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Abstract
Supplier Impersonation Fraud (SIF) is a rising issue for Business-to-Business
companies. The use of remote and quick digital transactions has made the task
of identifying fraudsters more difficult. In this paper, we propose a data-driven
fraud detection system whose goal is to provide an accurate estimation of
financial transaction legitimacy by using the knowledge contained in the network
of transactions created by the interaction of a company with its suppliers. We
consider the real dataset collected by SIS-ID for this work.

We propose to use a graph-based approach to design an Anomaly Detection
System (ADS) based on a Self-Organizing Map (SOM) allowing us to label a
suspicious transaction as either legitimate or fraudulent based on its similarity
with frequently occurring transactions for a given company. Experiments
demonstrate that our approach shows high consistency with expert knowledge on
a real-life dataset, while performing faster than the expert system.
Keywords: fraud detection; graph-based feature engineering; financial networks;
B2B network

1 Introduction
Fraud is a recurring issue in many domains such as credit card transactions, in-
surance, telecommunication, and finance. Supplier Impersonation Fraud (SIF) is a
specific case of identity theft, targeting a company rather than an individual. This
type of financial fraud is widespread, resulting in the loss of hundreds of thousands
Euros in 2018, and ranked 1st most frequent fraud affecting French companies in
the latest survey about cyber-criminality conducted in 2019 by Euler Hermes and
DFCG [12]. Supplier impersonation consists of a fraudster impersonating a member
of a company providing goods and services to another, in order to trigger a payment
on an account controlled by the fraudster [2].

We can illustrate SIF with a toy example. Let C be a company that produces
computers. In order to acquire the necessary components for the fabrication, C buys
electronic chips from S. Let F be a fraudster. A SIF takes place when F diverts a
payment from C originally destined to S, usually by impersonating S in C’s eyes.
Such an impersonation can take several forms: the tampering of an invoice from
S (similar to phishing attacks), impersonating a high-ranking employee of S and
requesting the next payments to be paid on an account controlled by the fraud-
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ster, or even requesting the payment of imaginary goods and services on behalf of S.

As more and more companies are using digital tools to process transactions due
to numerous advantages provided by digitalization, the risk of supplier imperson-
ation has never been higher. However, the tools and systems required to detect SIF
have not evolved at the same pace, and still mostly rely on expert-based input and
monitoring. This approach might not be the most suitable to handle the increasing
volume of digital transactions. Thus, the need for automated, data-driven SIF de-
tection system arises.

In this work, we present GraphSIF, a SIF detection system that uses a B2B trans-
actions dataset to construct a graph modeling the relationships between client and
supplier companies in a B2B ecosystem, and describe how these relationships can
be used to derive useful knowledge in order to assert the legitimacy of transactions.

We use the transaction network to create a time-evolving behavior sequence sum-
ming up the evolution of the graph through time. We then compare the new graph
created by adding a suspicious transaction to the behavior sequence and investi-
gate the potential discrepancy it introduces. If this discrepancy is low then the
transaction is considered as legitimate, and if the discrepancy is high then the
transaction is considered as likely fraudulent. In order to quantify this discrepancy,
a Self-Organizing Map (SOM) is trained on the behavior sequence, and a clustering
algorithm is used to quantify the similarity of the tested graph with the ones in the
behavior sequence.

Finally, we analyze the results of GraphSIF using a set of transactions labeled
by experts from the SiS-id company, in order to evaluate its performance, and
investigate its potential shortcomings. We found that GraphSIF with the selected
parameters shows high consistency with the expert system when focusing on low-
legitimacy transactions.

1.1 Contributions
The contributions of this paper are the following: a graph-based feature engineering
process relying on a bipartite graph constructed from transactions between com-
panies in a B2B context, a classification system that uses Self-Organizing Maps
and K-means clustering to investigate the legitimacy of a new transaction, and a
comprehensive evaluation of the proposed classification system using data from a
real-life B2B ecosystem.

1.2 Previous work
This paper extends the conference paper [11] presented in Complex Networks 2019,
by proposing a more thorough description of the algorithms used to perform the
fraud detection process, and by proposing an analysis of the system’s performance
on a large number of companies.
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2 Related Work
Due to the sensitivity of the data linked to supplier fraud detection for victim com-
panies, we have not been able to find any publicly available research work directly
related to SIF. However, we can find several systems designed for fraud detection
that also use a network-based approach:

In [25] several network-based fraud detection use-cases are introduced, showing
examples of successful use of graph theory to detect bank fraud, insurance fraud
and e-commerce fraud. However, the authors focus on specific industrial examples
without proposing a formalized evaluation of their solution.

Akoglu, Tong and Koutra [4] propose a survey on anomaly detection using graphs,
notably in the domain of telecommunication fraud detection. An approach closely
related to our own is found in [3] where an egonet (1-step neighborhood graph)
is used to derive features describing a node. However, this approach is applied to
a static graph that does not evolve through time, contrary to our approach. The
analysis of dynamic graphs through the use of windows, as it is the case in our work,
is akin to the ideas developed in [23] and [21] where the graphs are analyzed using a
moving window and detecting anomalous connectivity variation [23] or edges p-value
variation [21]. To the best of our knowledge there is no previous attempt at com-
bining a window-based analysis as seen in [23] with the feature approach used in [4].

Van Vlasselaer et al. [27] proposes an approach somewhat similar to ours, us-
ing graphs to represent interactions between companies in order to detect social
security frauds. However, their work focuses on the application of social network
algorithms on large graphs of interconnected entities, whereas our work considers
smaller neighborhood graphs, focused on the behavior of a single company. In ad-
dition, the system proposed in [27] bases itself on a propagation algorithm and
Random Logistic Forests to perform their analysis, and does not make use of Self-
Organizing Maps.

Furthermore, most of the aforementioned research uses supervised algorithms as
they rely on the existence of known legitimate and fraudulent neighboring nodes
to conduct their analysis. Our work proposes an unsupervised approach that does
not take into account the legitimacy of neighboring nodes to propose a label, but
instead uses the topology of the ego network.

Finally, as our approach makes use of significant patterns found in the 2-step
egonet (the set of vertices found at most 2 edges away from the considered vertex)
of a company, a parallel can be drawn with the discovery of network motifs, for
example, as presented in [20]. However, the discovery of network motifs relies on
the observation of patterns occurring with a statistically significant number of oc-
currences compared with random graphs showing similar topology. Our approach
uses a different technique to create patterns from the egonet, by investigating the
remaining connected sub-graphs when the ego node is removed. The techniques
used in network motif analysis could however be used to discover the occurrences
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of payment motifs across for a number of targeted companies and thus assess if
recurring payments behavior are shared in the payment ecosystem.

To the best of our knowledge, our work is the first to use a graph-based approach
paired with Self-Organizing Maps in order to address the issue of SIF detection.

3 SiS-id Fraud Detection Platform
While SIF is a widespread fraud, it is mostly dealt with internally by companies
victim of the fraud. There are three main reasons that motivate the lack of col-
laboration in SIF detection: firstly, being public about being victim of a fraud can
cause a breach of trust and bad publicity for the company. Secondly, due to the
competitive nature of the Business-to-Business ecosystem, information about the
relationship between a client and its suppliers is a sensitive knowledge that could
lead to economic attacks if divulged. Finally, having a successful in-house fraud
detection system provides an edge for the company that owns it, and thus such a
system would not be willingly shared with competitors. However, the cost of creat-
ing and maintaining complex fraud detection systems is sometimes prohibitive for
a large number of companies.

In this context, the company SiS-id [1] proposes to act as a trusted third party
focused on Supplier Impersonation Fraud detection and mitigation. The company,
started in 2016, develops several SIF mitigation tools that other companies can use
"as a service". SiS-id emphasizes strongly on the privacy and security of the data
shared by their clients that they use to develop detection techniques. Currently,
SiS-id proposes two SIF mitigation systems: firstly a fraud detection system based
on the relationship network created in the data shared by each of its clients, and
secondly a secure repository for trusted bank accounts corresponding to verified
suppliers. In this paper, we propose a data-driven system that proposes a way to
improve SiS-id’s current expert-based system to perform SIF detection.

The remainder of this section describes the dataset available to SiS-id to perform
SIF detection, along with the system they implemented on the platform.

3.1 History Dataset
The SiS-id SIF detection system uses a set of historical transactions performed by
SiS-id’s clients. In this section, we describe this dataset in detail.

The set of B2B transactions used by the SiS-id detection system is an aggregation
of the payments performed by SiS-id’s client companies between July 2016 and July
2019. These transactions consists of a feature vector of 4 features : client identifica-
tion number, supplier identification number, target account identification number,
and date of the payment. For the sake of storage, all of the transactions involving
the same client, supplier and destination account during a single month are aggre-
gated, resulting in the creation of a fifth feature representing the number of similar
transactions issued during the month. The time granularity of the transaction is
[1]https://www.sis-id.com/
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thus a month. Figure 1 shows an overview of the features.

The amount of payment is a feature found in most financial fraud detection sys-
tems (as seen in [8]). However, this data is very critical for companies (as described
in 3) , this feature was not shared with SiS-id by the companies that agreed to
collaborate on the creation of the History dataset. Indeed, disclosing the amount of
the transactions issued to their suppliers might divulge economic insights regarding
their financial well-being, as well as provide a useful baseline for potential frauds.
Thus, GraphSIF relies only on payments without their amounts.

In order to preserve the confidentiality of the data, a secure hash function is ap-
plied to the three distinct identifiers (client, supplier, account) so that no link can
be established between the data in the history and real-life companies. While this
mitigates the risks of damage in case of data leak, it also means that the same com-
pany will have a different identifier whether it has issued a transaction, or received
a transaction.

At the time of writing, 950,929 transaction records are available in the History
dataset. These transactions are issued by 6,063 unique companies. This number is
more than the number of SiS-id’s client companies. This is explained by the fact
that SiS-id’s client companies can represent a group of several branches such as a
multinational group. In this case, each firm possesses its own identification number,
but only a global entity will be SiS-id’s client. 215,056 unique supplier companies
are also found in the dataset, along with 262,157 unique bank accounts to which a
payment was transferred. The fact that more bank accounts than supplier compa-
nies exist indicates that some suppliers use more than one bank account to be paid.

This dataset represents all the transactions performed by all of SiS-id clients for
two years. However, there is no available information about the legitimacy of these
data, and thus no knowledge of which transactions are fraudulent and which are
legitimate.

Due to the economic sensitivity of the data for the companies (as discussed in 3
, no sample can be made publicly available at the moment. However, a request for
data samples can be submitted directly to SiS-id through their website [2], or by
contacting Laurent Sarrat, co-author of this paper.

3.2 Audit Dataset
A second set of transactions is available thanks to SiS-id. It consists of the list of
transactions that were analyzed using the expert system in the past 2 years (July
2017 - July 2019). The dataset, called the "Audit" dataset, is composed of 218,325
suspicious transactions submitted by 317 unique client companies. The transactions
underwent the fraud detection process devised by SiS-id, and were labeled with a
legitimacy label : "high" indicate that the transaction have a high chance of being
legitimate, "medium" meaning that the rule engine lacks the necessary information
[2]https://www.sis-id.com/#contact
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Feature Type Description
Client Nominal (ID) Identification number of the client issuing the trans-

action.
Supplier Nominal (ID) Identification number of the supplier receiving the

transaction.
Account Nominal (ID) Identification number of the bank account to which

the money is transferred.
Date Timestamp (Month) Timestamp indicating the date when the transaction

took place.
Table 1: Structure of the History data record. The History dataset is composed of
950,929 records collected from 6,063 companies over two years.

to assert if the transaction is legitimate or not, and "low" means that the transac-
tion’s legitimacy is low, which can be the case if the transaction is either invalid or
fraudulent.

This dataset possesses the following properties:
1 It contains real life queries for transaction validation made by companies.
2 Each of the transaction of this dataset contains a target variable corresponding

to the classification done by the rule engine.
3 The transactions were cross-validated by the clients for consistency.
The legitimacy label found in the dataset might tempt us to use this dataset to

perform supervised learning. However, this approach has a major drawback: by using
data analysis on a dataset that is the result of the rule-engine system (described
in the next section), we will only manage to "rediscover" the rules. However, this
dataset might be used as a validation set for other fraud detection systems, in
order to compare their performance with SiS-id’s expert system and investigate the
potential convergence of their results.

3.3 SiS-id Expert System
The fraud detection system SiS-id currently runs on its platform[3] is an expert
fraud detection system, where a potentially fraudulent transaction is examined in
order to assert its legitimacy, using knowledge available on the platform. This kind
of systems inherits directly from the tradition of fraud detection teams ([18]), and
aims to formalize their knowledge in order to efficiently process a large number of
transactions. The fraud detection system designed by SiS-id consists of two sepa-
rate steps: a feature engineering step where the features from the tested transaction
are used to gather additional information, and then the gathered data is matched
against a set of expert-defined rules in order to assert the transaction’s legitimacy.
For confidentiality reasons, it is not possible to discuss the inner workings of the
system in detail. However, it has been designed by a team of SIF detection experts
and thus provides a valid approximation of the expert knowledge.

4 GraphSIF Overview
GraphSIF is a SIF detection system based on anomaly detection that uses the rela-
tionships created between the companies interacting in a B2B environment in order
[3]https://my.sis-id.com
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Figure 1: GraphSIF overview.

to determine the legitimacy of a transaction, given the company that issued the
payment.

This system is composed of four phases:
1 A pre-processing phase, where historical transactions are sorted by the com-

panies that issued them, and grouped in time windows in order to describe a
time-evolving sequence composed of several fixed-length windows of transac-
tions, describing the behavior of a specific client. This phase is described in
Section 5.

2 A feature engineering phase where each of the windows of transactions is
transformed into a graph. This graph sums up the interactions that occurs
between the client and its suppliers during the specified windows. Section 6
describes this phase.

3 An anomaly detection phase where a specific transaction (the "suspicious"
transaction) is added to the most recent graph, creating a "test graph". This
graph’s similarity with the ones occurring in the historical sequence is com-
puted. Section 7 provides more details about this phase.

4 A label attribution phase where the similarity of the test graph given a set
of different sizes of the windows of transactions are aggregated. A legitimacy
label derived from the aggregation score is computed. Details about this phase
are found in Section 8.

Figure 1 shows an overview of the process. A transaction t involving the client C,
the supplier S and the account A at a date d is given as input to GraphSIF. For a
set of window sizes ws1, ws2, ..., wsk, the following process is repeated:
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First, the identifier of C is used to gather all transactions involving C (Hist(C))
from the History dataset (that contains the list of all the transactions occurring
between all the companies of the B2B ecosystem). Then, this list of transactions is
ordered by date of occurrence and split in N fixed-size windows of size wsi where
i ∈ 1, ..., k. The sequence of transactions (dubbed "behavior sequence") is then sent
to the next phase. An the same time, the oldest transaction of the most recent win-
dow of the sequence (wN ) is removed and t is added as its most recent transaction,
creating the "test window" wt. This step allows us to isolate the transaction relevant
to the specific client and suppliers potentially victims of the supplier impersonation
fraud.

In the next step, the transactions found in each window w1, ..., wN and wt are used
to create a graph that represents the relationships between C and all of its suppliers.
Each window is complemented by a set of transactions from the History dataset
Hist(Swi), where Swi is the set of supplier involved with C during wi found in the
History Dataset. Similarly, Hist(Swt) is used to create the test graph corresponding
to wt. The graphs are then transformed into a histogram that uses relationships
between the accounts paid by C and used by its supplier as characterizing features
of the graphs. Each of the graphs is converted into its corresponding histogram Hi,
thus creating the sequence H1, ..., HN and Ht the histogram corresponding to the
test graph. This step allows us to transform a sequence of transaction into a feature
vector representing the relationship between a client and its suppliers, taking into
account the historical behavior of the client.

These histograms are then used to assert the similarity of Ht with the histograms
of the behavior sequence H1, ..., HN . First, the histograms are clustered using the
clustering algorithm K-Means ([17]), and then are used to train a Self-Organizing
Map (SOM) ([9]). The k centroids C1, ..., CK are also located on the SOM. Then,
Ht is assigned a cluster using the previously trained K-Means algorithm, and its
similarity with the other members of the cluster is computed using the z-score met-
ric. This anomaly detection step allows the system to distinguish usual relationship
and unusual ones, that are more likely to be fraud attempts.

Once all the z-scores corresponding to the set of window sizes ws1, ..., wsk is com-
puted, a threshold function is applied and a weighted mean is used to aggregate the
results into a label indicating the legitimacy of the transaction. This step is needed
to consider the different granularity of each windows, and to produce a label that
synthesizes all the knowledge provided by the previous analysis.

In the remainder of the paper, we first describe the different algorithms used at
each phase of the system, and discuss the underlying motives behind their design.
We then provide an experimental evaluation of the system using the labeled trans-
actions found in the Audit dataset that contains the results of the expert system
designed by SiS-id.
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5 Transactions Pre-Processing
This section details the first phase of the system, where the transactions from the
History dataset are pre-processed in order to create local behavior profiles. The goal
of this pre-processing is to partition the transactions emitted by a client C in order
to detect repeatability in its payments.

5.1 Company Local Profile
In this phase of the fraud detection system, all the transactions involving the client
C involved in the tested transaction t = [C,A, S, d] are gathered from the History
dataset. The History dataset contains all the NH transactions made by all clients
in the studied B2B environment. By isolating only the transactions issued by C, we
create a local profile of C. As shown by [7], the use of local profile allows to detect
anomalous behavior that would have been deemed legitimate when using a global
profile. This local profile is dubbed Hist(C).

5.2 Behavior Sequence
As companies evolve and thus interact differently with suppliers or clients, the
transactions they issue or receive change as time passes. In order to quantify this
evolution, we first order all the transactions in Hist(C) temporally. This gives us
an overview of C’s interaction with its supplier through time. Then, in order to
characterize this behavior, we partition Hist(C) into sets of transactions of size
ws, that we call "windows". Using fixed-length windows in order to describe the
behavior of a system is a well-known technique, and has been successfully used in
fraud detection systems such as ([24]) and ([21]).

5.3 Window creation
In order to create the windows, two kinds of partitioning are possible: by transac-
tion date (from July 1st to August 1st for example), or by transaction rank (10th
transaction to 5th transaction, 5th transaction to 1st transaction...). A major issue
with partitioning by date is that there is no guarantee that the transactions will
be homogeneously divided into the different windows. In the most extreme case, all
transactions might occur in a single window, and all the other windows are rendered
useless for the system. Thus, creating windows by transaction order allows us to
ensure that an equal number of transactions will be found in each windows.

The number of windows N created from Hist(C) is inversely proportional with
the size ws of the windows: N = NH

ws . In the case when NH is not a multiple of ws,
the NH%ws oldest transactions in Hist(C) are discarded, where % is the modulo
operation. Indeed, the oldest transactions are the least likely to inform us of a fraud
in the present.

The size ws of the windows has a major impact on the system. A small window
size creates more data points for the system to analyze, at the cost of a decreased
variability in the possible payment behavior, and thus a less detailed view of C’s
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Figure 2: Behavior sequence creation The behavior sequence is created by partitioning
the list of transactions issued bt C in the History dataset into sequential windows of size
ws.

behavior. Inversely, a larger window allows for more detailed view of the system, but
less input will be provided to the system. Additionally, adding more transactions
might add too much noise to the window and thus obfuscate meaningful patterns.
Therefore, a careful trade-off has to be found for ws. We propose a way to solve
this issue in Section 8.

5.4 Test Window
In order to assert the legitimacy of a singular transaction, we use the previously
partitioned sequence as a basis. The key hypothesis is that a legitimate transaction
will not significantly disturb the payment behavior of C, while a fraudulent trans-
action will be different from the previously recorded behavior. The transaction to
be tested is added to the most recent windows of the sequence, whose oldest trans-
action has been removed, thus simulating the occurrence of the new transaction
as the next step in the sequence. Indeed, if only a single transaction was tested
against the partitioned sequence, an anomaly would always be found due to the
discrepancy in the number of transactions.

In the next section we detail how the relational data found in partitioned sequence
(called "behavior sequence") and the test window is extracted and used to assert
the legitimacy of the tested transaction.

6 Graph-based Feature Engineering
In this phase, each of the windows created in the pre-processing phase is transformed
into a graph. This graph, called "transaction graph", allows the representation of
the relationships between companies as a mathematical structure. The graph is
composed of companies and accounts represented as vertices (also called "nodes"),
while the flow of money between companies creates the edges of the graph. How-
ever, in order to use the graphs derived from the behavior sequence as a basis for
the anomaly detection system, they need to be converted into a structured data
form (commonly referred to as "feature vector") in order to be used. This type
of transformation is known as "graph embedding" ([15]). We propose a tailored
graph embedding approach in order to express a transaction graph as a feature
vector called "graph histogram". This approach exploits several properties of the
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transaction graph in order to construct the embedding. The graph histograms cor-
responding to the behavior sequence are then used to train our anomaly detection
system, while the graph histogram corresponding to the test windows is investigated.

The role of graph theory in GraphSIF is to transform the four attributes found in
the History dataset into a set of graph-theoretic features allowing to perform fraud
detection by taking into account the underlying relationships between companies
and bank accounts found in the dataset. In the original form of the History dataset,
the data points cannot be used directly to construct meaningful models, as their
feature are categorical variables. The use of graph theory allows GraphSIF to express
the links between each client and their suppliers through the bank account that
they share, and to transform the list of categorical variables into a set of embedded
graphs. Without this step the model could not be computed and thus fraud detection
could only be performed on the reduced subset of original features from the History
dataset.

6.1 Transaction Graph Creation
In this subsection, we describe the process of creating a transaction graph from a
set T of transactions (as a reminder, a transaction t has the following structure:
t = [Ct, At, St, dt] where Ct is the client issuing the transaction, At is the account
receiving money from Ct, St is the supplier receiving the transaction, and dt the
date when the transaction takes place). A graph G =< V ,E > is composed of two
sets: a set of vertices V that represents the entity of the targeted system, and a set
E of edges that represents the relationship of the entities, and e ∈ E =< n1, n2 >

with n1, n2 ∈ V 2.

Algorithm 1 shows the process that creates a transaction graph GC,T from a set
of transaction T . An example of output of Algorithm 1 is given in Figure 3. The
algorithm takes as input a client C and parses T in order to map all of the accounts
and suppliers involved in a transaction with C as vertices. For each transaction, two
edges are created: one that links C and the account involved in the transaction, and
one that links the account with the supplier receiving payment for the transaction.
If a vertex representing an account or a supplier is already in the vertices set, it is
not duplicated. Similarly, since edges already in the edge set are not duplicated, an
occurrence metric is updated in both cases in order to prevent the loss of informa-
tion.

If the algorithm stops at this point, only the payment information related to C is
used. This means that if an account is used to pay a supplier S by a client different
than C, it will not appear on the graph. In order to add the information provided by
other clients, the accounts they use to pay S are appended to the graph, along with
edges that link them to S. This addition allows us to make use of the collaborative
knowledge of the other clients.

If the amount of payment was available, a possible use for the feature would be to
assign weight to the different edges instead of using a simple binary weight. While
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Algorithm 1: Transaction Graph Creation
Data:

• C: identifier of Client company
• T : Set of transactions

Result:
• V : Set of vertices of GC,T

• E: Set of edges of GC,T

1 Vc = C, Vs = [], Va = [], E = [];
2 foreach t = [Ct, At, St, dt] in T do
3 if Ct = C then
4 Va.insert(At);
5 Vs.insert(St);
6 E.insert((C,At));
7 E.insert((At, St));
8 T .remove(t);
9 foreach r = [Cr, Ar, Sr, dr] in T do

10 if Sr in Vs then
11 Va.insert(Ar);
12 E.insert((Ar, Sr));
13 N = Vc ∪ Vs ∪ Va

having no impact on the graph structure, this might indicate the accounts privileged
by a client company.

6.2 Properties of a Transaction Graph
A transaction graph GC,T shows interesting properties. It is a directed graph, as
the edges represent the movement of funds from a client to a supplier through
an account. A transaction graph is also a bipartite graph. A bipartite graph is
defined in ([5]) as a graph whose vertices can be divided into two disjoint and
independent sets u and v and such that every edge connects a vertex in u to one
in v. The transaction graph satisfies this property as the created edges are only
from company to account and from account to company (no account-to-account or
company-to-company edges exist in the graph). Table 2 shows the representation
of the transaction graph T1 (shown in 3) as a connectivity matrix: each of the row
corresponds to a company vertex, while a column represents an account vertex.
The value in the row indicate the number of times a transaction has been issued
involving the specified company and account.

From the connectivity matrix, it is apparent that the sole vertex representing the
client company (C1 in the example) plays a central role in the transaction graph.
Centrality is an important metric in graph as it informs how a vertex can influence
its neighbors. More specifically, the graph theoretic center is defined in ([5]) as the
vertex with the smallest maximum distance to all other vertices in the network. This
vertex is always the company vertex C in the case of a transaction graph GC,T . We
use this property to create payment patterns in order to characterize transaction
graphs.

6.3 Payment Patterns
In this subsection, we describe how we use the specific properties of a transaction
graph in order to create a set of features capturing the transaction relationship
between a client and the accounts used to pay its suppliers. Our approach is akin
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Figure 3: Transaction Graph T1. The transaction graph is created by assigning vertices
to every account and supplier companie found in the set of transactions. Edges are created
when an account and a supplier company are found in the same transaction.

Table 2: Connectivity Matrix of Transaction Graph T1. Each column represents an
account vertex. Each row represents a company vertex. Numbers are the number of time
a transaction created an edge between the two vertices.

A1 A2 A3 A4 A5 A6 A7
C1 1 1 1 1 1 1 0
S1 1 0 0 0 0 1 1
S2 0 1 0 0 0 0 0
S3 0 0 1 0 0 0 0
S4 0 0 1 1 0 0 0
S5 0 0 0 1 0 0 0
S6 0 0 0 0 1 0 0

to the one developed by [3] where a similar featuring process is used to characterize
ego-network of specific nodes in the graph. In order to create the features, we first
remove the client company’s vertex from the graph (C1 in Figure 3), thus creating
a set of D of disconnected sub-graphs composed of account vertices linked to sup-
plier vertices. Among these D sub-graphs (that we dubbed "payment patterns"),
if we only take into account the type of the node ("Supplier" or "Account") and
not its label ("S1" or "A4"), then it might occur that some of these sub-graphs are
isomorphic, meaning that they share the exact same structure ([5]). It is the case
for example in Figure 4 where the sub-graph composed by (S2,A2) and (S6,A5) are
isomorphic.

This set of features can also be translated in the connectivity matrix shown in
Table 2. Removing the central node means ignoring the first row of the matrix. A
connected sub-graph can be connected in two ways: when a supplier is connected
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Figure 4: Subgraphs (ṕatterns’) characterizing the transaction graph. Patterns are
the connected subgraphs found when removing the node C from the graph. They represent
suppliers and accounts found together in the set of transactions.

to a specific number of accounts (which is the case for S1), or when an account is
connected to a specific number of account (such as A3). The case of Pattern C is a
special one where the pattern satisfies both of these conditions.

Functionally speaking, these connected sub-graphs indicate how the client inter-
acts with its suppliers, and thus shows a "map" of the client’s activity in the set of
T transactions used to create the transaction graph.

In Figure 5, we calculate the possible number of unique payment patterns that
can be created for a specific number of transactions based on Algorithm 1. This
number seems to grow at an exponential speed, meaning that for x transactions
used to build the transaction graph, xx possible unique payment patterns can be
found. This number corresponds to the number of features of an histogram. This
fast growth in the number of features indicates that our data point might be placed
in a very sparse high-dimensional space. Thus our system might fall prey to the
curse of dimensionality [26].

If the amount of the transactions were available, it could be used as a way to
discriminate identical patterns of transactions by computing the cumulative amount
found in a pattern and adding it as a feature for the anomaly detection model.

6.4 Feature Set Creation
In order to create an overview of a client’s behavior through time, we first use the
transactions found in each N windows created in the feature engineering process to
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Figure 5: Number of possible payment patterns when using up to 10 transactions.
The possible patterns are computed from the maximum number of possible connections
between the vertices of a given set of transactions.

Table 3: Examples of featurized sets of transactions
Transaction set ID Pattern A Pattern B Pattern C Pattern D
T1 2 1 1 0
T2 3 3 0 1
T3 1 0 0 0

create the N corresponding graphs centered on the client C. A "test graph" is also
created for the test window. We then transform the graph into a histogram with
the technique previously described, thus creating N histograms where the features
are the unique connected sub-graphs (i.e unique payment patterns) and the values
are the number of occurrences of the pattern in the graph. Table 3 shows an ex-
ample of such a process with T1 representing the graph shown in 3 and T2 and T3
representing other graphs. Similarly, the histogram corresponding to the test graph
is also created using the same process. These histograms are then used as the basic
features of our anomaly detection system.

Figure 6 shows an overview of the feature engineering process, proposed as a
reminder. First, the transactions’ windows created in the pre-processing phase are
converted into a transaction graph representing the relationships between a client
and the accounts it uses to pay its supplier. Then the transaction graphs are in turn
transformed into a set of feature vectors composed of the number of sub-graphs
found in the transaction graphs.
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Figure 6: Graph histogram sequence creation. First, each of the windows of the trans-
action sequence is transformed into a graph composed of companies and accounts. Then
the graphs are transformed into histograms using their connected subgraphs.

7 Anomaly Detection
In this section, we describe the anomaly detection system we use in GraphSIF in
order to assert if the test graph created by the tested transaction and the most
recent transactions of C is similar to the graphs found in C’s behavior sequence
created from C’s historical transactions.

The anomaly detection system relies on two main building blocks: a parametric
clustering algorithm (K-means ([17])) that create clusters of transaction graphs
represented as histograms according to their similarity, and a single-layer neural
network called a Self-Organizing Map ([10]) that projects multi-dimensional fea-
tures such as the histograms into a two-dimensional space, in order to facilitate
the computation of distance between feature vectors and to alleviate the curse of
dimensionality ([26]) that states that the more dimensions, the more difficult it
becomes to compute a meaningful distance between two feature vectors.

7.1 Overview
Figure 7 shows an overview of the anomaly detection process. First, the N his-
tograms created at the end of the feature engineering phase are regrouped into
clusters thanks to the K-means algorithm. Each of the histograms are associated
with their clusters, and the centroid of each cluster Ci with i ∈ K is also computed.
K is the number of clusters set as the parameter for the K-means algorithm.

Then, the histograms are used to train a Self-Organizing Map (SOM). In order to
do so, each of the histogram is fed to the SOM, where a unique neuron (also called
"node") is activated. The weights of this node and the eight neighboring ones are
then updated in order to match the values of the histogram. The operation is re-
peated for each of the histograms until every one of them is associated with a node.
Several histograms can be associated with the same node. Finally, once the SOM is
trained, the centroïd of each cluster is fed to the SOM and the node activated by it
is retrieved. This creates the "SOM model" that is composed of the nodes trained
with the histograms along with the nodes corresponding to the centroids.

Once the SOM model created, when an histogram corresponding to a test graph
needs to be evaluated, it first goes through the clustering phase undergone by the
other histograms in order to be assigned a cluster c. Then, it is fed to the SOM in
order to find the node activated by it. The distance between this node nt and the
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Figure 7: Overview of the anomaly detection process. First the histograms from the
training dataset are clustered using k-means, and fed to a Self-Organizing Map. The his-
togram corresponding to the tested transaction is compared with the model, and its simi-
larity with the other histograms from its cluster is computed.

node activated by the centroid of the cluster c (nc) in the SOM (Dt) is retrieved,
along with all the distance between the nodes activated by the members of c and
nc. All of these distances are then used to compute the z-score ([1]) of Dt. The
z-score is a statistical measure that tells us how many variation away a data point
is from the mean. The higher the z-score, the less similar an histogram is from the
others.

In the remainder of this section we detail the different algorithms used to obtain
the z-score from our input data.

7.2 Training
In this subsection, we detail the training of the two models (the K-Means algorithm
and Self-Organizing Map)) used in the anomaly detection system. Training the
models means that we use the historical histograms created at the end of the graph-
based feature engineering phase to fit the models so that they accurately represent
the past behavior of the considered client. The training phase is divided in three
parts: the histogram clustering where the histograms are assigned a cluster, the
SOM training where the weights of the nodes of the SOM are adjusted to match
the value of the histograms, and finally the histograms projection where the SOM
nodes corresponding to the histograms and centroids are determined in order to be
used in the testing phase.

7.2.1 Histograms Clustering
Clustering the histograms is the first step of the training process. It consists of using
the K-Means ([17]) algorithm on the set of historical transactions in order to assign
them a cluster based on their similarity according to a selected distance metric.
K-Means is a well-known clustering algorithm that assigns clusters to feature vec-
tors according to their proximity to a centroid that is the mean of the member of
the clusters when the algorithm reaches convergence. This proximity is computed
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Algorithm 2: Histograms clustering using K-Means
Data:

• H = (h1, ..., hN ): Set of histograms (observations)
• C(1) = (C

(1)
1 , ..., C

(1)
k ): Set of centroïds at time 1

Result:
• S

(t)
i : histograms for each clusters.

• C(t) = (C
(t)
1 , ..., C

(t)
k ): Set of centroïds at time t

1 Init(C(1));
2 while Not convergence do
3 S

(t)
i = {hp : ∥hp − C

(t)
i ∥2 ≤ ∥hp − C

(t)
j ∥2 ∀j, 1 ≤ j ≤ k};

// assign the histograms to the closest centroïd.

4 C
(t+1)
i = 1

S
(t)
i

∑
hj∈S

(t)
i

hj ;

// calculate the new position of the centroïd as the mean of the
observations in the new cluster.

5 t = t+ 1

according to a distance metric such as the Manhattan distance or the Euclidian
distance. We use the Euclidian distance in our current implementation.

Algorithm 2 shows an overview of the algorithm.

When using K-means, it is very important to carefully choose the number of
clusters K so that it represents accurately the underlying distribution of the data.
Due to time constraints a thorough analysis of the optimal number of parameters
could not be performed. However, a preliminary experimental study conducted on
a selected test company showed that K = 3 seems to yield the best results in terms
of stability of the cluster.

The motivation behind the use of a clustering algorithm as a first step in our
training process is to partition the local profile of a user in order to detect re-
occurring transactions graphs. As a graph represents the interaction of a client
with its supplier, it is logical to think that more than one type of transaction graph
might occur in the lifetime of the client company. For example, assuming that the
transactions occur homogeneously every month, two suppliers might be paid every
sixth month using a specific account each, while three other suppliers might use
only one account to be paid every two months. These two examples will create
different transaction graphs throughout the behavior sequence, all sharing similar
properties. These transaction graphs will be assigned different clusters by the clus-
tering algorithm, thus identifying two different component of the client’s behavior.
Thus, clustering the graphs into different clusters allows us to further decompose
this behavior.

This research could be furthered by studying the different clusters found and
determining if they relate to a real behavior for the client company (such as the
acquisition of materials, taxes payments, and so on). However, in the context of
fraud detection, we solely focus on the fact that the clusters can be used as a point
of comparison for new transactions graphs.
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Alternative clustering algorithms such as the k-medoids algorithm ([22]) or x-
means algorithm ([16]) might be investigated in order to optimize the clustering
process.

7.2.2 Self-Organizing Map Training
One of the issue with using the transaction patterns described in the feature engi-
neering phase as the dimension for our feature vectors is that we do not have direct
control on the dimension of said feature vectors. Furthermore, the number of pos-
sible patterns grows exponentially with the number of transactions that are found
in the set used to create the underlying transaction graph. This fact leads to two
major issues: firstly, the feature vectors representing the algorithm might be pro-
jected in a high-dimensional but sparse feature space, thus resulting in artificially
high distance due to the curse of dimensionality. Secondly, it is hard for a human
to interpret the notion of proximity in such a high-dimensional space. In order to
alleviate these two issues, we use a Self-Organizing Map, and more particularly a
Kohonen network. ([19],[9],[10]). This type of network aims to organize all of the
feature vectors in a two-dimensional plane according to their similarity.

A SOM is an unsupervised neural network based on competitive learning, in the
form of a neural network where only one neuron (also called node) is activated at
any one time. The specificity of the Kohonen network is that the single computa-
tional layer is arranged in rows and columns, and each node is fully connected to
all the source nodes in the input layer. In order to train the SOM, after an initial-
ization phase, three steps are performed until convergence: sampling, matching and
updating.

In the initialization phase, each of the neurons of the computational layer of the
SOM is assigned random activation weights. The values of the weights need to be
reasonably close so that every neuron has a chance to be activated. The number of
activation weights of a neuron is the same as the dimension of the feature space.

In the sampling phase, a sample x is drawn from the set of feature vectors X.
This sample is randomly chosen so that the ordering of the set does not have any
impact on the training process.

In the matching phase, the winning neuron I(x) is found by comparing the weight
vectors of each neuron and finding the one closest to the values of the input vector.
More specifically, the similarity of the vector to a neuron j’s weights is computed
using a discriminant function dj(x) =

∑D
i=1(xi−wji)

2. Closely related input vectors
might activate the same winning neuron I(x).

In the updating phase, the winning neuron and its neighbors are updated using
the equation

∆wj,i = η(t)Tj,I(x)(xi − wji). (1)
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In this equation, Tj,I(x) symbolizes the topological neighborhood of the winning

neurons, and is defined as Tj,I(x) = e
−S2

jI (x)

2σ2 where σ is the size of the neighborhood
of the winning neuron. η(t) is the learning rate that dictates how the weights of the
winning neuron and its neighbors gets to be updated to a value closest to the input
vector. This learning rate is defined as

η(t) = η0 e
−t
τ (2)

where η0 is the initial learning rate and τ a parameter for the exponential decay
function that decrease the learning rate over time.

The sampling phase, matching phase, and updating phase are repeated until the
SOM reaches convergence, meaning that no significant modification in the weights
occurs.

In our setting, the set of feature vectors X corresponds to the set of histograms
H created by the feature engineering process.

7.2.3 Histograms Projection
Once the SOM is training and convergence is reached, an additional step is per-
formed: each histogram h found in the set of created histograms H is fed to the
SOM, and the neurons n(h) activated by the histogram is associated to it. Similarly,
each centroid c of k centroids created by the clustering phase are also fed to the
SOM and the neurons n(c) are associated with the centroids.

This phase allows us to project the histograms from their high-dimensional feature
space to the 2-dimensional space of the SOM nodes, in a way that preserves their
similarity. A valuable effect of this projection is that it enables a human expert to
read and interpret the created map, and thus allows us to use human knowledge to
understand the transactions patterns uncovered.

7.3 Testing
In the testing phase, a transaction is given to the anomaly detection system in order
to assert its similarity with C’s historical transactions. Before being submitted to
the anomaly detection system, the test transaction is integrated to the most recent
transactions of C and turned into a transaction histogram following the steps of
the feature engineering process previously described. The result of this phase is
a legitimacy score summing up how distant the transaction is from the historical
ones. This phase is divided in 3 steps: the test histogram clustering, then the SOM
distance retrieval, and finally the similarity computation.

7.3.1 Test Histogram Clustering
In this step, the test histogram ht is assigned a cluster based on the centroids found
in the training phase. It is assigned the cluster whose Euclidian distance is the
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Figure 8: Trained SOM Each point represents a SOM node. The color represent clusters.
The triangle represents the node activated by the center of the corresponding cluster.
Nodes showing no color have not been activated during the training phase.

closest, following the equation

cht
= min(ci : {∥ht − Ci∥2 ≤ ∥ht − Cj∥2 ∀j, 1 ≤ j ≤ k} (3)

Assigning a cluster to ht allows us to compare it to the historical transactions closest
to it. Furthermore, as the centroids determined by K-means algorithm represent the
mean of all the historical transactions of the cluster, it represents the representative
member of the cluster. Thus, the farthest ht is from the centroid, the less similar to
the other member of the cluster it is. In other words, the further away ht is is from
the centroid, then the closer from the edge of the cluster it is, and thus is dissimilar
to the other members of the cluster. However, as mentioned previously, the curse of
dimensionality might hinder the computation of a meaningful distance in our case.
Thus, we use the trained SOM in order to compute the similarity of ht with the
member of its cluster.
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7.3.2 Self-Organizing Map Distance Retrieval
In this phase, we feed ht to the previously trained SOM and thus retrieve nht

the neuron activated by ht, and we compute D(nht
, ncht

) the Euclidian distance
between the neuron activated by ht and the neuron activated by cht

that is the
centroïd of the cluster assigned to ht.

Once this distance is acquired, it might be tempting to use it directly as a way
to determine ht’s legitimacy score, by for example assigning a threshold distance
from which ht would be considered anomalous. However, assigning a value to the
threshold might prove a challenge as the distance corresponds to a neuron-to-neuron
distance and not a vector-to-vector distance. Thus, it is not clear what the meaning
of such a threshold would be. We propose a solution to this issue in Section 8.

7.3.3 Similarity Computation
In order to provide a more robust way to assert ht’s similarity, the distances from the
other histogram members of the cluster Cht

and its centroid ({D(n(hi), n(cht
)) ∀hi ∈

Sht
} = D) are also retrieved. Once retrieved, the z-score of D(n(ht), n(cht

)) with
respect to D is computed. The z-score, as described in [1], is a statistical metric
that corresponds to how many standard deviation away a data point is from the
mean of an ensemble. In our case, it gives us insight about how far away ht is from
the centroid, with respect to all the other members of the cluster. The higher the
z-score is, the more dissimilar ht is from the other members of the clusters, and
thus the more likely it is to be an anomaly.

8 Label Attribution
The previously described training and testing algorithm uses a set of historical his-
tograms to assert the similarity of a test histogram, through the computation of a
z-score. However, the computation of these histograms is dependent on the size of
the window of transaction ws that is used in the pre-processing algorithm. Indeed,
the window size directly impacts the graph extracted from the window, and thus
the histogram describing the graph.

8.1 Impact of window size
A small window size will create smaller graphs that encompass the short-time
behavior of a client C. Furthermore, a small window size will also provide more
behavior histograms to perform the clustering and SOM training, at the expense
of a decrease in the complexity of patterns found in a graph, as less transactions
means less possible relationships between account and supplier. Lastly, anomaly de-
tection using graphs created from small windows are less stable as adding a single
transaction can create a huge topological difference between two graphs.

On the contrary, a large window size will create larger graphs, that sums up a
large number of transaction and thus the long-term behavior of the client. However,
as the number of transactions needed to create the graphs will be higher, less data
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Figure 9: Label attribution process. A weighted mean combining the similarity score
computed from various window size is used to compute the final label of the tested trans-
action.

points will be created. As a certain amount of data point (depending on the size of
the SOM) is needed for the training algorithm, very high windows size are thus not
suitable for the detection system. However, larger transaction graphs means that
more complex patterns might be formed, which would have been missed if smaller
windows were used. Lastly, using a large window size means that the topological
modification following the introduction of a single transaction might not be enough
for the anomaly detection system to pick up an anomaly.

8.2 Optimizing windows size
A straightforward way to determine which windows size is more suitable for anomaly
detection for a specific client C would be to perform an optimization method such
as grid search ([6]) or random search ([6]). However, these optimization methods
rely on the assumption that target labels are available, which is not the case in our
use-case. Thus, an alternate method has to be found.

Instead of trying to optimize the size of the window, a possible solution would be
to perform the anomaly detection in a range of different windows size, and aggregate
the results in a way similar to bagging [13]. This way, the anomaly detection system
would be able to draw its conclusion from both small size transaction graphs and
high size transactions graph when assigning the legitimacy score of a transaction.

As a way to perform this aggregation, the following algorithm is proposed. For
every size ws in W of length l(W ), the pre-processing phase, feature engineering
phase and anomaly detection phase of the anomaly detection system are performed,
effectively creating l(W ) anomaly detection systems, and a z-score is computed for
a transaction t from each of them. Then, the following process is applied:

1 The z-scores undergo a discretization process when the score is turned into
one of the three legitimacy labels ("high","medium","low"). In order to do so,
two risk thresholds (0 < r1 < r2 < 1) are used as parameters for the threshold
function. These risk thresholds represent the fraction of the maximal z-score
corresponding to each of the legitimacy labels. As a rule of thumb, a z-score
of 3 indicates that a value is an outlier with respect to a give data set. Thus,
a risk score r1 = 0.2 indicates that if the z-score of a given value is smaller
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than 0.2 ∗ 3 = 0.6 then it is considered legitimate by the anomaly detection
system.
The risk thresholds are defined by the investigation team, as it relies on the
costs implied by a false positive (legitimate transaction mislabeled as fraud)
or a false negative (fraud mislabeled as legitimate transaction). These costs
depend on factors that reside outside of the scope of the anomaly detection
system, and thus need to be asserted by a team of experts.

2 Each of the label is assigned a weight (wh,wm,wl) that represent a bonus
in the overall legitimacy score. These weights can be parameterized by the
investigator in order to control the sensitivity of the system. Usually, wh >

wm > 0 > wl so that "high" legitimacy labels pull the score up and "low"
legitimacy label decrease the overall legitimacy score.

3 The sum of the l(W ) weights is computed and normalized so that an overall
legitimacy score 0 < LW < 1 is calculated.

LW can also be discretized using a threshold function if the need to provide labels
is found. This threshold function can use as input a list of threshold risks δ1, δ2, ..., δn
corresponding to the operational needs of the fraud detection team. Alternatively, a
voting system might be used in order to aggregate the value of each of the anomaly
detection systems. This label attribution phase thus alleviates the need to search
for an optimal value of ws and allows the anomaly detection to be performed on
both short-term and long-term transaction behavior of the investigated client C.

If the amount of transactions were available, it could be used to create a cost
function that would impact the thresholding parameters so that more attention
would be given to high-value transactions.

9 Experimental Results
In this section, we discuss the experimental setting used to assert the performance
of GraphSIF, and show the experimental results obtained by running GraphSIF on
a set of transactions previously labeled by SiS-id expert system. While these labels
provide a baseline for GraphSIF, the labels of the expert system does not represent
the ground truth about fraud, as the "medium" legitimacy label represents a lack of
knowledge from the expert system, while the "low" legitimacy label can be issued in
both case of fraud or invalid transaction. Thus, our first goal in this experiment is
to assert the consistency of GraphSIF with human knowledge, as the ground truth
concerning fraud detection is unknown. The second goal of this evaluation is to
compute the operational efficiency of GraphSIF.

This experimental evaluation is divided in four parts: first, the experimental set-
tings are described. Then, a single client is analyzed in order to detail the consis-
tency between GraphSIF and SiS-id expert system in a case study. Then the global
performances of GraphSIF are discussed. Finally a discussion about the results is
provided.

9.1 Experimental Settings
In order to produce these results, GraphSIF has been run on a laptop running
Ubuntu 18.04.4 with an Intel Core i7-10510U CPU and a 16 GB memory. The data
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Parameter Value
Window size range [2, 5, 8, 11, 14, 17, 20, 23]

K 3
Z-score thresholds [0.2, 0.5]

Std max 3
Label weights [20, 10, 0]

Risk thresholds [0.8, 0.5]
SOM Parameter Value

Map Size 10x10
Lattice rectangular

Normalization var
Initialization PCA

Neighborhood Gaussian
Training batch

Table 4: Parameters used in the experience.

used to train the model is the History dataset previously described in Section 3,
consisting in a set of unlabeled transactions between client companies and suppli-
ers companies. The data used to test our model is the Audit dataset described in
Section 3.

In order to perform our experimentation, each of the client company found in the
Audit dataset is selected. The corresponding subset of transaction from the History
dataset is used to train GraphSIF, and then a sample of at most 1000 transactions
from the Audit dataset is used to assert the consistency of the results with SiS-id’s
expert system.

The different parameters used in the experiment are described in Table 4.

9.2 Case Study
In this section we evaluate the performance of GraphSIF on the subset of transaction
issued by a single client C. In this evaluation, only the transaction issued by C

in the Audit dataset are considered. This subset contains 1000 test transactions
to evaluate the performances and 218,325 historical transactions for the History
Dataset to train the model. First, we analyze the consistency of GraphSIF with the
expert system, and then we present the operational efficiency of our system.

9.2.1 Consistency
We first consider how close the results of GraphSIF are with the results of the expert
system. While these results can not be considered ground truth, as the expert system
does not distinguish between fraudulent and invalid transactions, they still provide
a baseline for the analysis of GraphSIF results.

High Legitimacy Label First, we consider the results given by both the expert sys-
tem and GraphSIF concerning the high legitimacy labels. Figure 10 shows a Venn
diagram indicating the distribution of the high legitimacy label. The consistency of
the two set is not high, only 19 out of the 167 transactions given a "high" legitimacy
label by the expert systems are given the same label by GraphSIF. However, this
inconsistency might be explained by the fact that the expert system relies on knowl-
edge internal to the platform, in the form of a registration of secured suppliers, that
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Figure 10: Distribution of "high" legitimacy label. The high legitimacy label corre-
sponds to a trusted transaction.

is not available for the graph-based model.

Table 5 shows the confusion matrix indicating the complete distribution of each
label. Most of the high legitimacy labels (128 out of 167) have been labeled as low
legitimacy transactions by GraphSIF. This behavior is consistent with the hypoth-
esis of the expert system using additional knowledge to perform its classification.

Medium Legitimacy Label Then, we consider the results given by both the expert
system and GraphSIF concerning the medium legitimacy labels. Figure 11 shows the
distribution of the medium legitimacy label. For the expert system, a medium label
indicates a lack of knowledge. Almost a third (313 out of 1000) of the transactions
have been assigned this label by the expert system. On the contrary, a medium
label doesn’t indicate a lack of knowledge for GraphSIF, but rather informs the
user that a specific transaction is slightly unusual. Thus the consistency between
the two sets is not really expected. However, the low number of transactions labeled
with the medium label by GraphSIF (50 out of 1000) seems to indicate a higher
assertiveness of the proposed model. Table 5 shows that most (217 out of 291) of
the medium labels given by the expert system where assigned a low legitimacy label
by GraphSIF.

Low Legitimacy Label Finally, we consider the results given by both the expert
system and GraphSIF concerning the low legitimacy labels. Figure 12 shows the
distribution of the low legitimacy label. There is a high consistency between the
expert system and GraphSIF concerning this set of suspicious transactions, as 501
out of 520 transactions where given the low legitimacy label by both of the detection
systems. The 345 transaction assigned a low legitimacy transaction by GraphSIF
and not the expert system come from the two other sets. Furthermore, the last
row of Table 5 shows that only a handful of transactions labeled as low by the
expert system have been given another label by GraphSIF. It is possible that the
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Figure 11: Distribution of "medium" legitimacy label. The medium legitimacy label
corresponds to a transaction that is not trusted but doesn’t show fraudulent behavior.

Figure 12: Distribution of "low" legitimacy label. The low legitimacy label corresponds
to an abnormal transaction.

11 transactions given a low legitimacy label by the rule engine could use knowledge
not available for GraphSIF, such as when a supplier closes an account.

9.2.2 Operational Efficiency
In this section, we consider the operational efficiency of GraphSIF. GraphSIF, as op-
posed to the rule engine used by the expert system, requires a pre-processing phrase
and a training phase to be completed in an off-line fashion. Then a transaction can
be assigned a label.

Pre-processing time Figure 13 shows the time taken by GraphSIF to pre-process
the transaction. The results are separated by window size, as this parameter has a
huge impact on the quantity of windows created, and the amount of transactions
in each window.
The pre-processing time seems to vary exponentially between 500 ms and 2500 ms
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Table 5: Confusion Matrix - SiS Rule Engine’s and GraphSIF
GraphSIF →

Expert system ↓ High Medium Low
High 19 20 128

Medium 74 22 217
Low 11 8 501

Figure 13: Pre-processing and feature engineering time for each window size. This
time corresponds to the time taken to create the transaction sequence, the graphs and the
histograms.

depending on the window size. A shorter window size leads to higher pre-processing
time, probably due to the fact that more windows are created.
In the case of the expert system, a pre-processing phase is also performed, requiring
calls to internal and external APIs. This pre-processing phase can take up to 3
seconds, which is significantly larger than GraphSIF pre-processing time.

Training time Once the pre-processing phase is complete, the training phase can
begin. Figure 14 shows the time taken to perform the training phase. We can see
that this time il also correlated with the window size, and varies from 28 seconds
to 25 seconds as the window size becomes larger. Two reasons might impact the
decrease in training time: the number of windows used to train the SOM is reduced
and thus less data is available for training, or, as the window grow larger, more
distinctive patterns emerges and thus the training is more easily performed.
In the case of the expert system, there is no training phase, however the rule engine
has to be updated in order to adapt to new fraud cases. This process is long and
costly, as it relies heavily on human input. GraphSIF data-driven evolution is thus
an improvement.

Test time Figure 15 shows the time taken to perform the classification of each
transaction in the test set. While a slight increase is visible for a window size of 2,
the test time is mostly uniform and close to 300 ms. The expert system classification
time is closer to 3 seconds, as the pre-processing has to be performed for each tested
transaction. Thus GraphSIF is faster than the expert system.
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Figure 14: Training time for each window size. This time corresponds to the training
of the Self-Organizing Map and the clustering phase.

9.3 Global Results
In this section we focus on GraphSIF’s behavior with the other clients of the Audit
dataset, in terms of consistency and operational efficiency. The experiment pre-
sented in this section is conducted with every transaction of the Audit dataset. As
opposed with the case study proposed in the previous subsection, this experiment
analyses the behavior of each client company of the dataset in a separate manner,
in order to assert the behavior of GraphSIF in various settings, with an emphasis
on the number of potential frauds discovered by GraphSIF.

Global Consistency Figure 16 shows the True Negative Rate (TNR) for each client
of the Audit dataset. We define True Negative Rate as the number of transactions
given a low legitimacy label by both GraphSIF and the expert system, divided
by the number of transactions given a low legitimacy label by the expert system.
It shows how consistent GraphSIF is with the expert system regarding suspicious
transactions. The dotted orange line shows the mean TNR over all the clients (0.53),
while the grey dotted line shows the mean TNR of a random classification machine
(0.29). We can see that while there is still room for improvement, GraphSIF shows
promising results in terms of consistency.
Furthermore, Figure 16 allows us to pinpoint a set of client on which GraphSIF
is not accurate (rightmost ones). These clients are a promising starting point for
further improvements.

Figure 17 shows the True Positive Rate (TPR) for each client in the Audit dataset.
TPR is akin to TNR, but instead of counting the number of transactions given the
low legitimacy label, the number of transactions given the high legitimacy number
is computed. The TPR in our setting is fairly low (0.24), even lower than the one
produced by randomly guessing a label for the transactions (0.27). This highlights
the fact that GraphSIF tends to assign a low number of high legitimacy labels
overall. Furthermore, the expert system’s usage of outside information might also
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Figure 15: Testing time for each window size. This time corresponds to the time taken
to attribute a label to a tested transaction.

explain this discrepancy.
However, in the context of fraud detection, it is more costly to assign a high legit-
imacy label to a fraudulent transaction than to assign a low legitimacy label to a
legitimate transaction. Thus, while improving the TPR is important for the future,
this discrepancy does not have a tremendous impact on GraphSIF usage.

9.4 Discussion
While results shows that GraphSIF is able to provide consistent results in terms of
consistency with the expert system, the most pressing issue is the lack of ground
truths about actual legitimate and fraudulent transaction. While SiS-id’s expert
system provides an alternative to expert knowledge regarding the labeled trans-
action, this system is prone to error, most notably because fraud is dynamic and
often changes faster than the rules of an expert system. Furthermore, comparing
GraphSIF graph-based approach and SiS-id expert system is difficult, as they both
rely on different types of knowledge (expert-based vs data-driven). However, in the
absence of a dataset containing trusted labels, comparing our systems with SiS-id’s
expert system is the only way to propose an evaluation of their performance.

Although GraphSIF has been designed to handle Supplier Information Fraud, it
could be used to detect other kinds of frauds in various domains. A possible appli-
cation might be the detection of impersonation frauds over the telephone network,
where a shift in the patterns of calls is observed when a fraudster takes control
of the telephone line of a legitimate user. Similarly, GraphSIF could be used to
detect unusual connection patterns in a computer network, that may be markers of
a cyber-attack. Furthermore, the SOM - K-means model is agnostic to the specific
features of the considered application, and thus can be used in other use-cases.

In this work, GraphSIF only uses the relationship between one client and its
suppliers to perform its fraud detection. However, an interesting research direction
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Figure 16: True Negative Rate for each client in the Audit dataset. The True Negative
Rate represents the number of fraudulent transactions correctly attributed by GraphSIF.
The values on the x axis represent a client company from the Audit dataset. The grey
dotted line represents the random baseline, while the blue dotted line represents the mean
TNR over all clients.

would be to consider a graph modeling the relationships between all the clients and
all the suppliers of the platform. Adapting some graph-based anomaly detection
techniques to this graph might lead to interesting results.
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Figure 17: True Positive Rate for each client in the Audit Dataset. The True Positive
Rate represents the number of fraudulent transactions correctly attributed by GraphSIF.
The values on the x axis represent a client company from the Audit dataset. The grey
dotted line represents the random baseline, while the blue dotted line represents the mean
TPR over all clients.

10 Conclusion
In this paper, we introduce GraphSIF, a novel feature-engineering process that cre-
ates a feature vector based on the relationships between a client company and the
accounts it used to pay its supplier companies, providing a new tool to describe the
underlying transaction mechanism involved in their interaction.

Several recent papers such as [28] [14] and [21] propose a human interpretation
of the patterns uncovered by their approach and how they might suggest illegal be-
havior. The focus of our work is to emphasize on the variation of behavior, instead
of the behavior itself. However, the relation between the uncovered patterns and
fraud attempts is currently under investigation.

In conclusion, we used the temporal information contained in the transactions
of the History dataset to create a behavior sequence composed of the transactions
emitted by a client aggregated in several bounded time windows. We showed how
to use this behavior sequence to create a data model based on Self-Organizing maps
representing the behavior of a client company through time. We then used this data
model to infer the legitimacy of new transactions using the K-means clustering al-
gorithm, along with an aggregation algorithm allowing us to combine the results
obtained for different window sizes in a comprehensive score.

We presented the result of our classification system, first on a single company to
investigate its performance locally, and then for a large set of companies from a
large real-life dataset. We investigated the consistency of GraphSIF’s results with
the ones from the SiS-id expert system, and analyzed its operational efficiency,
showing that GraphSIF is a fast alternative to the expert system.
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