

A Peer-To-Peer Intermediary for Building Enterprise-Class Web Services

A Thesis

Submitted to the Faculty

of

Drexel University

by

Omar Hasan

in partial fulfillment of the

requirements for the degree

of

Master of Science

in

Computer Science

September 2002

© Copyright 2002
Omar Hasan. All Rights Reserved.

ii

Dedications

To Ami, Abba and Ammar for their endless love and support

iii

Acknowledgements

I am most thankful to my Advisor, Dr. Bruce Char, for giving me the privilege to work

with him. His encouragement and guidance were most valuable for me in completing this

work. All credit goes to Dr. Char for so much that I learned.

I am thankful to the members of my Thesis Committee, Dr. Bruce Char, Dr.

Jeremy Johnson and Dr. Spiros Mancoridis, for their valuable reviews.

I am thankful to Dr. Ali Shokoufandeh for always helping me and giving me

insightful advice.

I am thankful to my Undergraduate Advisor, Dr. Sarmad Abbasi, for always

helping me so generously.

I am thankful to my Graduate Advisors, Dr. Jeremy Johnson and Dr. Robert

Boyer, for patiently listening to my problems and guiding me in the right direction.

I am thankful to all my teachers due to whom I have been able to learn so much

over the years. My teachers will always remain a source of inspiration for me.

I am thankful to all my family and friends who have always encouraged and

supported me.

Most of all, I am thankful to my parents and my brother, whose love and

encouragement was the number one reason I was able to accomplish so much.

iv

Table of Contents

List of Figures ...viii

Abstract .. x

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Problem Description.. 3

1.3 Our Solution .. 5

1.4 Outline of Thesis ... 6

Chapter 2: Background – Web Services and Enterprise-Class Web Services 8

2.1 Web Services... 8

2.1.1 What Problems do Web Services Address and why are they a
 Good Solution?.. 8

2.1.2 Web Services Architecture.. 12

2.1.3 The Building Blocks of Web Services .. 14

2.1.4 Vendor Support for Web Services .. 20

2.1.5 Example Web Services.. 22

2.2 Enterprise-Class Web Services ... 23

2.2.1 Characteristics of Enterprise-Class Web Services 23

Chapter 3: Problem – Inadequacy of Web Services to Provide
Quality-of-Service Guarantees... 25

3.1 What is Quality-of-Service in Web Services?... 25

3.1.1 Security.. 25

3.1.2 Reliability.. 26

3.1.3 Manageability.. 27

v

3.2 Why is Quality-of-Service in Web Services Important to Enterprises?............ 28

3.3 Why Web Services are Unable to Guarantee Quality-of-Service? 29

3.3.1 HTTP is Unreliable ... 29

3.3.2 Public Internet is not Secure.. 30

3.4 Some Views and Opinions about Lack of Quality-of-Service
 Guarantees in Web Services.. 30

3.5 Review... 32

Chapter 4: Existing Solutions and their Drawbacks.. 34

4.1 Upgrade Web Services Protocols.. 34

4.2 Hard Code Desired Quality-of-Service into each Web Service
 Implementation.. 35

4.3 Use a Web Service Intermediary... 35

4.3.1 What is an Intermediary? .. 35

4.3.2 What is a Web Service Intermediary?... 36

4.3.3 How does a Web Service Intermediary Solve the Problem? 38

4.3.4 Some Implementations Based on the Concept of
 Web Service Intermediary... 40

4.4 A Review of the Discussed Approaches ... 47

Chapter 5: Our Solution – Peer-to-Peer Intermediary.. 49

5.1 Objectives.. 49

5.1.1 Requirement of Customization through Additional Coding 49

5.1.2 Enterprise’s Control of the Flow and Management of its
 Information.. 50

5.1.3 Ease and Speed of Deployment... 51

5.1.4 Scalability.. 51

vi

5.2 Design.. 52

5.2.1 Architecture... 52

5.2.2 Message Exchange Model... 56

5.3 How does PI Meet the Objectives? ... 57

5.3.1 Requirement of Customization through Additional Coding 58

5.3.2 Enterprise’s Control of the Flow and Management of its
 Information.. 59

5.3.3 Ease and Speed of Deployment... 61

5.3.4 Scalability.. 63

5.4 Quality-of-Service Features Provided to Web Services by PI 69

5.4.1 Security.. 69

5.4.2 Reliability.. 75

5.4.3 Manageability.. 79

Chapter 6: Implementation and Evaluation... 81

6.1 The Bank Web Service.. 81

6.1.1 Description of Functionality.. 81

6.1.2 How can the Bank Web Service Benefit from PI?.................................... 82

6.1.3 Design and Implementation .. 84

6.1.4 Sample Messages Exchanged between the Bank
 Web Service Server and Client ... 90

6.2 Implementation of PI Proxy .. 91

6.2.1 Some Basics of the Current Implementation of PI Proxy 92

6.2.2 Limitations of PI-v1 .. 93

6.2.3 Implementation of Basic Message Relay.. 93

vii

6.2.4 Implementation of Quality-of-Service Features.. 95

6.2.5 Classes... 98

6.2.6 PI Proxy Administration Tool ... 102

6.3 Evaluation of PI Proxy Version 1.0 .. 103

6.3.1 Does PI Proxy Version 1.0 Achieve the Design Objectives of PI?......... 103

6.3.2 Test of Quality-of-Service Features Provided by
 PI Proxy Version 1.0 ... 108

Chapter 7: Conclusion .. 113

7.1 Review... 113

7.2 Contributions... 115

7.3 Future Research Possibilities .. 116

Bibliography .. 119

Appendix A: Glossary of Acronyms .. 131

Appendix B: Platforms and Tools Used for the Implementation and
Evaluation of PI Proxy Version 1.0 ... 132

viii

List of Figures

1.1 General architecture of existing Web Service intermediaries 4

1.2 Architecture of our Web Service intermediary ... 5

2.1 Web Services Architecture.. 12

2.2 A Web Service built from several other Web Services... 13

2.3 Web Services standards and protocols .. 15

2.4 Anatomy of a SOAP message ... 18

3.1 Web Services insecurity .. 32

4.1 An intermediary [Barrett1999intermediaries] ... 36

4.2 A standard Web Service provider and Web Service
 client [Irani2001intermediaries].. 37

4.3 A Web Service provider and Web Service client with an
 intermediary [Irani2001intermediaries] .. 37

4.4 A Web Service intermediary composed of more than one component................. 38

4.5 General architecture of a Web Service intermediary .. 39

4.6 Architecture of Grand Central Communications’ Web Services Network 42

4.7 Architecture of Flamenco Networks’ Web Services Network.............................. 45

5.1 PI architecture ... 52

5.2 Multiple clients – configuration 1 ... 55

5.3 Multiple clients – configuration 2 ... 56

5.4 A Web Service application server and its n clients using a
 central-server-based Web Service intermediary ... 63

5.5 m Web Service application servers and n clients of each one of
 them using a central-server-based Web Service intermediary 64

5.6 A Web Service application server and its n clients using PI 66

ix

5.7 m Web Service application servers and n clients of each one of
 them using PI... 67

5.8 A Web Service application client using PI to communicate with
 more than one Web Service application server ... 68

5.9 PI authentication model... 71

5.10 An example of PI access control ... 73

5.11 The PI process of delivering confidential messages ... 74

5.12 PI guaranteed message delivery .. 78

6.1 The Bank Web Service architecture.. 85

6.2 UML class diagram of the Bank Web Service server ... 86

6.3 The Bank Web Service client’s main dialog... 88

6.4 UML class diagram of the Bank Web Service client .. 89

6.5 Basic message relay .. 95

6.6 Format of the message ID ... 97

6.7 UML class diagram of the current implementation of PI proxy 99

6.8 UML class diagram showing the generalization/specialization
 relationship of system, local_relay and remote_relay
 with HttpSerlvet .. 100

6.9 GUI of the PI proxy administration tool ... 103

x

Abstract

A Peer-To-Peer Intermediary for Building Enterprise-Class Web Services
Omar Hasan
Bruce Char

Web Services is a new technology for building distributed systems. The Web Services

technology provides the means to make the functionality of an application available over

the Internet such that it can be used by remote applications. This is not a new concept;

however the novelty of Web Services is that it enables interaction between heterogeneous

applications regardless of their development and operational platforms. The Web

Services technology also offers some other significant benefits: client applications can

access server applications without knowing their location in advance, and Web Service

applications can be used as software components to build new applications. Web Services

with all their benefits, however, lack quality-of-service features such as security,

reliability and manageability. These features are essential for enterprise-class

applications.

One recently introduced solution to this problem is that of a Web Service

intermediary. In this solution an intermediary is placed between two communicating Web

Service applications. The intermediary takes the responsibility of implementing the

quality-of-service requirements. Although this is a suitable solution, its current

implementations have some undesirable constraints. These constraints include: the

requirement of additional coding to enable a Web Service application to interact with the

intermediary, and the need for a central server in the intermediary architecture. A central

xi

server is not desirable because it centralizes control in a single authority, and limits the

scalability of a Web Service application.

We present a peer-to-peer Web Service intermediary which does not suffer from

these problems. Due to the peer-to-peer architecture, it does not require a central server.

The solution also does not require any additional coding in a Web Service application,

which makes it quickly deployable. Our solution is convenient and practical for building

enterprise-class Web Services.

1

Chapter 1: Introduction

1.1 Background

Distributed systems have proven their usefulness over the past several years. Email and

World Wide Web are very popular examples of distributed systems. Dedicated

distributed systems are used by banks, airlines, universities and almost every other

enterprise for its operation. BannerWeb [Drexel2002bannerweb] (Drexel University’s

system for student and employee records) is an example of such a system.

Many technologies have been developed for building new distributed systems.

These technologies include CORBA [OMG2002corba], Java RMI [Sun2002javarmi] and

DCOM [Microsoft2002dcom]. Although these technologies have been useful to some

extent, they have some problems which keep them from being largely successful. The

key problem is as follows:

These technologies communicate information in formats that are not universally

recognized or accepted. Agreement on a single universal standard has not been possible

because the vendor of each technology is unwilling to give it up for a technology by

another vendor.

The result is that all these technologies lack heterogeneity. Lack of heterogeneity

means that a technology is limited to a few computing platforms. A distributed system

built on one of these technologies cannot function unless each of its components is built

with that same technology. The following example illustrates the drawback of lack of

heterogeneity in these technologies:

2

A company has several suppliers. The suppliers would like to be connected to the

company’s information system for acquiring information such as inventory and sales. The

company uses one of the distributed systems technologies available for its computing

platform for example DCOM, to allow access to the suppliers. It is possible that some or

many of the suppliers have a platform that does not support that technology. In that case

those suppliers would not be able to connect to the company.

This problem prompted the development of the Web Services technology. Web

Services technology is based on XML [W3C2002xml]. XML is a universally accepted

standard for information representation. XML is also platform independent, primarily

because it is text based. The components of a distributed system built on the Web

Services technology interact using XML. XML acts as a bridge between dissimilar

platforms. The Web Services technology can therefore be used to build distributed

systems from heterogeneous components.

In addition to enabling distributed systems to be built over heterogeneous

platforms, Web Services have several other novel features which include the following:

� Web Services can be published on the Internet with special registries based on a

protocol called UDDI [UDDI2002uddi]. Clients can search and locate suitable Web

Services from these registries. For example a client could be looking for a Web

Service that performs a difficult mathematical computation for the lowest price. It can

find such a Web Service and use it without knowing its location in advance. All this

can be done programmatically without human involvement.

� Web Services can be used as components of an application. A Web Service in turn

can also use other Web Services as its components. For example an e-commerce

3

application can be built that uses a credit card processing Web Service and a shipping

information processing Web Service as its components. The credit card processing

Web Service can itself use other Web Services such as a customer credit rating Web

Service.

1.2 Problem Description

In the previous section we introduced Web Services and stated their benefits. The Web

Services technology unfortunately also suffers from a significant problem; there is no

provision of quality-of-service features such as security, reliability and manageability in

the Web Services technology.

Quality-of-service is very important in enterprise-class distributed systems

(distributed systems used by enterprises for their operation). For example a bank

transferring money over a distributed system must be absolutely certain that the system is

secure and reliable.

Some solutions have already been proposed to this problem. One of these

solutions is that of a Web Service intermediary. In this solution an intermediary is placed

between the communicating Web Service applications. The Web Service applications

then communicate through this intermediary instead of communicating directly. The

intermediary takes the responsibility of enforcing the quality-of-service requirements.

This is a suitable solution to the problem. However, the existing implementations of this

solution place many constraints on the Web Services that use them. These constraints

include the following:

4

Figure 1.1: General architecture of existing Web Service intermediaries

� Some implementations of the Web Service intermediary solution require that the Web

Service applications be recoded to be able to communicate with the intermediary.

This is clearly undesirable since recoding requires substantial time and effort.

� The existing implementations of the Web Service intermediary solution are based on

central-server architecture. This leads to more constraints on the Web Services that

uses these implementations. It places control of the information flow and the

configuration of quality-of-service requirements with a single party. The other parties

involved in the communication are left deprived of this control. A central server also

limits the scalability of a Web Service.

Recoded
Web

Service

Central
Server

Recoded
Client

Internet

Messages with
Quality-of-

Service
Guarantees

Client-Server
Interaction

Messages with
Quality-of-

Service
Guarantees

Client-Server
Interaction

5

A Web Service intermediary should be developed that does not suffer from these

problems, yet fulfills the Web Services’ quality-of-service requirements.

1.3 Our Solution

In this thesis, we present a novel Web Service intermediary that does not suffer from the

problems described in the previous section. Our Web Service intermediary is based on

peer-to-peer architecture.

Figure 1.2: Architecture of our Web Service intermediary

A proxy is installed for each Web Service application on its trusted network. The

Web Service application sends and receives messages through its proxy. The

communication between the Web Service application and its proxy is presumed to meet

the quality-of-service requirements since it takes place over a trusted network. Two Web

Service applications that wish to communicate do so through their proxies. The proxies

Web
Service

Proxy Proxy Client

Enterprise 1’s Trusted Network Internet Enterprise 2’s Trusted Network

Messages with
Quality-of-

Service
Guarantees

Messages Messages

Peer-to-Peer
Interaction

6

communicate with each other in peer-to-peer fashion over the Internet. Since the Internet

is unreliable and insecure, the proxies take various measures to implement the quality-of-

service requirements in their communication.

Our Web Service intermediary is designed such that there is no need for recoding

of Web Service applications. Since our Web Service intermediary is based on the peer-to-

peer architecture, there is also no need for a central server.

1.4 Outline of Thesis

Chapter 2 is an introduction to Web Services. We discuss the rationale for Web Services,

their architectural and functional elements, and the current Web Services offerings by

major vendors. We also describe and characterize enterprise-class Web Services in this

chapter.

In Chapter 3, we identify the problem that we have addressed in this thesis, that is,

the inadequacy of Web Services to provide quality-of-service guarantees. We discuss

what is meant by quality-of-service guarantees, what is their importance and why Web

Services are unable to provide them.

Chapter 4 is a description of the solutions that have already been proposed and

some of their implementations. We discuss the benefits and drawbacks associated with

each of these solutions. We reason that there is a need for a better solution.

In Chapter 5, we present our solution to the problem. We present its architecture

and functionality. We discuss how it overcomes the problems in the existing solutions.

Throughout this chapter we discuss our solution from a design perspective.

7

In Chapter 6, we describe the implementation of our solution and its evaluation.

We also describe a sample Web Service that we have developed for exercising and

evaluating our solution.

In Chapter 7, we present conclusions and identify future research possibilities.

8

Chapter 2: Background – Web Services and Enterprise-Class Web Services

In this chapter we introduce the Web Services technology. We discuss the rationale for

Web Services, their architectural and functional elements, and the current Web Services

offerings by major vendors. We also describe and characterize enterprise-class Web

Services in this chapter.

2.1 Web Services

Web Services is an emerging technology for building distributed systems. More

specifically, the Web Services technology can be used to make the functionality of an

application accessible over the Internet. This functionality can then be used by remote

applications. For example a company’s inventory application can use the Web Services

technology to access a supplier’s sales application and place an order for depleted

supplies.

2.1.1 What Problems do Web Services Address and why are they a Good

Solution?

A number of technologies already exist for building distributed systems by enabling

application-to-application interaction, such as: CORBA [OMG2002corba], Java RMI

[Sun2002javarmi] and DCOM [Microsoft2002dcom]. However, these technologies have

some drawbacks [Flamenco2002wsnetworks], which include the following:

� These technologies communicate information in formats that are not universally

recognized or accepted. For example CORBA and Java RMI are two equally popular

9

technologies but an object serialized under CORBA is not deserializable under Java

RMI and vice versa. The drawback of this limitation is that two enterprises that

support different technologies are unable to communicate.

� These technologies communicate information in binary formats. Almost all enterprise

networks are protected by firewalls. Binary information is subjected to very strict

scrutiny by firewalls since binary information can contain executable code which may

have been programmed by an attacker for malicious purposes. Firewalls do not allow

suspicious binary information to pass through. This can result in the disruption of

communication.

� These technologies provide access to an application’s functionality at the object

method level. This means that the application is viewed as a bunch of objects and not

as one single module. This makes the development of a client application complex

since it is easier to understand and use one coherent module than several objects.

There is also no single widely accepted standard for describing the interface of an

application under these technologies.

� A client application must know the exact location (for example URL, IP address etc.)

of a server application in advance to be able to access it.

� Each of these technologies places some other restrictions on the communicating

applications. CORBA requires each communicating application to use an Object

Request Broker (ORB) software from the same vendor [Gisolfi2001corba].

Interoperability between ORBs from different vendors is available in some cases but

limited to very basic services. Java RMI is available to applications written only in

Java. DCOM is available primarily on the Windows platform.

10

The Internet promotes open standards and interaction between diverse platforms.

The above mentioned drawbacks make these technologies particularly unsuitable for

wide use over the Internet.

These problems in the existing technologies called for a new technology, which

should have the following characteristics:

� The technology should communicate information in a universally recognized and

accepted format.

� The technology should be “firewall-friendly”.

� The technology should be able to represent an application’s programming interface as

a single module and not just as a bunch of objects.

� Client applications should be able to access server applications even if they do not

know their location in advance.

� The technology should not be restricted to specific platforms or vendors. It should

provide interoperation between applications on disparate platforms.

Web Services technology has been developed as a response to these needs. The

key strengths of Web Services are as follows:

� Web Services technology is based on the universally accepted standard of XML

[W3C2002xml]. XML is a standard for information representation. XML is

understood on all platforms and accepted by all enterprises. XML acts as a bridge

between dissimilar platforms and enterprises.

11

� All Web Services information representation and exchange protocols such as XML,

SOAP [W3C2002soap], HTTP [W3C2002http], UDDI [UDDI2002uddi] and WSDL

[W3C2002wsdl] are text-based. This means that data meaningful to a Web Service

entity on one platform is also readable by another Web Service entity on a completely

dissimilar platform. Text-based information representation and exchange also make

Web Services firewall friendly. Moreover, text is human-readable, which results in

easier debugging.

� A Web Service can be viewed as a self-contained module. New applications can be

developed by using one or several Web Services as their sub-modules. For example

an e-commerce application can be built that uses an existing credit card processing

Web Service as its sub-module. This software architecture is also known as the

service-oriented architecture [Burbeck2000wstao].

� Web Services can be published on the Internet with special registries based on a

protocol called UDDI [UDDI2002uddi]. Clients can search and locate suitable Web

Services from these registries. For example a client could be looking for a Web

Service that performs a difficult mathematical computation for the lowest price. It can

find such a Web Service and use it without knowing its location in advance. All this

can be done programmatically without human involvement. This kind of distributed

system is also called a Semantic Web [Klein2001semantic].

It is obvious from this discussion that Web Services technology is a good solution

to the problems that earlier technologies suffered from.

12

2.1.2 Web Services Architecture

As described by [Tsur2001revolution], the basic Web Services architecture consists of

three entities:

� A service provider, which publishes the availability and the nature of its services in a

registry.

� A service broker, which provides support via its registry, for the publication and the

location of services offered by providers. In its simplest form this role can be thought

of as that of the yellow pages directory.

� A service requestor, which finds services of interest via the service broker and once

found, binds to the services via the service provider.

This architecture is illustrated in the following figure:

Figure 2.1: Web Services Architecture

Service
Broker

Service
Requestor

Service
Provider

Publish Locate

Bind and Use

13

A service provider is usually referred to simply as a Web Service. A service

requester is usually referred to as a client.

Another perspective of the Web Services architecture is a single Web Service

formed by the composition of several other Web Services. As mentioned earlier, this

architecture is known as the service-oriented architecture. This architecture is also

described by [Tauber2001webservices] as a Business Web. The following figure

illustrates this architecture:

Figure 2.2: A Web Service built from several other Web Services

Web
Service

Client

…Web
Service

Web
Service

Web
Service

14

2.1.3 The Building Blocks of Web Services

The service provider, service requester and the service broker, all interact by sending and

receiving eXtensible Markup Language (XML) text messages. This exchange takes place

using the Simple Object Access Protocol (SOAP). SOAP needs an Internet protocol such

as: HTTP, SMTP or FTP to function. The most popular combination is SOAP over

HTTP.

The service broker is implemented using the Universal Description, Discovery

and Integration (UDDI) protocol. Web Services Description Language (WSDL) is an

XML based language that is used to describe a Web Service. The UDDI contains in its

database, a WSDL document for each published Web Service.

Clients can search the UDDI for suitable Web Services. The search results are

based on the information provided in the WSDL documents published in the UDDI. Once

the client locates a suitable Web Service, it retrieves its complete WSDL document. The

information provided in the document is sufficient for the client to start interacting with

the Web Service on a one-on-one basis.

The following subsections provide a brief overview of these building blocks of

the Web Services technology.

15

Figure 2.3: Web Services standards and protocols

2.1.3.1 XML

eXtensible Markup Language (XML) [W3C2002xml] is a text-based markup language

which uses tags to identify data. Unlike HTML, an earlier text-based markup language

which specifies how to display data, XML specifies the structure of data. The benefit of

this approach is that having identified the structure of some given data, it is up to each

individual user, as to how to use it. XML has been universally accepted as the standard

language for cross-platform information exchange. XML has several novel characteristics

[Armstrong2002introxml]:

� It is text-based which makes it platform independent and simple to use.

� It can be used to describe structured data.

� It is easy for computer programs to parse XML documents.

Service
Requestor

Service
Provider

Locate

All interaction is in the
form of XML messages
using the SOAP protocol.

Service Broker
implemented by
UDDI. A Web

Service is published
as a WSDL

document in the
UDDI database

Bind and Use

All interaction is in the
form of XML messages
using the SOAP protocol.

Publish

All interaction is in the
form of XML messages
using the SOAP protocol.

16

� XML can be used to define new application specific languages. These languages

inherit the novel characteristics of XML. SOAP (described in the next section) is an

example of such a language.

The most significant reason for XML’s popularity is its platform neutrality.

Following is an example of how information is represented in XML. This instance

of XML represents the date August 2, 2002.

<date>
<month>

August
</month>
<day>

2
</day>
<year>

2002
</year>

</date>

2.1.3.2 SOAP

Simple Object Access Protocol (SOAP) [W3C2002soap] is a protocol to exchange XML

messages between applications. The key strength of SOAP is that it is platform neutral.

Applications different from each other in terms of development language and operating

platform are able to interact using SOAP. This platform neutrality is due to its use of

XML for information exchange and an Internet protocol, such as HTTP, for transport.

SOAP messages can be used to exchange commands and data. SOAP also provides a

mechanism for Remote Procedure Calls (RPC). SOAP supports one-way and two-way

messaging. A one-way message is a notification or an event from one application to the

other. A two-way message is a request-response pair.

17

2.1.3.2.1 Anatomy of a SOAP Message

A SOAP message has three parts: a mandatory envelope, an optional header, and a

mandatory body. The envelope encapsulates the header and the body. The header may

contain additional information about the message such as instructions on how to process

the message. The body of a SOAP message contains the actual XML data intended for

the destination application.

The following figure illustrates the anatomy of a SOAP message with the aid of a

simple SOAP message. The SOAP message in the figure contains the XML

representation of the date August 2, 2002, given in the previous section.

18

Figure 2.4: Anatomy of a SOAP message

<?xml version="1.0" encoding="UTF-8"?>

<soap-env:Envelope xmlns:soap-env=
"http://schemas.xmlsoap.org/soap/envelope/">

</soap-env:Envelope>

<soap-env:Body>

</soap-env:Body>

<calendar:date xmlns:calendar=
"blueberrypi.mcs.drexel.edu">

<month>
August

</month>
<day>

2
</day>
<year>

2002
</year>

</calendar:date>

<soap-env:Header>
</soap-env:Header>

XML SOAP Message

Header

Body

XML Data

Envelope

19

2.1.3.3 WSDL

Web Services Description Language (WSDL) [W3C2002wsdl] is an XML based

language that can be used to describe the programmatic interface of a Web Service in a

standardized manner. WSDL describes a Web Service as a single entity. This is in

contrast to other description languages, such as Java Interface Description Language

(IDL) [Sun2002javaidl], which describe the interface simply as a list of methods for each

object. A WSDL description is able to provide a range of useful information about a Web

Service. This includes textual descriptions of the interface, which can be helpful for the

developers of an application planning to use that Web Service. Detailed information on

WSDL can be found at [W3C2002wsdl].

2.1.3.4 UDDI

The idea known as the Semantic Web [Klein2001semantic] has recently gained a lot of

interest. The goal of the Semantic Web is to give resources well-defined, universally-

understandable meaning. One key benefit of doing this is that the right resources can be

found on the Internet with very high accuracy. It also enables computer programs to

understand and process information about resources available on the Internet.

The Universal Description, Discovery and Integration (UDDI) [UDDI2002uddi]

mechanism in conjunction with WSDL implements this idea for Web Services. A UDDI

registry is a searchable repository of Web Services. Like other Web Services protocols,

UDDI is also XML-based. Web Services can register themselves with a UDDI registry.

Clients can search and locate the service they are looking for in the UDDI registry. Since

the UDDI registry contains semantic descriptions of Web Services in the form of WSDL,

it is easier for clients to identify the exact service they require. A UDDI registry can be

20

compared to a telephone book’s white, yellow and green pages

[Seebeyond2001webservices]. It allows Web Services to be listed by name, location,

service provided etc. For example Web Services that provide local traffic conditions

could be listed by their localities. A detailed look at the discovery process can be found in

[UDDI2002tech].

2.1.4 Vendor Support for Web Services

Web Services have gained significant support from all major software vendors, including

Sun Microsystems, Microsoft and IBM. All vendors agree upon the basic Web Services

standards, such as XML, SOAP, WSDL and UDDI. Following is a brief overview of the

Web Services support being offered by major vendors.

2.1.4.1 Sun Microsystems

Sun has recently released the Java Web Services Developer Pack (JWSDP)

[Sun2002jwsdp], which includes several useful APIs and tools for developing and

deploying Web Services. JWSDP is part of Sun’s SunONE Web Services Architecture

[Sun2002sunone]. JWSDP can be used with Sun’s J2SE [Sun2002j2se] and J2EE

[Sun2002j2ee] platforms. JWSDP includes the Java API for XML Messaging (JAXM),

Java API for XML Processing (JAXP), Java API for XML Registries (JAXR) and the

Java API for XML-based RPC (JAX-RPC). It also includes the Tomcat Java Servlet

container, which can be used to host Web Services. JWSDP is a powerful and

comprehensive package for Web Services implementation. After releasing two Early

Access (Beta) versions, Sun released the first production versions of JWSDP in June

21

2002. The best thing about JWSDP is that it is free of charge. However, from our

experience with JWSDP, we feel that it currently lacks comprehensive documentation.

2.1.4.2 Microsoft

The heavily advertised Microsoft .NET [Microsoft2002dotnet] is Microsoft’s platform

for Web Services. Microsoft has updated its Visual Studio 6.0 Integrated Development

Environment (IDE) to Visual Studio .NET, which adds support for the development of

Web Services. Visual Studio, as always is a relatively easy and simple yet powerful

development environment. However, Web Services developed on the .NET platform can

run only on the Windows Operating System. An integral part of Microsoft’s .NET

platform is the Common Runtime Language (CLR) which provides services to help

simplify Web Services development and deployment.

2.1.4.3 IBM

IBM’s WebSphere [IBM2002websphere] has been a popular application server. IBM has

recently evolved WebSphere into a full-fledged Web Services platform. WebSphere

offers to “build, deploy and integrate high-performance Web sites with advanced e-

business features using open standards” [IBM2002websphere]. IBM is also planning to

include Web Services support in its other major products, including: DB2, Lotus and

Tivoli [WSorg2002wsoverview].

22

2.1.5 Example Web Services

2.1.5.1 Microsoft Passport

Microsoft Passport [Microsoft2002passport] is a Web Service which centralizes users’

authentication information. An application that needs to authenticate a user can simply

connect to Microsoft Passport and do so. This is opposed to the application having to

implement its own authentication mechanism. The benefit that is brought to the users is

that they can register with Passport once, and use the same authentication information to

log in to any online service which uses Passport. This saves users from remembering a

different login and password for each online service that they use.

Microsoft .NET My Services [Microsoft2002myservices] is a set of proposed

Web Services, which will use Microsoft Passport to authenticate its users. This is an

example of a Web Service application using another Web Service application as one of

its components. Microsoft .NET My Services include personal organization tools such as

an address book, a scheduler etc.

2.1.5.2 California Traffic-Reporting Web Service by InterKnowlogy

InterKnowlogy LLC [InterKnowlogy2002ik] is a consulting and software engineering

firm based in the San Diego area. InterKnowlogy has developed a Web Service which

exposes California Department of Transportation’s real time traffic information.

Applications can connect to this Web Service and retrieve customized traffic information

in real time. The specific use of this information is up to the client applications. They can

use it for trip planning, reporting or any other purpose. This would not be possible if this

23

information were available only on a simple web site. The information on a web site is

intended for human consumption and is generally not reusable.

An example application would be a vehicle’s computer retrieving the current

traffic conditions from the traffic Web Service and using them to constantly calculate the

fastest route to the destination as the vehicle is being driven.

2.2 Enterprise-Class Web Services

Web Services technology is currently in its initial stages and has therefore some issues

that are being worked out. A simple Web Service implementation currently lacks the

quality-of-service that enterprises demand from their software. The reasons for the lack

of quality-of-service in Web Services are discussed in detail in the next chapter. A Web

Service that is able to meet an enterprise’s quality-of-service requirements can be termed

as an enterprise-class Web Service.

2.2.1 Characteristics of Enterprise-Class Web Services

As identified by [Jones2002enterpriseclassws], characteristics of enterprise-class Web

Services include:

� Security – The ability to determine variable access rights based on a user identity or

class of identity. Security should address data transport to ensure data integrity,

confidentiality, authentication and non-repudiation.

� Reliability – Once a business process or object is placed into production, mechanisms

should exist to ensure reliable access to that resource. In the case of data transport,

reliability should address guaranteed and once-and-once-only delivery of data.

24

� Manageability – This requires robust, precise monitoring tools that allow prediction,

identification and resolution of a large number of deployed interfaces, objects or

services.

� Configurable Usage Policies – These govern everything from supported vendor

software, to required hours of availability, naming policies, error-handling

techniques, and security requirements.

� Physical scalability – This refers to the ability to handle increasing volumes of usage

without requiring drastic reconfiguration, testing and new hardware.

� Developmental scalability – This addresses the ability to spread development projects

among multiple teams and locations without compromising source integrity, reuse

and quality assurance.

25

Chapter 3: Problem – Inadequacy of Web Services to Provide

Quality-of-Service Guarantees

In the previous chapter, we discussed the emerging Web Services technology. We saw

that the Web Services technology has several advantages over earlier technologies in

building distributed systems. We also pointed out that although the Web Services

technology has its benefits, its implementations lack quality-of-service guarantees, which

are important for enterprise software. In this chapter we will discuss this problem in

detail. We start by clarifying what is actually meant by quality-of-service in Web

Services.

3.1 What is Quality-of-Service in Web Services?

Quality-of-Service (QoS) in Web Services refers to their non-functional properties, such

as reliability, security and manageability [Mani2002qos]. In the previous chapter, we

listed some quality-of-service characteristics of Web Services. Here we discuss in detail

the three quality-of-service characteristics that are of greater significance.

3.1.1 Security

There are many aspects to security in a Web Service, such as: authentication,

authorization/access control, confidentiality and non-repudiation.

� Authentication is the process of verifying that the sender of a message actually is who

he claims to be. An authenticated client is one whose identity has been verified as a

26

valid user of the service and is therefore allowed access to the service. Authentication

is a defense mechanism against unauthorized access.

� Authorization/access control works closely with authentication. Once a client is

authenticated, he is given access to the service. However, it may not be desirable to

allow all the users access to every function and data that the service offers. The

manager of the service should be able to assign each user a different level of access.

Authorization/access control in a Web Service enforces the level of access granted to

a particular client.

� Maintaining confidentiality in a Web Service is making sure that a message meant for

a particular party is not readable by unauthorized third parties. This is to safeguard in-

transit confidential information from falling in the wrong hands.

� Non-repudiation is a guarantee that once a particular transaction has been made

between two parties (i.e. the Web Service and the client), neither one of them is able

to deny it.

3.1.2 Reliability

Reliability of a Web Service refers to the quality of message delivery between the Web

Service and the client. When a message is sent from one party to the other, there should

be a level of assurance that the message will be delivered, delivered in order and that it

will be delivered exactly once.

� It is important for most applications that messages are always delivered to the

destination. Minor glitches such as temporary network outages should not stop the

delivery of messages. Guaranteed message delivery provides the sender and receiver

27

a certain level of assurance that messages will get delivered unless the destination is

permanently unreachable.

� Ordered delivery of messages is important for some applications; real-time

multimedia streams are an example.

� Exactly-once delivery of a message guarantees that even if duplicate copies of a

message are received, only a single copy of the message is delivered to the

destination. This is important if the application has operations that are not idempotent.

An idempotent operation is an operation that can be performed repeatedly with the

same effect as it had been performed exactly once [Coulouris2001distributed].

3.1.3 Manageability

A Web Service requires a degree of management to keep it operating smoothly.

Management includes monitoring the Web Service for performance and exceptions,

maintaining logs of activity for future reference, and client management.

� The manager of a Web Service should be able to monitor its various aspects in real-

time. This provides the manager the opportunity to detect any problems in the Web

Service early on. The problems can then be resolved before they make a significant

impact.

� Logging is saving the monitoring information for permanent record. Logs are helpful

to compare the activity of a Web Service over a period of time. The logs themselves

should be manageable.

� A Web Service should have easy but effective client management. For example it

would be very inconvenient if the addition of each new client requires coding and

recompilation of the service.

28

3.2 Why is Quality-of-Service in Web Services Important to Enterprises?

Quality-of-service guarantees in Web Services are very important for enterprises because

without them a Web Service is prone to many problems, which are unacceptable for

proper business function. We can illustrate this with the help of an example from

[Flamenco2002wsnetworks].

Imagine that a manufacturer has implemented a Web service so that a customer’s

application can dispatch orders directly into the manufacturing control application of the

manufacturer. In absence of the above-described quality-of-service guarantees, a few

things could go wrong:

� An unauthorized user/application could connect to the Web service and invoke an

order by pretending to be a certain customer. Reason: Lack of authentication.

� A competitor of the manufacturer could intercept in-transit messages, find out the

production schedule of the manufacturer and have complete knowledge of the orders

that the manufacturer receives. Reason: Lack of confidentiality.

� A glitch in the information system of the customer would not record the dispatch of

the order to the manufacturer’s system and since their would be no trail that showed

that the order came from the customer, the customer would be within their rights to

refuse the order. Reason: Lack of non-repudiation.

� Due to the slowness of the connection, an application can time-out, retry the order

and unintentionally order double the quantity that the customer required. Reason:

Lack of exactly-once delivery.

29

� During a tax audit of the manufacturer, there would be no way to ascertain that a

customer had indeed made an order at a certain date and at a certain price because

there would be no logs. Reason: Lack of logging.

It is obvious from this example that unless a Web Service has the quality-of-

service guarantees that we discussed earlier, it is not practical for an enterprise to use that

Web Service.

Although quality-of-service guarantees in Web Services are important for all

enterprises, they are critical for some enterprises, such as:

� E-commerce based enterprises, for example e-commerce web-sites

� Financial institutions, for example banks

� Healthcare organizations, for example hospitals and pharmacies

� Transportation enterprises, for example airports

3.3 Why Web Services are Unable to Guarantee Quality-of-Service?

There are several reasons why the current Web Services infrastructure is unable to

provide quality-of-service guarantees. We discuss a few of them here.

3.3.1 HTTP is Unreliable

The Web Services message delivery protocol, SOAP, relies on an Internet protocol for

transport of its messages. The most popular choice is the Hyper Text Transfer Protocol

(HTTP). The reason for this choice is the common availability of HTTP infrastructure

due to the popularity of the World Wide Web (WWW), which uses this protocol.

30

HTTP is a best-effort delivery service [Mani2002qos]. It suffers from the

following problems:

� It does not guarantee the delivery of a message to the destination.

� It does not guarantee the delivery of messages in the correct order.

� It does not guarantee that a message will be delivered only once.

These shortcomings are generally not a problem for the WWW, for which HTTP

is intended. However, for enterprise-class application-to-application interaction, it creates

the problems that we noted earlier. It is also noteworthy that HTTP is not the only

protocol with these shortcomings; most other Internet protocols such as FTP and SMTP

have similar characteristics.

3.3.2 Public Internet is not Secure

Web Services communicate with clients over the public Internet. This means that all

communication is visible to the public. Moreover, Web Services protocols such as SOAP

do not include any built-in security mechanisms. This makes Web Services vulnerable to

security attacks. The problem of lack of security in Web Services is discussed in detail in

[Powell2001security].

3.4 Some Views and Opinions about Lack of Quality-of-Service Guarantees in

Web Services

This section lists some views and opinions of industry professionals about the lack of

quality-of-service guarantees in Web Services.

31

Tim Hilgenberg, Chief Technology Strategist for Hewitt Associates, says: “If you

want to do real business processes, the keys are security, non-repudiation and reliable

messaging” [Fontana2002security].

Matt Powell of Microsoft Corporation says: “I must confess that in reality, there is

almost no mention at all of security in the SOAP specification. You could say that SOAP,

as it exists today, is not secure” [Powell2001security].

Concerned about the lack of quality-of-service guarantees in Web Services, John

Studdard, Chief Technology Officer at VirtualBank in Florida, says: “It is foolish now to

build Web services that run outside the firewall” [Fontana2002security].

A poll conducted by Evans Data Corporation [EvansData2002evansdata], notes

security and authentication issues as the biggest obstacle to Web Services

implementation. The results of this poll are illustrated in the following graph:

32

Which do you think will be the biggest obstacle to Web Services implementation?

Security and
authentication issues,

45.50%

Bandwidth and access
issues, 21.60%

Interoperability
problems, 18.30%

Reaching a critical
mass of available

services, 11%
Other, 3.50%

Figure 3.1: Web Services insecurity

3.5 Review

In this chapter, we first defined what is meant by quality-of-service in Web Services.

Then with the help of an example we established why it is important for enterprises to

have quality-of-service guarantees in Web Services. We also explained some reasons

which contribute to the inability of Web Services to guarantee quality-of-service. Some

views and opinions of industry professionals were then presented, which highlight the

concern for the lack of quality-of-service guarantees in Web Services.

33

From discussions in this and the previous chapter, it is clear that although Web

Services technology is quite advantageous, the lack of quality-of-service guarantees

makes it impractical for enterprise-class applications. This is a problem that needs to be

addressed. The following chapter discusses some solutions that try to fix this problem.

34

Chapter 4: Existing Solutions and their Drawbacks

The Web Services community is well aware of the problems discussed in the previous

chapter. Several solutions are being considered and new solutions are also being

proposed. Here we discuss three approaches to add enterprise-class quality-of-service to

Web Services.

4.1 Upgrade Web Services Protocols

One of the obvious solutions is to upgrade the Web Services protocols, so that they

include support for enterprise-class quality-of-service. The positive aspect of this solution

is that it would be integrated and long-term. However, this approach has some

drawbacks. First of all, it would take considerable time and effort to develop and

standardize the new protocols. Standardization activities are usually very time-

consuming. Second of all, it may not even be desirable to add extra burden on the

existing Web Services protocols. One of the reasons of Web Services’ practicality is the

simplicity and minimality of its protocols. Adding more functionality to the protocols

could make them inefficient or cause interoperability and integration problems, which

would defeat the purpose of Web Services [Fontana2002security].

Anyhow, this approach does have potential and it has yet to be fully explored.

Several groups, including many supported by major companies, are currently working in

this area. Examples of work in progress include: Reliable HTTP (HTTPR)

[Todd2002httpr] and Web Services Security Language (WS-Security)

[Atkinson2002wssecurity].

35

4.2 Hard Code Desired Quality-of-Service into Each Web Service

Implementation

Another solution is to hard code the desired quality-of-service into each Web Service

implementation as it is developed. The advantage of this solution is that it is immediately

available. However, this approach also has several significant drawbacks. Manually

implementing quality-of-service features into a Web Service is an arduous task. It

requires considerable time, effort and skill on the developers’ part. Moreover, custom

code for each Web Service means that there is a greater risk of errors. Making sure that a

Web Service has the desired level of quality-of-service using this approach, would

require thorough and time-consuming testing. The worst aspect of this approach however,

is that non-standard mechanisms to achieve quality-of-service would severely limit the

interoperability and integration capabilities of a Web Service.

4.3 Use a Web Service Intermediary

4.3.1 What is an Intermediary?

As defined by [Barrett1999intermediaries]:

“An intermediary is a computational element that lies between an information

producer and an information consumer on an information stream.”

36

Figure 4.1: An intermediary [Barrett1999intermediaries]

The concept of intermediaries is well-established. According to

[Barrett1999intermediaries], “Intermediaries can turn ordinary information streams into

smart streams that enhance the quality of communication”. Intermediaries are usually

used to monitor traffic, bridge dissimilar information streams or add value to a simple

data flow. A common intermediary is a web proxy between a web server and a web

browser.

4.3.2 What is a Web Service Intermediary?

A Web Service intermediary is an intermediary placed between the Web Service provider

and the Web Service client [Irani2001intermediaries]. The concept of Web Service

intermediaries is a recent one.

A Web Service provider and Web Service client without an intermediary are

illustrated in the following figure:

Information
Producer

Intermediary Information
Consumer

37

Figure 4.2: A standard Web Service provider and Web Service client
[Irani2001intermediaries]

In this case, SOAP messages are exchanged over an Internet protocol such as

HTTP, directly between the Web Service and the client.

A Web Service provider and Web Service client with an intermediary are

illustrated in the following figure:

Figure 4.3: A Web Service provider and Web Service client with an intermediary
[Irani2001intermediaries]

In this case, the intermediary lies between the Web Service and the client. All

messages are directed to the intermediary, which in turn forwards them to their

destination.

SOAP/HTTP SOAP/HTTP
Web Service

Provider
Web Service

Client
Web Service
Intermediary

SOAP/HTTP
Web Service

Provider
Web Service

Client

38

It is noteworthy that an intermediary may not be a single entity. An intermediary

may be composed of a system of entities. It is also possible for the Web Service and the

client to use more than one intermediary. An intermediary composed of several

distributed components is also called a Web Services Network. The Web Service

intermediary shown in the following figure is an example of a Web Services Network:

Figure 4.4: A Web Service intermediary composed of more than one component

4.3.3 How does a Web Service Intermediary Solve the Problem?

A Web Service intermediary takes the responsibility of implementing the quality-of-

service requirements in the communication between a Web Service provider and a client.

This is accomplished as follows:

Web
Service
Provider

SOAP/
HTTP

SOAP/
HTTP

Web Service Intermediary

Web
Service
Client

Web Service
Intermediary
Component

Web Service
Intermediary
Component

Web Service
Intermediary
Component

39

The only channel that the provider and the client can directly communicate on is

the Internet which does not meet the quality-of-service requirements. Instead of

communicating directly they communicate through a Web Service intermediary. The

provider and the client of a Web Service each interact with a local component of the Web

Service intermediary. This interaction takes place over a local communication channel

that does meet the quality-of-service requirements.

Figure 4.5: General architecture of a Web Service intermediary

The component of the Web Service intermediary local to the provider and the

component local to the client interact over the Internet to relay the communication

between the Web Service provider and the client. Their interaction may go through other

components of the Web Service intermediary. The interaction takes place over the

Internet which as we know does not generally provide quality-of-service guarantees.

However, the components of the Web Service intermediary take measures to make their

interaction over the Internet meet the quality-of-service requirements. These measures

Internet, Other
Web Service
Intermediary
Components

Web Service
Provider

Local
(Client)

Web Service
Intermediary
Component

Local
(Provider)

Web Service
Intermediary
Component

Web Service
Client

Communication
over a Local

Channel

Communication
over a Local

Channel

Communication
over the Internet

Communication
over the Internet

40

include using public key cryptography for security, message queues for reliable delivery,

and use of ordered message delivery and exactly-once message delivery algorithms etc.

This way the Web Service provider and the client do not have to be concerned

about implementing the quality-of-service requirements. They can rather concentrate on

the functionality of the Web Service. The Web Service intermediary enforces the

required quality-of-service for them.

This process will become more vivid when we discuss actual Web Service

intermediary implementations in the upcoming sections of this and the next chapter.

4.3.4 Some Implementations Based on the Concept of Web Service

Intermediary

Grand Central Communications [GrandCentral2002gc] and Flamenco Networks

[Flamenco2002flamenco] are two notable start-up companies, each of which offers its

own implementation of a Web Service intermediary [Tominaga2002gcflamenco].

Although, both products are based on the same concept, there are some differences in the

internal architecture of the intermediaries. Here is an overview of the two products.

4.3.4.1 Grand Central Communications’ Web Services Network

4.3.4.1.1 Architecture and Operation

Grand Central’s Web Services Network is based on a hub-and-spoke model

[Jones2002enterpriseclassws]. Grand Central hosts a central server at its site. All

communicating parties must go through this server to exchange messages. The Web

Service and the client each need a custom wrapper to interact with the Grand Central

41

server. The wrappers can be written using a Software Development Kit (SDK) provided

by Grand Central. Communication between the wrappers and the Grand Central server

takes place over the Internet. The wrappers collaborate with the server to implement the

required quality-of-service.

An enterprise network administrator’s interface to the Grand Central Web

Services Network is through a web site hosted by Grand Central. The web site allows the

administrator to configure the level of quality-of-service desired. The web site is also

responsible for providing activity reports and other management facilities.

To use Grand Central’s Web Services Network, each enterprise must register with

Grand Central. Registration requires an initial setup fee and then a monthly fee for as

long as the service is used.

42

Figure 4.6: Architecture of Grand Central Communications’ Web Services Network

4.3.4.1.2 Services Provided

Grand Central’s Web Services Network provides the following services

[Grandcentral2002gcservice]:

� Flexible connection – Enterprises have the option to communicate with the Grand

Central Server using SOAP over FTP, SMTP or HTTP.

� Security – Security services include authentication, encryption and access control.

Authentication is provided using the VeriSign-based [VeriSign2002verisign]

authentication system. Connections can be secured with up to 128-bit encryption.

128-bit encryption is considered satisfactory by today’s standards.

Grand Central’s
Server at

grandcentral.com

Web Service

Wrapper
(Written with
Grand Central

SDK)

Messages with
Quality-of-

Service
Guarantees

Configuration and control,
monitoring, reliable messaging,

authentication etc.

Internet

Client

Messages with
Quality-of-

Service
Guarantees

Wrapper
(Written with
Grand Central

SDK)

43

� Reliable messaging – Messages are queued for robust delivery. Messages can also be

delivered using a store-and-forward model.

� Partner management – Separate profiles are provided for each client of a Web

Service.

� Monitoring – Activity reports and exception alerts are provided.

4.3.4.1.3 Pros and Cons

An advantage of Grand Central’s Web Services Network is that, since all communication

goes through a central server, it is able to provide very comprehensive monitoring

services. However, this product also has some disadvantages:

1. An enterprise willing to use Grand Central’s Web Services Network, has to first

develop a wrapper for its Web Service or Client for it to be able to communicate with

it. Developing this wrapper may not be too difficult, but it still poses a hurdle and

prevents immediate deployment.

2. Another drawback is due to its central server architecture. The central server makes

all communication completely dependent on Grand Central. If the server ever ceases

to function, the whole communication would fail. For instance, Grand Central could

stop offering this product in the future and shutdown the server. The central server

places control of the flow and management of information in the hands of a third

party which may not be desirable. A central server also limits the scalability of a Web

Service application.

44

4.3.4.2 Flamenco Networks’ Web Services Network

4.3.4.2.1 Architecture and Operation

Flamenco’s Web Services Network is a hybrid of client-server and peer-to-peer models.

A key component of Flamenco’s Web Services Network is the Flamenco proxy. A

Flamenco proxy is installed on each communicating party’s trusted network. The Web

Service and the client communicate only with the proxy installed on their own trusted

network. It is presumed that this internal communication already meets the enterprise’s

quality-of-service requirements. This is generally true because the proxy runs either on

the same machine as the Web Service/Client, or on a machine connected by a reliable

Local Area Network (LAN). The Web Service and the client do not directly interact with

any other entity.

When a proxy receives a message from the local application inside the trusted

network, it forwards it over the Internet to the proxy of the destination application. That

proxy on receiving this message then delivers it to the destination application residing on

its trusted network. The proxies interact in a peer-to-peer manner to exchange messages.

The proxies are responsible for implementing the required quality-of-service in their

communication.

The communication however also involves a central server hosted at Flamenco

Networks’ site. Each of the peer proxies is managed and controlled from the central

server. The proxies send activity reports to the server, which are then compiled and made

available to the user from the central server. The central server also functions as a digital

45

certificate authority for authentication purposes. The server plays an indispensable role in

Flamenco’s Web Services Network.

Like Grand Central, an enterprise network administrator’s interface to the

Flamenco Web Services Network is through a web site hosted by Flamenco Networks.

The Flamenco proxies can be managed only through the Flamenco Networks web site.

Flamenco also requires registration with an initial setup fee and a continuous monthly fee

thereafter.

Figure 4.7: Architecture of Flamenco Networks’ Web Services Network

Flamenco
Server at

flamenconetwo
rks.com

Web
Service

Client Flamenco
Proxy

Flamenco
Proxy

Messages with
Quality-of-

Service
Guarantees

Messages Messages

Transaction
statistics,

configuration
and control
information,

authentication
information

Transaction
statistics,

configuration
and control
information,

authentication
information

Enterprise 1’s
Trusted Network

Enterprise 2’s
Trusted Network

Internet

46

4.3.4.2.2 Services Provided

Flamenco’s Web Services Network provides the following services

[Flamenco2002wsnetworks]:

� Security – Flamenco’s security services include authentication and confidentiality.

Flamenco acts as its own digital certificate authority for authentication purposes. The

proxy-to-proxy and proxy-to-server communication can be encrypted for

confidentiality.

� Reliability – The messaging is made reliable by providing guaranteed delivery, non-

repudiation and once-and-once only delivery.

� Manageability – Message tracking, activity monitoring and logging features are

available for improved manageability.

� Access management – Enterprises can control the level of a Web Service’s

functionality that is accessible by clients.

4.3.4.2.3 Pros and Cons

Flamenco Networks’ Web Services Network has the advantage of being immediately

deployable. An enterprise needs only to install the Flamenco proxy, configure it for the

desired quality-of-service and start exchanging messages. There is no development

required. However, this product is not free of all problems either. It shares Grand

Central’s drawback number 2 (section 4.3.4.1.3) due to its use of a central server. Third-

party dependence is not desirable for an enterprise.

One could argue that the problem is not in the architecture and that the server may

as well be hosted by one of the two communicating enterprises instead of a third-party.

However, this argument does not hold completely valid due to the following reasons:

47

� This new configuration would only partially solve the problem. It is true that the

enterprise that gets to host the server would benefit and would be in total control. The

other enterprise though, would still remain deprived of the ability to independently

control its quality-of-service requirements. It will also have to depend on the host

enterprise for all of its activity monitoring and other management needs.

� Moreover in the Web Services architecture a Web Service application can be a client

as well as a server. If two peer-to-peer Web Service applications want to

communicate there is no basis to choose one of them over the other to host the central

server.

4.4 A Review of the Discussed Approaches

The first approach, to update existing Web Services protocols, is currently under debate.

It would take considerable research to establish if it can or cannot be a viable solution.

The second approach, to hard code the desired quality-of-service, has obvious

defects. It is time and effort consuming and limits the integration and interoperability

capabilities of a Web Service implementation.

The third approach, to use a Web Service intermediary, offers many benefits and

doesn’t have any significant disadvantages intrinsically. However, how this approach is

implemented determines the actual advantages and disadvantages that can be derived

from it. We have discussed two implementations of this approach. They both offer

important benefits but unfortunately also suffer from serious drawbacks. This is partly

due to the central server architecture that they both use.

We can conclude from this discussion that although the Web Service intermediary

approach is a good solution to our problem, current implementations of this concept have

48

drawbacks associated with them. An implementation of the Web Service intermediary

approach that exploits its benefits but does not have the disadvantageous side effects is

desired.

49

Chapter 5: Our Solution – Peer-to-Peer Intermediary

5.1 Objectives

In the previous chapter we established that the Web Service intermediary approach is an

appropriate solution to the given problem. However, as discussed, the current

implementations of this approach suffer from several drawbacks. Our goal is to design an

implementation of the Web Service intermediary approach which is free from these

drawbacks. The characteristics that we aim for in our solution are as follows:

� It should not require additional coding for each deployment

� It should not place control of the information flow and its management in the hands

of a single party (especially not a third-party)

� It should be easily and quickly deployable

� It should not limit the scalability of the Web Service

The following subsections explain why we aim for these characteristics in our

solution.

5.1.1 Requirement of Customization through Additional Coding

Customization/Modification of software is a time and effort consuming process that

requires skilled software engineers who thoroughly understand the original design of the

software. David L. Parnas, one of the most renowned experts in the field of Software

Engineering, highlights the risks involved in modification of software in general and

especially by people who do not thoroughly understand the original design of the

software as follows [Hoffman2001parnas] – section 29.3.2:

“Changes made by people who do not understand the original design concept almost

always cause the structure of the program to degrade. Under those circumstances,

changes will be inconsistent with the original concept; in fact, they will invalidate the

original concept. Sometimes the damage is small, but often it is quite severe. After

those changes, one must know both the original design rules, and the newly

50

introduced exceptions to the rules, to understand the product. Those who made the

changes, never did. In other words, nobody understands the modified product.

Software that has been repeatedly modified (maintained) in this way becomes very

expensive to update. Changes take longer and are more likely to introduce new

“bugs”.”

We can infer that unless modification to software is necessary, it should be

avoided.

5.1.2 Enterprise’s Control of the Flow and Management of its Information

In some cases enterprises do not wish to rely on third-parties for their operation. Reasons

include concerns about confidentiality and dependability.

The following quote from a recent article titled “Third-Party Dependence – A

Potential Disaster Domino” highlights a risk involved in third-party dependence

[Keating2002thirdparty]:

“As suppliers play a more critical role in business continuity planning (BCP), many

companies employ single and sole-source supplier agreements because of the

operational and financial benefits of dealing with one company. Unfortunately these

agreements bring the risk that suppliers’ contingent business interruptions could close

internal operations. Two recent incidents resulted in losses of $175 and $400 million,

according to The Wall Street Journal.”

Although the article refers to the manufacturing industry and sole dependence on

a single third-party, the same is also true for any enterprise depending on one or more

than one third-parties for the flow and management of its information.

We can infer that third-party dependence should not be a mandatory requirement

in a Web Service intermediary.

Moreover consider Web Service applications that are based on a peer-to-peer

architecture. Giving one of the applications (or owner enterprise of that application) more

51

control of the flow and management of the communication is not conformant with the

peer-to-peer model.

5.1.3 Ease and Speed of Deployment

[Schwartz2002deployability] makes the following observation about deployability of

business systems:

“In order for businesses to be competitive, the systems that facilitate operations and

create value need to be deployed quickly and predictably into many different

environments, over several channels, at very low cost – all while maintaining service

levels and security requirements.

These requirements make business system deployability a key factor in the overall

success of a business system.”

Easy and quick deployment of business systems saves money and time for

businesses. The saved money results in higher profits. Saved time is valuable for getting

ahead or at par with the competition.

5.1.4 Scalability

[Coulouris2001distributed], one of the most definitive texts on Distributed Systems,

describes scalability as one of the key characteristics that the designers of a distributed

system should aim for. [Coulouris2001distributed] can be quoted as follows:

“A distributed system is scalable if the cost of adding a user is a constant amount in

terms of the resources that must be added. The algorithms used to access shared data

should avoid performance bottlenecks and data should be structured hierarchically to

get the best access times.”

The demand on the resources of a distributed system generally grows with time.

Scalability ensures that the distributed system is able to meet the growth in demand.

52

An example of a scalable distributed system is the Internet. The Internet started

out with a few computers but it gradually scaled to include millions of computers.

Scalability is one of the primary reasons for the success of the Internet.

5.2 Design

With these objectives in mind, we have designed a peer-to-peer implementation of the

Web Service intermediary approach. This solution is termed Peer-to-peer Intermediary,

abbreviated as PI (pronounced as π). In this chapter we discuss a high level design of the

solution. Implementation level details are discussed in the next chapter.

5.2.1 Architecture

Figure 5.1: PI architecture

5.2.1.1 Components

The components of the PI architecture are the Web Service, the client and a pair of PI

proxies. The Web Service and the client are standard components from the Web Services

architecture. The PI proxies are the additional components in the PI architecture.

A PI proxy is a software program whose basic function is to relay messages

between its local application (Web Service/client) and its peer PI proxy. For each Web

Web
Service

PI
Proxy

PI
Proxy

Client

Enterprise 1’s Local Trusted Network Internet Enterprise 2’s Local Trusted Network

Messages
Relayed with
Quality-of-

Service
Guarantees

Messages Messages

Peer-to-Peer
Interaction

53

Services component (Web Service/client), a copy of the PI proxy is installed on its local

trusted network. The Web Service and the client each interact only with its local PI

proxy. It is presumed that this internal interaction already meets the enterprise’s quality-

of-service requirements. This is generally true because the PI proxy runs either on the

same machine as the Web Service/client, or on a machine connected by a reliable Local

Area Network (LAN). Trusted networks are described more thoroughly in section

5.2.1.2.1. The two peer PI proxies interact over the unreliable and insecure Internet but

take measures to make this interaction conform to the quality-of-service requirements.

These measures are described in section 5.4.

5.2.1.2 Connectors

Three connectors connect the components described above. These connectors are the

Web Service’s local trusted network, client’s local trusted network and the Internet. The

Web Service and the client interact with their respective PI proxies only over their own

local trusted networks. As discussed, these local networks meet their enterprise’s quality-

of-service requirements. The PI proxies interact over the public Internet in peer-to-peer

fashion. The Internet is unreliable and insecure therefore quality-of-service is not

automatically guaranteed. The proxies, however, take measures to implement the quality-

of-service requirements in their communication. An intranet can also be used instead of

the Internet as the connecter between the PI proxies.

5.2.1.2.1 Trusted Network

We define a trusted network as a computer environment which provides a communication

channel between a Web Service application and a PI proxy that meets the quality-of-

service requirements of the owner enterprise. The quality-of-service requirements that we

consider here are reliability and security from external threats. These quality-of-service

requirements are discussed in section 3.1.

A trusted network in the simplest form is a standalone machine. A Web Service

application and a PI proxy running on that machine can reliably and securely

communicate with each other. All communication is internal to the machine therefore

there is no risk of reliability problems that are generally introduced by communication

54

over a network. The communication is secure since attackers have no access to the

machine because it is not connected to any network. We do not consider physical threats.

Standalone machines are however not useful in the PI architecture. The PI

architecture requires that trusted networks be connected to the Internet for the PI proxies

to be able to communicate with each other. Connecting a machine to the Internet does not

affect the reliability of its internal communication but does render it vulnerable to

external security threats. To make the machine secure, a standard solution such as a

firewall can be used.

A trusted network can also be composed of multiple machines connected to each

other by any kind of network as long as the quality-of-service requirements are met. In

this case the Web Service application and the PI proxy can be running on separate

machines. Popular LANs such as Ethernet 100BaseT, 100BaseF, 1000BaseT and FDDI

provide reliable communication if designed and administrated properly. Detailed

discussion of these and other LAN standards can be found in [LeonGarcia2000networks].

The network can be secured from external security threats by using a firewall at all points

of Internet access.

Communication on a trusted network is not safe from internal security threats

including physical threats. The strength of security from external threats depends on the

effectiveness of the firewalls used.

5.2.1.3 Multiple Clients Scenario

The PI architecture allows a Web Service to serve multiple clients. For each client there

is an exclusive PI proxy on the client’s trusted network. The PI proxy for the Web

Service can be configured to serve multiple clients. Each client’s PI proxy interacts with

the Web Service’s PI proxy in the same manner as it would in a single client scenario.

55

Figure 5.2: Multiple clients – configuration 1

Another possibility is to have multiple PI proxies for the Web Service. Each of

the Web Service’s PI proxies can be configured to serve a single or multiple clients.

Web
Service

PI
Proxy

PI
Proxy

Client
1

Enterprise 1’s Trusted Network Internet Enterprise 2’s and 3’s Respective
Trusted Networks

Messages with
Quality-of-

Service
Guarantees

Messages

Messages

PI
Proxy

Client
n

Messages

Messages with
Quality-of-

Service
Guarantees

…

56

Figure 5.3: Multiple clients – configuration 2

5.2.2 Message Exchange Model

The basic function of a PI proxy is to relay messages between its local application (Web

Service/client) and its peer PI proxy. To perform this function, each PI proxy is provided

with the location of the local application and the location of each peer PI proxy that the

PI proxy will interact with. A unique ID is assigned to each of these peer PI proxies.

The PI proxy relays messages in two directions. It receives incoming messages

from peer PI proxies which are relayed to the local application. It receives outgoing

messages from the local application which are forwarded to the appropriate peer PI

proxy.

Since there is only one local application, all incoming messages are simply

delivered to the location of the local application as configured in the PI proxy. However,

Web
Service

PI
Proxy

PI
Proxy

Client
1

Enterprise 1’s Trusted Network Internet

Messages with
Quality-of-

Service
Guarantees Messages

Messages

PI
Proxy

PI
Proxy

Client
n

Messages with
Quality-of-

Service
Guarantees

Messages
Messages

…

Enterprise 2’s and 3’s Respective
Trusted Networks

57

there can be multiple peer PI proxies that a PI proxy interacts with, so the process of

relaying outgoing messages can be more involved. We can illustrate this process with the

help of an example. In the case where there is no Web Service intermediary, a Web

Service sends a message directly to client’s location/address for example,

http://clientsaddress/. In the case where PI is being used, the Web Service would send the

message to its local PI proxy, for example, on the address http://piproxyaddress/.

However, to be able to forward this message to the appropriate peer PI proxy, the PI

proxy would need the local application to identify that peer PI proxy. For this purpose the

unique ID assigned to each peer PI proxy is used. The local application includes this ID

as an argument in the address, for example if the message is intended for a peer PI proxy

with the unique ID ‘blue’, it would send the message to the address

http://piproxyaddress/blue. The PI proxy upon receiving the message would forward it to

the peer PI proxy identified by the ID ‘blue’.

The steps involved in delivering a message from one application (Web

Service/client) to the other using PI are as follows:

1. The sender application sends the message to the local PI proxy.

2. The PI proxy receives the message, determines the recipient peer PI proxy and

forwards the message to it.

3. The recipient peer PI proxy upon receipt of the message delivers it to its local

application which is the final destination of the message.

The communication between the peer PI proxies is in peer-to-peer fashion. The

peer PI proxies can take measures to communicate this message in a manner that

conforms to the quality-of-service requirements. The measures taken to achieve this are

described in section 5.4. Since the two PI proxies are independently configured, the

stricter of the two quality-of-service requirements is selected.

5.3 How does PI Meet the Objectives?

The following comparison between existing implementations of the Web Service

intermediary approach (based on central-server architecture) and PI (based on peer-to-

58

peer architecture) illustrates that PI does not have the problems associated with the

former. It is also demonstrated that PI meets the objectives that we stated in section 5.1.

5.3.1 Requirement of Customization through Additional Coding

5.3.1.1 Grand Central (Central-Server Architecture)

Grand Central requires each Web Service application to be customized by hard coding

for it to be able to use its Web Service intermediary. For this purpose, Grand Central

provides SDKs for Java, Microsoft .NET and Perl. Grand Central can be quoted as

follows [GrandCentral2002gc]:

“Using the methods offered by the Grand Central Communications SDK, a client

application needs to be built or an existing one extended to exchange information

with the other Web service over Grand Central Communications.”

Grand Central’s SDKs are proprietary and not openly available. The SDKs are

available only to the customers of Grand Central. We therefore could not acquire:

� Any experience as to how easy or hard it is to customize a Web Service application

with these SDKs.

� An estimate of how much time the customization process takes.

The following question and answer from the Grand Central Communications

Frequently Asked Questions (FAQ) [GrandCentral2002faq] indicates that the process

may take a few days:

“Is Grand Central Communications a software solution? – No, Grand Central is

delivered as a subscription service that has a low implementation cost and can be

deployed in days rather than months.”

There are several disadvantages of customization through reprogramming, which

include the following:

59

� Reprogramming of the application can have negative side effects on it such as

introduction of new bugs.

� A programming project is time and effort consuming and also expensive.

� Many enterprises do not have the expertise to undertake a programming project.

5.3.1.2 PI (Peer-to-Peer Architecture)

PI does not require a Web Service application to be customized through hard coding. The

only change PI requires is that the Web Service application communicate with the local

PI proxy instead of the partner Web Service application. This should be a matter of

changing a field in the configuration or in an invocation file if the application has been

developed using typical good programming practices.

The PI architecture separates the Web Service application and the local part of the

Web Service intermediary into two separate components. Instead of being joined

together, they run separately and communicate with each other over a local trusted

network.

This design eliminates the need for customization through hard coding.

5.3.2 Enterprise’s Control of the Flow and Management of its Information

5.3.2.1 Flamenco, Grand Central (Central-Server Architecture)

In case of both Flamenco and Grand Central Web Service intermediaries, the central

server for the intermediary is hosted by its vendor. This means that enterprises using their

products have to completely rely on them for the flow and management of their

information. If problems occur, an enterprise can do absolutely nothing but wait for the

vendor to fix them. An extreme scenario would be the vendor going out of business and

shutting down its services, in which case an enterprise’s information infrastructure would

completely break down. Moreover, the clients of a Web Service may not even want to

relay their information through a third party due to confidentiality concerns. For example

the third party would have knowledge such as the business partners of each enterprise, its

terms of communication with them, and time and type of transactions with those partners.

60

Much of this knowledge is gained by the third party even if all communication is

encrypted.

Even if the server of a central-server based Web Service intermediary is hosted by

one of the communicating enterprises, it places all control with that one enterprise and

the other enterprise still lacks equivalent control. For example, since one of the

enterprises is in control, it can dictate that messages be sent unencrypted, the other

enterprise has to comply. If a reverse situation arises, the enterprise still has to accept the

terms set by the enterprise in control. The only other option is to cease communication

with that enterprise.

Moreover in the Web Services architecture a Web Service application can be a

client as well as a server. If two peer-to-peer Web Service applications want to

communicate there is no basis to choose one of them over the other to host the central

server.

One could reason that the benefit of a third party providing the Web Service

intermediary is that the third party would completely take care of deployment and

maintenance of the Web Service intermediary for the enterprises. We agree that this

would definitely be a major benefit perhaps worthy of the fee the third party would

charge for doing so. However, all vendors that we know of including Flamenco and

Grand Central require the enterprises to setup and maintain the enterprise side

components of the Web Service intermediary by themselves.

The vendors do provide some help and technical support to the enterprises in

setting up and maintaining their side of the Web Service intermediary infrastructure. This

is not as advantageous as a complete solution, but it still is a benefit.

5.3.2.2 PI (Peer-to-Peer Architecture)

This problem is resolved in PI primarily due to its peer-to-peer architecture. Each

enterprise has a PI proxy hosted on its own trusted network for each of its Web Service

applications. Each enterprise is in charge of its information infrastructure since all its

components are in its own possession.

Since each enterprise is in full control of its PI proxy, it can define its own

quality-of-service requirements. When two PI proxies communicate, they negotiate as to

61

the strictness of quality-of-service that they will implement. Therefore both enterprises

are given fair treatment. For example we can take the scenario in which a Web Service

wants to receive a message in unencrypted form but the client wants to send it in

encrypted form. Their two peer PI proxies will negotiate with each other and since the

client’s requirement is stricter, that will be selected. If a reverse situation ever arises, the

Web Service’s stricter requirement would then be selected. This shows that the system is

not biased towards any single party and everyone is treated equally.

It is to be noted that even though our approach provides fair treatment to each

party, it is possible that an agreement between two parties may not be reached. For

example, if a PI proxy is configured to require encryption but the peer PI proxy does not

have the resources to support encryption, the negotiation will fail and the message will

not be exchanged.

It is not mandatory to limit the condition of agreement to the strictest quality-of-

service requirements of one of the two proxies. It is also possible to have a compromise

between the quality-of-service requirements of the two proxies if both proxies are willing

to accept it. This possibility is further discussed in section 7.3.

The PI infrastructure has to be maintained by an enterprise completely on its own.

However, we believe that this should not be a major issue. The enterprise would already

be administering a Web Service application and a firewall so it would have enough

expertise to administer a PI proxy. Provision of good documentation by the implementers

of PI proxy is essential for this purpose.

5.3.3 Ease and Speed of Deployment

5.3.3.1 Grand Central (Central-Server Architecture)

As discussed in section 5.3.1.1, Grand Central requires each Web Service application to

be customized by extra coding for it to be able to use its Web Service intermediary. This

is a time and effort consuming process. Moreover, programming skills are needed to

undertake this process. This requirement restricts this kind of Web Service intermediaries

from being quickly and easily deployed.

62

Following are the steps required from an enterprise that wants to use the Grand

Central intermediary for its Web Service:

1. Development – The enterprise will have to assemble a team of developers who have

the programming skills and understanding of the Web Service to customize it

according to Grand Central’s requirements. The team will develop and test the

customized Web Service.

2. Installation – The administrator of the Web Service will then host the Web Service on

the enterprise’s network and will establish a connection with the Grand Central

intermediary over the Internet.

3. Configuration – The administrator will then configure the intermediary for each

partner that the enterprise wishes to communicate with.

The total time required to complete these steps can expressed as follows:

Total time = Development time + Installation time + Configuration time

5.3.3.2 PI (Peer-to-Peer Architecture)

The PI deployment process does not require coding. Following are the steps required

from an enterprise that wants to use PI for its Web Service:

1. Installation – The administrator of the Web Service will install a PI proxy on the

enterprise’s network and will make Internet access available.

2. Configuration – The administrator will then configure the intermediary for each

partner that the enterprise wishes to communicate with.

The total time required to complete these steps can expressed as follows:

Total time = Installation time + Configuration time

Since installation and configuration procedures of the Grand Central Web Service

Intermediary and PI are similar in complexity, they should both take approximately the

same amount of time.

63

PI eliminates the development step therefore its deployment is quicker and easier.

5.3.4 Scalability

5.3.4.1 Flamenco, Grand Central (Central-Server Architecture)

We analyze the scalability of a Web Service intermediary in terms of the number of

connections to Web Service applications that it has to handle at any given time.

A Web Service application can be both a server and a client at the same time.

However, to simplify our analysis we assume that a Web Service application can be

either a server or a client but not both. This assumption does not affect our final

inference.

Consider that a Web Service application server has n clients that communicate

with it through a central-server-based Web Service intermediary. This configuration is

depicted in the following figure.

Figure 5.4: A Web Service application server and its n clients using a central-server-
based Web Service intermediary

Server
1

Client 1
of Server

1

Client n
of Server

1

…

Client 2
of Server

1
Central
Server

64

According to central-server fundamentals and as is done in practice, the central-

server-based Web Service intermediary serves multiple Web Service application servers.

This scenario is shown in the following figure where the central-server-based Web

Service intermediary serves m Web Service application servers, each of which has n

clients.

Figure 5.5: m Web Service application servers and n clients of each one of them using a
central-server-based Web Service intermediary

Server
1

Client 1
of Server

1

Client n
of Server

1
… Client 2

of Server
1

Central
Server

Server
2

Server
m

Client 1
of Server

2

Client n
of Server

2
… Client 2

of Server
2

Client 1
of Server

m

Client n
of Server

m
… Client 2

of Server
m

…
 …

65

We consider n as the maximum number of clients that a Web Service application

server communicates with. A Web Service application server may have fewer than n

clients.

The maximum number of connections that the central-server-based Web Service

intermediary would have to handle in the given scenario is m x (n + 1), which is

O(n2).

It should be noted that the scenario discussed above is a very simplified case. We

do not consider many factors including: the possibility of a Web Service application

being both a server and a client at the same time, a Web Service application being a client

of more than one Web Service application server, use of multiple servers in the central-

server-based Web Service intermediary, the number/size of the actual messages passed

over the connections etc. Each of these factors can affect the scalability of the Web

Service intermediary. Nevertheless the scenario presented is realistic and can occur

frequently in practice.

5.3.4.2 PI (Peer-to-Peer Architecture)

We consider the same scenario for PI as we did for central-server-based Web Service

intermediaries in the previous section.

A Web Service application server has n clients that communicate with it through

PI proxies. The configuration is shown in the following figure.

66

Figure 5.6: A Web Service application server and its n clients using PI

Now consider the scenario in which there are m Web Service application servers

and each one of them has n clients. A Web Service application server from its PI proxy’s

perspective is the local Web Service application. One PI proxy exclusively serves only

one local Web Service application. Therefore each of the m Web Service application

servers would have a separate PI proxy of its own. The scenario is illustrated in the

following figure.

Server
1

Client 1
of Server

1

PI
Proxy

PI
Proxy

Client 2
of Server

1

PI
Proxy

Client n
of Server

1

PI
Proxy

…

67

Figure 5.7: m Web Service application servers and n clients of each one of them using PI

Server
1

Client 1
of Server

1

PI
Proxy

PI
Proxy

PI
Proxy

Client n
of Server

1

PI
Proxy

…

Server
2

Client 1
of Server

2

PI
Proxy

PI
Proxy

Client 2
of Server

2

PI
Proxy

Client n
of Server

2

PI
Proxy

…

Server
m

Client 1
of Server

m

PI
Proxy

PI
Proxy

Client 2
of Server

m

PI
Proxy

Client n
of Server

m

PI
Proxy

…

…

Client 2
of Server

1

68

The maximum number of connections that any PI proxy has to handle is n + 1,

which is O(n).

O(n) connections are far less resource-consuming than O(n2) connections and

therefore PI is more scalable than the central-server-based intermediaries.

It should be noted that the O(n) bound also applies to the scenario where a Web

Service application can be the client of more than one Web Service application server.

This is not true for a central-server-based Web Service intermediary’s O(n2) bound,

which would actually increase in this scenario. The following figure shows PI in such a

scenario.

Figure 5.8: A Web Service application client using PI to communicate with more than
one Web Service application server

Server
1

Client 1
of Server

1

PI
Proxy

PI
Proxy

Client 2
of Server

1

PI
Proxy

Client n of
Server 1 /
Client 1 of
Server 2

PI
Proxy

…

Server
2

PI
Proxy

Client 2
of Server

2

PI
Proxy

Client n
of Server

2

PI
Proxy

…

69

We have presented a very simplistic analysis of the scalability of central-server-

based intermediaries and PI. As we mention in section 7.3, an in-depth analysis should be

conducted for more thorough results.

5.4 Quality-of-Service Features Provided to Web Services by PI

PI is designed to accommodate all the quality-of-service requirements mentioned in

section 3.1. How each of these requirements is met is discussed from a design perspective

in the following subsections. All these services are customizable both at the Web Service

and the client end. The measures taken by the PI proxies to achieve the quality-of-service

requirements are invisible to the Web Service and the client.

5.4.1 Security

PI uses public key cryptography for providing authentication, confidentiality and non-

repudiation. The use of public key cryptography for providing security is a universally

accepted practice [iDTwo2002pki]. A short introduction to public key cryptography is as

follows:

The public key cryptography system has the following six elements:

Plain text – P, which is the message to be encrypted.

Cipher text – C, which is the encrypted message.

Public key – X, of an enterprise E.

Private key – Y, of an enterprise E.

Encryption function, C = e(P, K), where K = X or K = Y

Decryption function, P = d(C, K), where K = X or K = Y

The keys and the functions are such that C = e(P, X) can only be decrypted

as P = d(C, Y). Conversely C = e(P, Y) can only be decrypted as P = d(C,

X). This means that a message encrypted with one key in the key pair can only be

decrypted by the other key in the pair.

Public key cryptography is discussed in detail in [Buchmann2001crypt].

Key Pair

70

The algorithms given in the following subsections are standard algorithms for

providing security. Further detail on these algorithms can be found in standard texts on

computer and network security such as: [Buchmann2001crypt],

[Coulouris2001distributed] – chapter 7, and [LeonGarcia2000networks] – chapter 11.

5.4.1.1 Authentication

Authentication is provided by using public key cryptography and digital certificates. An

enterprise E can be authenticated by receiving from it a message which is encrypted with

its (E’s) private key. If the message can be decrypted with E’s public key, it is proof that

the enterprise is whom it claims to be. However, since the public key is public, we cannot

be sure if it is actually the public key of E and not a key planted by an attacker for

malicious reasons. This is where digital certificates are useful. A digital certificate is a

document which states the public key of an enterprise and the document itself is

encrypted by the private key of an entity called a certificate authority. A certificate

authority is an entity which is widely trusted and whose public key is well known.

Therefore it is safe to use the public key of an enterprise provided in a digital certificate

by a trusted certificate authority. Digital certificates are discussed in detail in

[Buchmann2001crypt].

71

Figure 5.9: PI authentication model

PI requires that each enterprise which would need to be authenticated by another

enterprise must have a digital certificate issued by a certificate authority which is trusted

by the authenticating enterprise. There are only a few well known certificate authorities

that are commonly used such as VeriSign [VeriSign2002verisign] and RSA Keon

[RSA2002keon], therefore compatibility is not an issue. The PI authentication process is

as follows:

1. A PI proxy receives a message from a peer PI proxy.

2. If the recipient PI proxy is configured to require authentication, it requests the sender

PI proxy to send its identity, and some predetermined information encrypted with the

sender PI proxy’s private key.

3. The recipient PI proxy upon receipt of the sender’s identity requests the trusted

certificate authority for the digital certificate of the enterprise that has been claimed.

Certificate
Authority

Web
Service

Client PI
Proxy

PI
Proxy

Authenticated
Messages

Messages Messages

Authentication
information

Enterprise 1’s
Trusted Network

Enterprise 2’s
Trusted Network

Internet

Authentication
information

72

4. Upon receipt of the digital certificate, the recipient PI proxy attempts to decrypt the

message with the claimed enterprise’s public key.

5. If the message is successfully decrypted, the identity of the enterprise is proven and

authentication is successful. Otherwise authentication fails.

6. In case of successful authentication, a session can be established for authenticated

transfer of subsequent messages.

It appears that the certificate authority may pose as a bottleneck in the

authentication process due to its central server nature. This however is not necessarily

true. The main reason is that the information exchanged with the certificate authority is

minimal and does not form the bulk of the traffic. The certificate authorities also take

measures to ensure that their service is scalable. VeriSign [VeriSign2002verisign] is one

of the best known and most widely trusted certificate authorities. VeriSign can be quoted

on the scalability issue as follows [VeriSign2000services]:

“VeriSign’s software architecture is designed to distribute the processing and avoid

performance bottlenecks. Additional servers can be added on as needed when

transaction volume increases. The platform provides automatic failover, load-

balancing, and threshold-monitoring on critical servers.”

RSA Keon [RSA2002keon] by RSA Security [RSA2002rsa] is another major

certificate authority. RSA Security claims that RSA Keon can be scaled to more than

eight million certificates per instantiation, without compromising or losing integrity to

performance and manageability [RSA2001scalability]. This claim has been

independently evaluated and verified by Sun Microsystems’ iForce Ready Center in

Menlo Park, California [Sun2002iforce]. RSA Security does not state if eight million

certificates per instantiation are adequate for current and future demand.

5.4.1.2 Authorization / Access Control

Each client can be given access to selected functions of the Web Service. An access list is

maintained for each client by the Web Service’s PI proxy. The access list contains a

73

matrix that indicates which functions of the Web Service are accessible to that client.

Whenever that client requests access to some function, the PI proxy looks up its access

rights in its list and allows it access only if it has the permission.

To determine which function the client is attempting to access, the PI proxy

parses the requesting message and extracts the message name which is conventionally the

same as the function name listed in the access list. The PI proxy can be configured to

either let through or block messages that request functions not listed in the access list.

Figure 5.10: An example of PI access control

5.4.1.3 Confidentiality

Confidentiality is provided by using public key cryptography and digital certificates in a

process somewhat similar to that of authentication. PI requires that the enterprise that

would receive a confidential message must have a digital certificate issued by a

certificate authority which is trusted by the sending enterprise. The PI process of

delivering confidential messages is as follows:

Access List for Client
‘violet’

Get_name ����

Get_email ����

Get_address x

Web
Service

‘directory
service’

Client
‘violet’

PI Proxy for the Web
Service

Get_name

Get_email

Get_address

Get_name

Get_email

Get_address
x

74

1. A PI proxy receives from its local application a message which is meant to be relayed

by confidential means.

2. The PI proxy requests the trusted certificate authority for the digital certificate of the

recipient enterprise.

3. Upon receiving the digital certificate, the sender PI proxy encrypts the message with

the recipient’s public key.

4. It then sends the encrypted message over the regular communication channel that is

the Internet. The message can be intercepted by a third party during transmission,

however the message remains confidential since the message is in encrypted form and

can only be decrypted by the intended recipient.

5. When the destination peer PI proxy receives the encrypted message, it decrypts it

with its own private key.

6. The decrypted message is then delivered to the local application.

Figure 5.11: The PI process of delivering confidential messages

Recipient
PI Proxy

Sender
PI Proxy

Certificate
Authority

Local
Application

Local
Application

Step 1:
Message

Step 2: Digital
Certificate of Recipient

Step 3: Encrypt
Message with

Recipient’s Public Key

Step 4: Encrypted
Message

Step 5: Decrypt
Encrypted Message

with Private Key

Step 6:
Message

75

5.4.1.4 Non-Repudiation

Non-repudiation is provided by using digital signatures. The concept of digital signatures

is based on public key cryptography. Digital Signatures are discussed in detail in

[Buchmann2001crypt].

The process of providing non-repudiation is quite similar to that of authentication.

However, unlike the processes of authentication and confidential delivery, the non-

repudiation process requires permanent storage of each message which is guaranteed

non-repudiation. PI requires that each enterprise that would send messages that cannot be

repudiated, must have a digital certificate issued by a certificate authority which is trusted

by the recipient enterprise. The PI process to guarantee non-repudiation of a message is

as follows:

1. A PI proxy that is required to relay a message that cannot be repudiated, encrypts the

message with its own enterprise’s private key. This process is called digital signing of

the message.

2. The digitally signed message is then sent to the peer PI proxy of the recipient

enterprise.

3. The recipient PI proxy obtains the digital certificate of the sender enterprise and

decrypts the message with the sender enterprise’s public key.

4. If the encrypted message is decrypted successfully with the public key, it is proof that

the message was encrypted by that enterprise’s private key. Since only that enterprise

is supposed to have the knowledge of its own private key, it is evidence that it is the

only possible sender of the message.

5. The recipient PI proxy saves the digitally signed message in permanent storage as

evidence to resolve any future repudiation claims by the sender.

6. The decrypted message is delivered to the local application.

5.4.2 Reliability

5.4.2.1 Guaranteed Delivery

Without PI or some other guaranteed delivery mechanism, a Web Service application’s

attempt to deliver a message to another Web Service application can fail in many ways. If

76

there is a temporary network outage at the time a send is attempted, the operation simply

fails. Even if the send is successful, there is no guarantee that the message has been

successfully received by the destination application.

PI provides guaranteed delivery of messages unless the destination is permanently

unreachable. The following algorithm inspired by a similar algorithm given in

[Coulouris2001distributed] – section 11.4.2, is used by PI to provide guaranteed delivery

of messages:

1. When a PI proxy receives a message from the local application, it places it in the rear

of a message queue called ‘ready to send’.

2. A ‘number of retries’ variable with the original value zero is associated with each

message in this queue.

3. The PI proxy attempts to deliver the front most message in this queue to the

destination peer PI proxy.

4. If the message is successfully sent, it is moved to another queue called the ‘awaiting

acknowledgment’ queue.

i. For each message in the ‘awaiting acknowledgement’ queue, the ‘number of

retries’ variable is retained and a timer variable ‘time to wait for

acknowledgment’ is also associated with it. The original value of this timer

variable is some preconfigured value.

ii. If the sender PI proxy receives an acknowledgement for the message before the

timer expires, the message delivery is complete and it is removed from the queue.

iii. If the timer expires and no acknowledgment has been received, the message is

moved to the rear of the ‘ready to send’ queue along with its ‘number of retries’

value.

iv. If an acknowledgment is received for a message that is not in the ‘awaiting

acknowledgment’ queue, PI proxy looks for the message in the ‘ready to send’

queue. If it finds it there and it is not being sent, the message is removed and the

delivery is considered complete. Otherwise the acknowledgment is disregarded.

The reasons for an acknowledgment being disregarded include: a duplicate

acknowledgment is received, the proxy has given up on a message and it is no

longer in any queue, or that the message is already being sent again.

77

5. If the message is undeliverable at the moment, it is moved to the rear of the ‘ready to

send’ queue and the message’s ‘number of retries’ variable is incremented by one.

6. The PI proxy keeps trying to redeliver a message in the ‘ready to send’ queue as long

as the message’s ‘number of retries’ variable is less than the preconfigured

‘maximum number of retries’ variable. If the message is still undelivered, the

destination is assumed to be permanently unreachable. In this case the message is

removed from the queue and an entry is made into a permanent log indicating the

failure of its delivery.

7. In place of or in conjunction with ‘number of retries’, it is possible to have a timer

variable ‘interval’ associated with each message in the ‘ready to send’ queue. Each

message’s redelivery can then be retried after its timer has expired after each attempt.

When a PI proxy receives a message from a sender PI proxy, its job is to relay this

message to the local application. If it is successfully able to send the message to the

application, it also sends an acknowledgment to the sender PI proxy for the delivery of

that message. Each message is assigned a unique ID according to some unique

naming/numbering scheme. Therefore acknowledgments are not mixed up for different

messages. Please see section 6.2.4.2 for a scheme that assigns a universally unique ID to

each message.

The whole process described above ensures that maximum effort is made to

deliver a message. If a message is considered delivered, it is guaranteed that it has been

delivered. If the message is impossible to deliver, the fact is noted in a permanent log for

reference and help in resolution of the problem.

78

Figure 5.12: PI guaranteed message delivery

5.4.2.2 Ordered Delivery

PI uses a FIFO ordering algorithm for the ordered delivery of messages. For each peer PI

proxy, a PI proxy maintains two variables: ‘messages sent’ and ‘messages received’.

‘messages sent’ is a count of the messages that have been sent to that peer PI proxy and

‘messages received’ is the count of messages that have been received from that peer PI

proxy. The PI process for ordered delivery of messages is as follows:

1. When a message is sent to a peer PI proxy, the variable ‘messages sent’ for that peer

PI proxy is piggy backed with the message. The variable ‘messages sent’ for that peer

PI proxy is then incremented by one.

2. The recipient PI proxy upon receiving the message compares the ‘messages sent’

value received with the message with its own value of ‘messages received’ for the

sender PI proxy.

3. If ‘messages sent’ = ‘messages received’ + 1, then the message is in the correct order

and it is delivered to the local application. The ‘messages received’ variable for the

sender peer PI proxy is then incremented by one by the recipient PI proxy.

4. If ‘messages sent’ > ‘messages received’ + 1, the message is placed in a waiting

queue until all the intervening messages have been delivered. The waiting message is

Web Service
Application

Receiver
PI Proxy

Sender
 PI Proxy

Web Service
Application

Message with
ID: 01

Message Message

Acknowledgment
for Message with

ID: 01

Queues

79

then removed from the queue, delivered to the local application and the ‘messages

received’ variable for the sender PI proxy appropriately incremented by one by the

recipient PI proxy.

A similar algorithm is discussed in detail in [Coulouris2001distributed] – section

11.4.3.

5.4.2.3 Exactly-Once Delivery

The sender PI Proxy assigns each message a unique ID. The recipient PI proxy maintains

record of the previously received messages for some set amount of time. Upon receipt of

a message, the PI proxy compares the ID of that message with the IDs of the previously

received messages. If the message has not been previously received, it is delivered to the

local application. Otherwise it is discarded. This mechanism keeps duplicate messages

from being delivered.

5.4.3 Manageability

5.4.3.1 Monitoring

The goal of monitoring is to keep the manager of a PI proxy informed of the events and

activities that are taking place in the PI proxy. The manager can use this information to

detect or predict problems and plan for future improvements.

The ongoing activity can be viewed from the PI proxy interface. For example the

guaranteed delivery of a message may produce the following messages on the PI proxy

interface:

� Message received from local application, ID: 01 assigned to message.

� Attempt 1 to send message ‘01’ failed, message placed in the rear of ‘ready to send’

queue.

� Attempt 2 to send message ‘01’ successful.

� Message ‘01’ placed in ‘awaiting acknowledgment’ queue.

� ‘time to wait for acknowledgment’ timer for message ‘01’ set to 60 seconds.

� Acknowledgment received for message ‘01’, delivery successful.

80

5.4.3.2 Logging

Monitoring information is logged in text files for long-term storage. Logs can be used for

graphing trends of activities such as failed message sends, duplicate messages received

etc. over long periods of time. This can give information about the performance of the

communicating Web applications and PI proxy.

5.4.3.3 Client Management

A separate profile is maintained for each client (peer PI proxy). This profile contains the

client’s location, access list, state variables such as ‘messages sent’ and ‘messages

received’ etc. The profile is configurable from the PI proxy interface.

81

Chapter 6: Implementation and Evaluation

We begin this chapter by describing a simple Bank Web Service that we have developed.

We then continue to describe our implementation of PI and its evaluation. The Bank Web

Service is described first because it was developed in that order and some concepts

introduced in its description are used in the description of PI.

6.1 The Bank Web Service

The Bank Web Service is a simple Web Service that provides basic bank services such as

viewing account balances, withdrawing money and depositing money into bank accounts.

We have developed the Bank Web Service for the purpose of exercising and evaluating

the various features of PI. The Bank Web Service is appropriate for this purpose because

it can take meaningful advantage of most of the quality-of-service features provided by

PI.

6.1.1 Description of Functionality

The Bank Web Service provides the following three functions:

Get Account Balance

This function allows a user to retrieve the current balance (amount of available money) of

an account. This function takes two arguments: the account number of the account for

which the request is made and the PIN (password) for that account number. The function

82

checks the given account number and PIN with its records and if they are valid it returns

the current balance of the account. Otherwise it returns an appropriate error message.

Withdraw Money

This function allows a user to withdraw money from an account. This function takes

three arguments: the account number of the account from which money is to be

withdrawn, PIN for that account number and the amount of money requested. The

function proceeds to return money if the given combination of account number and PIN

is valid, otherwise it returns an appropriate error message. If the amount of money

available in the account is greater or equal to the requested amount, the requested amount

of money is deducted from the balance and returned to the user. If the available amount is

less than the requested amount, the whole available amount of money is returned and the

balance is set to zero. We perceive the amount being returned as virtual money.

Deposit Money

This function can be used by any user to deposit an amount of money into an account.

The function takes two arguments: the account number and the amount of money to be

deposited. The function adds the deposit amount to the balance of the requested account

and returns a receipt to the user.

6.1.2 How can the Bank Web Service Benefit from PI?

The following subsections list the benefits that the Bank Web Service gains by using the

quality-of-service features provided by PI. This also shows that the Bank Web Service is

suitable for thorough exercise and evaluation of PI.

83

6.1.2.1 Security

� Authentication – Authentication would ensure that only authorized users are able to

use the Bank Web Service.

� Confidentiality – Confidentiality would ensure that PINs and Money are not stolen by

third-parties during transmission.

� Non-repudiation – Non-repudiation has separate but similar advantages for the user

and the bank. When a user withdraws money from the bank, the bank would have

evidence of that transaction and the user would not be able to deny it. Similarly, when

the user deposits money into the bank, the user would have evidence of the

transaction and the bank would not be able to deny it.

6.1.2.2 Reliability

� Guaranteed delivery – Guaranteed delivery would ensure that money sent by the bank

to a user is received by the user and is not lost in the way.

� Ordered delivery – Ordered delivery would eliminate problems such as the following:

The original balance of an account is $0. A user sends a deposit of $100 for the

account. After that he sends a request for withdrawal of $50. If the second request is

received out-of-order and before the first request, it would be denied by the bank

(because there is yet no money in the account) even though from the user’s point-of-

view it is a legitimate request.

� Exactly-once delivery – This feature is vital for the bank since it would not want

money intended to be sent once, erroneously get sent multiple times.

84

6.1.2.3 Manageability

� Monitoring – Monitoring would be essential for the customer service department to

make sure that the system is running smoothly.

� Logging – Logs would be helpful for accounting and planning purposes.

6.1.3 Design and Implementation

The Bank Web Service is a client-server application written in Java. The Web Service

client and the server use the JAXM API to create and read SOAP messages, and

communicate them over an HTTP connection.

6.1.3.1 Server

The Bank Web Service server is implemented as a Web Application which is hosted by a

Web Application Container, the Tomcat Container in this case.

85

Figure 6.1: The Bank Web Service architecture

A Web Application Container is a software program that has the basic

functionality of a Web Server but can also host Web Applications. Web Applications are

applications that don’t have their own web server capabilities but can use those of a host

Web Application Container. Developers of Web Applications don’t need to implement

web server functionality in their applications. They can instead employ those already

provided by a Web Application Container.

The Bank Web Service server receives request messages from the client. All

messages are communicated in the form of SOAP messages using the HTTP protocol

over the Internet. The Bank Web Service operates in a request-response manner. Each

request message from the client is followed by a response message from the server. The

server logs all messages in a local text file.

Web Application
Container

/ Web Server

Bank Web
Service Server

(A Web
Application)

Request

Response

Request and
Response are SOAP

messages. The
communication

takes place over the
HTTP protocol.

The Bank Web
server is a Web

Application hosted
by a Web

Application
Container.

Bank Web
Service Client

86

6.1.3.1.1 Classes

The Bank Web Service server is composed of three classes: bank_server,

account_list and account. The following UML class diagram shows these

classes and their relationships:

Figure 6.2: UML class diagram of the Bank Web Service server

1

1

1

0 .. *

acc_number: int
acc_pin: int
acc_balance: long

get_balance
withdraw
deposit
…

account

list_vector: Vector

add_account
get_account
get_balance
withdraw
deposit
…

account_list

bank_service:
account_list
…

init
doPost
onMessage
…

bank_server

…

…

HttpServlet

87

An object of the account class represents a bank account. It contains the

account number, PIN and the balance for that account. The class provides

get_balance, withdraw and deposit methods.

An object of the account_list class contains a list of account objects. The

class provides methods to add and retrieve account objects from the list. It also

provides get_balance, withdraw and deposit methods that locate the requested

account in the list and call its corresponding method.

The bank_server class extends the Java HttpServlet class. A

bank_server object is a client’s Web Services interface to the account_list

object. The bank_server object upon receiving a SOAP message from the client

extracts the request and then calls the requested method of the account_list with the

provided arguments. It then creates a new SOAP message with the method’s response in

it and sends it back to the client.

6.1.3.2 Client

The Bank Web Service client is a self-contained application. It uses the JAXM API to

create and read SOAP messages as well as create an HTTP connection to the server for

sending and receiving the messages.

6.1.3.2.1 Client’s Graphical User Interface

The Bank Web Service client has a Graphical User Interface (GUI) developed using the

Java Swing API.

88

When the Bank Web Service client is started, it prompts the user for the account

number, PIN and the URL of the Bank Web Service server. These values are then stored

for the session. The values can also be changed later during the session.

Figure 6.3: The Bank Web Service client’s main dialog

The main dialog provides options to perform the get account balance, withdraw

and deposit functions using the stored values. The user is prompted for the amount for the

withdraw and deposit functions. The GUI displays the response received from the server

or an appropriate error message in case of an exception.

6.1.3.2.2 Classes

The Bank Web Service client is composed of five classes: bank_client,

bank_client_gui_main, bank_client_gui_change, bank_client_

gui_amount and bank_client_gui_response. The later four classes compose

89

the Bank Web Service client’s GUI. bank_client_gui_main is the class for the

main dialog. It contains the rest of the GUI classes and instantiates them to receive input

from the user or display output. The following UML class diagram shows the classes

bank_client and bank_client_gui_main and their relationship:

Figure 6.4: UML class diagram of the Bank Web Service client

The bank_client class provides the methods: get_balance, withdraw

and deposit. Each of these methods takes the arguments required to invoke

corresponding methods in the Bank Web Service server’s account_list class. The

method then creates a SOAP message that includes the name of the requested function

and the given arguments. An HTTP connection is created to send the SOAP message to

the server. The response is extracted from the SOAP message returned by the server. This

response is the return value of the method.

1

1

bc: bank_client
…

set_bc
get_bc
…

bank_client_gui_
main

bank_server_url:
URL

get_balance
withdraw
deposit
…

bank_client

90

A bank_client_gui_main object contains a bank_client object. It

receives input from the user, calls the appropriate methods of the bank_client object

and then displays the response back the user.

6.1.4 Sample Messages Exchanged between the Bank Web Service Server and

Client

The following SOAP message is a request sent by a client to withdraw $444 from an

account with the account number: 3, and PIN: 95.

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-
env="http://schemas.xmlsoap.org/soap/envelope/">

<soap-env:Body>
<bank:request xmlns:bank="blueberrypi">

<name>withdraw</name>
<account_number>3</account_number>
<pin>95</pin>
<amount>444</amount>

</bank:request>
</soap-env:Body>

</soap-env:Envelope>

The server after processing the request, sends the following message to the client.

The message returns the requested $444 to the client.

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-
env="http://schemas.xmlsoap.org/soap/envelope/">

<soap-env:Body>
<bank:response xmlns:bank="blueberrypi">

<description>Money Returned: 444</description>
</bank:response>

</soap-env:Body>
</soap-env:Envelope>

91

The following SOAP message is a request by a client to deposit $768 to an

account with the account number: 5.

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-
env="http://schemas.xmlsoap.org/soap/envelope/">

<soap-env:Body>
<bank:request xmlns:bank="blueberrypi">

<name>deposit</name>
<account_number>5</account_number>
<amount>768</amount>

</bank:request>
</soap-env:Body>

</soap-env:Envelope>

The server after processing the request, sends the following message to the client.

The message is a receipt for the deposit of $768.

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-
env="http://schemas.xmlsoap.org/soap/envelope/">

<soap-env:Body>
<bank:response xmlns:bank="blueberrypi">

<description>Amount Deposited to Account Number 5:
768</description>

</bank:response>
</soap-env:Body>

</soap-env:Envelope>

6.2 Implementation of PI Proxy

We have currently implemented a subset of the PI proxy design that we gave in chapter 5.

Our implementation includes the basic infrastructure required to relay messages between

92

a local Web Service application and a peer PI proxy, and the following quality-of-service

features: guaranteed delivery, exactly-once delivery and logging. Other quality-of-service

features have not been implemented due to time constraint. The current implementation is

however adequate for a basic evaluation of PI, which is given in section 6.3.1.

6.2.1 Some Basics of the Current Implementation of PI Proxy

We call the current implementation of PI proxy: PI Proxy Version 1.0, abbreviated as PI-

v1. PI-v1 has been implemented as a Web Application. Web Applications were

introduced in section 6.1.3.1. We have used the Tomcat container to host PI-v1.

PI-v1 is written in Java. Java was selected because of its platform independence.

PI-v1 uses the JAXM API for reading and editing SOAP messages. It also uses the

JAXM API to send SOAP messages over an HTTP connection. The use of Java or the

JAXM API does not limit the interoperability of PI proxy. Although, we have not tested

this claim, we believe that PI-v1 should also work perfectly with Web Services developed

on other Web Services development platforms such as Microsoft .NET. The ground for

this claim is that all Web Services communicate messages in the same standard SOAP

format.

PI-v1 has three servlets: system, local_relay and remote_relay. A servlet is an

individually addressable component of a Web Application. For example if the address of

the PI proxy’s Web Application is: http://piproxy/, then the servlets: system, local_relay

and remote_relay can have the following respective addresses: http://piproxy/system,

http://piproxy/local_relay and http://piproxy/remote_relay.

The servlet system contains variables such as the address of the local Web Service

application and the address of the remote peer PI proxy. The other servlets retrieve the

93

values of these variables from this servlet when they need them. The servlet system also

provides a connection to the PI proxy administration tool (discussed in section 6.2.6),

which allows a user to view and edit the user-definable settings of a PI proxy.

The servlets local_relay and remote_relay provide the function of relaying

messages between two Web Service applications. These servlets also implement the

quality-of-service features provided by PI-v1. The function of these servlets is given in

detail in sections 6.2.3 and 6.2.4.

6.2.2 Limitations of PI-v1

PI-v1 has the following limitations:

� PI-v1 can only handle request-response style messages. In this style of messaging

each request message from a client to a server is always followed by a response

message from the server to the client.

� PI-v1 can be configured for only one remote Web Service application. Provisions

have been made in the code to modify PI-v1 easily to allow communication with

multiple remote Web Service applications from a single PI proxy.

6.2.3 Implementation of Basic Message Relay

The following steps are taken when a Web Service application uses PI-v1 to send a

request message to another Web Service application and receive a response from it.

For convenience, let us call the Web Service application that sends the request:

WS-1, and the Web Service application that receives the request and then sends the

response: WS-2.

94

1. WS-1 sends a request message destined for WS-2 on the address of its (WS-1’s) local

PI proxy’s remote_relay servlet.

2. The remote_relay servlet receives the request message and transmits it to the

local_relay servlet of WS-2’s PI proxy. Meanwhile the remote_relay servlet keeps the

connections open with both WS-1 and the local_relay servlet of WS-2’s PI proxy.

3. The local_relay servlet of WS-2’s PI proxy upon receipt of the request message

forwards it to WS-2. Meanwhile the local_relay servlet keeps the connection open

with WS-2 and the remote_relay servlet of WS-1’s PI proxy.

4. WS-2 processes the request and sends a response message back to its local PI proxy’s

local_relay servlet on the open connection.

5. The local_relay servlet receives the response message, closes the connection with

WS-2 and sends the message to the remote_relay servlet of WS-1’s PI proxy on the

open connection.

6. The remote_relay servlet upon receipt of the response message closes the connection

with the local_relay servlet of WS-2’s PI proxy. It then sends the response message to

WS-1 on the open connection and closes the connection. This step completes the

process.

These steps are illustrated in figure 6.5. If WS-2 sends a request message to WS-

1, the exact same process occurs but in the opposite direction.

95

Figure 6.5: Basic message relay

Connection to a PI proxy’s remote_relay servlet from outside the trusted network

is blocked by a firewall. Only the local Web Service application is allowed to initiate an

HTTP connection on the address of its PI proxy’s remote_relay servlet. This step is taken

so that an imposter cannot send messages through a PI proxy, posing as its local Web

Service application.

6.2.4 Implementation of Quality-of-Service Features

6.2.4.1 Guaranteed Delivery

The local_relay and remote_relay servlets use the javax.xml.soap.SOAPConnection.call

method to send a message and receive a response. The method throws an exception when

the destination does not respond immediately.

WS-1

WS-2
local_relay

remote_relay

PI Proxy

local_relay

remote_relay

PI Proxy

1

6

2

5

3

4

A single HTTP
connection

A single HTTP
connection

A single HTTP
connection

96

There are two user-configurable variables in PI-v1 that govern guaranteed

delivery: number of retries to send a message (let us call this variable: r), and time in

seconds between retries (let us call this variable: s).

The local_relay and remote_relay servlets use the following algorithm to

implement guaranteed delivery. The destination is considered permanently unreachable if

send/receive does not succeed within the given number of tries.

int i = 0;
boolean exception = true;

while ((exception == true) && (i < r+1))
//while send/receive fails and retries are remaining
{

try
{

response = connection.call(request, destination);
exception = false; // send/receive succeeded

}
catch (Exception error)
{

exception = true; //send/receive failed
}

i++;

if ((i < r+1) && (exception == true))
//if there are retries remaining and send/receive failed
{

wait(s); //wait for s seconds
}

}

According to this algorithm, r number of retries are made to send a request and

receive the response. A time interval of s seconds is given between each retry. The

response message is considered the acknowledgement of the request message. This

implementation does not provide acknowledgements for response messages.

97

6.2.4.2 Exactly-Once Delivery

Before the remote_relay servlet sends a message to the peer PI proxy’s local_relay

servlet, it adds a universally unique message ID to the message. The local_relay servlet

upon receipt of the message extracts and removes the message ID. The same steps are

taken in the opposite direction when a local_relay servlet sends a message to the peer PI

proxy’s remote_relay servlet. This process forms the basis for enforcing exactly-once

delivery.

A message ID has the format shown in the following figure:

Figure 6.6: Format of the message ID

The incremented value of a counter is added to each message ID to ensure

uniqueness of multiple messages sent within a single millisecond. PI-v1 uses a counter of

type long. The messages sent within a millisecond will be unique as long as the counter

does not complete a cycle during that millisecond.

The remote_relay and local_relay servlets each maintain a list of recently received

message IDs. The number of IDs maintained is user-configurable. Whenever a message is

received by one of these servlets, it checks its message ID with the message IDs in the

list. If a match is found, it means that the newly received message is a duplicate that has

IP/DNS address of the
sending PI proxy

Send time with
millisecond precision

The value of a counter
which is incremented by 1
for each new message ID

98

already been received. The message is discarded in this case, otherwise it is delivered to

the local Web Service application.

6.2.4.3 Logging

The local_relay and remote_relay servlets each generate detailed logs of their activity.

The information logged includes:

� Time a request message is received

� Time a response message is returned

� The complete content of the messages received

� The complete content of the messages sent

� The message ID added to a message

� The message ID extracted from a message

� The address on which a message is sent

� The event of receipt of a duplicate message

� The event of a retry to send a message

� The event of a failure to send a message

� All exceptions and errors generated by the classes

6.2.5 Classes

PI-v1 is composed of the following seven classes: local_web_service,

remote_web_service, remote_web_services_list, local_relay,

remote_relay, system and log_machine. The following UML class diagram

shows these classes and their relationships:

99

Figure 6.7: UML class diagram of the current implementation of PI proxy

1

1

1

1

1

1

1

1

1

1

sys_ref: system
…

init
doPost
onMessage
…

remote_relay

sys_ref: system
…

init
doPost
onMessage
…

local_relay

local_ws
remote_ws_list
log
…
init
doPost
onMessage
…

system

list_vector: Vector

add_rws
get_rws
delete_rws
load_rws_list

remote_web_
services_list

address: String

set_address
get_address

local_web_service

log_machine:
FileWriter

report

log_machine

ID: String
address: String

set_ID
get_ID
set_address
get_address

remote_web_
service

1

0 .. *

100

The classes system, local_relay and remote_relay extend the Java

HttpServlet class. The following UML class diagram shows this

generalization/specialization relationship:

Figure 6.8: UML class diagram showing the generalization/specialization relationship of
system, local_relay and remote_relay with HttpSerlvet

The local_web_service class represents the local Web Service application.

It contains the address of the local Web Service application.

sys_ref: system
…

init
doPost
onMessage
…

remote_relay

sys_ref: system
…

init
doPost
onMessage
…

local_relay

local_ws
remote_ws_list
log
…
init
doPost
onMessage
…

system

…

…

HttpServlet

101

The remote_web_service class represents a remote Web Service

application. It contains an ID and the address of that remote Web Service application.

The ID of a remote Web Service application is unique within a single instantiation of a PI

proxy.

The remote_web_services_list class contains a list of the

remote_web_service class. It provides methods to add, retrieve and delete

remote_web_service objects from the list. The add method enforces that the ID in

each remote_web_service object is unique throughout the list. In the current

implementation only a single remote_web_service object with the ID ‘default’ is

added to the list.

The log_machine class provides logging facilities for the rest of the classes.

Other classes may call upon log_machine to log various messages that they generate,

for example messages generated due to exceptions.

The system class contains some global variables and constants, including a

variable each of the classes: local_web_service,

remote_web_services_list, and log_machine. The classes: local_relay

and remote_relay, retrieve and use the values of these variables and constants.

system is a servlet class. It provides a connection to the PI Proxy Administration Tool

for updating user-definable values.

local_relay is a servlet class that receives request messages from a remote

peer PI proxy and relays them to the local Web Service application. It relays the

responses to those requests back to the peer PI proxy. The class logs the received and sent

messages and other details about the message exchange such as time etc.

102

remote_relay is a servlet class that receives request messages from the local

Web Service application and relays them to the remote peer PI proxy. It relays the

responses to those requests back to the local Web Service application. This class is very

similar to the class local_relay. It also logs the received and sent messages and other

details about the message exchange.

Messages sent to a peer PI proxy by the class remote_relay are received by

the class local_relay and vice versa. local_relay and remote_relay

implement the following quality-of-service features in the message exchange: guaranteed

delivery, ordered delivery and exactly-once delivery.

6.2.6 PI Proxy Administration Tool

The PI proxy administration tool is an application that can be used to view and change

various settings of a PI proxy. These settings include:

� Address of the local Web Service application

� Address of the remote Web Service application

� Number of message IDs to retain in the ‘exactly-once delivery’ message ID list

� Number of retries to send a message

� Interval between retries

� Number of times to resend each message for testing ‘exactly-once delivery’

The tool interacts with the servlet system of a PI proxy. The interaction is in

form of SOAP messages over an HTTP connection. The tool retrieves and displays the

103

current settings of the PI proxy. The user can change those values and submit them to the

PI proxy which then updates its variables accordingly.

The tool has a GUI that has been developed using the Java Swing API. The GUI

is shown in the following figure:

Figure 6.9: GUI of the PI proxy administration tool

6.3 Evaluation of PI Proxy Version 1.0

6.3.1 Does PI Proxy Version 1.0 Achieve the Design Objectives of PI?

In section 5.3 we theoretically demonstrated that PI meets the objectives set in section

5.1. In this section we give practical demonstrations to substantiate our claim. PI Proxy

Version 1.0, an implementation of the PI design is used for this purpose.

104

6.3.1.1 Objective 1: The Solution should not Require Additional Coding for Each

Deployment

PI-v1 is a Java Web Application, packaged in a single distributable Web Application

Archive (WAR) file: jaxm-pi-proxy.war. WAR files are described in detail in

[Bodoff2002war]. jaxm-pi-proxy.war contains the PI-v1 classes and deployment

instructions for the host Web Application container.

The following steps are required to deploy PI-v1 on the Tomcat Web Application

container (on any operating system).

We assume that a standard installation of the Tomcat container is already

available on the machine where PI-v1 is being deployed. Installation of Tomcat is not a

complicated procedure. Detailed instructions on how to install Tomcat are given on

[Sun2002jwsdp].

1. Place jaxm-pi-proxy.war in the following directory:

<JWSDP_HOME>/webapps, where <JWSDP_HOME> is the directory where

JWSDP and Tomcat are installed.

2. Restart Tomcat. This step completes the deployment of PI-v1.

We can see that PI-v1’s deployment process is very simple and does not require

any coding.

105

6.3.1.2 Objective 2: The Solution should not Place Control of the Information

Flow and its Management in the Hands of a Single Party (Especially not a Third-

Party)

Each enterprise has its own deployment of PI-v1 for its Web Service application. For

example in the case of the Bank Web Service, the bank would have its own deployment

of PI-v1 and the client would have its own. They can each configure their PI-v1

according to their own preferences using the PI proxy administration tool. Therefore each

enterprise has equivalent control of the flow and management of its information. There is

also architecturally no requirement for third-party involvement.

The bank and the client are free to use the PI proxy administration tool to

configure their PI proxies with values different from each other. For example the bank

could have the following settings:

Number of message IDs to retain in the ‘exactly-once
delivery’ message ID list: 100000

Number of retries to send a message: 999
Interval between retries: 1 second

At the same time, the client could have the following completely different

settings:

Number of message IDs to retain in the ‘exactly-once
delivery’ message ID list: 100

Number of retries to send a message: 3
Interval between retries: 15 seconds

106

The bank’s settings indicate that it wants a higher degree of reliability. These

settings would provide better reliability but would also result in higher consumption of

the computing resources. The bank may have significant computing resources available

to it therefore it can decide to keep these settings. The client on the other hand may not

have extensive computing resources available and therefore it chooses more moderate

settings. The decision of both enterprises is independent of each other.

6.3.1.3 Objective 3: The Solution should be Easily and Quickly Deployable

Deployment of PI-v1 is easy and quick. We demonstrate this by laying out the steps

required to deploy PI-v1 for the Bank Web Service client.

We assume that a standard installation of the Tomcat container is already

available on the machine where PI-v1 is being deployed.

The following steps are required to deploy PI-v1 for the Bank Web Service client:

Install PI-v1 (the steps are the same as given in section 6.3.1.1):

1. Place jaxm-pi-proxy.war in the following directory:

<JWSDP_HOME>/webapps, where <JWSDP_HOME> is the directory where

JWSDP and Tomcat are installed. (This is a simple file copy operation, estimated time

required: 1 minute).

2. Restart Tomcat. (This operation requires the shutdown command followed by the

startup command, estimated time required: 2 minutes)

107

Configure PI-v1:

3. Run PI proxy administration tool. (This operation requires a single command to

execute the tool, estimated time required: 1 minute)

4. Enter the following values (the administrator would have knowledge of these values

beforehand) in the given fields:

� Address of PI-v1 to be configured

� Address of the remote_relay servlet of the Bank Web Service server’s PI proxy

� Number of message IDs to retain in the ‘exactly-once delivery’ message ID list

� Number of retries to send a message

� Interval between retries

(This operation requires typing in five simple text values, estimated time required: 5

minutes)

5. Select the ‘Update’ button. (This is a simple mouse operation, estimated time

required: 30 seconds)

Reconfigure the Bank Web Service client:

6. On the main dialog of the Bank Web Service client, select the ‘Change’ button. (This

is a simple mouse operation, estimated time required: 30 seconds)

7. Change address from the address of the Bank Web Service server to the address of

PI-v1. (This operation requires typing in a simple text value, estimated time required:

1 minute)

8. Select the ‘OK’ button. (This is a simple mouse operation, estimated time required:

30 seconds)

108

It should be noted that the estimated times mentioned are quite generous.

We can see that the deployment process is very straightforward and simple. It

does not require any complex tasks. The time taken for one deployment is well under 15

minutes.

15 minutes is an extremely short time as compared to the time required to

undertake a complete programming project for the deployment of some other Web

Service intermediaries such as Grand Central.

6.3.1.4 Objective 4: The Solution should not Limit the Scalability of a Web

Service

The current implementation of PI proxy allows communication with only one remote

Web Service application at a time. This limitation was put in place to keep the

development of PI-v1 simple. This limitation can however be removed in future versions

of PI-v1. Provisions have been made in the code to modify PI-v1 to allow communication

with multiple remote Web Service applications from a single PI proxy.

A practical evaluation of PI’s scalability can therefore be conducted with a future

version of the PI proxy implementation. A theoretical analysis of PI’s scalability was

given in section 5.3.4.2.

6.3.2 Test of Quality-of-Service Features Provided by PI Proxy Version 1.0

We have used the Bank Web Service to test the quality-of-service features provided by

PI-v1. The tests and their results are given in the following subsections. Following is a

description of the test environment:

109

The Bank Web Service server and its PI-v1 (let us call it PI-S) were hosted on a

Tomcat container on a Solaris 7 machine – penguin.mcs.drexel.edu. The PI-v1 (let us call

it PI-C) of the Bank Web Service client was hosted on a Tomcat container on a Windows

2000 machine – bluberrypi.mcs.drexel.edu. The Bank Web Service client, which is a self-

contained application, was also run on the same machine that is

bluberrypi.mcs.drexel.edu.

The address of PI-C’s remote_relay servlet was: http://bluberrypi.mcs.drexel.

edu:8080/jaxm-pi-proxy/remote_relay. The address of PI-S’s local_relay servlet was:

http://penguin.mcs.drexel.edu:8080/jaxm-pi-proxy/local_relay. The address of the Bank

Web Service server was: http://penguin.mcs.drexel.edu:8080/jaxm-bank-service

/bank_server. PI-C and PI-S were configured accordingly.

6.3.2.1 Guaranteed Delivery

The guaranteed delivery settings of PI-C were configured as follows:

Number of retries to send a message: 12
Interval between retries: 5 seconds

These settings mean that PI-C will try to resend a message every five seconds

until the message is successfully sent or one minute has passed. The test was conducted

as follows:

1. PI-S was stopped.

2. A ‘Get Account Balance’ message was then sent from the Bank Web Service client to

PI-C’s remote_relay servlet.

3. A time interval of approximately 30 seconds was then given before the next step.

110

4. PI-S was started.

Result: At the execution of step 4, the message was delivered to PI-S by PI-C and a

response to that message was then received. Had the guaranteed delivery mechanism not

been in place, the message delivery would have failed at step 2.

The following log entries were generated by PI-C’s remote_relay during this test:

doPost entered: Sat Jul 20 22:23:19 EDT 2002
received from local web service: <request message>
msg_id added: blueberrypi.mcs.drexel.edu / Sat Jul 20

22:23:19 EDT 2002 / 38
message being sent to:

http://penguin.mcs.drexel.edu:8080/jaxm-pi
-proxy/local_relay

message send failed, will retry in 5 seconds
message send failed, will retry in 5 seconds
message send failed, will retry in 5 seconds
message send failed, will retry in 5 seconds
message send failed, will retry in 5 seconds
message send failed, will retry in 5 seconds
message send successful
msg_id extracted: penguin.mcs.drexel.edu / Sat Jul 20

22:23:20 EDT 2002 / 904
sent to local web service: <response message>
doPost exited: Sat Jul 20 22:23:20 EDT 2002

6.3.2.2 Exactly-Once Delivery

The ‘exactly-once delivery’ test setting of PI-C was configured as follows:

Number of times to resend each message for testing
‘exactly-once delivery’: 1

111

This setting means that PI-C will send every message one additional time. The

test was conducted as follows:

1. A ‘Get Account Balance’ message was sent from the Bank Web Service client to PI-

C’s remote_relay servlet.

2. PI-C’s remote_relay servlet according to the settings, sent the message twice to PI-S’s

local_relay servlet

Result: At the end of the test only a single copy of the message was received at the Bank

Web Service server. The second duplicate copy was discarded by PI-S’s local_relay

servlet. Had the exactly-once delivery mechanism not been in place, the server would

have received two redundant copies of the same message.

The following log entries were generated by PI-S’s local_relay during this test:

doPost entered: Sat Jul 20 17:38:11 EDT 2002
received from peer pi proxy: <request message>
msg_id extracted: blueberrypi.mcs.drexel.edu / Sat Jul 20

17:38:11 EDT 2002 / 24
message being sent to:

http://penguin.mcs.drexel.edu:8080/jaxm-bank
-service/bank_server

message send successful
msg_id added: penguin.mcs.drexel.edu / Sat Jul 20 17:38:11

EDT 2002 / 839
sent to peer pi proxy: <response message>
doPost exited: Sat Jul 20 17:38:11 EDT 2002

doPost entered: Sat Jul 20 17:38:11 EDT 2002
received from peer pi proxy: <request message>
msg_id extracted: blueberrypi.mcs.drexel.edu / Sat Jul 20

17:38:11 EDT 2002 / 24
duplicate message received, discarded
doPost exited: Sat Jul 20 17:38:11 EDT 2002

112

6.3.2.3 Logging

PI-v1 generates detailed logs of all messaging activity. Sample log entries are given in

the preceding two sections.

113

Chapter 7: Conclusion

7.1 Review

We opened the thesis with an introduction to Web Services. Web Services is a new

technology for building distributed systems by enabling interaction between remote

applications. The remarkable characteristic of the Web Services technology is that it

allows interaction between heterogeneous applications regardless of their development

and operational platforms. This is made possible by the use of XML for information

exchange.

An enterprise-class Web Service was characterized as one that meets the quality-

of-service requirements of its owner enterprise. Quality-of-service requirements include

security, reliability and manageability.

We discussed that the Web Services technology does not currently support these

quality-of-service features. Web Services protocols such as SOAP, have no provision for

implementing quality-of-service requirements. Since Web Service applications

communicate over the Internet (which is inherently insecure and unreliable), the security

and reliability of the communication is put at risk.

We looked at some possible solutions to this problem. One obvious solution is to

add quality-of-service features to the Web Services protocols. However, this solution

may not be desirable because it would put extra burden on the currently simple protocols

that are successful mainly due to their simplicity. A solution that does not have

significant side-effects is that of a Web Service intermediary. In this solution Web

Service applications communicate with each other through an intermediary. The

114

intermediary takes the responsibility of implementing the quality-of-service requirements

in the communication.

This is a suitable solution and its current implementations do solve the problem of

lack of quality-of-service but they introduce some problems of their own. One of these

problems is the requirement to recode each Web Service application to enable it to

communicate with the intermediary. This restriction makes the deployment of a Web

Service intermediary difficult and time-consuming. Other problems are due to the central-

server architecture of the existing Web Service intermediaries. A central server places

control of the flow and management of all information in the hands of a single party and

leaves other parties involved in the communication deprived of this control. In the Web

Services architecture, a Web Service application may be a client as well as a server,

therefore if two peer-to-peer Web Service applications want to communicate there is no

basis to choose one of them over the other to host the Web Service intermediary server.

Another significant problem with a Web Service intermediary based on a central-server is

that it limits the scalability of a Web Service application.

To solve these problems we presented a novel Web Service intermediary, which

we called PI. Our Web Service intermediary is based on peer-to-peer architecture. The

key component of our Web Service intermediary architecture is a peer proxy. The peer

proxy is designed to be a software program that is installed on the trusted network of each

communicating Web Service application. A Web Service application sends and receives

messages through its proxy. The peer proxies of two communicating applications interact

to relay their messages. The peer proxies take measures to enforce the desired quality-of-

service in the communication with each other. These measures include use of public-key

115

cryptography for security; use of message queues, ordered delivery and exactly-once

delivery algorithms for reliability; and monitoring, logging and client management

features for manageability.

We demonstrated that our Web Service intermediary does not suffer from the

problems associated with earlier designs. It does not require Web Service applications to

be recoded; it is easily and quickly deployable; due to its peer-to-peer architecture, the

control of flow and management of information is not placed in the hands of a single

party; there is no need to select one exclusive party to host a server; and it does not limit

the scalability of a Web Service application.

We gave the description of our implementation of PI. Our current implementation

implements only a subset of the complete design. With the help of this implementation

we gave practical demonstrations that our solution does solve the problems associated

with the designs of existing Web Service intermediaries. We did not provide a practical

demonstration of the scalability of our solution since the current implementation of PI

proxy cannot be configured to communicate with more than one peer PI proxy. We used

our Bank Web Service to test various quality-of-service features provided by our

implementation of PI. All tests had successful results.

7.2 Contributions

The main contribution of our work is the design of a novel Web Service intermediary.

Our design solves some significant problems associated with earlier designs. Our Web

Service intermediary has the following novel characteristics:

1. It does not require a Web Service application to be recoded to enable it to

communicate with the Web Service intermediary.

116

2. It does not place the control of the flow and management of information in the hands

of a single party.

3. It does not differentiate between a client and a server which is important for the Web

Services architecture in which a single application can be a client and a server at the

same time. It does not require selection of one exclusive party to host a Web Service

intermediary server.

4. It is quickly and easily deployable.

5. It does not limit the scalability of a Web Service application.

Our Web Service intermediary makes building of enterprise-class Web Services

convenient and practical: convenient because of characteristics 1 and 4, and practical

because of characteristics 2, 3 and 5 mentioned above.

Although we have not given a full-featured, industrial-strength implementation of

our design, we have provided a prototype which demonstrates that a practical

implementation of our design is possible.

This thesis is a good introduction to the emerging Web Services technology. It

can serve as a starting point and useful resource for students who would like to work in

this area.

7.3 Future Research Possibilities

We have not given a standard which a proxy must adhere to in its communication with a

peer proxy. If two proxies are implemented by independent groups of developers that use

different communication mechanisms, then those two proxies would not be able to

communicate with each other since they would not conform to each others

117

communication specifics. For example the two implementations could have a different

format for message IDs. There is a need to develop a standard which different

implementers of PI proxies can adhere to. The result would be that PI proxies

implemented separately would be able to interact with each other.

We mentioned in section 5.3.2.2 that two peer PI proxies negotiate with each

other to reach agreement on the quality-of-service to be implemented in their

communication. We however did not give a negotiation algorithm. An ideal negotiation

algorithm would be one that ensures that every possibility is considered which would

lead to an agreement between the two parties. Research can be done towards developing

such an algorithm. We stated that after negotiation the stricter of the two proxies’ quality-

of-service requirements is enforced. It is not mandatory to have this as the only possible

condition of agreement. An acceptable condition of agreement may as well be a

compromise between the quality-of-service requirements of the two proxies if both

proxies are willing to accept it. This possibility should also be explored.

In section 5.3.4, we presented a simplistic analysis of the scalability of central-

server-based Web Service intermediaries and PI. An in-depth analysis should be

conducted for more thorough results.

Our implementation of PI is a simple prototype that should not be used for

enterprise Web Service applications. A full-featured, industrial-strength implementation

of PI should be developed. A thorough practical evaluation of PI with a real enterprise

Web Service application would then be possible.

We have not explored the use of naming and directory services with PI. Naming

and directory services are beneficial when the location of an application changes. Instead

118

of being manually updated, other applications with the help of naming and directory

services, can programmatically rediscover the new location of the application. Use of

naming and directory services with PI should be examined, with particular attention to

the trade-offs between ease of PI proxy maintenance and quality-of-service guarantees.

119

Bibliography

Agrawal2001vinci Rakesh Agrawal, Roberto Bayardo, Daniel Gruhl and

Spiros Papadimitriou, “Vinci: A Service-Oriented
Architecture for Rapid Development of Web Applications”,
Proceedings of the Tenth International World Wide Web
Conference on World Wide Web (ACM), Pages: 355 – 365,
2001.

Akkiraju2001ebusiness Rama Akkiraju, David Flaxer, Henry Chang, Tian Chao,

Liang-Jie Zhang, Frederick Wu and Jun-Jang Jeng, “A
Framework for Facilitating Dynamic e-Business via Web
Services”, OOPSLA 2001 Workshop on Object-Oriented
Web Services, 2001.

Andrade2001coordination Luis Filipe Andrade and Jose Luiz Fiadeiro, “Coordination

Technologies for Web-Services”, OOPSLA 2001 Workshop
on Object-Oriented Web Services, 2001.

Armstrong2002introxml Eric Armstrong, “The Java Web Services Tutorial –

Introduction to XML”, http://java.sun.com/webservices
/docs/1.0/tutorial/doc/IntroXML2.html#64813, 2002.

Atkinson2002wssecurity Bob Atkinson, “Web Services Security (WS-Security)”,

IBM developerWorks, http://www-106.ibm.com
/developerworks/library/ws-secure/, April 2002.

Barrett1999intermediaries R. Barrett, “Intermediaries: An approach to manipulating

information streams”, IBM Systems Journal, April 1999.

Bodoff2002war Stephanie Bodoff, “Web Application Archives (WAR)”,

http://java.sun.com/webservices/docs/1.0/tutorial/doc/Web
App3.html#64585, 2002.

Bonifati2001reactive Angela Bonifati, Stefano Ceri and Stefano Paraboschi,

“Pushing Reactive Services to XML Repositories using
Active Rules”, Proceedings of the Tenth International
World Wide Web Conference on World Wide Web (ACM),
Pages: 633 – 641, 2001.

http://java.sun.com/webservices/docs/1.0/tutorial/doc/Bios.html#ericArmstrong

120

Bosworth2001webservices Adam Bosworth, “Developing Web Services”, Proceedings
of the IEEE 17th International Conference on Data
Engineering, Pages: 477 – 481, 2001.

Box2002webservices Don Box, “The Continuing Challenges of XML Web

Services”, MSDN Magazine, February 2002.

Buchmann2001crypt Johannes A. Buchmann, “Introduction to Cryptography”,

Springer, 2001.

Burbeck2000wstao Steve Burbeck, “The Tao of e-business services”, IBM

developerWorks, October 2000.

Cable2001J2EEwebservices Laurence P. G. Cable, “Creating Web Services with J2EE:

iPlanet and Sun ONE”, JavaOne Conference, 2001.

Cardellini2001performance Valeria Cardellini, Emiliano Casalicchio and Michele

Colajanni, “A Performance Study of Distributed
Architectures for the Quality of Web Services”,
Proceedings of the 34th Hawaii International Conference
on System Sciences (IEEE), Pages: 3551 – 3560, 2001.

Chaudhury2001webchannels Abhijit Chaudhury, Debasish N. Mallick and H. Raghav

Rao, “Web Channels in E-Commerce”, Communications of
the ACM, January 2001.

Chen2000discovery Harry Chen, Dipanjan Chakraborty, Liang Xu, Anupam

Joshi and Tim Finin, “Service Discovery in the Future
Electronic Market”, Workshop on Knowledge Based
Electronic Markets, 2000.

Chester2001crossplatform Timothy M. Chester, “Cross-Platform Integration with

XML and SOAP”, IEEE IT Pro, September – October
2001.

Coulouris2001distributed George Coulouris, Jean Dollimore and Tim Kindberg,

“Distributed Systems: Concepts and Design”, Addison-
Wesley, 2001.

Curbera2001integration Francisco Curbera, Ignacio Silva-Lepe and Sanjiva

Weerawarana, “On the Integration of Heterogeneous Web
Service Partners”, OOPSLA 2001 Workshop on Object-
Oriented Web Services, 2001.

121

Curbera2001webservices Francisco Curbera, William A. Nagy and Sanjiva
Weerawarana, “Web Services: Why and How”, OOPSLA
2001 Workshop on Object-Oriented Web Services, 2001.

Damianiand2001access Ernesto Damianiand, Sabrina De Capitani di, Stefano

Paraboschi and Pierangela Samarati, “Fine Grained Access
Control for SOAP E-Services”, Proceedings of the Tenth
International World Wide Web Conference on World Wide
Web (ACM), Pages: 504 – 513, 2001.

Davis2002soap Dan Davis and Manish Parashar, “Latency Performance of

SOAP Implementations”, Proceedings of the IEEE
International Symposium on Cluster Computing and the
Grid, Pages: 377 – 382, 2002.

Drexel2002bannerweb Drexel University, “BannerWeb”, http://bannerweb.

drexel.edu/, 2002.

Duftler2001invocation Matthew J. Duftler, Nirmal K. Mukhi, Aleksander

Slominski and Sanjiva Weerawarana, “Web Services
Invocation Framework (WSIF)”, OOPSLA 2001 Workshop
on Object-Oriented Web Services, 2001.

Dumas2001semantic Marlon Dumas, Justin O’Sullivan, Mitra Heravizadeh,

David Edmond and Arthur ter Hofstede, “Towards a
Semantic Framework for Service Description”, IFIP
Conference on Database Semantics, 2001.

EvansData2002evansdata Evans Data Corporation, “Evans Data Corporation”,

http://www.evansdata.com/, 2002.

Flamenco2002flamenco Flamenco Networks, “Flamenco Networks”,

http://www.flamenconetworks.com/, 2002.

Flamenco2002wsnetworks Flamenco Networks, “Web Services and the Need for Web

Services Networks”, Flamenco Networks,
https://www.flamenconetworks.net/Pages/Help/Web_Servic
es_White_Paper.pdf, 2002.

Fontana2002security John Fontana, “Top Web services worry: Security”,

Network World, http://www.nwfusion.com/news
/2002/0121webservices.html, January 2002.

122

Gisolfi2001corba Dan Gisolfi, “Is Web Services the reincarnation of
CORBA?”, IBM developerWorks, http://www-
106.ibm.com/developerworks/webservices/library/ws-arc3/,
2001.

Gokhale2002corba Aniruddha Gokhale, Bharat Kumar and Arnaud Sahuguet,

“Reinventing the Wheel? CORBA vs. Web Services”,
http://www2002.org/CDROM/alternate/395/, 2002.

GrandCentral2002faq Grand Central Communications, “Grand Central

Communications Frequently Asked Questions (FAQ)”,
http://www.grandcentral.com/services/faq.htm, 2002.

GrandCentral2002gc Grand Central Communications, “Grand Central

Communications”, http://www.grandcentral.com/, 2002.

GrandCentral2002gcservice Grand Central Communications, “Enabling the Extended

Enterprise”, Grand Central Communications,
http://www.grandcentral.com/pdf/Service_Brochure.pdf,
2002.

Hailpern2001webservices Brent Hailpern and Peri L. Tarr, “Software Engineering for

Web Services: A Focus on Separation of Concerns”,
OOPSLA 2001 Workshop on Object-Oriented Web
Services, 2001.

Helal2002enterprise Sumi Helal, Stanley Su, Jie Meng, Raja Krithivasan and

Arun Jagatheesan, “The Internet Enterprise”, Proceedings
of the Second IEEE/IPSJ Symposium on Applications and
the Internet, Pages: 54 – 62, 2002.

Hoffman2001parnas Daniel M. Hoffman and David M. Weiss, “Software

Fundamentals – Collected Papers by David L. Parnas”,
Addison-Wesley, 2001.

IBM2002websphere IBM, “WebSphere Software Platform”,

http://www.ibm.com/websphere/, 2002.

iDTwo2002pki iD2 Technologies, “Public Key Infrastructure (PKI)”,

http://www.id2tech.com/, 2002.

Infoworld2002wsjavastyle Maggie Biggs, “Web services Java style”, InfoWorld,

http://www.infoworld.com/, February 2002.

InterKnowlogy2002ik InterKnowlogy, “InterKnowlogy”, http://www.

interknowlogy.com/, 2002.

mailto:maggie_biggs@infoworld.com

123

Irani2001intermediaries Romin Irani, “Web Services Intermediaries”, Web Services

Architect, http://www.webservicesarchitect.com/,
November 2001.

Ives2001xmldata Zachary G. Ives, “Integrating Network-Bound XML Data”,

IEEE Data Engineering Bulletin, June 2001.

Januszewski2001uddi Karsten Januszewski, “Web Service Description and

Discovery Using UDDI Part I”, Microsoft Developer
Network, October 2001.

Jepsen2001interoperability Tom Jepsen, “SOAP Cleans up Interoperability Problems

on the Web”, IEEE IT Pro, January – February 2001.

Johnston2002webservices Stuart J. Johnston, “State of Web services”, InfoWorld,

http://www.infoworld.com/, February 2002.

Jones2002enterpriseclassws Mark Jones, “Implementing Enterprise-class Web

services”, http://www.xml.org/xml/presentations
/implementing_web_services.pdf, 2002.

Kao2001webservices James Kao, “Developer's Guide to Building XML-based

Web Services with the Java 2 Platform Enterprise Edition
(J2EE)”, http://www.theserverside.com/resources
/article.jsp?l=WebServices-Dev-Guide, 2001.

Karvonen2000simplicity Kristiina Karvonen, “The Beauty of Simplicity”,

Proceedings of the Conference on Universal Usability
(ACM), Pages: 85 – 90, 2000.

Kazakos2001coastbase Wassili Kazakos, Andreas Schmidt and Heiko Paoli, “XML

based Virtual Catalogue Module in CoastBase”, 15th
International Symposium Informatics for Environmental
Protection, 2001.

Keating2002thirdparty Michael Keating, “Third-Party Dependence – A Potential

Disaster Domino”, http://www.manufacturingweek.com
/manufacturingweek/show/schedet.asp?row=33#top, 2002.

Kirda2001experiences Engin Kirda, Mehdi Jazayeri, Clemens Kerer and Markus

Schranz, “Experiences in Engineering Flexible Web
Services”, IEEE Multimedia, January – March 2001.

124

Kirda2001multidevice Engin Kirda, Clemens Kerer, Mehdi Jazayeri and
Christopher Kruegel, “Supporting Multi-Device Enabled
Web Services: Challenges and Open Problems”,
Proceedings of the Tenth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, Pages: 49 – 54, 2001.

Kirtland2000web Mary Kirtland, “The Programmable Web: Web Services

Provides Building Blocks for the Microsoft .NET
Framework”, MSDN Magazine, September 2000.

Kirtland2001secure Mary Kirtland, “Secure Web Services Using the SOAP

Toolkit”, Microsoft Developer Network, January 2001.

Klein2001semantic Mark Klein and Abraham Bernstein, “Searching for

Services on the Semantic Web Using Process Ontologies”,
The First Semantic Web Working Symposium, 2001.

Larsen2000costmodel Kai R.T. Larsen and Peter A. Bloniarz, “A Cost and

Performance Model for Web Service Investment”,
Communications of the ACM, February 2000.

LeonGarcia2000networks Alberto Leon-Garcia and Indra Widjaja, “Communication

Networks – Fundamental Concepts and Key
Architectures”, McGraw-Hill, 2000.

Mani2002qos Anbazhagan Mani and Arun Nagarajan, “Understanding

quality of service for Web services”, IBM developerWorks,
January 2002.

McIlraith2001semantic Sheila A. McIlraith, Tran Cao Son and Honglei Zeng,

“Semantic Web Services”, IEEE Intelligent Systems, March
– April 2001.

Mckee1999directions P. F. McKee, I. W Marshall and I. D. Henning, “Research

Directions in Distributed Systems”, BT Technol, April
1999.

Mckee2001uddi Barbara McKee, Dave Ehnebuske and Dan Rogers, “UDDI

Version 2.0 API Specification”, http:/www.uddi.org/, 2001.

Microsoft2002dcom Microsoft, “Distributed Component Object Model

(DCOM)”, http://www.microsoft.com/com/tech/DCOM.asp,
2002.

125

Microsoft2002dotnet Microsoft, “Microsoft .NET”, http://www.microsoft.com
/net/, 2002.

Microsoft2002myservices Microsoft, “Microsoft .NET Services”, http://www.

microsoft.com/myservices/, 2002.

Microsoft2002passport Microsoft, “Microsoft .NET Passport”, http://www.

passport.com/Consumer/Default.asp?lc=1033, 2002.

Microsoft2002security Microsoft Corporation, “XML Web Services Security”,

http://msdn.microsoft.com/vstudio/techinfo/articles/XMLwe
bservices/security.asp, 2002.

Microsoft2002webservices Microsoft Corporation, “What are XML Web Services?”,

http://www.microsoft.com/net/basics/xmlservices.asp, 2002.

OConnell2001configuration Paul O'Connell and Rachel McCrindle, “Using SOAP to

Clean Up Configuration Management”, Proceedings of the
IEEE 25th Annual International Computer Software and
Applications Conference, Pages: 555 – 560, 2001.

OMG2002corba Object Management Group (OMG), “Common Object

Request Broker Architecture (CORBA)”,
http://www.corba.org/, 2002.

Piccinelli2001ebusiness Giacomo Piccinelli, Mathias Salle and Christian Zirpins,

“Service-oriented Modeling for e-Business Applications
Components”, Proceedings of the Tenth IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Pages: 12 – 17, 2001.

Piccinelli2001service Giacomo Piccinelli and Eric Stammers, “From E-Processes

to E-Networks: an E-Service-oriented approach”, OOPSLA
2001 Workshop on Object-Oriented Web Services, 2001.

Powell2001architecture Matt Powell, “Physical Architecture (of Web Services)”,

Microsoft Developer Network, June 2001.

Powell2001security Matt Powell, “Real SOAP Security”, Microsoft Developer

Network, November 2001.

Powell2002wsdl Matt Powell, “Building XML Web Services Using Industry

Standardized WSDLs”, Microsoft Developer Network,
February 2002.

126

Richter2000microsoft Jeffrey Richter, “Microsoft .NET Framework Delivers the
Platform for an Integrated Service-Oriented Web”, MSDN
Magazine, October 2000.

Roy2001web Jaideep Roy and Anupama Ramanujan, “Understanding

Web Services”, IEEE IT Pro, November – December 2001.

RSA2001scalability RSA Security, “Scalability Proof of Concept: RSA Keon

Certificate Authority Eight Million Certificate Test”,
http://www.rsasecurity.com/, 2001.

RSA2002keon RSA Security, “RSA Keon”, http://www.rsasecurity.

com/products/keon/, 2002.

RSA2002rsa RSA Security, “RSA Security”, http://www.rsasecurity.

com/, 2002.

Ruiz2001quality Antonio Ruiz, Rafael Corchuelo, Amador Duran and

Miguel Toro, “Automated Support for Quality
Requirements in Web-Service-Based Systems”,
Proceedings of the Eighth IEEE Workshop on Future
Trends of Distributed Computing Systems, Pages: 48 – 54,
2001.

Russell2001web James R. Russell, “Web Services and Java Technology - A

Natural Fit”, JavaOne Conference, 2001.

Saaresto2001xmlapi Marko Saaresto, “A Review on Java API for XML

Messaging (JAXM)”, Research Seminar on Advanced Java
Specifications, 2001.

Samulowitz2001pervasive Michael Samulowitz, Florian Michahelles and Claudia

Linnhoff-Popien, “Adaptive Interaction for Enabling
Pervasive Services”, Proceedings of the Second ACM
International Workshop on Data Engineering for Wireless
and Mobile Access, Pages: 20 – 26, 2001.

Schwartz2002deployability Jeff Schwartz, “Deployability: The New Business

Frontier”, http://www.gantthead.com/article/1,1380,94592,
00.html, 2002.

Seebeyond2001webservices Seebeyond, “Web Services: Sharing Business Processes

over the Internet”, http://www.seebeyond.com
/products/whitepapers/WebServicesWhitepaper.pdf, 2001.

127

Seely2001documenting Scott Seely, “Documenting Your Web Service”, Microsoft
Developer Network, July 2001.

Seely2001interoperability Scott Seely, “Designing Your Web Service for Maximum

Interoperability”, Microsoft Developer Network, December
2001.

Seely2001uddi Scott Seely, “Web Service Description and Discovery

Using UDDI Part II”, Microsoft Developer Network,
October 2001.

Seely2001xml Scott Seely, “An XML Overview towards Understanding

SOAP”, Microsoft Developer Network, November 2001.

Seely2002standardWSDL Scott Seely, “Building Industry Standard WSDL”,

Microsoft Developer Network, February 2002.

Stonebraker2001ebusiness Michael Stonebraker and Joseph M. Hellerstein, “Content

Integration for E-Business”, Proceedings of the 2001 ACM
SIGMOD International Conference on Management of
Data, Pages: 552 – 560, 2001.

Sun1999J2EEguide Sun Microsystems Inc, “Simplified Guide to the Java 2

Platform Enterprise Edition”, http://www.
serverworldmagazine.com/webpapers/2000/07_sunj2ee.sht
ml, 1999.

Sun2002iforce Sun Microsystems, “iForce Ready Centers”,

http://www.sun.com/executives/iforce/readycenters/sunmatr
ix.html, 2002.

Sun2002j2ee Sun Microsystems, “Java 2 Platform, Enterprise Edition

(J2EE)”, http://java.sun.com/j2ee/, 2002.

Sun2002j2eeFAQ Sun Microsystems Inc, “Java 2 Platform Enterprise Edition

(J2EE) FAQ”, http://java.sun.com/j2ee/faq.html, 2001.

Sun2002j2se Sun Microsystems, “Java 2 Platform, Standard Edition

(J2SE)”, http://java.sun.com/j2se/, 2002.

Sun2002javaFAQ Sun Microsystems Inc, “Java Technology & Web Services

FAQ”, http://java.sun.com/webservices/faq.html, 2002.

Sun2002javaidl Sun Microsystems, “Java Interface Description Language

(IDL)”, http://java.sun.com/products/jdk/idl/, 2002.

128

Sun2002javarmi Sun Microsystems, “Java Remote Method Invocation
(RMI)”, http://java.sun.com/products/jdk/rmi/, 2002.

Sun2002jwsdp Sun Microsystems, “Java Web Services Developer Pack”,

http://java.sun.com/webservices/webservicespack.html,
2002.

Sun2002sunone Sun Microsystems, “Sun Open Net Environment (Sun

ONE)”, http://wwws.sun.com/software/sunone/, 2002.

Sun2002webservices Sun Microsystems Inc, “Initial Thoughts on Web

Services”, http://java.sun.com/blueprints/guidelines
/WS_article.html, 2002.

Sun2002xmlFAQ Sun Microsystems Inc, “Java Technology & XML FAQ”,

http://java.sun.com/xml/faq.html, 2002.

Tapang2001wsdl Carlos C. Tapang, “Web Services Description Language

(WSDL) Explained”, Microsoft Developer Network, July
2001.

Tauber2001webservices James Tauber and Andy Roberts, “The Web Services

Revolution”, JavaOne Conference, 2001.

Todd2002httpr Stephen Todd, “A Primer for HTTPR”, IBM

developerWorks, April 2002.

Tominaga2002gcflamenco Mana Tominaga, “Secure infrastructures”, NewArchitect

Magazine, http://www.newarchitectmag.com/, April 2002.

Trastour2001semantic David Trastour, Claudio Bartolini and Javier Gonzalez-

Castillo, “A Semantic Web Approach to Service
Description for Matchmaking of Services”, Proceedings of
the International Semantic Web Working Symposium,
Pages: 447 – 461, 2001.

Treese2001data Win Treese, “It’s Ten O’clock - Do You Know Where

Your Data Are?”, ACM netWorker, December 2001.

Tsur2001revolution Shalom Tsur, “Are Web Services the Next Revolution in E-

Commerce?”, Proceedings of the 27th International
Conference on Very Large Data Bases, Pages: 614 – 617,
2001.

http://www-106.ibm.com/developerworks/webservices/library/ws-phtt/#author1

129

UDDI2002tech UDDI Community, “UDDI Technical White Paper”,
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Pa
per.pdf, 2002.

UDDI2002uddi UDDI Community, “Universal Description Discovery

Integration (UDDI)”, http://www.uddi.org/, 2002.

Vawter2001J2EEvsNet Chad Vawter and Ed Roman, “J2EE vs. Microsoft.NET - A

comparison of building XML-based web services”,
http://www.theserverside.com/resources/article.jsp?l=J2E
E-vs-DOTNET, 2001.

VeriSign2000services VeriSign, “VeriSign Authentication Services”,

http://www.verisign.com/, 2000.

VeriSign2002verisign VeriSign, “VeriSign”, http://www.verisign.com/, 2002.

W3C2002http W3C, “Hypertext Transfer Protocol (HTTP)”,

http://www.w3.org/Protocols/, 2002.

W3C2002soap W3C, “Simple Object Access Protocol (SOAP)”,

http://www.w3.org/TR/SOAP/, 2002.

W3C2002wsdl W3C, “Web Services Description Language (WSDL)”,

http://www.w3.org/TR/wsdl, 2002.

W3C2002xml W3C, “Extensible Markup Language (XML)”,

http://www.w3.org/XML/, 2002.

Waterhouse2001wssecurity Mark Waterhouse, “Establishing Trust in Web Services”,

Web Services Architect, http://www.
webservicesarchitect.com/, October 2001.

Weiss2001microsoft Aaron Weiss, “Microsoft .NET: Platform in the Clouds”,

ACM netWorker, December 2001.

Wolter2001wsbasics Roger Wolter, “XML Web Services Basics”, Microsoft

Developer Network, December 2001.

WSorg2002wsoverview Kevin Jones, “Web Services Overview and How They Fit

into Your Future”, http://www.webservices.org
/article.php?sid=444, 2002.

mailto:kevinfjones@webservices.org

130

Zou2001migration Ying Zou and Kostas Kontogiannis, “Towards a Web-
centric Legacy System Migration Framework”,
Proceedings of the ICSE 2001 Workshops of 3rd
International Workshop on Net-Centric Computing:
Migrating to the Web, Pages: 70 – 74, 2001.

131

Appendix A: Glossary of Acronyms

API Application Programming Interface
CLR Common Language Runtime
CORBA Common Object Request Broker Architecture
DCOM Distributed Component Object Model
FAQ Frequently Asked Questions
FDDI Fiber Distributed Data Interface
FTP File Transfer Protocol
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ID Identification
IDE Integrated Development Environment
IDL Interface Definition Language
IP Internet Protocol
J2EE Java 2 Platform, Enterprise Edition
J2SE Java 2 Platform, Standard Edition
JAXM Java API for XML Messaging
JAXP Java API for XML Processing
JAXR Java API for XML Registries
JAX-RPC Java API for XML-based RPC
JWSDP Java Web Services Developer Pack
LAN Local Area Network
ORB Object Request Broker
PI Peer-to-peer Intermediary
PIN Personal Identification Number
PI-v1 PI Proxy Version 1.0
QoS Quality-of-Service
RMI Remote Method Invocation
RPC Remote Procedure Call
SDK Software Development Kit
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
URL Uniform Resource Locator
WAR Web Application Archive
WSDL Web Services Definition/Description Language
WWW World Wide Web
XML Extensible Markup Language

132

Appendix B: Platforms and Tools Used for the Implementation and Evaluation of
PI Proxy Version 1.0

Platform / Tool Function
Microsoft Windows 2000 Operating System used for development

and evaluation

Sun Solaris 7 Operating System used for evaluation

Java 2 Platform, Standard Edition (J2SE)
v1.4.0

Software Development Kit for building
Java applications

Java Web Services Developer Pack
(JWSDP) v1.0

Software Development Kit for building
Web Service applications. JWSDP is used
in conjunction with J2SE.

Java API for XML Messaging (JAXM)
v1.1

API for creating and sending XML
messages over the Internet. The API is part
of JWSDP.

Forte for Java 4.0 CE Integrated Development Environment for
Java

Apache Tomcat 4.1.2 Container Web Server and Web Application
Container

	Chapter 1.pdf
	Chapter 1: Introduction
	1.1	Background
	1.2	Problem Description
	1.3	Our Solution
	1.4	Outline of Thesis

	Chapter 2.pdf
	Chapter 2: Background – Web Services and Enterprise-Class Web Services
	2.1	Web Services
	2.1.1	What Problems do Web Services Address and why are they a Good Solution?
	2.1.2	Web Services Architecture
	2.1.3	The Building Blocks of Web Services
	2.1.3.1	XML
	2.1.3.2	SOAP
	2.1.3.2.1	Anatomy of a SOAP Message
	2.1.3.3	WSDL
	2.1.3.4	UDDI
	2.1.4	Vendor Support for Web Services
	2.1.4.1	Sun Microsystems
	2.1.4.2	Microsoft
	2.1.4.3	IBM
	2.1.5	Example Web Services
	2.1.5.1	Microsoft Passport
	2.1.5.2	California Traffic-Reporting Web Service by InterKnowlogy

	2.2	Enterprise-Class Web Services
	2.2.1	Characteristics of Enterprise-Class Web Services

	Chapter 3.pdf
	Chapter 3: Problem – Inadequacy of Web Services to Provide �Quality-of-Service Guarantees
	3.1	What is Quality-of-Service in Web Services?
	3.1.1	Security
	3.1.2	Reliability
	3.1.3	Manageability

	3.2	Why is Quality-of-Service in Web Services Important to Enterprises?
	3.3	Why Web Services are Unable to Guarantee Quality-of-Service?
	3.3.1	HTTP is Unreliable
	3.3.2	Public Internet is not Secure

	3.4	Some Views and Opinions about Lack of Quality-of-Service Guarantees in Web Services
	3.5	Review

	Chapter 4.pdf
	Chapter 4: Existing Solutions and their Drawbacks
	4.1	Upgrade Web Services Protocols
	4.2	Hard Code Desired Quality-of-Service into Each Web Service Implementation
	4.3	Use a Web Service Intermediary
	4.3.1	What is an Intermediary?
	4.3.2	What is a Web Service Intermediary?
	4.3.3	How does a Web Service Intermediary Solve the Problem?
	4.3.4	Some Implementations Based on the Concept of Web Service Intermediary
	4.3.4.1	Grand Central Communications’ Web Services Network
	4.3.4.1.1	Architecture and Operation
	4.3.4.1.2	Services Provided
	4.3.4.1.3	Pros and Cons
	4.3.4.2	Flamenco Networks’ Web Services Network
	4.3.4.2.1	Architecture and Operation
	4.3.4.2.2	Services Provided
	4.3.4.2.3	Pros and Cons

	4.4	A Review of the Discussed Approaches

	Chapter 5.pdf
	Chapter 5: Our Solution – Peer-to-Peer Intermediary
	5.1	Objectives
	5.1.1	Requirement of Customization through Additional Coding
	5.1.2	Enterprise’s Control of the Flow and Management of its Information
	5.1.3	Ease and Speed of Deployment
	5.1.4	Scalability

	5.2	Design
	5.2.1	Architecture
	5.2.1.1	Components
	5.2.1.2	Connectors
	5.2.1.2.1	Trusted Network
	5.2.1.3	Multiple Clients Scenario
	5.2.2	Message Exchange Model

	5.3	How does PI Meet the Objectives?
	5.3.1	Requirement of Customization through Additional Coding
	5.3.1.1	Grand Central (Central-Server Architecture)
	5.3.1.2	PI (Peer-to-Peer Architecture)
	5.3.2	Enterprise’s Control of the Flow and Management of its Information
	5.3.2.1	Flamenco, Grand Central (Central-Server Architecture)
	5.3.2.2	PI (Peer-to-Peer Architecture)
	5.3.3	Ease and Speed of Deployment
	5.3.3.1	Grand Central (Central-Server Architecture)
	5.3.3.2	PI (Peer-to-Peer Architecture)
	5.3.4	Scalability
	5.3.4.1	Flamenco, Grand Central (Central-Server Architecture)
	5.3.4.2	PI (Peer-to-Peer Architecture)

	5.4	Quality-of-Service Features Provided to Web Services by PI
	5.4.1	Security
	5.4.1.1	Authentication
	5.4.1.2	Authorization / Access Control
	5.4.1.3	Confidentiality
	5.4.1.4	Non-Repudiation
	5.4.2	Reliability
	5.4.2.1	Guaranteed Delivery
	5.4.2.2	Ordered Delivery
	5.4.2.3	Exactly-Once Delivery
	5.4.3	Manageability
	5.4.3.1	Monitoring
	5.4.3.2	Logging
	5.4.3.3	Client Management

	Chapter 6.pdf
	Chapter 6: Implementation and Evaluation
	6.1	The Bank Web Service
	6.1.1	Description of Functionality
	6.1.2	How can the Bank Web Service Benefit from PI?
	6.1.2.1	Security
	6.1.2.2	Reliability
	6.1.2.3	Manageability
	6.1.3	Design and Implementation
	6.1.3.1	Server
	6.1.3.1.1	Classes
	6.1.3.2	Client
	6.1.3.2.1	Client’s Graphical User Interface
	6.1.3.2.2	Classes
	6.1.4	Sample Messages Exchanged between the Bank Web Service Server and Client

	6.2	Implementation of PI Proxy
	6.2.1	Some Basics of the Current Implementation of PI Proxy
	6.2.2	Limitations of PI-v1
	6.2.3	Implementation of Basic Message Relay
	6.2.4	Implementation of Quality-of-Service Features
	6.2.4.1	Guaranteed Delivery
	6.2.4.2	Exactly-Once Delivery
	6.2.4.3	Logging
	6.2.5	Classes
	6.2.6	PI Proxy Administration Tool

	6.3	Evaluation of PI Proxy Version 1.0
	6.3.1	Does PI Proxy Version 1.0 Achieve the Design Objectives of PI?
	6.3.1.1	Objective 1: The Solution should not Require Additional Coding for Each Deployment
	6.3.1.2	Objective 2: The Solution should not Place Control of the Information Flow and its Management in the Hands of a Single Party (Especially not a Third-Party)
	6.3.1.3	Objective 3: The Solution should be Easily and Quickly Deployable
	6.3.1.4	Objective 4: The Solution should not Limit the Scalability of a Web Service
	6.3.2	Test of Quality-of-Service Features Provided by PI Proxy Version 1.0
	6.3.2.1	Guaranteed Delivery
	6.3.2.2	Exactly-Once Delivery
	6.3.2.3	Logging

	Chapter 7.pdf
	Chapter 7: Conclusion
	7.1	Review
	7.2	Contributions
	7.3	Future Research Possibilities

	End.pdf
	Bibliography
	Appendix A: Glossary of Acronyms
	Appendix B: Platforms and Tools Used for the Implementation and Evaluation of PI Proxy Version 1.0

	End.pdf
	Bibliography
	Appendix A: Glossary of Acronyms
	Appendix B: Platforms and Tools Used for the Implementation and Evaluation of PI Proxy Version 1.0

