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Abstract. Supplier Impersonation Fraud (SIF) is a rising issue for Busi-
ness to Business companies, as the use of remote and quick digital trans-
actions has made the task of identifying fraudsters more difficult. In this
paper, we propose data-driven fraud detection system whose goal is to
provide an accurate estimation of transactions’ legitimacy by using the
knowledge contained in the network of transactions created by the in-
teraction of a company with its supplier. We consider the real dataset
collected by SIS-ID for this work.

We propose to use a graph-based approach to design an Anomaly De-
tection System (ADS) based on a Self-Organizing Map (SOM) allowing
us to label a suspicious transaction as either legitimate or fraudulent
based on its similarity with frequently occurring transactions. Experi-
ments demonstrate that our approach identifies fraudulent transactions
with high success in a real-life dataset.

Keywords: fraud detection, graph-based feature engineering, financial
networks, B2B network

1 Introduction

Lately, Supplier Impersonation Fraud (SIF) is on the rise, resulting in the loss
of hundreds of thousands of Euros in 2018, and ranked 1st most frequent fraud
affecting French companies in the latest survey about cyber-criminality con-
ducted in 2019 by Euler Hermes and DFCG [4]. Supplier impersonation consists
in a fraudster impersonating a member of a company providing goods and ser-
vices to another in order to trigger a payment on an account controlled by the
fraudster [1]. More and more companies are using digital tools to process, au-
thorize, or even conduct transactions due to numerous advantages provided by
digitalization such as the ability to conduct transactions all over the globe in
a timely fashion. However, digital transactions make frauds against companies
more effective, firstly due to the difficulty to formally identify and trust remote
interlocutors that are sometimes geographically very distant from the company
headquarters, and secondly due to the increased speed of wired transactions,
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allowing money to be moved between accounts in a very short amount of time,
thus hindering the process of recovering it after a fraud.

In this work, we present GraphSIF, a SIF detection system that uses a B2B
transactions dataset to construct a network modeling the relationships between
client and supplier companies in a B2B ecosystem, and describe how these rela-
tionships can be used to derive useful knowledge in order to assert the legitimacy
of transactions.

We use the transaction network to create a time-evolving behavior sequence
summing up the evolution of the graph through time. We then compare the
new graph created by adding a suspsicious transaction to the behavior sequence
and investigate the potential discrepancy it introduces. If this discrepancy is low
then the transaction is considered as legitimate, and if the discrepancy is high
then the transaction is considered as likely fraudulent. In order to quantify this
discrepancy, a Self-Organizing Map (SOM) is trained on the behavior sequence,
and a clustering algorithm is used to quantify the similarity of the tested graph
with the ones in the behavior sequence.

The contributions of this paper are the following: a graph-based feature en-
gineering process relying on a bipartite graph constructed from transactions
in a B2B context, a classification system that uses Self-Organizing Maps and
K-means clustering to investigate the legitimacy of a new transaction, and a
comprehensive evaluation of the proposed classification system using data from
a real-life B2B ecosystem.

The remaining of the paper is structured as follows: we first present related
work in the field of fraud detection, then describe in detail the feature engineering
process used to compute the graph used by the SIF detection system. We then
describe the classification system we use to label unknown transactions. Finally,
we evaluate our SIF detection system.

2 Related Work

Due to the sensitivity of the data linked to supplier fraud detection for victim
companies, we have not been able to find any publicly available research work
directly related to SIF. However, we can find several systems designed for fraud
detection that also use a network-based approach:

In [9] several network-based fraud detection use-cases are introduced, showing
examples of successful use of a database graph to detect bank fraud, insurance
fraud and e-commerce fraud. However, the authors focus on specific industrial
examples without proposing a formalized evaluation of their solution. Akoglu,
Tong and Koutra [3] propose a survey on anomaly detection using graphs, no-
tably in the domain of telecommunication fraud detection. An approach close to
our own is found in [2] where an egonet (1-step neighborhood graph) is used to
derive features describing a node. However, this approach is applied to a static
graph that do not evolve through time, contrary to our approach. The analysis
of dynamic graphs through the use of windows, as it is the case in our work, is
akin to the ideas developed in [8] and [7] where the graphs are analyzed using
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a moving window and detecting anomalous connectivity variation [8] or edges
p-value variation [7]. To the best of our knowledge there is no previous attempt
at combining a window-based analysis as seen in [8] with the feature approach
used in [3]. Van Vlasselaer et al. [10] proposes a approach somewhat similar
to ours, using graphs to represent interaction between companies in order to
detect social security frauds. However, their work focuses on the application of
social network algorithms on a large graph of interconnected entities, whereas
our work partition the large graph into smaller neighborhood graphs focused
on the specific behavior of a single company. In addition, the system proposed
in [10] bases itself on the propagation algorithm and Random Logistic Forests
to perform their analysis, and do not make use of Self-Organizing Maps. Fur-
thermore, most of these works uses supervised algorithmsn as they rely on the
existence of known legitimate and fraudulent neighboring nodes to conduct their
analysis. Our work proposes an unsupervised approach that does not take into
account the legitimacy of neighboring nodes to propose a label, but instead uses
the topology of a specific ego network.

To the best of our knowledge, our work is the first to use a graph-based approach
paired with Self-Organizing Maps in order to address the issue of SIF detection.

3 Problem Description

Let’s define two companies C' and S that have previously exchanged N historical
transactions {t1, t2, ..., tx }, all performed on the same account g; in a sequential
manner. A fraudster F' wants to attempt a fraud by impersonating S and trigger
a payment from C to the account as. Let’s assume that F' simply impersonates
an executive in S by hacking into his mail account and advising C that all
future payments on outstanding invoice should be wired to ay. With no means
to verify the executive’s identity, C' complies to the request. This triggers all
future transactions ty41,tn+2,... to be performed on ay instead of a;. We will
use this example to illustrate how the proposed detection system works.

4 Graph-based Feature Engineering

In order to construct a model of the behavior of a client company using graphs,
we first use a sequencing algorithm that aggregates the ordered transactions in
bounded windows defining the company’s payment behavior in the time frame
defined by the window. We then aggregate these transactions into a graph, and
we vectorize them by computing the number of patterns occurring in the graph.
These vectors create a sequence that we use to train a Self-Organizing Map,
resulting in a topography in which similar graphs are regrouped based on the
patterns they share. We finally create a test graph containing the transaction
to be labeled combined with the most recent transactions, and compute a le-
gitimacy score by quantifying the similarity of the graph created in regards to
the ones used to train the SOM. This anomaly score is then discretized to be
turned into a label indicating if the suspicious transaction appears fraudulent or
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Pattern A
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Fig. 1: Transaction graph of client C1.

legitimate.

4.1 Transaction Graphs

In order to use the contextual environment of a transaction in order to assert its
legitimacy, we use the relational aspect of the transactions to create a Trans-
action Graph aggregating all the transactions involving a specific agent (any
entity involved in a transaction) in a specific period of time. Figure 1 presents an
example of a such a graph. This graph is created by first getting all the transac-
tions involving the elements of a specific transaction. Then, a node is created for
each element found in this list of transaction, and two edges are created between
the elements involved in the transaction: one directed edge from the client to
the account, and one directed edge from the account to the supplier. This trans-
action graph is a directed bipartite graph with two types of nodes: companies
(either client or supplier), or accounts. The edges of the transaction graph are
binary weighted: either an edge exists between a company and an account, and
its weight is 1, or no edge exists. This model is very simple and aims to focus
the analysis on the relationship shared between entity rather than the semantics
of such relationships.

4.2 Featurization

The transaction graph, while providing a useful tool for visualization, is un-
structured, meaning that is does not represented as a feature vector, and thus
is not usable directly to perform a classification. In order to do so, the need to
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Table 1: Examples of featurized transactions

Transaction ID |Pattern A |Pattern B |Pattern C |Pattern D
T1 2 1 1 0
T2 3 3 0 1
T3 1 0 0 0

5

transform the transaction graph into structured data arises. We propose the fol-
lowing process in order to do so: First, we isolate Transaction Patterns from
the transaction graph: we define a transaction pattern as the list of connected
sub-graphs obtained when the targeted transaction’s client company is removed
from the graph. This allows us to create a characterization of the context in
which the transaction occurs. We then compute this list of sub-graphs as an
histogram where the occurrence of each unique pattern is recorded. We use this
histogram as our feature vector in our analysis. Table 1 shows a simple exam-
ple with three transactions: T1, presented in Fig 1, T2 and T3. For the rest of
the paper, we will use a hash of the canonical code [6] of the graph as labels
for transaction patterns: this allows us to provide a unique identifier for each
pattern.

4.3 Behavior Sequence

Using the transaction graph comes with an important drawback: the temporal
order in which the transactions are processed is lost, hence hindering the dynamic
analysis of our target. Moreover, with an increasing number of transactions, it
becomes harder to determine the impact of a single transaction on the graph. We
overcome these issues by creating Behavior Sequences: first, the transactions
associated with the agent are sorted based on the date in which they occur,
and then a window of specified size is created to group transactions in specific
sets. Then, instead of a single, all-containing transaction graph, several smaller
graphs are created. These graphs create a sequence that illustrate the temporal
behavior of the entity.

4.4 Test Graph

In order to quantify the legitimacy of a specific transaction, a Test Graph is
created: the transaction is added to the latest window of the behavior sequence,
and a transaction graph is derived from this window, thus containing the test
transaction. It is important to note that by creating the test graph we shift the
focus of our Fraud Detection System from a single transaction to a single graph
constructed by aggregating all the transactions from a window.

5 Self-Organizing Map Analysis

One of the issue with comparing a test graph with a behavior sequence is that
the number of patterns found in the behavior sequence is highly variable, as it
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depends on the window size, the number of transactions, and the complexity
of the relationships between the client and its suppliers. In order to provide a
consistent analysis of the behavior sequence, we first compute a Self-Organizing
map that will regroup similar transaction graphs in the same area of the map.
We then use K-Means to regroup together these similar graphs. This concludes
the training phase. Then in the testing phase we assign a cluster to the test
graph, and calculate the distance on the SOM from the node activated by the
test graph to the centroid of the cluster assigned to the test graph.

5.1 Training Phase

In order to train the SOMs used in our system, we use the feature vectors found
in the behavior graph of the selected client. More specifically, we feed them to
the SOM where all the weights of the nodes have been randomly generated. Each
feature vector will activate a single node, that will then update its weights to
match the value of the histogram, while its topological neighbors will also be
updated (though not as much as the first node). Once all the histograms in the
behavior sequence have been fed to the SOM, we then proceed to score the test
graph.

5.2 Testing Algorithm

While SOMs provide a way to project a high dimensional feature vector in a
topological plane, and regroup similar feature vectors close to each other, they
do not provide by themselves a way to formalize the dissimilarity between two
given feature vectors. In order to do so, we created an algorithm that aims to
compute an anomaly score based on the trained SOM: the K-Nearest Neighbors
Distance Algorithm. This algorithm first uses the K-Means clustering algorithm
to create clusters from the graphs contained in the behavior sequence. The dis-
tance between each node activated by an histogram, and the centroid of the
cluster assigned to it, is computed. A cluster is then attributed to the test graph,
and the distance between the node activated by the centroid of the cluster as-
signed to the test graph, and the node activated by the test graph is calculated.
This distance is then used to compute the z-score of the test transaction. The
intuition behind this algorithm is that the further away from the center of the
cluster, the higher the z-score, and thus the more dissimilar to the members of
the cluster the test graph is. In order to give a legitimacy label, the z-score is
compared with two user-defined thresholds §; and 0o representing the severity
of the classification system.

6 Datasets

In this section we provide details about the datasets used to train and evaluate
our SIF detection system: the History dataset used to train the model, and the
Audit dataset used to test the performance of our system.
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Table 2: Features describing a transaction between two companies.

Feature Type Description
Client Nominal (ID) Identification number of the client issuing the
transaction.
Supplier Nominal (ID) Identification number of the supplier receiving
the transaction.
Account Nominal (ID) Identification number of the bank account to
which the money is transferred.
Date |Continous (Timestamp)|Timestamp indicating the date when the
transaction took place.

6.1 History Dataset

In order to build our data-driven fraud detection system, we use a set of B2B
transactions provided by the SiS-id platform?®, aggregating the transactions car-
ried out between July 2016 and July 2019 between 5,921 companies. We dubbed
this dataset “History”. Table 2 sums up the features available from this dataset.
Depending on the transactions’ sources, more data can be available, such as the
amount of the transaction or details about the goods or services paid by the
transaction, but these pieces of information are not available for every record.
This dataset contains more than 2 million transactions.

6.2 Audit Dataset

A second set of transactions is provided by SiS-id. It consists of the list of
transactions that were analyzed using the expert system of the company in the
past 2 years (July 2017 - July 2019). The dataset, called the “Audit” dataset,
is composed of 108,102 suspicious transactions submitted by 171 unique client
companies. These transactions are attributed a legitimacy label by SiS-id’s fraud
detection platform that we use as ground truth for our analysis.

SiS-Id’s expert system is composed of a rule-based engine that compare the
transaction with fraudulent or legitimate known cases defined by investigation
experts. If the transaction matches one of these cases, then it is assigned the
corresponding label (“low” if fraudulent, “high” if legitimate), while if the trans-
action does not match any cases a “medium” label is assigned to it.

7 Classification Process

In order to evaluate the legitimacy of a transaction, we run GraphSIF with a
set of pre-defined window sizes (ranging from 5 transactions to 200 transactions)
and 9; = 0.50 and d5 = 0.9, using 251 tests transactions previously labeled by
SiS-id’s expert system, and trained on 16168 unlabeled historical transactions.
Results show that the variation in the distance was not high enough to accurately

% https://my.sis-id.com
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Labels Distribution

Transaction Score

Transaction ID

Fig. 2: Score Aggregation - Each of the 251 test transactions (X axis) is classified 40 times
with window size ranging from 5 to 200 with thresholds §; = 0.50 and é2 = 0.9. The uppermost
figure shows the distribution of labels for each transaction. The lowermost figure shows the score

computed from this distribution with weights w;, = 20, w,, = 5 and w; = —5.

determine if a transaction graph was significantly different from the ones in
the behavior sequence. In order to circumvent this issue, we aggregated the
occurrences of each class label for each of the test transaction and reported it in
Figure 2 (upper part, number of occurrences normalized for scale). In this figure
we notice more clearly the different labels given by the analysis of the different
windows. We define three weights wy,, w,, and w; for each of the legitimacy labels,
in order to “reward” legitimate transaction and “penalize” abnormal ones. Then
the weighted average w = who(h)+$’"o(m)+wlo(l) is computed, where o(.) is the
number of occurrences of a label for a specific test transaction. We plot this score
(normalized) in the lower part of Figure 2, computed with wy, = 20, w,, = 5 and
w; = —5.

Finally, the score for each transaction is then compared with §; and ds, as
shown in Figure 3, where the green, orange, and red zones represents the area
where transactions are labeled with the “high”, “medium” and “low” legiti-
macy label respectively. This allows us to label 6 transactions with the “high”
legitimacy label, 15 transactions with the “medium” legitimacy label, and 230
transactions with the “low” legitimacy label.

8 Problem Resolution using GraphSIF

We will now describe how GraphSIF applies to the example defined in section
3, assuming only a single window size w is used. First, a behavior sequence of
size % is created from the N transactions between C' and S. As the N histor-
ical transactions are identical, identical histograms will be created. Then, each
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Flg 3: Score Thresholding with 51 = 0.50 and 51 = 0.90 - Transactions with a score
higher than d; are labeled with a ”high” legitimacy label. A score between §; and J2 is given a

?medium” legitimacy label. A score lower than d2 is given a ”low” legitimacy label.

transaction from ¢y is added to the %th behavior sequence’s graph, and as a
new account (ay) is added, a new graph will be created. Thus, the feature vector
representing this graph will be significantly different from the previous one, and
be labeled as fraudulent by GraphSIF.

9 Experimental Results

In this section, we compare the results obtained in the previous section with the
ones obtained with SiS-id’s rule-based fraud detection system by first providing
an overview of the differences and then focusing on three key metrics for fraud
detection: accuracy, efficiency and maintainability. Unfortunately, due to the
sensitive nature of the business data, the trained model is not publicly available.
However a request might be submitted to the authors in order to obtain an
anonymized sample of the dataset.

We first present three Venn diagrams showing the overlap of labels given by
the rule engine (Rules) and graph-based detection system (Graph). First, we
notice that there are a lot of transactions that has not been given the same
label by both of the detection systems. Most of these difference come from the
fact that numerous “high” and “medium” legitimacy labels given by the rule-
based engine have been labeled with “low” legitimacy labels by the graph-based
analysis. Only 0.01% of the transactions labeled with the “high” legitimacy label
by the rule engine are shared with the graph analysis, as shown in Figure 4a,
while the medium” label is only shared in 0.05% of the transactions (Figure
4b). However, 83.6% of the “low” legitimacy transaction are shared by the two
systems, as shown in 4c.
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(a) “High” Labels (b) “Medium” Labels (c) “Low” Labels

Fig. 4: Overlap of rule-based (“Rules”) and graph-based (“Graph”) analysis clas-
sification results for each label.

9.1 Precision

In order to evaluate GraphSIF’s ability to detect a fraudulent transaction, we
use a definition of precision slightly different from the one traditionally found
in Machine Learning. More precisely, we define the accuracy P = ]‘f,—f of a fraud
detection system as the number of fraud detected by the system d; divided by
the total number of fraud Ny found in the evaluation dataset. In this work we
use the number of transaction labeled with a “low” legitimacy score by SiS-id’s
expert system as Ny.

We use Figure 4c to compute the precision. We have Ny = 9+46 the number
of transactions given a “low” legitimacy label by the rule engine, and d;y = 46 the
number of transactions also given the “low” legitimacy label by the graph-based
analysis, thus giving P = % = 0.836.

While our approach leads to a high rate of fraud detection, the number of
false positives (legitimate transactions labeled as fraud) is also high. False pos-
itives might delay payment and seed distrust between business partners. The
elaboration of a cost-sensitive metric is thus an interesting research direction.
Figure 4 shows that our results differs from the rule engine for the “high” and
“medium” labels. This might be explained by the fact that the data investi-
gated is very different: while the expert system relies on expert knowledge about
the transaction, GraphSIF only considers the relations between companies and
accounts in order to perform its analysis.

9.2 Efficiency

The efficiency of a SIF detection system is the time taken by the system to
assign a label to a suspicious transaction. This metric is of utmost importance,
because the quicker a fraud attempt is detected, the less a system is vulnerable
to the fraud. On average, the training time took roughly 33 seconds using a
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laptop with 7.4 GB RAM running Ubuntu 18.04, while testing the 251 suspicious
transactions took 18 seconds. Thus the time taken by the graph-based analysis to
label one transaction is 71.7 ms for a single window. However, as the final result is
derived from the analysis of all the windows, this score must be multiplied by the
number of windows size, i.e 100/5 = 20 in our case, so E = 20 % 71.7 = 1434 ms.
Thus, there exists a trade-off between efficiency and accuracy, as adding more
windows to the analysis will lead to more fine-grained results, but at the cost of
increasing linearly the processing time and thus the efficiency. However, it is very
likely that GraphSIF computation for each windows size can be performed in a
parallel fashion, thus reducing the computation time for testing a transaction.

9.3 Maintainability

The maintainability of SIF detection system represents the time and effort it
needs to adapt to a new situation. In the context of GraphSIF, this time roughly
corresponds to the time it takes to update the data model when more historical
transactions are added to the dataset. Experiments show that the training time
for the graph-based system is 33 seconds on average for each window size. It is
slightly higher (35 seconds) for small window size as more graphs are created
from the dataset. This training time corresponds to the maintainability time,
and it relatively high, as several steps need to be conducted before the model is
complete.

10 Conclusion

In this paper, we introduce GraphSIF, a novel feature-engineering process that
creates a feature vector based on the relationship between a client company and
the accounts it used to pay its supplier company, providing a new tool to describe
the underlying transaction mechanism involved in their interaction.

Several recent papers such as [11] [5] and [7] propose an human interpreta-
tion of the patterns uncovered by their approach and how they might suggest
illegal behavior. The focus of our work is to emphasize on the variation of behav-
ior, instead of the behavior itself. However the relation between the uncovered
patterns and fraud attempts is currently under investigation.

In conclusion, we used the temporal information contained in the transactions
of the History dataset to create a behavior sequence composed of the transactions
emitted by a client aggregated in several bounded time windows. We showed how
to use this behavior sequence to create a data model based on Self-Organizing
maps representing the behavior of a client company through time. We then used
this data model to infer the legitimacy of new transactions using the K-means
clustering algorithm, along with an aggregation algorithm allowing us to combine
the results obtained for different window size in a comprehensive score.

We presented the result of our classification system first on a single client
to investigate its performance locally, and showed that the results differs widely
from the rule engine. However, GraphSIF shows a very good accuracy locally,
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and quick training and testing time, and thus can be used in a complementary
fashion with the expert-based analysis.
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