3249f04efd321742d20e830",↪→
5 "Vuln-Scan-Host": "87d559453fd84a932e6005ab7fc2f97064 ⌋

4e19ba17ef383d1bb920b94feeeb33",↪→
6 "Vuln-Scan-Web": "b41849ac2566381d485787f4e9311eeea0b ⌋

3374ef14b7ebc01b331c16ff22765",↪→
7 "HTTPS-Strength": "8977b48717adbaa5309dbdf35d537f0693 ⌋

7496cb14578bcb40adb05467a8ead5",↪→
8 "HTTPS-Heartbleed": "33ed8ff37dccc2ddf2c8ae7e0eb9699c ⌋

5e786d51181d5f659343c2e7a539ea10"↪→
9 }

10 }

VI. EXPERIMENTS

We evaluated the performance of the walkthrough in Sec-
tion V (Section VI-A) and measured the scalability of our
approach (Section VI-B). To prevent fluctuations caused by
probes execution, we executed probes offline and collected the
evidence via oracles online. We note that the lack of similar
solutions (Section VIII) makes a performance and scalability
comparison with the state of the art inapplicable.

A. Performance

We measured gas consumption and corresponding monetary
value throughout Steps (0)–(3). Gas is an abstraction of the
computational effort to execute a blockchain transaction (e.g.,
smart contract deployment, execution of a smart contract
function) [22]. Gas consumption corresponds to a fee to be
paid in the Ethereum currency denoted as ETH. Table II shows
our results. “Gas limit” indicates the maximum amount of
gas available for a transaction, which is estimated automat-
ically [22], [23]. The fee is retrieved as gas used×cost of a
unit of gas, where the latter is ETH 45.85×10−9. The value in
C is retrieved as ETH 1=C3,147.28.6 We assumed that ETH
on the test network Sepolia had the same values of the main
Ethereum production blockchain’s for the sake of experiments,
and retrieved gas quotation therefrom.

We can observe that the total cost is ≈C2,700, nearly half
of which is necessary to bootstrap the blockchain (Step (0)).
The cost of a certification is ≈C1,400 evenly split between
the CA and the CSP. As expected, the most expensive action
at certification time is the execution of the certification model
(CertificationModelExecution.runCertModel).

In addition, interaction with oracles is funded through tokens
LINK, a token standardized in ERC677 (Ethereum Request for
Comments 677) [24]. Each execution of a probe on an oracle
required LINK 0.1, while verifiable random generation LINK
0.32 (price fixed by the oracle provider). It corresponds to

6Gas quotation and conversion rate retrieved from https://etherscan.io/
gastracker#historicaldata and https://www.coinbase.com/price/ethereum as of
March 2nd, 2024, 11pm.
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Fig. 5. Scalability evaluation of our approach.

C2 and C6.3 (LINK 1=C19.68),7 respectively, assuming the
usage of a production blockchain.

To sum up, any interactions with the blockchain require
a fee. Step Bootstrap is expensive but executed only once.
It is entirely funded by CAs due to their role. This cost
can be recovered, for instance, by a shared fund between
CAs and CSPs. At certification time, fees are split between
CAs and CSPs. The former contribute to contract deployment
(CertificationModel, CertificationModelExe-
cution). The latter, that is, the actor that benefits the most
from certification, contribute to the execution of the most
expensive contract (CertificationModelExecution).
In addition, the CA funds oracles interaction sending tokens
LINK, meaning that accredited labs are remunerated. CAs
expenses can be fully recovered by, in turn, charging the CSPs,
making our approach fully sustainable. We note that future
developments in blockchains may further reduce costs.

B. Scalability

We evaluated the scalability of the certification process
(Steps (1)–(3)) in terms of gas consumption varying the
number of probes in [1, 5] and oracles for each probe in [2,
5], the two parameters with the highest impact. The latter is
>1 to achieve some fan-out (see Definition 4). Each probe
implements an HTTP call.

Figure 5(a) shows that the number of oracles moderately
impacts scalability, with gas consumption increasing from
7,674,006 to 9,697,726 in the worst case of 5 probes. Fig-
ure 5(b) shows that the number of probes has a larger impact
on scalability, though it remains linear. Gas consumption
increases from 4,914,802 to 9,697,726 in the worst case of
5 oracles. Overall, our experiments show that our approach is
scalable, even without any optimizations, left for future work.

VII. DISCUSSION

In this paper, we enhanced the traditional certification
scheme and process, strengthening their guarantees (Sec-
tion VII-A) though some issues remain open (Section VII-B).

7Conversion rate retrieved from https://www.coinbase.com/price/chainlink
as of March 2nd, 2024, 11pm.
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TABLE II
GAS CONSUMPTION AND MONETARY CORRESPONDENCE.

Action Gas used/Gas limit Fee
ETH C

Deploy VRFv2SubscriptionManager 792,127/792,127 (100.0%) 0.036 114.306
Send LINK to VRFv2SubscriptionManager 51,658/77,487 (66.67%) 0.002 7.454
VRFv2SubscriptionManager.topUpSubscription() 81,826/87,583 (93.43%) 0.004 11.808
Deploy VRFv2Consumer 1,295,442/1,295,442 (100.0%) 0.059 186.936
VRFv2SubscriptionManager.addConsumer() 102,950/104,075 (98.92%) 0.005 14.856
Deploy Coordinator 4,052,945/4,052,945 (100.0%) 0.186 584.851
Deploy Probes 2,555,101/2,555,101 (100.0%) 0.117 368.708
Total Step (0) 8,932,049 0.41 1,288.920

Coordinator.createPolicy() 534,994/534,994 (100.0%) 0.025 77.201
VRFv2Consumer.requestRandomWords() 164,754/164,754 (100.0%) 0.008 23.774
Deploy CertificationModel 2,862,577/2,862,577 (100.0%) 0.131 413.078
Deploy CertificationModelExecution 1,522,032/1,522,032 (100.0%) 0.07 219.633
Send LINK to Probes 51,658/77,487 (66.67%) 0.002 7.454
Total Step (1) 5,136,015 0.235 741.141

CertificationModelExecution.runCertModel() 3,672,865/3,875,370 (94.77%) 0.168 530.005
CertificationModelExecution.retrieveEvidence() 403,463/409,377 (98.56%) 0.018 58.221
Total Step (2) 4,076,328 0.187 588.225

CertificationModelExecution.evaluateAndCreate()
and total Step (3)

537,041/537,041 (100.0%) 0.025 77.497

Total 18,681,433 0.857 2,695.783

A. Guarantees

Our approach addresses Assumptions A1–A5 as follows.
A1) Honest behavior of all actors. Our approach removes

this unrealistic assumption. Malicious behavior of CSPs,
CAs and (some) labs is prevented.

A2) Complete trust in the CA and accredited lab. Our
approach partially relaxes this assumption. On the one
hand, the CA is only trusted in terms of preparing a
correct certification model. On the other hand, accredited
labs are replaced by oracle providers, a minority of which
can even be rogue. The policy in Definition 4 can be tuned
according to the scenario (e.g., larger fan-out).

A3) Opaque certification process. Our approach removes
this assumption, executing the entire process on-chain in
a fully transparent manner.

A4) Undefined life cycle of certification artifacts. Our
approach removes this assumption, providing an on-
chain life cycle for certification artifacts, including ev-
idence. Certification model and certificate are saved as
immutable and traceable smart contracts. Evidence is
saved following the typical pattern where the full content
is saved off-chain and its hash on-chain within contract
Certificate, preventing tampering.

A5) Chain of trust from the CA to the certificate. Our
approach enhances the traditional chain of trust. Sig-
natures are automatically added (and recorded) to any
actions, meaning that the process that brought to the re-
lease of a certificate Certificate given a certification
model CertificationModel is fully traceable. In
traditional certification, traceability is only partial.

Following A1–A5, our approach prevents the most impor-
tant threat against certification: the release of a certificate for
a service that does not really support the given property. In

traditional certification, the rogue CSP may be able to fool
an individual probe. In our approach, the CSP needs to fool
all/most oracles executing the probes, which is significantly
more challenging due to the higher cardinality (A1, A3).

Next, let us assume that the rogue CSP colludes with other
actors. In traditional certification, it can collude with the ac-
credited lab, the latter inserting fake evidence in the certificate.
In our approach, the lab corresponds to one oracle provider.
The effect of this collusion is negligible due to the policy
spreading probe execution across multiple oracles at random
and aggregating results in a clever manner (Definition 4).
For instance, aggregation Mode can nullify most collusion
attempts, even across multiple oracle providers (A1, A2, A3).
Advanced policies can further reduce collusion effects [25].

Next, let us assume that the rogue CSP wants to alter the
evidence that drove the release of a certificate of a rival CSP.
In traditional certification, the rogue CSP can collude with
the accredited lab that released the certificate: such lab can
alter the certificate with an updated signature. In our approach,
the released certificate is stored as an immutable contract
Certificate. It stores the hash of the collected evidence,
making evidence tampering impossible (A1, A2, A4, A5).

Next, let us assume that the only rogue actor is the accred-
ited lab. As already mentioned, in traditional certification, it
can easily and unnoticeably release fake certificates without
collecting evidence or inserting fake evidence in certificates.
In our approach, the rogue lab has a negligible impact because
the majority of oracles remain benign (A1, A2, A3, A5).

Finally, let us assume that the rogue CSP deploys a con-
tract Certificate without collecting any evidence (i.e., an
empty certificate, or a certificate pointing to other evidence).
This danger is peculiar to our approach: in traditional certi-
fication, it requires collusion with an accredited lab. In our



approach, smart contracts modifiers8 prevent many malicious
flows. In addition, artifacts transparency ensures that such an
attempt is immediately caught (A1, A3, A4, A5).

Overall, our blockchain-based certification departs from a
scenario where trust is taken for granted to a scenario where
trust is transparent, verifiable, and the danger of malicious
behaviors is significantly reduced.

B. Limitations

To the best of our knowledge, the approach in this paper is
the first approach defining and implementing a practical, com-
plete solution of certification based on blockchain. However,
it suffers from a number of limitations mainly motivated by
technological immaturity as follows.

• Role of the CAs. We assume the CAs to be functionally
trusted, that is, they define contracts Certification-
Model that are correct for their purpose. No further
assumptions are made on CAs behavior.

• Oracles. We assume the existence of a set of oracles
which are fit for certification, worldwide-known and so-
cially agreed. At present, oracles are the only solution to
execute trustworthy actions from the blockchain towards
the outer world and back. As such, we assume oracles to
be correct and their majority benign and non-colluding.

• Identities. We assume the existence of a trusted CA
managing identities (CA Block in Section IV), allowing
actors to sign transactions and create a link between the
two with limited involvement of such CA.

VIII. RELATED WORK

Today, certification is the most widespread technique to
increase system trustworthiness. It is applied along the en-
tire (cloud) system stack, from applications (the focus of
this paper) [6], [7], [13] to infrastructures [9], Big Data
pipelines [26], IoT [27], [28], and even in risk manage-
ment [29]. For instance, Faqeh et al. [30] proposed a certifica-
tion process for evolving systems. When a new component is
going to be deployed, the new and old versions are executed
and evidence is collected. If evidence supports the safety of
the new component, the latter replaces the old one. Bornholt
et al. [31] defined a certification process based on lightweight
formal methods. It focuses on functional property correctness,
and collects evidence from the (annotated) target source code.
Milánkovich et al. [6] proposed a certification scheme for
cloud services. It certifies different non-functional properties
in an incremental manner using AI, collecting evidence mainly
from the target source code. Finally, Anisetti et al. [7], [17]
designed a (continuous) certification scheme for cloud services
that enlarges the typical scope of evidence collection beyond
the target service software artifacts. Certificates are then the
basis for certification-based decision-making (e.g., selection).

Research already focused on partially relaxing Assump-
tions A1–A5. For instance, Stephanow et al. [14] assumed that

8A modifier changes the behavior of a function, for instance, by allowing
its execution if some preconditions are met (https://docs.soliditylang.org/en/
v0.8.24/contracts.html#modifiers).

dishonest CSPs attempt to obtain certificates without being
entitled to (A1). The proposed certification process addresses
the issue using randomized test-based evidence. Prüfer [13]
assumed that many actors are dishonest, from CSPs to CAs
and accredited labs (A1, A2, A3). In this scenario, a cloud
association enforces an equilibrium incentivizing actors in
reporting misbehavior while punishing it. Lins et al. [12]
mentioned the existence of issues such as data manipulation
and opaque process in continuous cloud service certification
(A1, A3, A4). Stephanow et al. [32] focused on securing
certification schemes implementation, considering traditional
attacks such as DoS and tampering (A1, A4).

Research also investigated blockchains to support certifica-
tion. For instance, Neisse et al. [27] presented a blockchain-
based solution where certificates referred to IoT devices are
stored and exchanged. The process that brought to the release
of such certificates remains off-chain. Similarly, Ardagna et
al. [33] relied on the blockchain as trusted repository of
certification artifacts. The certification process is executed off-
chain and is the basis of a certified service composition. Turan
et al. [34] proposed a blockchain-based alternative to the con-
ventional Public Key Infrastructure. It includes mechanisms to
incentive honest behavior and penalize misbehaving actors.

Certification schemes implementing specifically designed
processes based on TPMs (Trusted Platform Modules) typ-
ically increase evidence trustworthiness and integrity, (par-
tially) addressing Assumptions A4 and A5. For instance,
Bertholon et al. [35] proposed a certification process in which
users can certify, on demand, properties integrity of software
and data of cloud nodes. Muñoz et al. [36] designed a certifi-
cation scheme certifying both the software and the hardware
layers of the cloud stack. It achieves the former using tradi-
tional certification, while the latter using TPMs, again focusing
on property integrity. Nawab [37] focused on the cloud-edge
scenario. The certification process collects evidence using a
low-overhead cryptographic protocol to guarantee the correct
behavior of (potentially dishonest) edge datastores. In the same
context, Aslam et al. [8] proposed a TPM-based certification
process targeting property integrity: certified edge nodes can
then join the cloud federation. Khurshid et al. [28] proposed a
similar solution in the context of IoT devices. The certification
process is based on PKI (Public Key Infrastructure) and TPMs
and focuses on properties authentication and integrity.

Finally, certification is addressing ML-based applica-
tions [11] where trust issues also emerge. For instance, Zhao
et al. [10] designed a certification process focused on property
billing correctness in MLaaS. It collects evidence using a
custom, cryptographic-like protocol.

Table III summarizes related work with respect to Assump-
tions A1–A5; ✓ means that the assumption is fully relaxed, ≈
partially relaxed, ✗ not relaxed, - not possible to understand if
relaxed. We note that Table III reports only works relaxing at
least one assumption. It clearly emerges that most assumptions
are not addressed, addressed partially in the best case. On
the contrary, our approach (last row in Table III) completely
addresses Assumptions A1, A3–A5, and partially A2.

https://docs.soliditylang.org/en/v0.8.24/contracts.html#modifiers
https://docs.soliditylang.org/en/v0.8.24/contracts.html#modifiers


TABLE III
COMPARISON WITH RELATED WORK. ✓ MEANS RELAXED, ✗ NOT

RELAXED, ≈ PARTIALLY RELAXED, - NOT CONSIDERED.

Ref. A1 A2 A3 A4 A5

Bertholon et al. (2011) [35] ≈ ✗ ≈ ≈ ≈
Muñoz et al. (2013) [36] ✗ ✗ ≈ ≈ ≈

Stephanow et al. (2016) [14] ≈ ✗ - - -
Lins et al. (2017) [12] ≈ ✗ ≈ ≈ -

Stephanow et al. (2016) [32] ≈ ✗ ✗ ≈ -
Prüfer (2018) [13] ✓ ✓ ≈ ✗ ✗

Neisse et al. (2019) [27] ✗ ✗ ✗ ≈ ✗
Ardagna et al. (2020) [33] ✗ ✗ ≈ ≈ ✗

Faqeh et al. (2020) [30] ✗ ✗ - ✗ -
Aslam et al. (2020) [8] ≈ ✗ ✗ ≈ ≈

Nawab (2021) [37] ≈ ✗ ≈ ≈ ≈
Bornholt et al. (2021) [31] ✗ ✗ ≈ - -

Zhao et al. (2021) [10] ≈ ✗ ≈ ✗ ≈
Khurshid et al. (2023) [28] ≈ ✗ ≈ ≈ ≈

Milánkovich et al. (2022) [6] ✗ ✗ ✗ ≈ -
Our approach ✓ ≈ ✓ ✓ ✓

IX. CONCLUSIONS

The shift towards multi-cloud and multi-party services is
affecting many established practices, including challenging
the trust pillars of certification. The approach in this paper
proposes a first solution to this issue, defining a blockchain-
based certification scheme and implementing a certification
process that is decentralized, open, and fully traceable. Our
approach finally departs from taking trust for granted and
rather builds trust using specific, on- and off-chain constructs.

The paper leaves space for future work. We plan to introduce
novel policies with stronger guarantees on oracle selection
while formally studying the degree of protection against col-
lusion. We also plan to introduce reward-punishment mecha-
nisms for bad-behaving actors. For instance, oracles whose
collected evidence are similar to the majority of collected
evidence, can be rewarded with funds and selected for the
next iterations.
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[13] J. Prüfer, “Trusting privacy in the cloud,” IEP, vol. 45, 2018.
[14] P. Stephanow, G. Srivastava, and J. Schütte, “Test-Based Cloud Service
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