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Abstract—Decentralized learning enables collaborative ma-
chine learning with enhanced privacy by allowing participants to
train models locally and share updates for aggregation instead
of sharing raw data. However, such systems are vulnerable to
poisoning attacks that may compromise the learning process.
This threat becomes even more severe when combined with
sybil attacks, where adversaries contribute numerous malicious
updates with minimal effort. To overcome this challenge, par-
ticularly in the permissionless setup, we propose SyDeLP, a
blockchain-enabled protocol for decentralized learning. SyDeLP
integrates byzantine tolerant aggregation for poisoning mitigation
with a Verifiable Delay Function to counter sybil attacks requir-
ing Proofs of Work (PoW) to participate. Honest behavior is
incentivized by dynamically reducing PoW difficulty, decreasing
the computational burden for honest nodes over time. Empirical
evaluations conducted on a benchmark dataset across three
types of poisoning attacks demonstrate that SyDeLP consistently
outperforms existing solutions in terms of resilience.

Index Terms—Decentralized Learning, Permissionless,
Blockchain, Adaptive Difficulty, Verifiable Delay Function

I. INTRODUCTION

Decentralized learning is a recent paradigm to collabora-
tively train machine learning models without having to share
raw data. Participants operate in a peer-to-peer network where
the model is iteratively refined by exchanging and aggregating
model updates through a gossip protocol, which guaranteess
the convergence of the model [1].

Despite its advantages, the decentralized nature of these
systems increases vulnerability to malicious behavior. A sig-
nificant threat is the poisoning attack, where adversaries
produce and share erroneous models, negatively impacting
the aggregated results. Although there has been substantial
progress in decentralized learning to mitigate this threat [2],
[3], existing solutions often rely on trusted parties.

In a permissionless setting, where no centralized entity
governs access control, additional challenges arise. For in-
stance, the sybil attack [4], where malicious participants create
multiple fake entities to increase their influence in the system.
Amplifying a poisoning attack with a sybil-based strategy
leads to more severe consequences, allowing attackers to gain
full control of aggregation [5].

In this paper, we address the problem of mitigating the
Sybil-based Poisoning Attack (SPA) in a permisionless decen-

tralized learning setup. Our proposal eliminates the centralized
entities while providing robust security guarantees.

A. Contributions

The main contributions of this paper are summarized as
follows:

1) We propose the first protocol addressing SPAs in permis-
sionless decentralized learning, ensuring security with-
out trusted parties.

2) We introduce a novel Adaptive Proof of Work (APoW)
with dynamic difficulty adjustment to mitigate SPAs.

3) We evaluate our protocol on a real-world task against
three poisoning attacks, demonstrating superior re-
silience over state-of-the-art solutions.

II. BACKGROUND

A. Poisoning attacks

Poisoning attacks manipulate training data or model param-
eters to achieve a secondary goal. We identify four types:
(1) Targeted: Degrades the global model’s performance on
specific classes [6]. (2) Untargeted: Reduces accuracy across
all classes, hindering convergence [7]. (3) Random: Sends
random Gaussian-distributed vectors without training [8]. (4)
Sybil-based: Combines poisoning with a sybil attack [4],
either Uniform, where all sybils use identical parameters, or
Diverse, where sybils generate independent models.

B. Byzantine Tolerant Aggregation (BTA)

Byzantine Tolerant Aggregation ensures the aggregated
model remains accurate despite malicious (a.k.a byzantine)
nodes. They act as poisoning detection mechanisms, aiming
to identify and exclude abnormal models from aggregation.
For example, Multi-KRUM [8] aggregates the N − β model
updates with the lowest distance scores, where N is the total
number of nodes and β is the expected number of byzantine
nodes. Multi-KRUM can tolerate up to β ≤ N−4

2 byzantine
clients and has theoretical guarantees for convergence.

III. RELATED WORK

In decentralized learning, the Sybil-based Poisoning Attack
(SPA) has not received sufficient attention. Most works focus
on sybil-tolerant consensus [9], [10] or assume a centralized



trusted party for access control [11], [12], which makes sybil
attacks easier to prevent. Even permissionless systems like [9],
[10], [13] overlook SPAs, despite their increased vulnerability.
Other approaches [11], [14], require participants to stake
collateral but do not address SPA risks or the need for a trusted
access authority.

Existing SPA defenses, such as FoolsGold [5], SybilWall
[15], and MAB-RFL [16], assume permissioned environments
and attackers generating similar models, making them ineffec-
tive against diverse SPAs. In contrast, BTA functions, which
we use in our solution, assume honest nodes produce similar
models, a well-demonstrated property [8], [16], [17], allowing
broader poisoning detection.

Current methods also suffer from high validation costs,
while attackers can submit numerous updates cheaply. Our
approach mitigates this by discarding updates early unless
attackers invest significantly more computational resources.

Our protocol is neither a byzantine nor sybil detection
mechanism but enhances existing BTA functions, increasing
the computational cost of SPAs and improving security.

IV. SYBIL-RESISTANT DECENTRALIZED LEARNING
PROTOCOL (SYDELP)

This section introduces the proposed protocol, SyDeLP,
which integrates Adaptive Proof of Work (APoW).

A. Overview
SyDeLP defines two node sets: training nodes C and verifier

nodes V . Training nodes own private datasets, train models
locally, and submit contributions by solving PoW. Verifier
nodes maintain the network, verify contributions, and aggre-
gate models.

We use blockchain technology to provide an open, secure
and tamper-proof record of the training process. Verifier nodes
serve as blockchain maintainers, recording the training pro-
cess.

APoW limits sybil influence by requiring PoW for model
submissions. Initially uniform, difficulty adjusts individually
over time and is recorded on-chain for global verification.
Since PoW alone does not prevent poisoning or reduce honest
nodes’ computational burden, a BTA function is used to filter
suspicious models and to assign PoW difficulty reductions to
selected contributions.

In Algorithm 1 we present the protocol, where for each of
the T iterations nine steps are required: (1) Training nodes
fetch the global model and their PoW difficulties from the
blockchain. (2) They update the global model using local
datasets and generate a PoW. (3) The updated model and PoW
are packed into a transaction and shared with verifier nodes.
(4) Verifier nodes validate transactions, discarding those with
invalid PoWs. (5) A BTA function filters out malicious models
before aggregation. (6) Selected models receive PoW difficulty
reductions, while unselected ones face increased difficulty. (7)
Transactions, updated difficulties, and the global model update
are bundled into a block. (8) Verifier nodes reach consensus
on the next block. (9) The block is added to the blockchain
for the next iteration.

Algorithm 1 SyDeLP
1: for t ∈ [1, 2, . . . , T ] do
2: for each c ∈ C in parallel do
3: Get wt

G and Φc from the blockchain.
4: wt+1

c = wt
G − η∇wt

G
L(Xc, w

t
G) // Local update

5: wsig = sign(wt+1
c , pkc, skc) // Digital signature

6: Dc = f(Φc)D // Compute current difficulty
7: (y, π) = V DF (pkc, wsig, H,Dc) // Generate PoW
8: txt+1

c = (wt+1
c ,Φc, wsig, pkc, (y, π), H)

9: Send txt+1
c to all v ∈ V

10: end for
11:
12: for each v ∈ V in parallel do
13: // Byzantine/honest labeling
14: ξ = BTA({wt+1

c | c ∈ C, is valid(txt+1
c )})

15: HC = ∅ // Set of honest contributions
16: for each c ∈ C do
17: if ξc == 0 then // If honest, reward
18: txt+1

c (Φc) = txt+1
c (Φc) + 1

19: HC = HC ∪ {wt+1
c }

20: else // Penalize
21: txt+1

c (Φc) = max(txt+1
c (Φc)− 1, 0)

22: end if
23: end for
24: wt+1

G = FedAV G(HC) // Aggregation
25: // Block creation
26: Bt+1

v = ({txt+1
c | c ∈ C}, wt+1

G , H)
27: end for
28:
29: Consensus on block state
30: end for

B. Threat model

Adversary goals. The adversary aims to corrupt the global
model by submitting poisoned model updates via sybil iden-
tities. The objective is to introduce more than β sybils, which
is the security threshold of the BTA function.

Adversary capabilities. The adversary can generate unlim-
ited sybil identities but has a fixed computing power P ≤ β,
defined as the number of Proofs of Work with initial difficulty
D that he can solve in one training iteration. The adversary
can also generate honest model updates and can shift from
honest to malicious behavior at any time.

C. Assumptions

1) In each iteration, training nodes have a limited time τ
to locally updates the global model and generate the
required PoW. This constraint prevents the adversary
from computing more than P Proofs of Work (of initial
difficulty) per iteration.

2) Honest nodes have sufficient computing power to meet
Assumption 1, enabling them to train the model and
solve a PoW with difficulty D in time τ .

3) Honest verifier nodes receive the model updates from all
honest training nodes each iteration.



D. Initialization

The protocol starts with nodes determining the learning
and protocol parameters, such as neural network architecture,
through consensus algorithms [9].

After parameter selection, the genesis block is created, stor-
ing model hyperparameters, initial global model parameters
w1

G, initial difficulty D, total iterations T , security parameter
α ≥ 1 (see Section V), the BTA function, and its β parameter.
Each training node c generates a key pair (pkc, skc) for signing
messages. Public keys link nodes to digital identities, tracking
their contributions and difficulties. Nodes may change keys but
previously earned difficulty reductions cannot be transferred.

E. Transaction creation

At every iteration t, each training node c fetches the current
global model wt

G from the last block and locally update it as
wt+1

c = wt
G−η∇wt

G
L(Xc, w

t
G), where η denotes the learning

rate, L the loss function, and ∇wt
G

the gradient with respect the
global model. A digital signature wsig of the resulting model
is also generated. To have the model contribution considered,
node c must present a PoW that meets its current target
difficulty. The difficulty is dynamically adjusted based on the
node’s previous contributions using their contribution score
Φc retrieved from its most recent transaction recorded on
the blockchain. If a node is contributing for the first time,
it sets Φc = 0. The target difficulty is then computed as
Dc = ⌈Df(Φc)⌉, where f is defined as:

f(Φ) =

(
T − α

T − 1

)Φ

(1)

Here, f scales the initial difficulty D based on Φ. The se-
curity parameter α ≥ 1 controls the trade-off between security
and difficulty reduction. We present a formal discussion on the
worst-case attack and the security of f in Section V.

To solve the PoW, node c must solve a Verifi-
able Delay Function (VDF), expressed as (y, π) =
V DF (pkc, wsig, H,Dc), where y is the result of the function,
π the proof that allows efficient verification, and H the hash
of the last block. The VDF requires Dc sequential (non paral-
lelizable) operations to solve. The VDF includes the public key
pkc, preventing the adversary from reusing proofs across dif-
ferent sybils, as only one model contribution is considered per
public key each iteration. Additionally, by including H , pre-
computation of VDF evaluations are avoided. Finally, node c
creates a transaction txt+1

c = (wt+1
c ,Φc, wsig, pkc, (y, π), H)

that is sent to verifier nodes.
We adopt the Verifiable Delay Function (VDF) construction

proposed by Wesolowski [18]. Further technical details are
provided in the extended version of this paper [19].

F. Block creation

Upon receiving a transaction, the verifier checks protocol
compliance and discards any non-compliant transactions. Ver-
ification includes: (1) verifying the transaction is within the
valid time frame τ ; (2) ensuring no prior valid contribution

exists for the public key in the current iteration; (3) checking
the digital signature against the public key and signed data;
and (4) validating the solution y and proof π of the VDF,
ensuring the correct Φc was used for target difficulty. Only
transactions meeting these conditions are included in the new
block.

When the time frame for receiving updates ends, verifier
nodes run BTA to detect potentially poisoned contributions.
The contribution score of clients selected for aggregation is
increased by 1, while for non-selected clients is decreased by
1. Then, the set of honest labeled models HC is aggregated into
a global model wt+1

G = FedAV G(HC). FedAV G refers to
the coordinate-wise average of the models as in [20]. Finally,
a block Bt+1

v = ({txt+1
c | c ∈ C}, wt+1

G , H) is added to the
blockchain via consensus.

V. SECURITY ANALYSIS

In this section we present a formal security analysis of the
difficulty adjustment function f used in SyDeLP to mitigate
SPAs. We describe a worst-case attack that will naturally lead
to the definition of f (Equation 1), that maintains the resilience
to poisoning on aggregation in the presence of a sybil attacker.

A. Worst-case attack

Assume BTA can identify poisoning attempts when mali-
cious nodes are ≤ β and that honest models from an attacker
are always labeled as honest, reducing difficulty for sybils.

Let P < β. In iteration 1, an attacker introduces S1 =
P sybils (by definition of P ), generating honest models to
reduce difficulty in iteration 2. To maintain sybils, the attacker
expends work S1f(1), with f(1) < 1. Since S1f(1) < P , he
can introduce S2 = P − S1f(1) new sybils. This continues
until sybils exceed β, breaking BTA’s security guarantee.

B. Difficulty adjustment function

With constant maximum PoW difficulty, security holds for
P ≤ β. With difficulty reduction, the same condition can be
expressed as αP ≤ β, for some α > 1. Let Si be the number
of sybils introduced at iteration i, with S1 = P , and limiting
new sybils per iteration to sP (0 < s < 1), security holds if:

T∑
i=1

Si = P + (T − 1)sP = αP (2)

Solving for s we have:

s =
α− 1

T − 1
(3)

For an always-honest node c, its contribution score at
iteration j is Φc = j− i, where i is its starting iteration. Thus,
an attacker maintaining Si sybils at iteration j requires work
Sif(j− i). Given the attacker’s limited computing power, the
constraint at iteration j is:

Pf(j − 1) +

j∑
i=2

sPf(j − i) ≤ P (4)



Solving for f(j − 1):

f(j − 1) ≤ 1− s

j−2∑
i=0

f(j − i− 2) (5)

Rewriting in terms of Φ:

f(Φ) = 1− s

Φ−1∑
i=0

f(i) (6)

Theorem 1. The closed-form solution of Equation 6 is f(Φ) =
(1− s)Φ.

Proof. Base case: Φ = 0, so f(0) = (1 − s)0 = 1. Assume
for Φ = k, f(k) = (1− s)k. For Φ = k + 1:

f(k + 1) = 1− s

k∑
i=0

f(i) = 1− s

k∑
i=0

(1− s)i (7)

Using the geometric series formula:

k∑
i=0

(1− s)i =
1− (1− s)k+1

s
(8)

Substituting in Equation 7:

f(k + 1) = 1− s

(
1− (1− s)k+1

s

)
= (1− s)k+1 (9)

Hence, f(Φ) = (1− s)Φ.

Substituting s from Equation 3:

f(Φ) = (1− s)Φ =

(
T − α

T − 1

)Φ

(10)

which matches Equation 1. This ensures an attacker with
computing power P can introduce at most αP ≤ β sybils
after T iterations.

VI. EVALUATION

In this section, we describe the experiments conducted to
compare SyDeLP with two state-of-the-art SPA mitigation pro-
tocols. The implementation of the blockchain component and
the evaluation of SyDeLP under worst-case attack scenarios
are left for future work. The code to reproduce the experi-
ments can be found on Github at https://github.com/brandon-
mosqueda/sydelp. We refer the reader to the extended version
[19] where further experiments are included.

Dataset and model: We use the UCI SMS Spam Collection
[21], a dataset for binary classification on text data. We ran-
domly split the dataset into training and testing sets, allocating
80% and 20% of the data, respectively. The model used
is a Long-Short Term Memory (LSTM) with an embedding
dimension of 64 and an LSTM layer with 64 units.

Attacks: We evaluated three poisoning attacks to assess the
resilience of the defense mechanisms, namely: Label flipping
[6], Sign flipping [22] and Random [8]. They were carried out
under both scenarios, uniform and diverse.

Diverse Uniform

No attack Label flipping Random Sign flipping No attack Label flipping Random Sign flipping

0.00

0.25

0.50

0.75

Attack

F
1 

sc
or

e

DL MAB−FL SybilWall SyDeLP

Fig. 1. F1 score on SMS Spam dataset.

Evaluated protocols: No attack (baseline), MAB-RFL [16]
and SybilWall [15]. We use Multi-KRUM as BTA function for
SyDeLP with β = 40. As the number of malicious clients is
fixed, α is not required.

Metric: We report the F1 score (Figure 1) in the last
iteration to evaluate the overall classification performance of
the model.

Setup: For all the experiments, we use 100 nodes and 100
iterations. The number of malicious nodes is set to 33. We
implemented the experiments in Python 3.9 using the Keras 3.6
library with Tensorflow 2.17 as backend for the deep learning
models.

VII. DISCUSSION AND CONCLUSION

Our experimental results demonstrate that SyDeLP main-
tains performance similar to the baseline scenario across a
broader range of attacks. MAB-RFL only performs compara-
bly against uniform SPAs while SybilWall cannot effectively
counter poisoning. None of the defense mechanism could
mitigate the label flipping attack on the diverse scenario. This
failure is reflected with the almost zero F1 score. We hypoth-
esize that label flipping identification on binary classification
tasks (or text data) cannot be captured by similarity measures.

For future work, we would like to explore additional reward
mechanisms for incentivizing honest participation beyond dif-
ficulty reductions. A natural extension would be incorporating
monetary incentives, similar to cryptocurrency systems like
Bitcoin.

We are optimistic that this work represents a significant step
toward trustless decentralized learning systems with verifiable
operations, however, further research is needed. Specifically,
trustless initialization and efficient verification methods for
training correctness remain open challenges.
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