
Efficient Privacy Preserving Reputation Protocols
Inspired by Secure Sum

Omar Hasan
INSA Lyon, France

omar.hasan@insa-lyon.fr

Elisa Bertino
Purdue University, IN, USA

bertino@cs.purdue.edu

Lionel Brunie
INSA Lyon, France

lionel.brunie@insa-lyon.fr

Abstract—The secure sum protocol is a well-known protocol
for computing the sum of private inputs from distributed entities
such that the inputs remain private. In this paper we present
protocols for computing reputation in a privacy preserving
manner that are inspired by the secure sum protocol. We provide
a protocol that is secure under the semi-honest adversarial model
as well as one that is secure under the stronger non-disruptive
malicious model. Although the protocols are inspired by secure
sum, they do not suffer from the issues that plague secure sum.
Our protocols are resilient against colluding entities, which secure
sum is not. The protocols that we develop are also efficient. We
require an exchange of O(n) messages under the semi-honest
model, where n is the number of feedback providers in the
protocol. This is the same complexity offered by secure sum.
Our protocol for the non-disruptive malicious model exchanges
O(N log n) messages, where N is the number of entities in the
system.

I. INTRODUCTION

Reputation systems represent a key technology for securing
distributed applications from misuse by dishonest entities. A
reputation system computes the reputation score of an entity
as the aggregate of the feedback provided by the other entities
in the system. Reputation scores help identify the entities that
are exhibiting undesirable behavior.

Examples of reputation systems may be found in several
application domains: E-commerce websites such as eBay
(ebay.com) and Amazon (amazon.com) use their reputation
systems to discourage fraudulent activities. The EigenTrust
[11] reputation system enables peer-to-peer file sharing sys-
tems to filter out peers who provide inauthentic content.
The web-based community of Advogato.org uses a reputation
system [14] for spam filtering.

The reputation score of a target entity is a function of the
feedback values provided by other entities. Thus an accurate
reputation score is possible only if the feedback is accurate.
However, it has been observed that the users of a reputation
system may avoid providing honest feedback [16]. The reasons
for such behavior include fear of retaliation from the target
entity or mutual understanding that a feedback value would
be reciprocated. eBay originally allowed buyers and sellers to
assign each other positive, neutral or negative feedback. To
counter the issue of retaliatory feedback, eBay revised its rep-
utation system [6] citing that “. . . the [earlier] feedback system
made some buyers reluctant to hold sellers accountable. For
example, buyers fear retaliatory feedback from sellers if they

leave a negative.” Now sellers are not permitted to assign
negative or neutral feedback to the buyers.

A more general solution to the problem of lack of honest
feedback is computing reputation scores in a privacy pre-
serving manner. A privacy preserving protocol for computing
reputation scores operates such that the individual feedback
of any entity is not revealed to other entities in the system.
The implication of private feedback is that there are no conse-
quences for the feedback provider and thus he is uninhibited
to provide honest feedback.

In this article, we focus on privacy preserving reputa-
tion protocols for decentralized environments. Examples of
decentralized environments include peer-to-peer file sharing
networks, decentralized social networks (such as FOAF),
MANETs, etc. The well-known secure sum protocol is a
natural fit for computing reputation in a decentralized manner
while preserving privacy. However, the basic secure sum
protocol suffers from substantial problems. Most significantly,
it is not secure under the semi-honest adversarial model when
entities are allowed to collude. We develop reputation proto-
cols that are inspired by secure sum. However, unlike secure
sum, our protocols are resilient against colluding entities.
Moreover, one of our protocols is secure under the stronger
non-disruptive malicious adversarial model.

The protocols that we present are also efficient in terms
of the number of messages exchanged and the bandwidth
utilized. Our protocol that is resilient against semi-honest
malicious adversaries has linear communication complexity
(O(n), where n is the number of feedback providers in
the protocol). Comparable protocols with similar strengths
by Pavlov et al. [15] and Gudes et al. [8] are quadratic.
The protocol that is secure against non-disruptive malicious
adversaries requires an exchange of O(N log n) messages,
which is still more efficient than comparable protocols (N is
the number of entities in the system).

II. PRELIMINARIES

A. Preserving Privacy

Definition 1. Preserving Privacy. Let Π be a protocol for
computing reputation. Let a be an agent that contributes
lat (its local private feedback about an agent t) as input
to protocol Π for computing the reputation of agent t. The
privacy of agent a is said to be preserved if the execution

of protocol Π does not result in the disclosure of agent a’s
private feedback to any other agent in the system.

B. Adversarial Models

In this article, we present protocols that preserve privacy
under the following two adversarial models:
Semi-Honest. Semi-honest agents always correctly follow the
protocol for computing the reputation of an agent. However,
they use the intermediate information received during the
protocol to derive the private feedback values of other agents.
Semi-honest agents may mount the following types of attacks:

1) Type 1 Attack. An agent a, as part of a protocol to compute
the reputation of an agent t, exchanges intermediate infor-
mation with other agents. Those agents either individually
or as a group of colluders try to derive the private feedback
of agent a about agent t from those intermediate values.

2) Type 2 Attack. An adversary observes the reputation of
agent t immediately before and after agent a updates its
feedback about agent t. Since the reputation is computed in
an additive manner, the adversary can learn about agent
a’s private feedback as: δl = r′t − rt, where δl is the
difference between agent a’s previous and current feedback
about agent t, and rt and r′t are the reputation values of
agent t before and after the update respectively. If agent a
assigned feedback to agent t for the first time, then δl is
equal to its complete feedback about agent t. To the best of
our knowledge this is the first work that addresses the Type
2 attack in a decentralized additive reputation system.

Non-Disruptive Malicious. In addition to the capabilities of
semi-honest agents, non-malicious disruptive agents may also
deviate from the protocol. However, non-disruptive malicious
agents have a single objective: to learn private feedback values
of other agents. They do not intend to disrupt the normal
function of the protocol other than to achieve this objective.
This is a practical model when the output of the protocol is
received by all participants and we consider that all participants
are interested in learning the correct output.

C. Data Perturbation

Data perturbation is a technique for hiding a data item by
adding noise to it. The noise added is sufficiently large in
order to make the derivation or estimation of the data item
from the resulting sum highly improbable. We quote the Data
Perturbation Assumption from [5] as follows (variable r in the
original definition is given here as variable y):

Definition 2. Data Perturbation Assumption. If an input is
x ∈ X , we assume that x+y effectively preserves the privacy
of x if y is a secret random number uniformly distributed in
a domain F , where |F | � |X|.

As an example, let’s consider that a value x = 0.5 ∈ [−1, 1]
is to be hidden. If we add a secret random number y = −3.2 ∈
[−10, 10] to x, then the sum x+ y = −2.7. In this case it is
impossible to learn the value of x from the sum.

The data perturbation technique is well established in sev-
eral domains including privacy-preserving data mining [1],

[18], and secure two party [5], [7] and multi-party [7] com-
putation.

With data perturbation there is some probability that x will
not be hidden properly. In the above example, if x = 1 and
the secret random number turns out to be y = 10, then the
sum would be x+ y = 11, which would give away the value
of x. However, the random numbers may be selected on a
distribution (such as Gaussian) that renders the probability of
such occurrences low.

III. THE BASIC FRAMEWORK OF THE
REPUTATION SYSTEM

The reputation system comprises of N agents. The set of
agents in the system is given as A = {ai : 1 ≤ i ≤ N}.

After two agents interact, they each may assign the other a
feedback value. A feedback value represents one agent’s local
view of the trustworthiness of another agent. The feedback
value assigned by an agent a to an agent t is given as lat ∈
[−1, 1]. The choice of feedback values is real numbers between
−1 and 1, which allows infinite resolution for expressing trust.
−1 implies “minimum trust”, 0 implies “neutral trust”, and 1
implies “maximum trust”.
rt ∈ R represents the global reputation value of an agent t.

Higher values indicate higher reputation.
There is no central authority in the system. Feedback values

are stored locally by the agents who assigned them. For
example, a feedback value lat is stored by the agent a. The
global reputation values are transient.

When an agent q wishes to determine the reputation rt of an
agent t, we refer to agent q as the querying agent and to agent
t as the target agent. The agents that have assigned feedback
to agent t are called the source agents and they are given as
the set St = {s : s ∈ A ∧ lst exists}. nt = |St| is the number
of source agents for agent t.

To determine the reputation of agent t, agent q initiates a
reputation protocol, which at minimum involves the source
agents and terminates with q learning the current reputation
of agent t. The protocols that we discuss in this paper compute
the reputation in an additive manner. Summation of local
feedback values about an entity to compute it’s global rep-
utation is an approach adopted by several reputation systems
including the successful eBay reputation system (ebay.com).
The advantage of this approach is that it is intuitive and thus
the meaning of a reputation value is easily understood by the
users.

If a trust relationship exists between two agents a and k,
then lak ∈ [−1, 1] is interpreted as the amount of trust a has
in k to not attack it to learn its private data. Let’s say that
Za = {z : z ∈ A ∧ z will attack a} is the set of all agents
in A who will attack a if given the opportunity. Then we
can also state that lak is the amount of trust a has in k to not
belong to Za. The relationship between lak and the probability
P (k ∈ Za) is assumed to be as follows:

P (k ∈ Za) =

 1− lak if lak ≥ 0
1 if lak < 0
1 if lak does not exist

Since by definition agents are curious, if agent a does not
have a positive trust relationship with agent k, it is assumed
that k will attack a to learn its private data.

Some of the agents in the system are identified as seed
agents. The set of seed agents is given as D = {di : di ∈
A ∧ 1 ≤ i ≤ N}. The set D is universally known by all
agents in the system. The concept of seed agents is used in
many successful reputation systems including Advogato [14]
and EigenTrust [11]. Seed agents are typically those agents
who joined the system at its inception and are thus known
to have been thoroughly vetted and highly trustworthy. The
trustworthiness of seed agents is universally considered in the
system to be at least 0.99 ∈ [−1, 1]. This is a reasonable
assumption, given that in the practical and very successful
Advogato reputation system, the seed agents are considered
100% trustworthy. For a seed agent d, P (d ∈ Za) = 1−0.99 =
0.01.

IV. PROTOCOL 1: RESILIENCY AGAINST
SEMI-HONEST ADVERSARIES

We now present a reputation protocol that preserves privacy
against both types of attacks under the semi-honest adversarial
model. The protocol is inspired by the well-known secure
sum protocol [4], [18], in which each agent adds its feedback
value to a running total and the last agent sends the sum
to the querying agent. However, in contrast to the secure
sum protocol, our protocol is secure against colluding agents.
Additionally, our protocol provides security against the type 2
attack. The communication complexity of our protocol is the
same as the secure sum protocol, that is, O(n).

A. Protocol Outline

• Each agent a maintains Sa, the set of its source agents.
The protocol is initiated by a querying agent q to determine
the reputation of a target agent t, where |St| ≥ 3. Agent
q retrieves St from t and initiates the forwards round by
sending S = St and r = 0 to an agent randomly selected
from St.

• The receiving agent adds its feedback value and a random
number y ∈ [−Y, Y] to r. After removing itself from S, the
agent sends the updated S and r to the agent in S that it
trusts the most to respect its privacy. The protocol continues
with the forwards round in this manner until the last agent
in S updates r and sends it to a seed agent.

• The seed agent generates a random number x ∈ [−Y, Y] and
then selects n− 1 random numbers and one chosen number
such that their sum is equal to x, where n = |St|. It sends
each of those numbers to distinct agents in St. The seed
then initiates the backwards round by sending S = St and
r to a randomly selected agent in St.

• The receiving agent removes the random number y from r
that it added to it in the forwards round. The agent adds
to r, the number that it received from the seed. The agent
then removes itself from S and sends the updated S and
r to the agent in S that it trusts the most. However, if
possible, it selects an agent that is different from the agent

that it selected in the forwards round. The backwards round
continues in this manner until the last agent in S updates r
and then sends it to q.

• The value of r that q receives is the sum of the random
number x and the feedback values of all agents in St. This
value of r is considered the reputation value of agent t.

B. Privacy

1) Type 1 Attack: Each agent exchanges information with
five agents during the protocol. All five of those agents must
collude to learn the feedback value of the agent. This can be
highly improbable since two of those agents are trustworthy
agents selected by the agent himself and another one is a
highly trusted seed agent.

Theorem 1. If the agents who participate in Protocol 1 are
semi-honest, then at the completion of a query, the probability
that a type 1 attack will reveal the feedback value of an
agent a ∈ St, who is not the last agent in the forwards or
the backwards round, is: P (a(f,out) ∈ Za) × P (a(b,out) ∈
Za)× P (d ∈ Za).

Theorem 2. If the agents who participate in Protocol 1 are
semi-honest, then at the completion of a query, the probability
that a type 1 attack will reveal the feedback value of an agent
a ∈ St is at most P (d ∈ Za).

Please see the appendix for proofs.
Please note that in the case of type 1 attack, an agent does

not rely solely on a seed agent for it’s privacy unless it is
unable to find other trustworthy agents over the course of
the protocol. However, as we observe in the experiment in
section VI-B conducted on a real and large web of trust, a
large majority of the agents is able to find trustworthy agents
thus avoiding total reliance on the seed agent.

Even though the seed agents are highly trustworthy and
their effectiveness has been demonstrated in systems such as
EigenTrust [11] and Advogato [14], it is possible that an agent
might not feel comfortable sharing its feedback when it has to
rely solely on a seed agent for its privacy. A simple extension
to the protocol which enables agents to abstain from providing
feedback is as follows: Due to the absence of trustworthy
agents or due to any other reason if an agent is unwilling
to contribute its feedback, it can provide dummy feedback of
value 0 and indicate to the querying agent or alternatively all
agents in the protocol that it has abstained from providing
its real feedback. The agent can participate in the rest of the
protocol as usual.

2) Type 2 Attack: The true sum of the feedback values
of all agents in St is never learned by any agent. The result
of the protocol is a value that is probabilistically close to the
true sum. This is achieved by the random number x added
by the seed agent. Thus simply observing a reputation value
before and after an update, does not reveal the feedback of the
updater agent. This type of attack can be successful if the seed
agent colludes with agent q, however, this has low probability
given that the seed agent is highly trusted.

Theorem 3. If the agents who participate in Protocol 1 are
semi-honest, then the probability that a type 2 attack will
reveal the feedback value of an agent a ∈ St is at most
P (d ∈ Za).

Please see the appendix for proof.
Under both types of attacks, the probability that the privacy

of agent a’s feedback value will be preserved is at least: 1−
P (d ∈ Za) = 99%.

The privacy guarantee for a type 2 attack relies solely on a
seed agent. However, since to the best of our knowledge this
work is the first attempt to a solution for the type 2 attack in a
decentralized additive reputation system, we believe that it is
a step towards stronger privacy guarantees. We can also make
the following enhancement to the protocol to eliminate total
reliance on a seed agent in the case of a type 2 attack: Let’s
assume that when an agent assigns feedback to a target agent,
b |Sa|

3 c = γ, where γ is some constant. The agent contributes
its real feedback only if (b |Sa|

3 c = γ ∧ |Sa| mod 3 = 0) ∨
b |Sa|

3 c > γ. This implies that a new source agent contributes
its feedback only when there are at least two other agents
contributing their values for the first time. Thus a type 2 attack
is unable to differentiate between the feedback provided by the
three new source agents. This solution is complementary to the
existence of the seed agent since it is also probabilistic in terms
of preserving privacy. A number higher than 3 would increase
the probability of privacy being preserved while decreasing
the rate at which new feedback effects the reputation.

C. Correctness

Theorem 4. If all agents properly follow Protocol 1, then at
the completion of a query, rt =

∑
a∈St

lat + x.

Please see the appendix for proof.
The addition of x implies that the result of the query

deviates from the true sum by a random value on the interval
[−Y, Y]. Absolute difference is given as: absolute difference =
|actual reputation − perturbed reputation|. Since x ∈ [−Y, Y],
⇒ absolute difference ≤ Y . Relative difference is expressed
as: relative difference = |actual reputation − perturbed repu-
tation| / actual reputation, where actual reputation 6= 0. The
bound on relative difference is inversely proportional to the
actual reputation.

D. Communication Complexity

For n source agents, the protocol requires n+1 messages in
the forwards round, n+ 1 messages in the backwards round,
n messages from the seed agent to the source agents, and 2
messages between the querying agent and the target agent.
The total number of messages required is 3n + 4, thus the
complexity of the protocol in terms of number of messages
exchanged is O(n). This is in contrast to the complexity of
O(n2) of the protocol secure under the semi-honest model
described in [15].

In terms of bandwidth used, our protocol requires trans-
mission of O(n2) number of agent IDs and O(n) number of
integers over the course of a query. In contrast, the protocol

need arises to determine rt

� initiate query to determine rt

1 send tuple (REQUEST FOR SOURCES) to t
2 receive tuple (SOURCES, St) from t
3 if |St| ≥ 2
4 then a(f,out) ← random element(St)
5 q ← a
6 p← timestamp()
7 r ← 0
8 send tuple (FORWARDS, q, t, p, r, St, St) to a(f,out)

tuple (REQUEST FOR SOURCES) received from agent k
1 send tuple (SOURCES, Sa) to k

tuple (FORWARDS, q, t, p, r, S, St) received from agent a(f,in)

1 if a ∈ S ∧ |St| ≥ 2
2 then r(f,in) ← r
3 y(q,t,p) ← random(−Y, Y)
4 r(f,out) ← r(f,in) + lat + y(q,t,p)
5 S(f,in) ← S
6 S(f,out) ← S(f,in) − a
7 if |S(f,out)| > 0
8 then a(f,out) ← trustworthy(a, S(f,out))
9 a(q,t,p) ← a(f,out)

10 send tuple (FORWARDS, q, t, p, r(f,out),
S(f,out), St) to a(f,out)

11 else
12 a(f,out) ← random element(D)
13 a(q,t,p) ← NIL
14 send tuple (SEED, q, t, p, r(f,out),

S(f,out), St) to a(f,out)

15 store y(q,t,p) and a(q,t,p) in
−→
Y and

−→
A respectively

tuple (SEED, q, t, p, r, S, St) received from agent a(f,in)

1 if a ∈ D ∧ S = φ
2 then n← |St|
3 x← random(−Y, Y)
4 select x1, x2, . . . , xn uniformly from [−Y, Y]

such that
∑n

i=1 xi = x
5 Stemp ← St

6 for i← 1 to n
7 do si ← random element(Stemp)
8 Stemp ← Stemp − si

9 send tuple (PARTX, q, t, p, xi) to si

10 a(b,out) ← random element(St)
11 send tuple (BACKWARDS, q, t, p, r, St) to a(b,out)

tuple (PARTX, q, t, p, x) received from agent d

1 if d ∈ D ∧ y(q,t,p) and a(q,t,p) exist in
−→
Y and

−→
A respectively

2 then x(q,t,p) ← x

3 store x(q,t,p) in
−→
X

tuple (BACKWARDS, q, t, p, r, S) received from agent a(b,in)

1 if a ∈ S ∧ y(q,t,p), a(q,t,p), and x(q,t,p) exist in
−→
Y ,
−→
A , and

−→
X respectively

2 then r(b,in) ← r
3 r(b,out) ← r(b,in) − y(q,t,p) + x(q,t,p)
4 S(b,in) ← S
5 S(b,out) ← S(b,in) − a
6 if |S(b,out) − a(q,t,p)| > 0
7 then a(b,out) ← trustworthy(a,

S(b,out) − a(q,t,p))
8 send tuple (BACKWARDS, q, t, p,

r(b,out), S(b,out)) to a(b,out)
9 else if |S(b,out)| > 0

10 a(b,out) ← trustworthy(a, S(b,out))
11 send tuple (BACKWARDS, q, t, p,

r(b,out), S(b,out)) to a(b,out)
12 else a(b,out) ← q
13 send tuple (RESULT, q, t, p,

r(b,out), S(b,out)) to a(b,out)
14 discard y(q,t,p), a(q,t,p), and x(q,t,p)

tuple (RESULT, q, t, p, r, S) received from agent a(b,in)

1 if a = q
2 then rt ← r � query complete

Fig. 1. Protocol 1 – The Semi-Honest Model.

given in [15] requires transmission of O(n2) number of agent
IDs as well as O(n2) number of integers. In practice, our
protocol would also economize on bandwidth due to the
fewer number of connections that it requires to be established
between agents (linear vs. quadratic in [15]).

E. Discussion

One of the key innovations in this protocol is that an agent
himself selects partners whom he wants to share intermediate
information with. This selection is based on the existing trust
relationships that the agent has with others. The advantages of
this approach are twofold.

Firstly, since the agent himself selects the partners whom
to trust, he can maximize the probability that his privacy will
be preserved. Choosing the agents whom to trust also allows
an agent to quantify the value of that probability. This is in
contrast to the secure sum protocol, in which the partners are
pre-determined by the querying agent for each source agent. In
the case that the probability does not meet an agent’s threshold
for privacy, the agent is also able to abstain from providing
feedback. Our protocol provides security against colluding
agents, which the secure sum protocol does not.

Secondly, since each agent exchanges messages with a con-
stant number of other agents, the communication complexity
of the protocol is linear. This is in contrast to the protocol
presented by Pavlov et al. [15] for the same adversarial model,
which requires each agent to exchange messages with all other
agents in the protocol resulting in quadratic communication
complexity. Additionally, unlike in [15], an agent in our
protocol contributes its private feedback only if the probability
that its privacy will be preserved is sufficient enough.

Another innovation in our protocol is the presence of seed
agents, which help in preventing the type 2 attack.

We evaluate our protocol on data from a real and large web
of trust in section VI.

F. Protocol Specification

All agents in the system are driven by a common protocol.
The protocol for an agent a in the system is given in figure 1
as a collection of events and associated actions. The protocol
assumes that |St| ≥ 3.

Description of the functions used in Protocol 1: ran-
dom element(S): Returns a random element from the set S.
timestamp(): Returns current time. For any given target, an
agent can only initiate one query per the smallest unit of time
in the timestamp. random(x,y): Returns a random number
uniformly distributed on the interval [x, y]. trustworthy(a, S):
Returns an agent k from the set S such that lak ≥ 0 ∧ ∀s ∈
S−k, lak ≥ las. If two or more agents meet this criteria, then
one of the agents is selected at random. If none of the agents
meet this criteria, then an agent is selected at random from S.

V. PROTOCOL 2: RESILIENCY AGAINST NON-DISRUPTIVE
MALICIOUS ADVERSARIES

In this section we present protocol 2, which is an extended
version of the protocol 1 introduced in the previous section.

Protocol 2 preserves privacy against the type 1 and type 2
attacks under the non-disruptive malicious adversarial model.

Protocol 1 assumes that all agents would follow the protocol
properly. However, non-disruptive malicious agents are not
bound to conform to the protocol. They can deviate from the
protocol as well as take actions that are outside the protocol
in attempt to learn local feedback of other agents. This is a
practical model when the output of the protocol is received
by all participants and we consider that all participants are
interested in learning the correct output.

We anticipate the following actions that non-disruptive
malicious agents could take to sabotage protocol 1.

1) A non-disruptive malicious agent could eavesdrop on the
communication of an agent in St and learn all the messages
that it exchanges with other agents over the course of a
query.

2) Agent q could drop agents from St, keeping only those
agents who are colluding with it along with one non-
colluding agent who is under attack. To gain unfair ad-
vantage, agent t could also drop the agents from St whom
he thinks might have rated him poorly.

3) Agent q or an agent in St could drop agents from S
before they have participated in the query, keeping only
those agents who are colluding with it along with one non-
colluding agent who is under attack.

A. Extensions to Protocol 1

Protocol 2 adds the following extensions to Protocol 1 to
make it resistant to the malicious actions described above.

1) Secure Communication: Eavesdropping is prevented by
requiring all messages to be exchanged via secure communi-
cation, which can be achieved through a protocol such as SSL
or IPSec.

2) Source Managers: The set Sa is no longer maintained
by agent a. In Protocol 2, the set Sa is maintained for agent
a by two or more other agents in the system independently
of each other. Those agents are called the source managers
of agent a. The idea of source managers is inspired by score
managers in EigenTrust [11].

When a source agent assigns feedback to a target agent, it
reports that event to each of the source managers of the target
agent. The source managers add the source agent to the set St
that they each maintain for the target agent t.

Agent q retrieves the set St from the source managers of
agent t. It is possible that a number of the source agents are
colluding with agent t and thus drop agents from St as desired
by t. To counter this problem, an agent that needs the set St,
retrieves it from all the source managers of agent t and then
takes the union of all those sets to get the final St. Thus even
if a single source manager is honest, the final set St would
include all source agents of agent t.

To retrieve St from a source manager of agent t in Protocol
2, agent q sends the tuple (REQUEST FOR TUPLE, q, t, p) to
the source manager. The source manager returns a signed
credential which includes St and (q, t, p). Agent q creates
a vector

−→
P that includes this credential retrieved from all

source managers of agent t. The simple set St that is part of
messages in Protocol 1 is replaced by the vector

−→
P in Protocol

2. Each agent, participating in a query identified by (q, t, p),
that receives this vector can derive the final St by taking the
union of all sets in the credentials. Each agent who receives

−→
P

verifies that it includes the credential from all source managers
of t and that each credential is signed by the issuing source
manager. This measure prevents agent q from dropping agents
from St.

To assign and locate source managers, a Distributed Hash
Table (DHT) may be used. An agent’s source managers would
be located by hashing the unique ID of the agent.

3) Verifiable Participation: To prevent an agent from ma-
liciously dropping other agents from the set S, Protocol 2
implements the following measures:

A new element, vector
−→
Q is added to the tuples of the

FORWARDS and BACKWARDS messages.
The vector

−→
Q is empty in the first FORWARDS message

sent out by the querying agent. An agent a ∈ St processes
a FORWARDS message the same as in Protocol 1. However, it
also adds a signed credential Cforwardsa to the vector

−→
Q before

sending it out. The content of Cforwardsa is the sequence
(F , q, t, p), where F is a constant. Each agent that receives a
FORWARDS message verifies that for any agent k that is in St
but not in S, the credential Cforwardsk with the correct q, t, and
p is present in the vector

−→
Q . This ensures that agents cannot

be arbitrarily dropped by non-disruptive malicious agents in
the forwards round.

Similar steps are taken in the backwards round. The seed
agent sends out an empty

−→
Q . In addition to the regular

processing of a BACKWARDS message, an agent a ∈ St adds a
signed credential Cbackwardsa to the vector

−→
Q before sending

it out. The content of Cbackwardsa is the sequence (B, q, t, p),
where B is a constant. Verification is done by each agent in the
same manner as in the forwards round, thus also preventing
any agents maliciously being dropped from S in the backwards
round.

B. Communication Complexity

The querying agent and each of the source agents need to
perform a DHT lookup to locate the target agent’s source man-
agers. Considering a DHT such as Chord [17], which requires
O(log N) messages for a lookup, the number of additional
messages required by protocol 2 is (n + 1) · O(log N), or
O(n log N). The communication complexity of protocol 2 is
thus: O(n) +O(n log N), or O(n log N).

Compared to the protocol by Pavlov et al. [15] that has
O(n2) complexity, our protocol performs better after n = 13
for N = 11, 558 (Advogato.org) and after n = 19 for N =
1, 000, 000. Moreover, the protocol described by Pavlov et al.
is secure only against semi-honest adversaries in contrast to
our protocol 2 that provides security under the stronger non-
disruptive malicious adversarial model.

VI. AN EXPERIMENT

A. Data Set

The data set that we use for our experiment is the real
and large web of trust of Advogato.org [14]. The members of
Advogato.org rate each other in terms of their trustworthiness.
The choice of feedback values are master, journeyer and
apprentice, with master being the highest level in that order.
The instance of the Advogato web of trust referenced in this
paper comprises of 11, 558 users and 51, 119 trust ratings.
To conform the Advogato web of trust to our framework, we
substitute its three feedback values as follows: master = 1.0,
journeyer = 0.66, and apprentice = 0.33.

B. Experiment: Probability that Privacy will be Preserved

The objective of the experiment is to observe the effective-
ness of the protocols in preserving the privacy of agents in a
real web of trust.

Algorithm: We query the reputation of every agent in
the environment (a total of 11, 557 agents). Over the course
of successful queries (where |St| ≥ 3), we consider every
instance of a source agent a that is not the last agent in
either the forwards or the backwards round. The following
information is logged for all such instances of source agents:
t, a, P (a(f,out) ∈ Za), and P (a(b,out) ∈ Za).

Results: Over the course of successful queries, the number
of instances of source agents is 45, 109. As discussed in
theorem 2, the probability that a type 1 attack will reveal the
private feedback value of an agent a is given as: P (a(f,out) ∈
Za)× P (a(b,out) ∈ Za)× P (d ∈ Za). The trustworthiness of
seed agents is universally considered as at least 0.99, which
implies that P (d ∈ Za) ≤ 0.01 for all instances of source
agents. The probability that the privacy of a source agent
will be preserved is the complement of the probability that
its private feedback value will be revealed. The probability
that privacy will be preserved is computed for all instances of
source agents. The frequency distribution of the probabilities
is given in table I.

TABLE I
PROBABILITY THAT PRIVACY WILL BE PRESERVED.

Probability Count Percentage (Total: 45, 109)
99.00% 14, 354 31.8%
99.33% 3, 068 6.8%
99.55% 774 1.7%
99.66% 7, 313 16.2%
99.77% 2, 102 4.7%
99.88% 5, 679 12.6%

100.00% 11, 819 26.2%

Discussion: The probability that the privacy of a source
agent will be preserved is always at least 99%. This is made
possible due to the participation of a seed agent in each query.
A high percentage (100%−31.8% = 68.2%) of source agents
are able to find trustworthy agents among fellow source agents
in the forwards and/or the backwards round. This results in

a probability that is higher than the default. A significant
percentage (26.2%) of instances of source agents receive a
100% guarantee that their privacy will be preserved.

This experiment does not cover instances of source agents
who are last in either the forwards or the backwards round.
However, please note that as discussed in section IV-B, the
probability that their privacy will be preserved is also at least
99%. A simple extension to the protocol is also suggested in
the same section which enables agents to abstain from con-
tributing their feedback when they do not receive a sufficient
privacy guarantee.

VII. RELATED WORK

The work by Pavlov et al. [15] also focuses on decentralized
additive reputation systems. However, their protocol that is
resilient against semi-honest adversaries requires O(n2) mes-
sages for n source agents. In our protocol, agents exchange
messages with a constant number of agents which leads to a
tighter bound of O(n). Moreover, our protocol allows agents
to quantify the probability that their privacy will be preserved
and abstain in the case that probability is not sufficient enough.
Additionally, we identify the type 2 attack and present a
solution for it. We also provide experimental evaluation of
our proposal.

A number of privacy preserving reputation systems are
based on the premise that a trusted hardware module is present
at every agent. The systems that fall under this category
include [12], [19], [3]. A system by Kinateder et al [13]
avoids the hardware modules, however it requires anonymous
routing infrastructure at the network level. These systems
clearly differ from our approach, which does not mandate
specialized platforms.

Several privacy preserving reputation systems have the con-
cept of e-cash as their basis. These systems include [10], [9],
[2]. However, these systems either rely on TTPs or centralized
constructs, such as the “bank” in [2]. In contrast, our reputation
protocols are decentralized.

VIII. CONCLUSION

We presented novel privacy preserving protocols for com-
puting reputation in decentralized environments under semi-
honest and non-disruptive malicious adversarial models. The
protocols draw their strength from elements that include data
perturbation, presence of seed agents, and most importantly the
ability of feedback providers to themselves select trustworthy
agents whom they want to share intermediate information with.
Being able to select trustworthy partners allows an agent to
maximize the probability that its privacy will be preserved.
Additionally, an agent is able to quantify this probability and
abstain from contributing its private feedback if the privacy
guarantee does not satisfy the desired threshold. Our protocol
that is resilient against non-disruptive malicious adversaries
has log-linear communication complexity. This makes the
protocol more efficient than comparable protocols discussed in
the literature. Moreover, our protocols are fully decentralized
and do not require any specialized hardware. An experiment

conducted on data from the real and large web of trust of
Advogato.org demonstrates that the protocols preserve the
privacy of agents with significant success.

REFERENCES

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of
the ACM SIGMOD Conf. on Management of Data, 2000.

[2] E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin. Reputation
systems for anonymous networks. In Proc. of the 8th Privacy Enhancing
Technologies Symp. (PETS 2008), 2008.

[3] Y. Bo, Z. Min, and L. Guohuan. A reputation system with privacy
and incentive. In Proc. of the 8th ACIS Intl. Conf. on Soft. Eng., AI,
Networking, and Parallel/Distributed Comp. (SNPD’07), 2007.

[4] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools
for privacy preserving distributed data mining. SIGKDD Explorations,
Jan. 2003.

[5] W. Du. A Study of Several Specific Secure Two-Party Computation
Problems. PhD thesis, Purdue Univ., West Lafayette, IN, USA, 2001.

[6] eBay. Upcoming changes to feedback.
http://pages.ebay.com/services/forum/new.html, 2008. Retrieved
June 30, 2008.

[7] O. Goldreich. Secure multi-party computation. Working Draft, Version
1.4, 2002.

[8] E. Gudes, N. Gal-Oz, and A. Grubshtein. Methods for computing trust
and reputation while preserving privacy. In Proc. of the IFIP Conf. on
Data and Applications Security, 2009.

[9] R. Ismail, C. Boyd, A. Josang, and S. Russell. Private reputation schemes
for p2p systems. In Proc. of the 2nd Intl. Workshop on Security in Info.
Systems, 2004.

[10] R. Ismail, C. Boyd, A. Josang, and S. Russell. Strong privacy in
reputation systems. In Proc. of the 4th Intl. Workshop on Info. Security
Apps. (WISA’03), 2004.

[11] S. D. Kamvar, M. T. Schlosser, and H. GarciaMolina. The eigentrust
algorithm for reputation management in p2p networks. In Proc. of the
12th Intl. Conf. on World Wide Web (WWW 2003), 2003.

[12] M. Kinateder and S. Pearson. A privacy-enhanced peer-to-peer reputa-
tion system. In Proc. of the 4th Intl. Conf. on E-Commerce and Web
Techs., 2003.

[13] M. Kinateder, R. Terdic, and K. Rothermel. Strong pseudonymous
comm. for p2p reputation systems. In Proc. of the 2005 ACM Symp. on
Applied Computing, 2005.

[14] R. Levien. Attack resistant trust metrics. Manuscript, University of
California - Berkeley. www.levien.com/thesis/compact.pdf, 2002.

[15] E. Pavlov, J. S. Rosenschein, and Z. Topol. Supporting privacy in
decentralized additive reputation systems. In Proc. of the 2nd Intl. Conf.
on Trust Management (iTrust 2004), 2004.

[16] P. Resnick and R. Zeckhauser. Trust among strangers in internet
transactions. The Economics of the Internet and E-Commerce. Vol. 11
of Advances in Applied Microeconomics, pages 127–157, 2002.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proc. of the 2001Conf. on Apps., Technologies, Architectures, and
Protocols for Computer Communications, 2001.

[18] J. Vaidya and C. Clifton. Privacy-preserving data mining: Why, how,
and when. IEEE Security and Privacy, 2(6):19–27, November 2004.

[19] M. Voss, A. Heinemann, and M. Muhlhauser. A privacy preserving
reputation system for mobile information dissemination networks. In
Proc. of the 1st Intl. Conf. on Security and Privacy for Emerging Areas
in Comm. Networks (SECURECOMM), 2005.

APPENDIX

Theorem 1. If all agents properly follow Protocol 1, then at
the completion of a query, rt =

∑
a∈St

lat + x.

Proof: In the forwards round, the tuple
(FORWARDS, q, t, p, r, S, St) arrives once at each agent
in St. When the querying agent initiates the query, r = 0,
and when the tuple arrives at the seed, each a ∈ St has added
the values of its lat and y(q,t,p) to it. Let’s say that the set
St = {a1, a2, . . . , an} and let’s refer to the y(q,t,p) value

of agent ai as yai

(q,t,p). Then the value of r when it reaches
the seed is r =

∑n
i=1 lait +

∑n
i=1 y

ai

(q,t,p). The seed sends
x1, x2, . . . , xn to a1, a2, . . . , an respectively.

∑n
i=1 xi = x.

The seed then initiates the backwards round.
In the backwards round, the tuple (BACKWARDS, q, t, p, r, S)

arrives once at each agent. Each of those n agents, ai ∈
St subtracts yai

(q,t,p) from r and adds xi to it. When
(RESULT, q, t, p, r, S) arrives at q, all agents ai ∈ St have
removed yai

(q,t,p) and added xi to r, thus r =
∑n
i=1 lait +∑n

i=1 y
ai

(q,t,p) −
∑n
i=1 y

ai

(q,t,p) +
∑n
i=1 xi, or rt = r =∑

a∈St
lat + x.

Theorem 2. If the agents who participate in Protocol 1 are
semi-honest, then at the completion of a query, the probability
that a type 1 attack will reveal the local feedback value of
an agent a ∈ St, who is not the last agent in the forwards
or the backwards round, is: P (a(f,out) ∈ Za) × P (a(b,out) ∈
Za)× P (d ∈ Za).

Proof: An agent a ∈ St, who is not the last agent in the
forwards round, exchanges information with five agents from
the start to the end of a query. Those agents are identified in
the protocol as a(f,in), a(f,out), a(b,in), a(b,out), and d. In a
type 1 attack, agents may act individually or they may collude.
Let’s first see what each of these agents learns individually.
a(f,in) does not receive anything from a thus it does not

learn anything. a(f,in) knows:
r(f,in) = c1 (1)

c1, c2, . . . are constants.
a(f,out) receives r(f,out) = r(f,in) + lat + y(q,t,p) from a.

Since r(f,in) + y(q,t,p) is added to lat, a(f,out) does not learn
lat (data perturbation). It does not learn y(q,t,p) due to the
same assumption. a(f,out) knows:

r(f,in) + lat + y(q,t,p) = c2 (2)

a(b,in) does not receive anything from a thus it does not
learn anything. a(b,in) knows:

r(b,in) = c3 (3)

a(b,out) receives r(b,out) = r(b,in) − y(q,t,p) + x(q,t,p) from
a. Since r(b,in) − lat + x(q,t,p) is still added to lat, a(b,out)

does not learn lat (data perturbation). a(b,out) knows:
r(b,in) − y(q,t,p) + x(q,t,p) = c4 (4)

d does not receive anything from a thus it does not learn
anything. d knows:

x(q,t,p) = c5 (5)

Now let’s see what the agents learn if they collude. The set
{a(f,in), a(f,out), a(b,in), a(b,out), d} allows 32 possible subsets
of colluding agents. The colluding agents are able to determine
lat only with the subset {a(f,in), a(f,out), a(b,in), a(b,out), d},
that is if it contains all five agents.

From equations 1 and 2 we have:
c1 + lat + y(q,t,p) = c2 =⇒ lat + y(q,t,p) = c6 (6)

From equations 3, 4, and 5 we have:
c3 − y(q,t,p) + c5 = c4 =⇒ y(q,t,p) = c7 (7)

Subtracting equation 7 from equation 6 we get: lat +
y(q,t,p) − y(q,t,p) = c6 − c7 =⇒ lat = c8.

As observed, lat can be revealed only if a(f,in), a(f,out),
a(b,in), a(b,out), and d are all in Za. The probability that these
five agents are in Za is: P (a(f,in) ∈ Za)×P (a(f,out) ∈ Za)×
P (a(b,in) ∈ Za)× P (a(b,out) ∈ Za)× P (d ∈ Za).

Since a has no control over who a(f,in) and a(b,in) are, we
assume that they are in Za and thus P (a(f,in) ∈ Za) = 1 and
P (a(b,in) ∈ Za) = 1.

Thus the probability that a type 1 attack will reveal the local
feedback value of an agent a ∈ St, who is not the last agent
in the forwards round, is: P (a(f,out) ∈ Za) × P (a(b,out) ∈
Za)× P (d ∈ Za).

Theorem 3. If the agents who participate in Protocol 1 are
semi-honest, then at the completion of a query, the probability
that a type 1 attack will reveal the local feedback value of an
agent a ∈ St is at most P (d ∈ Za).

Proof: In the forwards round, the privacy of an agent
a is preserved due to the addition of y to its local feedback
value lat. The value of y is a secret known only by a itself,
thus the probability that y or lat will be revealed is 0. In the
backwards round, a’s privacy is preserved by the addition of x
to lat. Other than a, the value of x is known only by the seed
agent d. The probability that x will be revealed is P (d ∈ Za).
Any attacker or collective of attackers must know x to learn
lat. Thus, the probability that lat would be revealed is at most
P (d ∈ Za).

Theorem 4. If the agents who participate in Protocol 1 are
semi-honest, then the probability that a type 2 attack will
reveal the local feedback value of an agent a ∈ St is at most
P (d ∈ Za).

Proof: Let’s say that a querying agent q mounts an attack
of type 2 on agent a. Immediately before agent a updates lat,
q queries for the reputation of agent t and receives rt which
is given as:

∑
k∈A−a lkt + lat + xd = c1, where d is the seed

agent in the query and xd is the random value that it adds.
c1, c2, . . . are constants.

Then immediately after agent a updates lat, q queries again
for the reputation of agent t and receives r′t which is given
as:

∑
k∈A−a lkt + l′at + xd′ = c2, where r′t and l′at are the

updated values of rt and lat respectively, d′ is the seed agent
in the query and xd′ is the random value that it adds.

We can conclude that: c1 − lat − xd = c2 − l′at − xd′ =⇒
lat − l′at = c3 − xd + xd′ .

This shows that to learn δl = lat − l′at, the seed agents d
and d′ would have to be in Za. The probability that both d
and d′ are in Za is: P (d ∈ Za)× P (d′ ∈ Za).

The probability for q to learn δl is at its highest if d and
d′ are the same agents. In that case the probability would be
P (d ∈ Za).

Thus the probability that a type 2 attack will reveal the local
feedback value of an agent a ∈ St is at most P (d ∈ Za).

