
Abstract

Web Services is an emerging technology for making the functionality of an
application available over the Internet. Web Services provide a standard
means for remote software programs to interact with each other without
human intervention. Web Services have several benefits over similar
technologies. These benefits include: seamless cross-platform interoperability,
automatic discovery and invocation of new services, and the ability to use
Web Services as software components to develop new software. Web Services
with all their wonderful benefits, however, lack quality-of-service features
such as security, reliability and manageability. These features are essential for
enterprise-class applications. One recently introduced solution to this problem
is that of a Web Service intermediary. An intermediary is placed between the
Web Service provider and the client, which takes care of all the quality-of-
service requirements. Although, this is a suitable solution, its current
implementations have some undesirable constraints. These constraints
include the requirement of additional coding to interact with the intermediary
and the need for a central server in the intermediary architecture. A central
server is not desirable because it limits the scalability of the Web Service and
centralizes control in a single authority. We present a peer-to-peer Web
Service intermediary, which is free from these problems. Due to the peer-to-
peer architecture, it does not require a central server. The solution also does
not require any additional coding in the Web Service provider or the client,
which makes it readily deployable. Our solution is convenient and practical for
building enterprise-class Web Services.

Credit Card
Transactions
Processing

Currency
Conversion

Web Service

Credit Card
Transactions
Processing

Web Service

Client
Currency

Conversion

Figure: A chain of Web Services

3. Use Web
Service

Client

1. Register 2. Discover Service Broker
(S earchable
Database of

Web Services)

Figure: Clients can automatically discover and use new Web Services

Web Service
Intermediary

Web Service Client

Information Information

Figure: Web Service intermediary

Security, Reliability and
Manageability Services

Grand Central’s
Server at

grandcentral.com

Messages with
Quality-of-

Service
Guarantees

Messages with
Quality-of-

Service
Guarantees

Web Service Client

Wrapper
(W ritten with
Grand Central

SDK)

Wrapper
(W ritten with
Grand Central

SDK)

Internet

Figure: Grand Central's Web Service intermediary

Figure: Our peer-to-peer Web Service intermediary

Web
Service

Client

Messages

(Without Quality-of-
Service Guarantees)

Internet

Web
Service

PI
Proxy

PI
Proxy

Client

Messages

(W ith Quality-of-
Service Guarantees,

such as Security,
Reliability and
Manageability)

Messages Messages

Enterprise 1’s Trusted Network Internet Enterprise 2’s Trusted Network

Omar Hasan
Graduate Student
oh23@drexel.eduA Peer-To-Peer Intermediary for Building Enterprise-Class Web Services Bruce Char, PhD.

Professor and Advisor
bchar@mcs.drexel.edu

Department of Mathematics
and Computer Science
College of Arts and Sciences
Drexel University

What are Web Services?

Web Services is an emerging technology, which can make the functions of a
computer program available on the Internet. This enables any other computer
program that has access to the Internet to use these functions.

Until recently, the Internet was used by humans to access information mostly
on web pages. The user can read this information but that's all, it cannot be
processed for gaining further advantage from it.

Let's look at some examples, which would establish this limitation and the
benefits of Web Services.

Examples

1. Personalized Route Planning

Imagine that there is a Web Service that provides real-time traffic conditions
of Pennsylvania roads. A computer program on a user's computer can connect
to this Web Service, download the needed information and then plan the best
route for the user to take from his house to his workplace. If this information
were present only in the form of a web page, a program could not have
processed it. The user would have had to sift through the web page to find
the relevant information and then plan the route by himself.

2. E-Business

Web Services are of particular importance for business applications. An
example is an e-commerce web site using a Web Service that processes
users' credit card information. The same web site could also be using another
Web Service provided by the postal service to determine the shipping costs.

Architecture

The Web Service and its client are two computer programs that can exchange
information over the Internet without any human involvement.

Web Service Client

Exchange of
Information over

theInternet

Figure: Web Services Architecture

Figure: Problem

Figure: Our Solution

Wait a second, Web Services sound very similar
to some older technologies, such as CORBA and
JAVA RMI! So how are Web Services any better?

The key difference between older technologies and Web Services is that they
were not suitable for the Internet. Web Services technology is specially
designed for use over the Internet.

Some other benefits of Web Services are as follows:

§	Web Services allow dissimilar applications to interoperate, irrespective of
their development and operating platforms. For example an application
written in COBOL running on a UNIX machine can use the Web Services
technology to talk to an application written in Visual Basic running on
Windows XP.

§	Web Services protocols are text-based which make them firewall-friendly.
Firewalls are strict on binary protocols used by CORBA, JAVA RMI etc. because
binaries can be malicious.

§	A Web Service can be used as a software module to build new software. It
is also possible to chain together several Web Services. For example a Web
Service that processes credit card transactions could itself be using a Web
Service that provides currency conversion.

§	Clients can automatically discover and use new Web Services.

Ok, so Web Services are wonderful, what's the
problem then?

Web Services technology is currently in its initial stages. It lacks quality-of-
service features such as security, reliability and manageability. These features
are essential in applications used by enterprises.

A Web Service that is able to meet an enterprise's quality-of-service
requirements can be termed as an enterprise-class Web Service.

Quality-of-service in Web Services refers to their non-functional properties,
such as security, reliability and manageability.

Security includes:

§	Authentication of clients to prevent unauthorized access.
§	Authorization / access control to enforce a different level of access for each
user.
§	Maintaining confidentiality of in-transit information.
§	Non-repudiation to guarantee that a completed transaction cannot be
denied.

Reliability includes:

§	Guaranteed delivery of messages.
§	Ordered delivery of messages.
§	Exactly-once delivery of a message.

Manageability includes:

§	Monitoring of the Web Service for exceptions and performance.
§	Logging monitoring information for permanent record.
§	Easy and effective client management.

The Web Service intermediary can process the information stream to enhance
its quality. It can take care of the quality-of-service requirements by providing
security, reliability and manageability services.

Don't people already know about this problem?
Haven't they thought of solutions?

The Web Services community is well aware of these problems. Some solutions
have been proposed but each of them has its drawbacks.

One solution, which does not have any serious drawbacks, is that of a Web
Service Intermediary.

A Web Service intermediary is a computational element placed between the
Web Service and the client.

Web Service intermediary sounds like a good
solution. Problem solved?

Although, Web Service intermediary is a suitable solution, its current
implementations have some undesirable constraints. Let's take a look at an
implementation by a company called Grand Central
(http://www.grandcentral.com).

Grand Central's Web Service intermediary comprises of a central server and a
wrapper each at the Web Service and the client. All information must pass
through the central server.

This implementation has the following constraints:

§	Additional coding is required to develop a wrapper that is needed to
communicate with the central server.
§	The central server architecture limits the scalability of the Web Service.
§	If the server ceases to function, the whole communication would fail.
§	An enterprise has to rely on a third-party for its important business
functions.

Other existing implementations have similar drawbacks.

PI comprises of two peer proxies. A PI proxy is installed on each
communicating party's trusted network. The Web Service and the client
communicate only with the proxy installed on their own trusted network.

It is presumed that this internal communication already meets the
enterprise's quality-of-service requirements. This is generally true because
the proxy runs either on the same machine as the Web Service/client, or on a
machine connected by a reliable Local Area Network (LAN).

When a proxy receives a message from the application inside the trusted
network, it forwards it over the Internet to the proxy of the destination
application. That proxy on receiving this message then delivers it to the
destination application residing on its own trusted network.

The proxies interact in a peer-to-peer manner to exchange messages. The
proxies cooperate with each other to implement the required quality-of-
service in their communication.

Since, the two parties are allowed to select their own quality-of-service
requirements, the stricter of the two are applied after an automatic
negotiation.

Services Provided

PI is designed to accommodate all the quality-of-service requirements that we
mentioned earlier. How each of these requirements is met is described below:

Security

§	Authentication is provided by using digital certificates and a trusted
certificate authority such as VeriSign (http://www.verisign.com).
§	The Web Service manager can select the functions that are accessible to a
particular client. The proxy restricts access of a client to functions that are
marked inaccessible. This is done by simply checking the identity of the client
and its access list before allowing it access.
§	Confidentiality is provided by public-key encryption of confidential
information.
§	Non-repudiation is guaranteed by requiring the communicating parties to
digitally sign their messages.

Reliability

§	Guaranteed delivery is provided by queuing messages if they are
temporarily undeliverable. The proxy repeatedly keeps trying to deliver an
undelivered message for a set amount of time.
§	Ordered delivery is attained by using sequence numbers and a standard
FIFO ordering algorithm
§	Each message is uniquely numbered, therefore it is delivered exactly-once
even if duplicate copies are received.

Manageability

§	The proxy interface displays all ongoing activity for monitoring purposes.
§	Monitoring information is logged in text files.
§	A separate profile is maintained for each client (client management). This
profile contains the client's location, digital certificate, access list etc

§	Does not require additional coding.
§	Does not limit the scalability of the Web Service.
§	Does not centralize all control in a single authority.
§	Is readily deployable.

With these objectives in mind, we have designed a peer-to-peer Web Service
intermediary. We call it PI (Peer-to-peer Intermediary) for short.

Architecture and Operation

Web
Service

PI
Proxy

PI
Proxy

Client

Messages with
Quality-of-

Service
Guarantees

Messages Messages

Enterprise 1’s Trusted Network Internet Enterprise 2’s Trusted Network

All these services are customizable both at the Web Service and the client
end. It is also worthy to note that these internal workings of the proxies are
invisible to the Web Service and the client.
�

PI solves the problem

PI meets our goals, because:

§	PI does not require additional coding. The Web Service/client only need to
install the PI proxy, configure it and start using it. The only difference is that
instead of communicating directly, the Web Service and the client each
communicate with their own proxy. This quality is due to the PI design in
which it is presumed that the communication on the trusted network already
has the required quality-of-service.

§	PI does not limit the scalability of the Web Service. A Web Service can have
several PI proxies serving it to distribute load. This is opposed to a central
server, which forms a bottleneck in the communication.

§	Due to its peer-to-peer design, PI does not centralize control in a single
authority. Administrators of both the Web Service and the client are each free
to select their own quality-of-service requirements. The stricter of the two are
applied after automatic negotiation between the PI proxies.

§	Since PI does not require additional coding, it is readily deployable.

There is always another problem! So is this the
problem that your research addresses? What is
your solution?

Our research addresses the above-mentioned problems in the existing
implementations of the Web Service intermediary solution. The goal is to
design a Web Service intermediary that:

Do you also plan to implement this solution as a
product?

An implementation of PI is currently under development. Sun Microsystems'
Java/J2EE is being used as the development platform. Java was chosen
because it provides a comprehensive Web Services Development Pack
(WSDP) and also because applications written in Java are platform
independent.

Conclusion

Ok, I now understand your work. So Web
Services are a wonderful new technology to
make remote computer programs interact with
each other. But this technology has the problem
that it can't provide features such as security,
reliability and manageability, which are
important to enterprises. Web Service
intermediary is a good solution but all its current
implementations are problematic. You have
designed a new implementation of the Web
Service intermediary solution, which is problem-
free. It does not require additional coding and
due to its peer-to-peer design, it does not limit
the scalability of the Web Service or centralize
all control in a single authority. Because of your
work, now enterprises can benefit from Web
Services without worrying about quality-of-
service.

© Copyright 2002
Omar Hasan. All Rights Reserved.

Problem

Web Services is an emerging technology that enables application-to-
application interaction over the Internet. Web Services technology would be
very useful to enterprises if it did not lack quality-of-service features such as
security, reliability and manageability.

Web Service intermediary is a suitable solution to this problem. However, its
current implementations have undesirable constraints.

Our Solution

We have designed a peer-to-peer intermediary that is paced between the Web
Service and the client. It processes the information stream and adds quality-
of-service features to it. Our implementation does not have the problems
associated with other existing implementations of the Web Service
intermediary solution.

