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Abstract

Reputation systems are a key technology for making users accountable for their
behavior in online communities. A reputation system computes the reputation
of a user based on the feedback provided by the community. If the user draws
negative feedback, it loses good reputation and may eventually be excluded from
the network.

It has been observed that users in a reputation system often hesitate in
providing negative feedback due to the fear of retaliation. A solution to this
issue is privacy preserving reputation systems, which compute reputation such
that the individual feedback of any user is not revealed. However, many existing
privacy preserving reputation systems rely on centralized constructs and are thus
not suitable for decentralized environments. The ones that are decentralized
are either limited to specialized platforms (such as anonymous networks and
trusted platforms), rely on trusted third parties, do not protect privacy under
strict adversarial models, or are expensive in terms of resource utilization (for
example, O(n3) messages, where n is the number of users providing feedback).

In this thesis, we present privacy preserving reputation protocols, that are
decentralized, do not require specialized platforms nor trusted third parties, pro-
tect privacy under a range of adversarial models (semi-honest, non-disruptive
malicious, disruptive malicious), and are more efficient than comparable proto-
cols (the most expensive protocol requires O(n) + O(log N) messages, where
N is the total number of users). The techniques that we utilize include trust
awareness, data perturbation, secret sharing, secure multi-party computation,
additive homomorphic cryptosystems, and zero-knowledge proofs.

Another key innovation in our protocols is that an entity is able to quantify
the probability of disclosure of its feedback. If the risk is unacceptable, the entity
can abstain from submitting feedback. The protocols are thus able to offer up to
perfect privacy, which has been previously assumed to be impossible in protocols
for decentralized environments that compute reputation in an additive manner.

We also address some issues related to trust recommendation and propa-
gation. In particular, we present a solution to the problem of subjectivity in
trust recommendation. Experimental results indicate the effectiveness of the
proposed strategies.
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Chapter 1

Introduction

1.1 Motivation

Online communities that exist on the Internet and on ad-hoc networks present
a variety of valuable opportunities for users. However, many such opportunities
require interaction with strangers of unknown trustworthiness and thus entail
significant risk. Some examples of the opportunities that a user may avail online
by transacting with strangers and the associated risks are as follows:

• On e-commerce websites (such as eBay, Amazon), buyers are able to pur-
chase a wide variety of items of interest, for example, electronic equipment,
rare antiques, and excellent bargains. However, there is also the risk that
the seller, represented by an anonymous pseudonym, turns out to be fraud-
ulent. According to a survey on fraud in e-commerce [33], fraud accounted
for a total loss of US$ 3.3 billion in the United States and Canada in 2009.

• In online social networks (such as Facebook, MySpace, Twitter), a mem-
ber may befriend a user who claims to be a certain person. However, it is
possible that the user is an imposter, hiding behind a digital personifica-
tion of the claimed person. A recent case involved a woman in Missouri,
USA who used a fake profile on MySpace to intimidate a teenage girl
into committing suicide [127]. Apart from this extreme scenario, there
have been cases where fake online persona have hijacked the identity of
professionals and have succeeded in connecting to their real network of
acquaintances [6]. This phenomenon may result in damages such as diffi-
culties in employment, lost business contacts, etc.

• In peer-to-peer file sharing networks (such as BitTorrent), a user may
download a useful file from a seeder. However, there is a risk that the
file uploaded by the seeder is not useful at all, but fake content planted
there for ulterior purposes, such as polluting the network or unsolicited
dissemination.
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• In a mobile ad-hoc network, a node may depend on a neighbor to relay
its messages, however, the neighbor may be selfish and may drop those
messages to conserve its resources.

Reputation is the general opinion of the community about the trustwor-
thiness of an individual or an entity. A person who needs to interact with a
stranger, often considers her reputation to determine the amount of trust that
he can place in her. In the physical world, reputation comes from word of
mouth, media coverage, physical infrastructure, etc. However, the reputation
of a stranger is often difficult to observe in online communities, primarily due
to their global scale, the cheap availability of anonymous identities, and the
relative ease of acquiring high quality digital presence.

In recent years, reputation systems have gained popularity as a solution for
securing distributed applications from misuse by dishonest entities. A reputa-
tion system computes the reputation scores of the entities in the system based
on the feedback (quantified trust) provided by fellow entities. A reputation sys-
tem makes an entity accountable for its behavior by creating the possibility of
losing good reputation and eventual exclusion by the community. Reputation
systems make certain that users are able to gauge the trustworthiness of an
entity based on the history of its behavior. The expectation that people will
consider one another’s pasts in future interactions constrains their behavior in
the present [112].

A popular reputation system is the eBay reputation system (ebay.com),
which is used to discourage fraudulent activities in online auctions. After pur-
chasing an item, a buyer can assign positive, neutral, or negative feedback to the
seller depending on his level of satisfaction. The sum of the feedback provided
by all buyers over a certain amount of time is considered as the reputation of
the seller. The score is an indication of how likely the seller is to provide the
service that he promises.

Reputation systems have also been proposed for: Rooting out fake profiles
on social networks (these systems include Unvarnished [133], Duedil [44]); De-
feating pollution in peer-to-peer file sharing networks (examples include Costa
and Almeida [32], Yu [142], EigenTrust [80]); Discouraging selfish behavior in
mobile ad-hoc networks (examples include Hu and Burmester [72], Buchegger
et al. [21, 20]).

The reputation score of a target entity is a function of the feedback values
provided by other entities. Thus an accurate reputation score is possible only
if the feedback is accurate. However, it has been observed that the users of
a reputation system may avoid providing honest feedback [111]. The reasons
for such behavior include fear of retaliation from the target entity or mutual
understanding that a feedback value would be reciprocated.

eBay originally allowed buyers and sellers to assign each other positive, neu-
tral or negative feedback. A study [111] of eBay’s reputation system revealed
that there is a high correlation between buyer and seller feedback and over 99%
of the feedback is positive. As discussed in [105], this could either imply that
mutually satisfying transactions are in fact the norm or that the users are not
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providing honest feedback due to the above cited reasons. The actual cause
was obvious as the latter when eBay revised its reputation system [45] citing
that “. . . the [earlier] feedback system made some buyers reluctant to hold sellers
accountable. For example, buyers fear retaliatory feedback from sellers if they
leave a negative.” Now sellers are not permitted to assign negative or neutral
feedback to the buyers.

A more general solution to the problem of fear of retaliation for providing
honest feedback is computing reputation scores in a privacy preserving man-
ner. A privacy preserving reputation system operates such that the individual
feedback of any entity is not revealed to other entities in the system. The im-
plication of private feedback is that there are no consequences for the feedback
provider and thus he is uninhibited to provide honest feedback.

Decentralized environments include peer-to-peer networks, ad-hoc networks,
decentralized social networks etc. These environments are characterized by the
absence of a trusted central authority. Several works have argued for the impor-
tance of decentralized reputation systems and proposed such systems (including,
Quercia [110], Donato et al. [41], McNamara et al. [97]) .

A privacy preserving reputation system for centralized environments is fairly
straightforward. Users submit their feedback to the trusted central authority
who then computes and disseminates the reputation score while keeping the
individual feedback private. However, preserving privacy in reputation systems
for decentralized environments is challenging since there is no trusted central
entity to rely on. Existing privacy preserving reputation systems either rely on
centralized constructs (Androulaki et al. [9], Steinbrecher [126]), are limited
to specialized hardware or networks (Nin et al. [101], Kinateder and Pearson
[81]), do not protect privacy under stricter adversarial models (secure-sum [31],
Gudes et al. [61]), or are expensive in terms of resource utilization (Pavlov et
al. [105]).

In this thesis, our primary objective is to construct privacy preserving rep-
utation protocols that are decentralized, do not require specialized platforms,
protect privacy under standard adversarial models, and are efficient in terms of
the number of messages exchanged and the bandwidth utilized.

More specifically, the challenge is to design a protocol that allows a querying
agent to learn the correct reputation of a target agent. The reputation is an
aggregate (for example, sum, mean) of the feedback values held privately by
n source agents. Some of the requirements that the protocol must fulfill: 1)
centralized entities, Trusted Third Parties (TTPs), and specialized platforms
are not permitted; 2) all feedback values must remain private, that is, no agent is
able to learn the feedback value of any other agent; 3) a source agent is unable to
contribute feedback that lies outside the valid interval (even though the feedback
is private); and 4) an agent who selectively drops messages or pre-maturely
aborts the protocol is easily identified. We consider the following adversarial
models: the semi-honest model, the non-disruptive malicious model, and the
disruptive malicious model (the models are introduced in the next section and
described more precisely in Section 3.4.1).
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1.2 Contributions

In addition to an in depth survey of privacy preserving reputation systems
(Section 2.3) and a framework that unifies the concepts of trust, reputation, and
privacy in reputation systems (Chapter 3), this thesis makes the contributions
discussed in the following subsections.

1.2.1 Protocols for the Semi-Honest Adversarial Model

The semi-honest adversarial model requires that all agents follow the protocol
according to specification. However, the adversary passively attempts to learn
the inputs of honest agents by using intermediate information received during
the protocol and any other information that it can gain through other legitimate
means.

A key innovation in our protocols is that agents take advantage of the trust
in their fellow agents for their privacy. This trust awareness in the context of
preserving privacy leads to protocols where privacy guarantees can be quan-
tified before submitting the feedback. Moreover, this approach also results in
protocols that are efficient.

Our first protocol (Round-Trip) builds upon the secure multi-party computa-
tion techniques of the secure-sum protocol [31]. Additional techniques utilized
by the round-trip protocol include trust awareness, data perturbation, and a
“round-trip” of messages instead of forwarding messages in a single direction.
Round-trip provides security under the full semi-honest model, whereas secure-
sum provides security only under a restricted model where agents are not allowed
to collude.

An agent in the round-trip protocol is able to quantify the risk to its privacy
as subjective probability from the amount of trust that it holds in the partici-
pants. Based on this information, it can either decide to contribute its private
feedback or otherwise abstain. Through experiments on the large and real trust
graph of Advogato.org, we demonstrate that even if only 40% of the source
agents decide to participate, the protocol computes highly accurate reputation
scores (as the mean of all feedback). Moreover, round-trip does not compromise
on efficiency as it requires an exchange of O(n) number of messages, where n
is the number of agents in the protocol. This is the same complexity offered by
the secure-sum protocol.

Pavlov et al. [105] argue that it is impossible to guarantee perfect privacy
for an honest feedback provider in a protocol that computes reputation in an
additive manner. However, the argument assumes that the set of n feedback
providers is chosen deterministically by the adversary, with n − 1 dishonest
agents, and that all feedback providers are obligated to submit feedback. We
challenge this argument by allowing an honest agent to quantify its privacy
guarantee beforehand and to abstain if the guarantee is not satisfactory.

Our second protocol (k-Shares) combines trust awareness with secret shar-
ing. Shares of a private feedback value are generated such that it can be re-
vealed only if all shares are known. Each feedback provider creates k+ 1 shares
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of its feedback value and distributes k shares among trustworthy agents, where
k � n−1 and n is the number of feedback providers in the protocol. We hypoth-
esize that it is possible for an agent to obtain a high enough privacy guarantee by
distributing shares of its private feedback to only a maximum of k participants
instead of all n− 1 participants (as in comparable protocols, such as [105]). A
clear advantage is linear communication complexity instead of quadratic. Our
experimental results show that in the Advogato.org trust graph, the k-shares
protocol will preserve the privacy of over 85% of instances of feedback providers
with k set as low as 2. Raising k towards n−1 offers minimal improvement with
the percentage rising to only approximately 87% at k = n− 1 (which would be
the case in the comparable protocol in [105] with a much higher communication
complexity of over O(n2)).

We develop an algorithm that takes any trust graph as input and deter-
mines the optimal value of k for running the k-Shares protocol in that graph.
The optimal value of k for a trust graph is the value where increasing it gives
no significant advantage in preserving the privacy of the potential source agents
in the graph. A global view of the trust graph may not be available due to pri-
vacy concerns and decentralization, therefore we also develop an algorithm that
operates on the subgraph known to a single feedback provider. The algorithm
obtains the optimal value of k from that feedback provider’s perspective.

1.2.2 Protocols for the Malicious Adversarial Models

Agents under a malicious model may deviate from the protocol as and when
they deem necessary. To achieve their objectives, they may participate in extra-
protocol activities, devise sophisticated strategies, and exhibit arbitrary behav-
ior. A non-disruptive malicious adversary executes the malicious actions only if
they lead to the disclosure of the inputs of honest agents. Whereas, a disruptive
malicious adversary may act maliciously simply to disrupt the protocol.

We propose extensions that allow our protocols for the semi-honest model
to provide security under the non-disruptive malicious adversarial model. One
such extension is a Distributed Hash Table (DHT) to assign “source managers”
to each agent. Source managers are fellow agents in the system that indepen-
dently manage the list of feedback providers for an agent. The result is that an
adversary is unable to prune the list of feedback providers to its advantage.

The protocol that we design for the disruptive malicious model is a version of
our k-shares protocol, enhanced with the following cryptographic constructs: 1)
an additive homomorphic cryptosystem (for example, the Paillier cryptosystem),
and 2) zero knowledge proofs.

Additive homomorphic cryptosystems have the property that given only the
ciphertexts of two numbers, the ciphertext of the sum of those two numbers can
be computed. For example, given the encryptions E(3) and E(4), it is possible
to determine E(7) without ever knowing the numbers 3 and 4. Zero-knowledge
proofs allow a prover to convince a verifier that a statement is correct, without
revealing any additional information. For example, a prover may prove that
a secret number (for example, 7) lies in a given interval (for example, [0, 10])
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without revealing the number.
A majority of the protocols (such as Androulaki et al. [9], Steinbrecher

[126], Kinateder and Pearson [81]) for the disruptive malicious model rely on
centralized constructs or specialized platforms. Our protocol for the disruptive
malicious model is decentralized and general purpose yet efficient. The number
of messages exchanged is O(n) + O(log N), where n and N are the number of
feedback providers in the protocol and the total number of agents in the system
respectively. This is a significant improvement over the comparable protocol in
[105], which requires O(n3) messages.

1.2.3 Trust Recommendation and Propagation

We also address some issues in trust recommendation and propagation. These
techniques are related to reputation as they also aid users in establishing trust
in unknown entities.

We argue that when a trust value is recommended by one user to another,
it may lose its real meaning due to subjectivity. Let’s say that Alice tells Bob
that she has 0.7 (in [0, 1]) trust in Carol. A value of 0.7 might mean average
trustworthiness for Alice, whereas Bob could have a different interpretation
of the same value (for example, high trustworthiness). We present a solution
based on the notion of percentiles for the elimination of subjectivity from trust
recommendation. Experiments on simulated trust graphs with high subjectivity
show promising results.

Trust propagation, that is acquiring trust in a distant entity based on the
existence of a connecting trust path, is a fundamental technique in trust man-
agement. Through analysis of the trust graph of Advogato.org, we demonstrate
that a substantial positive linear correlation exists between the amount of trust
acquired through direct interaction, and trust acquired through the technique
of trust propagation. This result provides validation for the trust propagation
technique.

1.3 Thesis Outline

A brief outline of the remainder of the thesis is as follows:

Chapter 2 – Trust, Reputation, and Privacy. Background and a survey
of the literature in the areas of trust, reputation, and privacy preserving
reputation systems.

Chapter 3 – General Framework. Establishes a formal framework for the
thesis. The framework formalizes the concepts of trust, reputation, and
privacy in an integrated manner.

Chapter 4 – Protocols for the Semi-Honest Adversarial Model. We
present several protocols for computing reputation in a privacy preserving

6



manner under the semi-honest adversarial model. The protocols are an-
alyzed for correctness, privacy, and efficiency. Each protocol is evaluated
using a real dataset. We compare the protocols with prior literature.

Chapter 5 – Protocols for the Malicious Adversarial Models. Our rep-
utation protocols that provide privacy under the non-disruptive as well as
disruptive malicious models are presented in this chapter. The protocol
for the disruptive malicious model utilizes cryptographic tools such as an
additive homomorphic cryptosystem and various zero-knowledge proofs.
We analyze the protocols and give comparisons with existing solutions.

Chapter 6 – Trust Recommendation and Propagation. In this chapter
we tackle issues in trust recommendation and propagation. We develop
and evaluate a solution to the problem of subjectivity in trust recom-
mendation. We also analyze whether iterative multiplication is a suitable
strategy for trust propagation. The issue of privacy as it relates to trust
recommendation and propagation is also discussed.

Chapter 7 – Conclusion. Conclusions and future directions are presented in
this final chapter.
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Chapter 2

Trust, Reputation, and
Privacy

In this chapter, we provide background on the principal themes of this thesis,
which are trust, reputation, and privacy in reputation systems.

We begin with a look at the significance of trust in information security. In
our discussion on trust, we review some of the available methods for establishing
trust. These methods include direct interaction, trust recommendation and
propagation, trust negotiation, and reputation.

Reputation is the opinion of the community about the trustworthiness of an
entity. Reputation systems compute reputation scores from the feedback pro-
vided by the community and aid entities in establishing trust in each other. We
discuss the characteristics that define a reputation system, the various feedback
aggregation models, as well as the challenges in designing a reputation system.
One of the key challenges in reputation systems is the lack of privacy. This
issue often prevents users from providing honest feedback due to the fear of
retaliation.

In this thesis, we focus on solutions to the issue of lack of privacy in reputa-
tion systems. We present an in-depth overview of the various existing reputation
systems that aim to preserve privacy. We conclude with a comparison of these
existing systems and a justification for why we need novel solutions.

2.1 Trust

In recent years, trust has garnered considerable interest in the computer science
community as a building block for solutions to various information security
issues, such as authentication, access control, and service provisioning.

Systems such as X.509 [2] and PGP [53] utilize trust to authenticate the iden-
tity of entities even if they are previously unknown. They employ constructs
such as trusted Certificate Authority (CA), web of trust and trust paths to ac-
complish this task. The underlying concept is that the claimed identity of an
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entity is considered genuine if a trustworthy third-party certifies that identity.
Traditional access control mechanisms such as Identity Based Access Con-

trol (IBAC) and Role Based Access Control (RBAC) are not always suitable
for environments where nodes are mostly anonymous (such as peer-to-peer file
sharing networks, ad-hoc networks) and thus cannot be granted access accord-
ing to identities and roles. Trust based access control mechanisms (such as
[132, 143, 67]) provide alternative solutions that exploit the level of trust of the
provider in other entities to govern access.

In networked communities, such as those on the Internet and ad-hoc net-
works, users frequently have the opportunity to obtain beneficial services from
complete strangers. For example: on an e-commerce website, a buyer could
purchase an item from an unknown seller; in a peer-to-peer file sharing net-
work, a peer could download a file from a seeder; in an ad-hoc network, a node
could use the services of another node to relay a message. However, in all of
these cases, there is considerable risk that the service provider would behave
maliciously. Techniques for establishing trust (such as those discussed in Sec-
tion 2.1.3) help consumers determine whether a potential service provider would
deliver the promised services.

In the following sections, we take a look at the various definitions of trust
(Section 2.1.1), characteristics of trust (Section 2.1.2), and several techniques
for establishing trust (Section 2.1.3).

2.1.1 Defining Trust

There has been extensive research on the concept of trust in many different
domains, such as sociology, philosophy, social psychology, economics, and com-
puter science. Therefore, a number of definitions of trust have been proposed in
the literature with different perspectives. According to Marsh [90, page 20], a
common element that links all studies on trust is the assumption of the presence
of a society. In this section we present some of the influential definitions of trust
that appear in the literature.

One of the earlier notable definitions of trust is formulated by social psy-
chologist Morton Deutsch [36]. The definition states that when:

1. “the individual is confronted with an ambiguous path, a path
that can lead to an event perceived to be beneficial (V a+) or
to an event perceived to be harmful (V a−);

2. he perceives that the occurrence of V a+ or V a− is contingent
on the behavior of another person; and

3. he perceives the strength of V a− to be greater than the strength
of V a+.

If he chooses to take an ambiguous path with such properties, I shall
say he makes a trusting choice; if he chooses not to take the path,
he makes a distrustful choice.”
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We interpret Deutsch as follows: Trust and distrust are discrete, distinct
choices that arise when an individual must rely on another person to gain a
benefit. However, there is also a possibility that relying on that person may
actually lead to harm instead of benefit. The individual trusts that person if he
chooses to rely on him, and distrusts him if he chooses otherwise.

In [52], sociologist Diego Gambetta proposes the following definition of
trust:

Trust (or, symmetrically, distrust) is a particular level of the sub-
jective probability with which an agent assesses that another agent
or group of agents will perform a particular action, both before he
can monitor such action (or independently of his capacity ever to
be able to monitor it) and in a context in which it affects his own
action.

This is one of the seminal definitions that describe trust as a quantifiable
construct. Gambetta observes that trust is an agent’s degree of belief (the level
of subjective probability) that another entity will perform an expected action.
An additional important aspect of this definition is the recognition that trust is
contextual.

McKnight et al. [95], a prominent work in the field of trust in infor-
mation systems, regards trust as a multidimensional concept composed of two
constructs: trusting intention, and trusting beliefs. Trusting intention means
that one is willing to depend on the other person in a given situation, and trust-
ing beliefs imply that one believes the other person to be competent, benevolent,
and having integrity. Competence is the ability of the trustee to do what the
truster needs, benevolence is the trustee’s caring and motivation to act in the
truster’s interests, and integrity is the trustee’s honesty and promise keeping.

Grandison and Sloman [59] discuss trust from a computer science per-
spective. They consider trust to be a composition of many different attributes
such as reliability, dependability, honesty, truthfulness, security, competence,
and timeliness. Their definition of trust is as follows:

The firm belief in the competence of an entity to act dependably,
securely and reliably within a specified context (assuming depend-
ability covers reliability and timeliness).

Jøsang et al.’s survey on trust and reputation systems [77] differentiates
between two types of trust: reliability trust, and decision trust. Reliability
trust, which is inspired by Gambetta’s definition, is stated as:

Trust (reliability trust) is the subjective probability by which an
individual, A, expects that another individual, B, performs a given
action on which its welfare depends.

This definition stresses on the dependence on a trustee, and the reliability
(probability) of the trustee. However, Jøsang et al. concur with Falcone and
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Castelfranchi [47], and McKnight and Chervany [94] in recognizing that having
high reliability trust in a person is not necessarily enough to decide to enter into
a situation of dependence on that person. For example, if the stakes are too
high, then even a small probability of failure may lead an individual to decide to
not depend on a potential trustee. Thus, trust could be viewed as the decision
to depend or not depend on another entity. Jøsang et al. summarize decision
trust as:

Trust (decision trust) is the extent to which one party is willing to
depend on something or somebody in a given situation with a feeling
of relative security, even though negative consequences are possible.

In this thesis, we subscribe primarily to the definition of trust by sociologist
Diego Gambetta [52]. The reason for this choice is the ability to quantify trust
as probability, which consequently makes it possible to quantify the security
guarantees of the protocols that we build.

2.1.2 Characteristics of Trust

From Gambetta’s definition, we infer that trust has the following characteristics:

Binary-Relational and Directional. According to the definition, “Trust . . .
is a particular level of the subjective probability with which an agent as-
sesses that another agent or group of agents will perform a particular
action . . .”. From this excerpt, it is evident that trust is a relationship
between two entities. Moreover, it is also clear that trust is directional.
The first entity is an agent who has trust in a second entity which may be
another agent or a group of agents.

Contextual. As given in the definition, “Trust . . . is a particular level of the
subjective probability with which an agent assesses that another agent or
group of agents will perform a particular action . . . ”. We infer that
trust is in the context of “a particular action” that the second entity may
perform.

Quantifiable as Subjective Probability. “Trust . . . is a particular level
of the subjective probability with which an agent assesses that another
agent or group of agents will perform a particular action, both before he
can monitor such action (or independently of his capacity ever
to be able to monitor it) . . .”. From this excerpt of the definition, we
deduce that trust is quantifiable as subjective probability.

Subjective probability is the degree of the personal belief of an individual
that an event will occur. The alternate approach to defining probability
is in terms of the frequency of occurrence of observable physical events.
However, subjective probability does not require observation of any past
events. An individual may form his personal belief regarding the likelihood
of the occurrence of an event based on past experiences or lack thereof.
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Another important characteristic of subjective probability is that different
individuals may hold different personal beliefs regarding the occurrence of
the same event thus leading to different individual subjective probabilities.
An example of subjective probability is the degree of the personal belief of
an online shopper that an online vendor will deliver the promised product
even though there have been no previous transactions between the two. We
refer the reader to [121] for a seminal discussion on subjective probability.

We discuss below some other characteristics of trust which are not evident
from Gambetta’s definition. We provide examples to support their validity as
characteristics of trust. These characteristics have been previously identified by
several authors (such as [26]).

Non-Reflexive. An agent may or may not trust herself. For example, a patient
Alice may trust her doctor to prescribe her the correct medicine, whereas
she might not trust herself to do so.

Asymmetric. If an agent Alice trusts an agent Bob, then Bob may or may
not trust Alice. For example, in the context of car repair, a car owner
Alice may trust her mechanic Bob, however Bob may not necessarily trust
Alice.

Non-Transitive. If an agent Alice trusts an agent Bob who in turn trusts an
agent Carol, then Alice may or may not trust Carol. For example, an
email server A might trust an email server B to not send spam. If B
trusts an email server C in the same context, then A may or may not
trust C depending on various factors such as its strength of trust in B,
the availability of additional evidence, etc.

Dynamic. Trust may change with time. For example, let’s say that an online
shopper Alice has so far had good experiences with an online vendor Bob
and therefore she has high trust in him. However, if her latest transaction
with Bob is less than satisfactory, then her trust in Bob is likely to decrease
instead of staying constant.

2.1.3 Establishing Trust

There are a number of techniques that enable establishing trust in unknown
entities:

Direct Interaction

The primitive method of establishing trust in an unknown entity is to directly
interact with it and observe its behavior in the desired context. However, this
method requires that the entity be trusted at least once without any prior
background on that entity. This approach is perhaps suitable for low-risk trans-
actions and in situations when no other recourse is available. However, when
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reliance on an unknown entity may lead to substantial damage, the other ap-
proaches for trust establishment are clearly preferable, since they allow the
truster to base his trust on some prior knowledge provided by others.

McKnight et al. [96] introduce the notion of initial trust, which is described
as the trust in an unfamiliar trustee — a relationship in which the actors do not
yet have credible information about, or affective bonds with each other [17].

Trust Recommendation and Propagation

Establishing trust in an unknown entity through trust recommendation and
propagation takes advantage of the possible transitivity of trust. Let’s say
that Alice wishes to establish trust in an unknown individual, Carol. If another
individual Bob trusts Carol then he could give a recommendation to Alice about
Carol’s trustworthiness. Taking Bob’s trust recommendation and her own trust
in Bob into account, Alice may establish a trust relationship with Carol. Thus
a transitive path of trust that leads from Alice to Bob to Carol, enables Alice to
develop trust in Carol. If Alice wishes to establish trust in Carol through Bob’s
recommendation, we say that Bob’s trust in Carol has propagated to Alice.

Guha et al. [62] term the above described one-step propagation as atomic
propagation. The term stems from the observation that the conclusion is reached
based on a single argument, rather than a possibly lengthy chain of arguments.
Guha et al. identify four types of atomic propagations: direct propagation, co-
citation, transpose trust, and trust coupling. We briefly elaborate each of these
types of atomic trust propagation:

Direct Propagation. The example given in the first paragraph represents di-
rect propagation. If i trusts j, and j trusts k, then a direct propagation
allows us to infer that i trusts k. Guha et al. refer to this particular atomic
propagation as direct propagation since the trust propagates directly along
an edge.

Co-Citation. Let’s consider that i1 trusts j1 and j2, and i2 trusts j2. Under
co-citation, it is concluded that i2 also trusts j1.

Transpose Trust. In transpose trust, i’s trust in j causes j to develop some
level of trust towards i. Let’s say that i trusts j, then transpose trust
implies that j should also trust i.

Trust Coupling. Let’s suppose that i and j both trust k, then trust coupling
leads us to infer that i and j should trust each other since they both trust
k.

Iterative propagation builds upon multiple atomic propagations to help es-
tablish trust in an unknown entity. Let’s extend the example presented in the
first paragraph: Alice trusts Bob and Bob trusts Carol. We further assume
that Carol trusts Dave. Alice may establish trust in Dave as a result of the
following two atomic propagations: 1) the first atomic propagation builds Bob’s
direct trust in Dave, and 2) now since Bob trusts Dave, Alice can establish
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trust in Dave through a second atomic propagation. This sequence of atomic
propagations is referred to as iterative propagation.

Trust Negotiation

Trust negotiation is an approach that can enable strangers to electronically
share sensitive data and services. Trust negotiation establishes trust between
entities based not on their identities but their properties. For example, in the
case of an individual, the properties that may be considered include their place
of employment, age, membership in certain organizations etc. With trust nego-
tiation, the trust between two entities is acquired through iterative requests for
credentials and their disclosure.

An example from [16]: CARS is an online car rental agency, which has an
agreement with a company called CORRIER to provide rental vehicles free of
charge to their employees, provided that they prove their employment status
(which also implies that they are authorized to drive). Other customers (who
are not employees of CORRIER) can rent a vehicle by showing a valid driving
license and by providing a credit card for payment. Thus, CARS establishes
trust in customers to be legitimate drivers through the exchange of multiple
possible credentials.

Customer: Request a vehicle
CARS: Show digital employment ID from CORRIER
Customer: Not available
CARS: Show digital driving license
Customer: Digital driving license
CARS: Provide digital credit card
Customer: Digital credit card
CARS: Vehicle granted (vehicle info, pickup info, etc.)

Two fundamental building blocks for trust negotiation are digital credentials
and disclosure policies. A disclosure policy states the conditions that must be
satisfied by a requesting party to gain access to a resource. The conditions
are constraints against the properties of the credentials to be provided by the
interacting parties.

Digital credentials contain sensitive information, therefore it is desired that
the least amount of information be disclosed in the process of a trust negotiation.
The disclosure of credentials is governed by the trust negotiation strategy of a
party. A simple trust negotiation strategy is the eager strategy, in which parties
send each other all unlocked credentials until the negotiation succeeds or until
no new unlocked credentials are available and thus the negotiation halts.

Trust-X (Bertino et al. [16]) and TrustBuilder (Winslett et al. [139]) are
two well-known trust negotiation systems. A novel aspect of the Trust-X pol-
icy language X-TNL is the support for special certificates, called trust tickets.
Trust tickets are issued on successfully completing a negotiation and can speed
up subsequent negotiations between the two parties. TrustBuilder defines a
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strategy independent protocol, which allows two parties to negotiate trust even
if they are using different trust negotiation strategies.

Privacy is a significant concern in trust negotiation. One of the issues is that
once a credential has been disclosed to a party, there is no guarantee that it
would not leak that credential to a third party.

Reputation

Reputation is the general opinion of the community about the trustworthiness of
an individual or an entity. A person who needs to interact with a stranger, may
analyze her reputation to determine the amount of trust that he can place in
her. In the physical world, reputation often comes from word of mouth, media
coverage, physical infrastructure, etc. However, the reputation of a stranger is
often difficult to observe in online communities, primarily due to their global
scale, the cheap availability of anonymous identities, and the relative ease of
acquiring high quality digital presence.

A reputation system computes the reputation of an entity based on the feed-
back (quantified trust) provided by fellow entities. Reputation systems make
certain that users are able to gauge the trustworthiness of an entity based on
the history of its behavior. The expectation that people will consider one an-
other’s pasts in future interactions constrains their behavior in the present [112].
Political scientist Robert Axelrod calls this the “shadow of the future” [112, 12].

Using reputation systems for establishing trust is a principal focus of this
thesis. Section 2.2 is dedicated to a detailed overview of reputation.

2.2 Reputation

Hoffman et al. [69] provide the following pertinent description of reputation:

In general, reputation is the opinion of the public toward a person,
a group of people, or an organization. In the context of collabora-
tive applications such as peer-to-peer systems, reputation represents
the opinions nodes in the system have about their peers. Reputa-
tion allows parties to build trust, or the degree to which one party
has confidence in another within the context of a given purpose or
decision. By harnessing the community knowledge in the form of
feedback, reputation-based trust systems help participants decide
who to trust, encourage trustworthy behavior, and deter dishonest
participation by providing a means through which reputation and
ultimately trust can be quantified and disseminated.

In recent years, reputation systems have become one of the most ubiquitous
means of acquiring trust in strangers online (consider the reputation systems in
use by eBay.com, Amazon.com, Advogato.org., etc.).

In the following sections, we describe the characteristics that define a repu-
tation system (Section 2.2.1), feedback aggregation models (Section 2.2.2), and
the challenges in reputation system design (Section 2.2.3).
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2.2.1 Characteristics of Reputation Systems

Network Architecture

The network architecture of a reputation system is one of the key factors in
determining how the following activities are conducted:

• Feedback collection

• Feedback aggregation (reputation computation)

• Reputation dissemination

The two common network architectures are: centralized and decentralized.

Centralized Reputation Systems. Centralized reputation systems are char-
acterized by the existence of a trusted central authority. The central
authority receives feedback from users, aggregates it to compute the rep-
utation, and disseminates the reputation scores.

One of the benefits of a centralized solution is that it is straightforward
to implement. Moreover, a centralized reputation system is often less vul-
nerable to certain attacks, such as the sybil attack (Section 2.2.3), since
the central authority can monitor and correlate all activities in the repu-
tation system. Additionally, the central authority is universally trusted,
therefore users can be assured that the feedback collection, aggregation,
and dissemination are being done correctly.

Unfortunately, the requirement of universal trustworthiness of the central
authority is also a liability. If the central authority fails or becomes com-
promised, then the whole reputation system crashes. Thus the central
authority is a single point of failure and a high-value target for attack-
ers. As with any other centralized system, another major disadvantage of
centralized reputation systems is that they are very expensive to deploy
and maintain, particularly for large numbers of users. Centralized reputa-
tion systems are also unable to cater for decentralized environments such
as peer-to-peer networks, ad-hoc networks, decentralized social networks,
etc.

Examples of centralized reputation systems include ebay.com, epinions.com,
amazon.com, advogato.org, and PageRank [103].

Decentralized Reputation Systems. Decentralized environments are char-
acterized by the absence of a central authority. Advantages of such net-
works include: lack of a single point of failure, no need to deploy and main-
tain an expensive central authority, a more democratic environment, scal-
ability, etc. Examples of decentralized environments include peer-to-peer
networks, ad-hoc networks (such as Mobile Ad-Hoc Networks - MANETs,
and Vehicular Ad-Hoc Networks - VANETs), decentralized social networks
(such as FOAF), etc.
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Decentralized reputation systems are suitable for decentralized environ-
ments as they do not assume the presence of a central entity. In decen-
tralized reputation systems, a central location for submitting and aggre-
gating feedback, and disseminating reputation does not exist. Feedback
is commonly stored locally by the node who generates it, for example in
response to his experiences with another party. Computing reputation of
an entity in the system requires finding all or a portion of the nodes who
carry feedback about that entity. Once the feedback providers have been
located, the aggregation may be done at a single location after receiving all
feedback, or a more sophisticated protocol may be employed to aggregate
the feedback in a distributed manner.

Examples of decentralized reputation systems include Damiani et al. [35],
Gupta et al. [63], EigenTrust [80], and PowerTrust [144].

Other Characteristics

Other characteristics that define a reputation system include: reputation vis-
ibility, reputation durability, feedback durability, and the feedback aggregation
model.

The visibility of a reputation score may be global or local. Global visibility
implies that all nodes in the system view the same reputation score of a certain
entity. Whereas with local visibility, the reputation score available to a subset
of the nodes may be different than elsewhere in the system. Local visibility is
generally a concern in decentralized reputation systems, where a different subset
of feedback providers may be included for computing the reputation of an entity
at different instances.

Reputation durability refers to the transience of a reputation score. Once
a reputation score is computed, it may be stored permanently for subsequent
access by nodes through a simple retrieval operation. Recalculation of the score
is mandated only when new feedback becomes available. Alternatively, the
reputation score may be transient and re-computed every time a node wishes
to learn the score. The latter approach requires repeated computation of the
reputation, however, it does not require storage of the scores by a trustworthy
entity.

Feedback durability refers to the lifetime of a feedback value. A feedback
value may remain valid for an indefinite period of time or it may be considered
obsolete with the passage of time. An obsolete feedback value may be entirely
excluded from the reputation computation or its significance may be discounted.

A feedback aggregation model is required to compute reputation. These
models include: summation and mean, flow network, Markov chain, and Bayesian.
Section 2.2.2 is dedicated to the discussion of these models.

2.2.2 Feedback Aggregation Models

There are a number of models for aggregating feedback to obtain reputation
scores. We recapitulate some of the common models below. An excellent survey
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on these methods (also called reputation computation engines) is provided by
Jøsang et al. [77].

Sum and Mean Model

One of the most common methods of aggregating feedback to obtain the rep-
utation score is the simple summation of the feedback. The eBay reputation
system (ebay.com) allows users to give positive (+1), neutral (0), or negative
(−1) feedback. The reputation is computed as the sum of the feedback provided
over a certain period of time. The higher the sum of the feedback, the better is
the reputation of the user. The advantage of this approach is that it is intuitive
and easy to understand.

Another related method is to compute the reputation score of an entity
as the mean of the feedback values. Reputation represented as mean has the
benefit of being normalized and thus the reputation of different entities may be
compared objectively.

Many practical reputation systems use summation or mean as the preferred
methods for computing reputation. Examples include ebay.com, epinions.com,
and amazon.com.

Flow Network Model

A flow network is a weighted directed graph in which each edge is characterized
by the capacity of flow that it can carry. A node in the network may receive
and send flow through incoming and outgoing edges respectively. However, the
amount of flow into a node must be equal to the amount of flow out of the node.
This constraint does not apply to two special nodes called the source and the
sink. The source can only have outgoing edges and its flow output is unlimited.
Conversely, the sink node may only have incoming edges and may receive an
unlimited amount of flow.

The Advogato (advogato.org) [87] and the Appleseed [145] reputation sys-
tems are constructed on the concept of flow networks. The feedback is consid-
ered as the flow in the network of nodes. The reputation of a node is computed
as a function of the flow (the feedback) that the node receives. A salient char-
acteristic of such reputation systems is that a node may only assign the amount
of feedback that it has received. If the amount of flow available in the net-
work is regulated by a few trustworthy nodes adjacent to the source, it becomes
significantly challenging for malicious nodes to mount certain types of attacks.
For example, it does not help an attacker to create multiple pseudonyms in the
system to mount a sybil attack (discussed in Section 2.2.3), since the sum of
the flow available to the pseudonyms remains constant.

Markov Chain Model

A Markov chain may be viewed as a weighted directed graph in which nodes
represent states and the edges represent transitions between those states. The
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weight of an edge expresses the probability of the corresponding transition. Each
transition in a Markov chain is independent of any past states and transitions.

Several successful reputation systems [80, 103] have the Markov chain theory
as their foundation. We describe the basic principle as follows: Let’s say that
feedback is the probability of transition from one node to another, then the
reputation of a node may be considered as the probability of arriving at that
node by following random transitions.

Google’s PageRank algorithm [103] may be considered as a reputation system
for web pages. The World Wide Web is defined as a Markov chain in which the
transition probability from each page pi to its ki linked (outbound) pages is
α
ki

+ 1−α
N , and 1−α

N for all other pages on the web that page pi does not have
links to. α is a constant with a heuristic value of 0.85, and N is the total number
of known web pages. The PageRank (or reputation) of a web page pi is given
as:

PR(pi) =
1− α
N

+ α
∑

pj∈M(pi)

PR(pj)
kj

(2.1)

where p1, p2, ..., pN are the pages on the web, M(pi) is the set of pages that link
to pi, kj is the number of outbound links on page pj , and N is the total number
of known web pages.

EigenTrust [80] and PowerTrust [144] are other well-known reputation sys-
tems that draw on the Markov chain theory. A distinctive characteristic of
EigenTrust is that it implements a Markov chain based reputation system for
decentralized environments. This makes it suitable for applications such as
peer-to-peer file sharing.

Bayesian Model

The beta distribution is a statistical distribution characterized by two free pa-
rameters, α and β. The domain of the distribution is [0, 1]. The probability
function P (x) and the distribution function D(x) are defined as follows:

P (x) =
(1− x)β−1

xα−1

B(α, β)
(2.2)

=
Γ(α+ β)
Γ(α)Γ(β)

(1− x)β−1
xα−1 (2.3)

D(x) = I(x; a, b) (2.4)

where Γ is the gamma function, B(a, b) is the beta function, I(x; a, b) is the
regularized beta function, and α, β > 0. The beta distribution is normalized
due to the fact that: ∫ 1

0

P (x)dx = 1 (2.5)
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In Bayesian statistics, the beta distribution is used as a prior distribution for
binomial proportions. The beta distribution is one of the preferred distributions
for describing the variety of opinion across people.

In a Bayesian reputation system, the reputation score is generally repre-
sented by a beta distribution, where the two free parameters α and β correspond
to the number of positive and negative feedback respectively. The reputation
score is computed by statistically updating the given beta distribution.

Bayesian reputation systems provide a sound mathematical basis for com-
puting reputation scores. However, in contrast to other reputation models (for
example, summation and mean), the Bayesian reputation model renders the rep-
utation scores less intuitive. Bayesian reputation systems include [64, 137, 76].

2.2.3 Challenges in Reputation System Design

In this section, we discuss some of the open issues in reputation systems. An
excellent discussion of possible attacks on reputation systems is also provided by
Hoffman et al. [69]. Additionally, the reader may consult the survey by Jøsang
et al. [77] for an overview of the problems faced by reputation systems.

Lack of Privacy

An accurate reputation score is possible only if the feedback is accurate. How-
ever, it has been observed that the users of a reputation system may avoid
providing honest feedback [111]. The reasons for such behavior include fear of
retaliation from the target entity or mutual understanding that a feedback value
would be reciprocated.

A solution to the problem of fear of retaliation is computing reputation scores
in a privacy preserving manner. A privacy preserving protocol for computing
reputation scores does not reveal the individual feedback of any entity. Private
feedback ensures that there are no consequences for the feedback provider and
thus he is uninhibited to provide honest feedback.

Slandering is the act of sabotaging an honest user’s reputation by assigning
them unwarranted low feedback. A tradeoff of private feedback is that it cre-
ates the opportunity for slandering without consequences. However, we draw
attention to the processes of voting and election, where the privacy of the voters
is often guaranteed to allow them complete freedom of opinion. Since feedback
providers in reputation systems are similarly entitled to personal opinion, it can
be argued that their privacy should also be preserved. Slandering is most effec-
tive when it is carried out by a collusion of users. An important challenge to be
addressed by future work (discussed in Section 7.2) is the detection of collusions
in privacy preserving reputation systems.

In Section 2.3, we give an in depth discussion of some existing systems that
compute reputation in a privacy preserving manner. The primary contribu-
tion of this thesis is the proposal of several novel privacy preserving reputation
protocols.
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Sybil Attack

The sybil attack [42] on a reputation system operates as follows: An attacker
creates multiple identities in the system in order to gain an unfair advantage
over honest users who own a single identity. The attacker may use its multi-
ple identities to mount attacks including self-promotion, slandering, and ballot
stuffing.

A reputation system is vulnerable to sybil attacks when it has one or more
of the following characteristics:

• The reputation system does not require users to submit their true identi-
ties when creating a pseudonym in the system.

• There is no central authority to verify the true identity behind a pseudonym.
Peer-to-peer reputation systems are thus particularly prone to sybil at-
tacks.

• The reputation system accepts new pseudonyms that have a weak or no
chain of trust linking them to trustworthy entities in the system.

• Creating a new pseudonym requires low resources.

• The reputation system treats all pseudonyms equally.

The eBay reputation system fights sybil attacks by differentiating between
users who authenticate their true identities to the system (through a bank ac-
count, or credit card, etc.) and those who don’t. The authenticated users
get more privileges in the system. The central eBay server allows only one
pseudonym per authenticated identity.

The Advogato [87] and Appleseed [145] reputation systems prevent this at-
tack by reducing the influence of pseudonyms created by a single entity. Since
an entity has a limited amount of flow received from existing entities, it does
not help to create new pseudonyms and distribute that flow among them. The
total influence of the entity remains the same.

Yu et al. [141] propose an approach based on social networks to detect sybil
attacks. The algorithm operates by ensuring that the size of the cut between
the set of known honest nodes and the set of potential attackers remains small.

Self-Promotion, Ballot Stuffing

Self-promotion is the act of raising one’s own reputation through unfair means.
Self-promotion may be carried out by a user individually or in collusion with
other members of the system. When a reputation score is transmitted over
insecure channels, an attacker may intercept the score and augment it to exhibit
better reputation. Another self-promotion attack is possible in systems (such
as eBay) where users may assign each other additional feedback after every
transaction. Two users may repeatedly transact with each other, and after
each transaction assign each other positive feedback. This attack is also known
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as ballot stuffing, which implies that a user submits more feedback than he
is entitled to. Another scenario is that a user creates multiple identities in
the system (the sybil attack), and uses those fake multiple identities for self-
promotion.

Prevention strategies for self-promotion include:

• Dissemination of reputation scores over secure channels.

• Permitting a user to assign only one feedback to another user at any given
time.

• Placing a cost (financial or some other limited resource) on each transac-
tion, making fake repeated transactions expensive.

• Preventing a user from controlling multiple identities (the sybil attack).

• Identifying and breaking up cliques who have a high number of transac-
tions among themselves.

The strategy employed by the reputation systems of many online auction
and e-commerce websites (for example, eBay, Amazon), is to charge the seller
a fee for each transaction. Thus, repeated fake transactions for the purpose of
accumulating feedback becomes costly.

Slandering

As introduced earlier, slandering is the act of sabotaging an honest user’s rep-
utation by assigning them unwarranted low feedback. Motivation for such an
attack may include retaliation, reducing a competitor’s reputation, or malicious
disruption of services. A slandering attack is particularly detrimental to the
target user in applications that are sensitive to the presence of even a small
amount of low feedback, such as high-value monetary systems. The slander-
ing attack may be carried out by an individual or a coalition of entities. The
attack is clearly more effective in the latter case, especially if the size of the
coalition is large. The slandering attack is hard to detect and prevent, since it
is a legitimate right of a user to assign low feedback.

Some counter strategies include:

• Third party arbitration in case of negative feedback.

• Identification of users or cliques who provide unusually high proportion of
low feedback.

• Allowing a user to explain its position to other members if it is given
negative feedback.

• Preventing sybil attacks.
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The reputation system by Belenkiy et al. [14] (discussed in Section 2.3.4)
ensures fair exchange of feedback and services. The reputation system, oriented
for content distribution peer-to-peer systems, uses cryptographic techniques to
guarantee that when a peer receives the requested data blocks, he must provide
positive feedback to the sender in return. Otherwise the data blocks stay locked
and their content remains inaccessible to the peer.

Whitewashing

A whitewashing attack occurs when a user with negative reputation quits the
system and re-enters with a new identity and thus a fresh reputation.

A reputation system is vulnerable to the whitewashing attack when: the
pseudonyms in the system are not linked to real world identities, quitting the
system incurs little or no loss, and creating new pseudonyms is cheap (in terms
of limited resources, such as money, human effort, etc.).

To mitigate the risk of whitewashing attacks, a reputation system may dif-
ferentiate users who are newcomers from those who have been in the system for
a long time. A user may only be allowed to build its reputation gradually by
demonstrating good behavior consistently over a long period of time. This ap-
proach lessens the appeal of a whitewashing attack, since a user who re-enters
the system with a new identity is not viewed as trustworthy. Systems that
propose this approach include [65, 91].

Oscillation

In oscillation, an attacker initially builds good reputation in the system and then
suddenly shifts behavior to take advantage of honest users who are misled into
trusting the attacker due its good reputation. This attack is advantageous only
if the payoff of the attack is greater than the cost of building good reputation.
One scenario is that an attacker engages in several low value transactions to
accumulate reputation and then reverses its good behavior for a high value
transaction. A reputation system may mitigate the risk of oscillation attacks
by employing the following strategies:

• Weighing feedback according to the value of the transaction.

• Factoring the time spent in the system towards computing reputation.

• Requiring the expense of limited resources towards building reputation.

• Weighing feedback according to its age in the system. Systems that fol-
low this strategy include Aringhieri et al. [10], Buchegger et al. [21],
TrustGuard [125], and the Beta reputation system [76].

Swaminathan et al. [129] address this problem by setting a sales limit on each
seller, which is bounded by the sum of the transaction costs (fees, insurance,
shipping, etc.) paid by the seller thus far in the system. The seller may only sell
items within its sales limit. The idea is that even if the seller suddenly shifts

24



behavior and defrauds a buyer, he would not make any profit due to his past
expenses.

According to economic theory [84], if the benefit of having good reputation
is commensurate to the cost of building the reputation, then the market reaches
a state of equilibrium. In such a system there is no advantage in mounting an
oscillation attack, since the attacker would loose as much as he had spent.

2.3 Privacy Preserving Reputation Systems

In this thesis, we focus on how to compute reputation in a privacy preserv-
ing manner in decentralized environments. Preserving the privacy of feedback
providers is straightforward in the presence of a trusted central authority: Each
provider submits his feedback value to the central authority who aggregates all
feedback and reveals the reputation score while keeping the individual feedback
private. However, preserving privacy in decentralized reputation systems is not
trivial, since no such universally trusted central authority is present.

In Sections 2.3.1 through 2.3.8, we discuss several systems in the literature
that relate to privacy preserving reputation systems. We summarize the salient
features of each work, as well as present our critique and analysis. In Section
2.3.9 we compare the systems and discuss the need for novel solutions.

2.3.1 Clifton et al. [31] – Secure Sum

Secure multi-party computation is the study of protocols that take inputs from
distributed entities and aggregate them to produce outputs, while preserving
the privacy of the inputs.

One of the well-known secure multi-party computation protocols is secure
sum [31], which takes inputs from entities and computes their sum. This proto-
col is clearly a natural fit for the problem at hand. The protocol may be used
directly to compute reputation in the form of sum or mean.

Secure Sum

We describe the secure sum protocol below. Note: Equations 2.6 and 2.7 use
modular arithmetic. All operations in these two equations are mod m.

The protocol assumes that there are three or more sites and there is no
collusion between them. It is also assumed that the value to be computed,
v =

∑s
l=1 vl lies in the range [0..m]. The sites are numbered as 1 . . . s. Site

1 generates a random number R uniformly chosen from [0..m]. It then sends
R + v1 mod m to site 2, where v1 is site 1’s local input. Site 2 does not learn
any information about v1 since R + v1 mod m is distributed uniformly across
the range [0..m] due to R. For sites l = 2 . . . s − 1, the protocol proceeds as
follows: Site l receives:
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V = R+
l−1∑
j=1

vj mod m (2.6)

Site l learns nothing since the value is distributed uniformly across [0..m].
Site l computes:

R+
l∑

j=1

vj mod m = (vl + V ) mod m (2.7)

Site l then sends this value to site l + 1. Eventually, site s also performs
the above step. Site s sends the result back to site 1, who subtracts R from it
to obtain the sum. Site 1 does not learn any of the private values due to the
uniform distribution of the received result over the range [0..m].

The protocol may be used to compute reputation as the sum of the feedback
values provided as private inputs by the participants of the protocol.

Critique: The security of the secure sum protocol breaks down if the sites
collude. Any two sites l − 1 and l + 1 can use the values that they send and
receive respectively to compute the private input vl of site l.

Table 2.1: Clifton et al. [31] – Secure Sum.

Architecture Decentralized

Target Environment Distributed environments

Adversarial Model Semi-Honest + Agents do not collude

Key Security Mechanisms Secure multi-party computation

Privacy Guarantee The chances that the adversary will learn private
information are no better than making a random
guess over the range [0..m]. Probability: 1

m+1

Complexity (Messages) O(n), where n = number of sites

Other Secure Multi-Party Computation Protocols

Other secure multi-party computation protocols include: secure product [31, 8,
11, 74], secure set union [31, 83], secure set intersection [31, 83], and secure mul-
tiset operations [83]. The doctoral thesis of Wenliang Du [43] describes several
secure two-party computation protocols for problems in linear programming,
geometry, and statistical analysis. A seminal work in secure multi-party com-
putation is the study of the Millionaire’s problem [140], in which two parties
must determine whose number is larger without disclosing their numbers. We
refer the reader to [56] for a comprehensive study of secure multi-party compu-
tation.
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2.3.2 Pavlov et al. [105] – Decentralized Additive Repu-
tation Systems

Pavlov et al. [105] propose several protocols for decentralized additive reputa-
tion systems. Two of their protocols are secure under the semi-honest and the
malicious adversarial models respectively. The protocols draw their strength
from witness (feedback provider) selection schemes, which guarantee the in-
clusion of a certain number of honest witnesses as participants. The security
mechanisms used in the protocols include secure multi-party computation, se-
cret sharing, and discrete log commitment.

Problem Setting

A querying agent consults a group of n witnesses to compute the reputation
of a target agent, where 0 < n < N , and N > 1 is the number of potential
witnesses. b < N is the number of dishonest agents in N .

Decentralized Additive Reputation Systems

A decentralized additive reputation system is described in the article as a reputa-
tion system that satisfies the following two requirements: 1) feedback collection,
combination, and propagation are implemented in a decentralized way; 2) com-
bination of feedbacks provided by agents is calculated in an additive manner.
The Beta reputation system [76] is cited as an example. The eBay reputation
system is additive, however, not decentralized.

Impossibility of Perfect Privacy

The paper argues that it is impossible to guarantee perfect privacy for an honest
feedback provider in a decentralized additive reputation protocol. The argu-
ment is that a dishonest agent may deterministically create a set of n feedback
providers, with n − 1 dishonest agents and the one honest agent under attack.
Given the inputs of the n− 1 dishonest agents and the output (the reputation
score), the secret feedback of the honest agent is easily obtained.

Critique: The impossibility argument does not apply to protocols in which
an honest agent may choose not to contribute his feedback. The argument also
does not apply to protocols in which the set of feedback providers cannot be
created deterministically.

Witness Selection Scheme 1 (WSS-1)

A witness selection scheme for a reputation protocol is a process that results
in the creation of a set of witnesses. The witnesses in the set contribute their
feedback towards computing the reputation of the target agent.

The first scheme [105, Lemma 2] guarantees that if honest agents are uni-
formly distributed over N , then at least two honest witnesses will be selected
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with probability greater than (1− 1
n )(N−b−1

N−1 ). The scheme is secure under the
semi-honest adversarial model, in which all agents follow the protocol correctly.

According to our analysis, the complexity of the number of messages ex-
changed is linear in terms of the number of potential witnesses: O(N). After
each witness is selected, it is probabilistically decided whether to add more wit-
nesses, therefore the count may run up to N . If each agent sends its successor
the current set of witnesses, the total bandwidth utilized is O(N2).

Critique: The complexity of the scheme is a function of the population
size of the potential witnesses (N) instead of the witnesses who contribute their
feedback (n). The scheme also has the potential of leaving out many honest
witnesses from the reputation protocol. Moreover, the scheme works only if
b < n − 1, because otherwise n − 1 dishonest witnesses can select themselves
into the set if the first witness selected is dishonest. Even then the scheme
might fail since the number of witnesses selected is probabilistic and it may be
the case that the actual number of selected witnesses is less than n.

Witness Selection Scheme 2 (WSS-2)

The second scheme [105, Lemma 3] guarantees under the malicious adversarial
model that if honest agents are uniformly distributed over N , then at least
n(N−b−nN ) honest witnesses would be selected. A coin flipping scheme is utilized
to grow the set of witnesses by selecting the next witness randomly from the
available pool of witnesses. According to the paper, the scheme requires O(n3)
messages among the n selected witnesses.

Critique: It is not clear if the scheme would work in case the querying agent
is dishonest. If the querying agent is dishonest, it does not need to follow the
protocol correctly. It can select a dishonest witness and then collectively cheat
to continue selecting dishonest witnesses. After an honest victim is selected,
the rest of the witnesses must be selected randomly. However, at that point the
coalition of dishonest agents has already biased the set in their favor.

A Reputation Protocol based on WSS-1

In this reputation protocol, the set of source agents is created using the first
witness selection scheme, which guarantees that at least two source agents are
honest. Agent q chooses a random number as its secret. Each agent splits its
secret into n + 1 shares such that they all add up to the secret. Each agent
keeps the n+ 1th share and sends its other n shares to the other n agents in the
protocol such that each agent receives a unique share. Each agent then adds all
shares received along with his n+ 1th share and sends it to the querying agent.
The querying agent adds all sums received and subtracts the random number
to obtain the reputation score.

The protocol guarantees the privacy of an honest source agent under the
semi-honest model as long as all the other n − 1 source agents do not collude.
The probability that all other source agents will not collude is greater than
(1− 1

n )(N−b−1
N−1 ). The number of messages exchanged is analyzed as O(n2). We
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estimate that the size of the messages exchanged is as follows: O(n2) IDs and
O(n2) numbers.

Critique: The complexity is claimed to be O(n2), however, we believe it to
be O(N) +O(n2) due to the utilization of the witness selection scheme.

Table 2.2: Pavlov et al. [105] – A Reputation Protocol based on WSS-1.

Architecture Decentralized

Target Environment Distributed environments

Adversarial Model Semi-honest

Key Security Mechanisms Secure multi-party computation, secret sharing

Privacy Guarantee (1− 1
n

)(N−b−1
N−1

)

Complexity (Messages) O(N) + O(n2), where N = number of potential
witnesses, and n = number of selected witnesses

A Reputation Protocol based on WSS-2

This protocol uses the Pedersen verifiable secret sharing scheme [107] and a
discrete log commitment method. The Pedersen scheme is resilient up to n/2
malicious agents. The set of source agents is created using the second witness
selection scheme. It guarantees the presence of less than n/2 malicious agents,
if b < N

2 − n.
The protocol is secure under the malicious model as long as b < N

2 −n. The
number of messages exchanged is O(n3), due to the second witness selection
scheme.

Table 2.3: Pavlov et al. [105] – A Reputation Protocol based on WSS-2.

Architecture Decentralized

Target Environment Distributed environments

Adversarial Model Malicious (Disruptive)

Key Security Mechanisms Verifiable secret sharing, discrete log commitment

Privacy Guarantee If b < N
2
− n, then the adversary does not learn

any more information about the private feedback
of an honest witness

Complexity (Messages) O(n3), where n = number of witnesses

2.3.3 Gudes et al. [61] – The Knots Reputation System

Gudes et al. [61] present several schemes that augment their Knots reputation
system [51] with privacy preserving features. A defining characteristic of the
Knots reputation model is the notion of subjective reputation. The reputation
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of a target member is computed by each querying member using a different
set of feedback, thus the reputation is subjective for each querying member.
The feedback that a querying member uses for computing reputation comes
exclusively from the members in which he has a certain amount of pre-existing
trust. An advantage of this approach is that the querying member has confidence
in each of the feedback values that are used for computing reputation.

Critique: The disadvantage is that the opinion of the members whom the
querying agent does not know in not taken into account. The notion of subjec-
tive reputation tends to be non-conformant with the idea of reputation, which
is generally considered to be the aggregate of feedback of the community at
large. The concept of subjective reputation seems closer to trust propagation
than reputation.

The Knots Model

The Knots model differentiates between two types of users in the system. The
experts in the system are the users who provide services and the members are
users who consume those services. The reputation system is concerned with
computing the reputation of the experts through the feedback provided by the
members. Members have trust relationships among themselves in the context
of providing reliable feedback about the experts.

TrustSetx(A) is defined as the set of members whom member A trusts to
provide feedback about expert x. TM(A,B) represents the amount of direct
trust that a member A has in another member B. DTE(A, x) is defined as the
amount of direct trust that a member A has in an expert x. The subjective
reputation of an expert x by a member A is computed as follows:

TE(A, x) =
Σ∀B∈TrustSetx(A)DTE(B, x) · TM(A,B)

Σ∀B∈TrustSetx(A)TM(A,B)
(2.8)

In the privacy preserving version of the Knots model, the challenge is to com-
pute TE(A, x), such that the privacy of each DTE(B, x) is maintained, where
B ∈ TrustSetx(A). The three decentralized privacy preserving schemes pre-
sented in the paper compute ρ(A, x) (the numerator of the fraction in equation
2.8), such that A cannot learn any of the DTE(B, x) values.

Critique: The privacy goal does not include preserving the privacy of the
trust between the members (the TM values). It is limited to preserving the
privacy of the feedback about the experts (the DTE values).

Reputation Scheme 1

Each member B ∈ TrustSetx(A) receives TM(A,B) from A and then computes
EA(DTE(B, x) · TM(A,B)) and sends it to a Trusted Third Party (TTP), Z
(where EA(.) is an encryption with the public key of member A). The TTP Z
relays each message to A without revealing the source member. A decrypts the
messages and obtains ρ(A, x).
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Since A does not know the source of a message, it cannot reverse a received
value to reveal the private feedback. The messages are encrypted, therefore the
TTP does not learn any information either. The scheme requires O(n) messages
to be exchanged, where n is the cardinality of TrustSetx(A).

Critique: The scheme requires disclosure of the trust that A has in each
member B. Moreover, there is heavy reliance on the TTP. If the TTP and A
collude, then they can easily determine each TM(B, x).

Table 2.4: Gudes et al. [61] – Reputation Scheme 1.

Architecture Decentralized

Target Environment Distributed environments

Adversarial Model Semi-honest

Key Security Mechanisms TTP, Public-key cryptography

Privacy Guarantee If the TTP is honest, the chances that A will learn
DTE(B, x) are no higher than making a random
guess across |TrustSetx(A)| given values. B ∈
TrustSetx(A).

Complexity (Messages) O(n), where n = |TrustSetx(A)|

Reputation Scheme 2

Each member B ∈ TrustSetx(A) generates EA(DTE(B, x)) and sends it to a
TTP, Z. The TTP sends a randomly permuted vector of the messages to A,
who decrypts the messages and obtains a vector (vector 1) of the DTE values.
A then sends a vector of all values TM(A,B) to Z, where B ∈ TrustSetx(A).
Z permutes the vector (vector 2) according to the DTE vector (with respect to
the order of the members). A and Z compute the scalar product of vectors 1
and 2 using a secure product protocol (such as [8]) to obtain ρ(A, x).

Due to the random permutation generated by the TTP, A is unable to cor-
relate the DTE values with individual members. The TTP does not learn any
of the DTE values due to encryption. A key advantage of the scheme is that
any member B does not learn TM(A,B).

We analyze that the number of messages exchanged is O(n), whereas the
bandwidth utilized is O(n2) in terms of k-bit numbers transfered, where k is
the security parameter (key length).

Critique: The privacy of the TM(A,B) values is still not fully preserved
since they must be disclosed to the TTP.

Reputation Scheme 3

A executes the reputation protocol for the semi-honest model from Pavlov
et al. [105] to obtain Σ∀B∈TrustSetx(A)DTE(B, x). A sends TM ′(A,B) =
TM(A,B) + Q to each B ∈ TrustSetx(A), where Q is a random number. A
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Table 2.5: Gudes et al. [61] – Reputation Scheme 2.

Architecture Decentralized

Target Environment Distributed environments

Adversarial Model Semi-honest

Key Security Mechanisms TTP, Public-key cryptography, Secure product

Privacy Guarantee If the TTP is honest, the chances that A will
learn DTE(B, x) are no higher than making a
random guess across |TrustSetx(A)| given values.
Moreover, B does not learn TM(A,B). B ∈
TrustSetx(A).

Complexity (Messages) O(n), where n = |TrustSetx(A)|

executes the secure sum protocol [31] to obtain Σ∀B∈TrustSetx(A)(TM ′(A,B) ·
DTE(B, x)). A calculates:

ρ(A, x) = Σ∀B∈TrustSetx(A)(TM ′(A,B) ·DTE(B, x))

−(Q · Σ∀B∈TrustSetx(A)DTE(B, x)) (2.9)

This scheme has the advantage that the privacy of both the DTE(B, x)
values and the TM(A,B) values is preserved without the presence of any TTPs.
The protocol requires O(n2) messages due to the inclusion of the protocol from
[105].

Table 2.6: Gudes et al. [61] – Reputation Scheme 3.

Architecture Decentralized

Target Environment Distributed environments

Adversarial Model Semi-honest + Agents do not collude

Key Security Mechanisms Secure multi-party computation

Privacy Guarantee A does not learn more information about
DTE(B, x), where B ∈ TrustSetx(A). The
chances of B learning TM(A,B) are no better
than its chances of guessing the random number
Q from TM ′(A,B).

Complexity (Messages) O(n2), where n = |TrustSetx(A)|

Proposals for the Malicious Adversarial Model

The work also includes some proposals for augmenting the schemes for the
malicious adversarial model.

Critique: The proposals are largely based on the assumption that a member
who provides feedback (member B) would lack the motivation to act maliciously
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if it does not know the identity of the querying member (member A). However,
this assumption does not take into account the case when an attacker may want
to attack the system simply to disrupt it, for example, in a denial-of-service
attack.

2.3.4 Belenkiy et al. [14] – A P2P System with Account-
ability and Privacy

Selfish participants are a major threat to the functionality and the scalability of
peer-to-peer systems. Belenkiy et al. [14] propose a content distribution peer-
to-peer system that provides accountability, which makes it resilient against
selfish participants. The solution is based on e-cash technology. Despite making
peers accountable, the system does not compromise the privacy of the peers.
The system ensures that transactions between peers remain private. The only
exception is the case when there is a dispute between transacting peers.

Although the system is not directly related to reputation, we study it here
because it provides insight into designing a privacy preserving P2P system using
the e-cash technology. In Section 2.3.5, we will discuss a privacy preserving
reputation system based on e-cash by Androulaki et al. [9].

E-Cash and Endorsed E-Cash

E-cash [28, 29] is a digital currency that offers the following properties:

Anonymity. It is impossible to trace an e-coin (the monetary unit of e-cash) to
the user who spent it. This property holds even when the bank (a central
entity who issues the e-coins) is the attacker.

Unforgeability. The only exception to the anonymity property is that e-cash
does not guarantee the anonymity of a user who tries to double-spend an
e-coin. In this case, the bank can learn the identity of the dishonest user.
A forged e-coin allows the bank to trace down the user who forged it.

Fungibility. A user can use the e-coins received for services provided as pay-
ment for services received from any other user in the system.

Endorsed e-cash [23] adds the following property to e-cash:

Fair Exchange. Fair exchange means that a buyer gets the item only if the
seller gets paid and vice versa.

A Currency based Model

The authors describe a peer-to-peer content distribution system inspired by
BitTorrent [109]. However, the proposed system provides stronger accounting in
its protocols that allow nodes to buy and barter data blocks from their neighbors
in a fair manner.
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The system requires the participation of two trusted entities: 1) A bank,
which maintains an endorsed e-cash account for each user. Users are able to
make deposits and withdrawals of e-coins. 2) An arbiter, which protects the fair
exchange of e-cash for data.

A user has two options for acquiring the data blocks that it needs: 1) it can
pay e-coins to users who own those data blocks; 2) or it can barter its own data
blocks for the ones that it needs. To earn e-cash, a user has to offer data blocks
that other users want and exchange them for e-coins. A user is prevented from
being selfish since it cannot consume the service provided by the peer-to-peer
system unless he contributes as well.

An unendorsed e-coin cannot be deposited into the seller’s bank account
until the buyer endorses it. Each unendorsed e-coin has a contract associated
with it. The fair exchange takes place according to the contract. If the seller
fulfills its commitments, then the unendorsed e-coin must be endorsed by the
buyer or otherwise by the arbiter.

The Buy and Barter Protocols

The buy protocol operates as follows: Alice requests a data block from Bob. Bob
encrypts the block with a random key and sends the ciphertext to Alice. Alice
sends an unendorsed e-coin and a contract for the data block. If the unendorsed
e-coin and the contract are formed correctly, Bob sends the decryption key for
the data block to Alice. If the key decrypts the data block correctly, Alice
endorses the sent e-coin, which Bob can then deposit into his account.

The protocol ensures that fair exchange of e-coins and data takes place. If
Bob is dishonest and the key is incorrect, Alice does not endorse the e-coin. In
case Alice is dishonest and she does not endorse the coin after receiving the key,
Bob can present the arbiter with proof of his correct service (in the form of the
contract and other credentials received from Alice) and have the arbiter endorse
the e-coin for him.

Moreover, the privacy of the transaction is preserved since no third party
involvement is required, unless there is a need for arbitration. The e-coin spent
by Alice is unlinkable to her due to the anonymity provided by e-cash.

The barter protocol also provides fair exchange and privacy. Alice and Bob
initially send each other an unendorsed e-coin as collateral and a contract which
lets them have the arbiter endorse the coin in case the key for a bartered data
block is incorrect. Alice and Bob then continue to exchange data blocks until
the occurrence of fair termination or arbitration.

Endorsed e-cash requires that each received e-coin must be deposited back
to the bank before it can be spent. The buy protocol therefore incurs significant
overhead due to this requirement. However, the barter protocol is scalable since
it does not require any involvement from the bank under normal circumstances.

Critique: The bank and the arbiter are centralized entities. This implies
that the system is not fully decentralized. The two centralized entities present
scalability issues (at least for the buy protocol) as well as single points of failure.
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2.3.5 Androulaki et al. [9] – A Reputation System for
Anonymous Networks

Androulaki et al. [9] propose a reputation scheme for pseudonymous peer-
to-peer systems in anonymous networks. Users in such systems interact only
through disposable pseudonyms such that their true identity is not revealed.
Reputation systems are particularly important for such environments since oth-
erwise there is little incentive for good conduct. However, reputation systems
are hard to implement for these environments. One of the reasons is that a user
must keep his reputation even if he cycles through many pseudonyms. More-
over, the pseudonyms must be unlinkable to the user as well as to each other
even though they share the same reputation score. Another issue that arises in
reputation systems for anonymous networks is that a user may lend his good
reputation to less reputable users through anonymous pseudonyms.

The proposed system employs the following cryptographic building blocks:
anonymous credential systems, e-cash, and blind signatures. Reputation is ex-
changed in the form of e-coins called repcoins. The higher the amount of repcoins
received from other users, the higher is the reputation of the user.

Critique: The system requires the presence of a bank, which is a centralized
entity. Additionally, the system also requires that all communication take place
over an anonymous network, such as Mixnet [27] or a network using Onion
routing [40]. This requirement makes the solution inaccessible to applications
in non-anonymous networks.

The security goals of reputation systems for anonymous networks are dif-
ferent than those of privacy preserving reputation systems. The reputation
systems for anonymous networks aim to hide the identity of a user who inter-
acts and assigns feedback to others. Whereas, in privacy preserving reputation
systems, the goal is to hide the feedback value assigned but not the identity
of the user who assigned it. The choice between the two kinds of reputation
systems depends on the security objectives of the application.

Security Model

Some of the security requirements of the reputation system are as follows:

Unlinkability. An adversary, controlling the bank and a number of corrupted
users, is unable to link a pseudonym with the identity of its non-corrupted
user any better than by making a random guess. Moreover, the adversary
has no advantage in telling whether two pseudonyms belong to the same
non-corrupted user or not.

No Over-Awarding. A user who tries to double-award (forge) a repcoin, us-
ing one or even two different pseudonyms, gets detected and his identity
is revealed.

Exculpability. Any coalition of corrupted users (including the bank) is unable
to falsely accuse a user of forgery in order to expose to his identity.
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Reputation Unforgeability, Non-Transferability. A user cannot forge bet-
ter reputation. In particular, a user U1 cannot borrow reputation from
another user U2, unless U2 reveals his master secret key to U1.

Cryptographic Building Blocks

The following cryptographic building blocks are used for the construction of the
scheme:

Anonymous Credential Systems. In anonymous credential systems (for ex-
ample, [15, 22]), organizations grant credentials to pseudonymous identi-
ties of users. Verifiers are able to verify the authenticity of credentials in
possession of users. However, neither an organization or a verifier is able
to link a credential to the true identity of a user.

E-Cash. E-cash [28, 29] is a digital currency that offers the following proper-
ties: anonymity, unforgeability (or identification of double-spenders), and
fungibility. Please see Section 2.3.4 for further detail. A centralized bank
is a key player in an e-cash system.

Blind Signatures. In a blind signature scheme (for example, [28]), an entity
signs a message for a user, however the entity does not learn the content
of the message.

A Reputation System for Anonymous Networks

The system assumes the presence of a central entity called the bank, which is
needed for implementing the above listed cryptographic schemes. The system
also requires that all communication takes place over an anonymous network, for
example, a Mixnet, or a network using Onion routing. The users interact with
each other in a peer-to-peer manner. However, the users must also communicate
with the central bank to withdraw and deposit repcoins.

From the above listed building blocks, Androulaki et al. build a reputation
system in which each user has a reputation that he cannot lie about or shed.
However, a user may generate as many one time pseudonyms as he needs for
his transactions. All pseudonyms of a user share the same reputation. The
system is robust against self-promotion attacks. Reputation is updated and
demonstrated in a way such that anonymity is not compromised. The system
maintains unlinkability between the identity of a user and his pseudonyms, and
unlinkability among pseudonyms of the same user.

The system by Androulaki et al. follows upon the work by Dingledine et al.
[39, 38, 37] on reputations systems and anonymous networks.

2.3.6 Nin et al. [101] – A Reputation System for Private
Collaborative Networks

Nin et al. [101] present a reputation system that computes the reputation of a
user based on the access control decisions that he makes. If a user makes good

36



Table 2.7: Androulaki et al. [9] – A Reputation System for Anonymous Net-
works.

Architecture Decentralized

Target Environment Peer-to-peer systems

Adversarial Model Malicious (Disruptive)

Key Security Mechanisms Anonymous credential systems, E-cash (bank),
Blind signatures, Mixnets / Onion Routing

Privacy Guarantee Satisfies unlinkability, no over-awarding, exculpa-
bility, and reputation unforgeability if the under-
lying primitives (anonymous credential system, e-
cash system, and blind signatures) are secure

Complexity (Messages) O(1)

access control decisions, such as granting access to legitimate users and denying
access to unauthorized users, then he receives good reputation. In contrast,
making dishonest access control decisions leads to bad reputation. The privacy
objective of the reputation system is to keep the trust relationships between the
users private.

The system operates as follows: A node keeps record of its access control
decisions. Other nodes can view anonymized details of those decisions and
verify if the decisions were made according to the access control rules or not.
The anonymization is derived through the multiplicative homomorphic property
of the ElGamal encryption scheme. Private details are not revealed to a third-
party due to the anonymization.

Private Collaborative Networks

A private collaborative network is described as a network of users that has the
following properties: 1) the users are connected with each other through trust
relationships; 2) users own resources that can be accessed by other users if
sufficient trust exists; and 3) trust relationships among users remain private.

A private collaborative network is modeled as a directed labeled graph.
Edges represent trust relationships between nodes (users). Each edge is labeled
with the type of trust relationship as well as the weight of the trust.

Access to each resource in the network is governed by a set of access condi-
tions. An access condition is of the form ac = (v, rt, dmax, tmin), where v is the
owner with whom the requester of the resource must have a direct or transitive
trust relationship of type rt to gain access. dmax and tmin are the required
maximum depth and minimum trust respectively to obtain access.

Each trust relationship also exists in the form of a certificate signed by the
truster and the trustee. Since relationships must be kept private, a certificate
itself is considered a private resource. To gain access to a resource, a requester
must demonstrate to the owner, the existence of a “certificate path” linking the
requester to the owner.
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The Reputation Model

The reputation system assigns good reputation to a user who performs decisions
in accordance with the specified access conditions. In contrast, a user who does
not correctly enforce access control rules, receives lower reputation. Reputation
lies in the interval [0, 1].

A user can act dishonestly in two ways: 1) deny access to a resource to a
legitimate requester, or 2) allow access to a resource to an unauthorized re-
quester. The access control decision is considered wrong if it violates either
of the rt, dmax, tmin parameters in the access condition. For a wrong decision
that violates the trust requirement (tmin), the absolute difference between the
minimum amount of trust required (tmin) and the trust computed over the cer-
tificate path is given as wd. The values arising from all such wrong decisions are
given as the set {wd1, . . . , wd|WDtA |}, where |WDtA | is the number of wrong
decisions.

The values in the set {wd1, . . . , wd|WDtA |}, which represent the wrong deci-
sions made by user A in terms of trust, are aggregated as:

AGtACSETA = OWAQ(wd1, . . . , wd|WDtA |) (2.10)

where AGtACSETA is the aggregated value of the wrong decisions with respect
to trust. OWA is an Ordered Weighted Averaging function and Q is a non-
decreasing fuzzy quantifier. According to the authors: “The interest of the OWA
operators is that they permit the user to aggregate the values giving importance
to large (or small) values”.

The wrong decisions of the user that violate the depth and path requirements
are aggregated as AGdACSETA and AGpACSETA respectively. The reputation of
user A is then computed as:

RA = 1− 1
3

(AGtACSETA +AGdACSETA +AGpACSETA ) (2.11)

which implies that the mean of the aggregates of the three types of wrong
decisions is subtracted from the perfect reputation of 1 to arrive at the reduced
reputation of the user. The more dishonest decisions a user makes, the lower
his reputation.

Anonymized Audit Files

After a user makes an access control decision, an entry about that decision is
added into the user’s anonymized audit file. The entry includes information
such as the identity of the requester of the resource, the certificate path demon-
strated by the requester, etc. However, all private information in the entry is
encrypted using the ElGamal encryption scheme [46]. Therefore, a third-party
who analyzes the entry is unable to acquire any information about these pri-
vate elements. Due to the multiplicative homomorphic nature of the ElGamal
encryption scheme, the encrypted information can be manipulated to compute
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reputation. A network participant who wishes to learn the reputation of a cer-
tain user, can analyze the anonymized audit file of that user and derive the
reputation score without compromising privacy.

We analyze the number of messages exchanged to compute reputation as
constant (O(1)), since all required information is provided directly by the target
node.

Critique: We believe that the following features of the reputation system
are advantageous: 1) the reputation of a node is not derived from the feedback of
other nodes but from objective information about its behavior (its access control
decisions), and 2) a node itself manages and furnishes the evidence required for
another node to judge its reputation.

However, we also observe the following issues: 1) As we understand, a node
itself manages its audit file due to the absence of centralized entities and TTPs in
the system. It is not clear why a dishonest node would include its bad decisions
in its audit file. If the node is itself in charge of creating the file, it would
only include details that lead to good reputation. 2) Reputation is computed
based on the access control decisions of a user, which makes the applicability of
the reputation system limited. For example, the reputation system would not
work in e-commerce systems, where the reputation of a seller is based on the
subjective satisfaction of the buyers.

The adversarial model is not specified in the paper, however, we estimate
that the scheme would be secure only upto the semi-honest model since nodes
are assumed to manage their audit files honestly.

Table 2.8: Nin et al. [101] – A Reputation System for Private Collaborative
Networks.

Architecture Decentralized

Target Environment Private collaborative networks

Adversarial Model Semi-honest

Key Security Mechanisms ElGamal encryption scheme

Privacy Guarantee Trust relationships among users remain private if
the underlying encryption scheme is secure

Complexity (Messages) O(1)

2.3.7 Kinateder and Pearson [81] – A Privacy-Enhanced
P2P Reputation System

The decentralized reputation system proposed by Kinateder and Pearson [81]
requires a Trusted Platform Module (TPM) chip at each agent. The TPM
enables an agent to demonstrate that it is a valid agent and a legitimate member
of the reputation system without disclosing its true identity. This permits the
agent to provide feedback anonymously.
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Security Goals

The reputation system sets the security requirements listed below. An attacker
must not be able to:

• Provide false feedback on an honest user’s behalf.

• Access an honest user’s private database and modify data such as feedback,
reputation, etc.

• Learn the identity of a feedback provider (which implies that a user should
be able to provide feedback anonymously).

Moreover, it is required that:

• The identity of a dishonest user can be revealed if there is sufficient legal
justification.

Trusted Platform

The reputation system presented in the paper relies on the Trusted Platform
(TP) [99, 106] technology for security. A trusted platform is described as a
secure computing platform that preserves the privacy of the user by providing
the following three functionalities:

Protected Storage. Data on the TP is protected from unauthorized access.

Integrity. The TP can prove that it is running only the authorized software
and no malicious code.

Anonymity. The TP can demonstrate that it is a genuine TP without revealing
the identity of the user. The TP uses a pseudonym attested by a PKI
Certification Authority (CA).

A Trusted Platform comprises of a Trusted Platform Module (TPM), which
is a hardware device with cryptographic functions that enable the various secu-
rity functionalities of the TP. The TPM is unforgeable and tamper-resistant.

System Model and Functionality

An agent in the system can take up one of following three roles at any given
time: recommender, requester, and accumulator.

Recommender. A recommender agent has interacted directly with other agents
and has feedback about them. He regularly announces the availability of
feedback to other agents in the system. A recommendation comprises
of the target agent’s pseudonym, the recommender agent’s pseudonym,
and the feedback value. The recommendation is digitally signed by the
recommender.
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Accumulator. An accumulator agent stores feedback about other agents. How-
ever, his feedback is not based on direct experience with the target agent
but formed through the feedback that he has received from other agents
in the system.

Requester. A requester agent queries other agents for feedback and then lo-
cally aggregates the feedback to determine the reputation of the target
agent. A requester agent propagates the query to its peer agents who in
turn propagate to their peer agents. Each peer decides when to discon-
tinue further propagation based on whether recommendations are avail-
able among its peers. The requester agent receives the feedback from the
recommender and accumulator agents queried and then aggregates the
feedback to learn the reputation of the target agent.

Critique: It is not elaborated how the feedback announcement and feedback
query protocols work, for example, if an algorithm such as broadcast or gossip is
used. As a consequence, the complexity of the protocols is not clear. Moreover,
the mechanism for aggregating the feedback is not discussed.

How Security is Achieved

The security requirements are fulfilled as follows:

• An attacker is unable to provide false feedback on an honest user’s behalf
since each feedback is digitally signed by the recommender. A requester
agent can also verify through the recommender’s TP that it has not been
compromised by the adversary.

• An attacker is unable to access an honest user’s private database and
modify data such as feedback, reputation, etc. This is achieved due to the
protected data storage functionality of the TP. Therefore, a requester can
be certain that the given feedback is not false.

• An attacker does not learn the true identity of a feedback provider since
only pseudonyms are used. Thus, a user is able to provide feedback anony-
mously and without inhibition. The pseudonym is protected by the TP
and the CA of the user. Moreover, the use of MIX cascades is suggested to
prevent the attacker from correlating the pseudonym with the IP address
of the user.

• In case of legal justification, the CA of a user can reveal his true identity.

Voss et al. [136] and Bo et al. [18] also present decentralized systems that
are based on similar lines. They both suggest using smart cards as the trusted
hardware modules. A later system by Kinateder et al. [82] avoids the hard-
ware modules, however, it requires an anonymous routing infrastructure at the
network level.
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Critique: Consider the following scenario: A sale on an e-commerce system
may result in the disclosure of the true identities of the seller and the buyer
to each other (through mailing addresses etc.), even if they use anonymous
pseudonyms. We must also consider that the privacy of the pseudonym itself
may need to be protected. For example, if pseudonym A assigns pseudonym B
negative feedback in retaliation, then B’s reputation is adversely affected due
to the lack of privacy of B’s feedback. Better solutions include: preserving
the privacy of the feedback, or using disposable pseudonyms, which a user may
change after every transaction (such as in the solution by Androulaki et al. [9]).

Table 2.9: Kinateder and Pearson [81] – A Privacy-Enhanced P2P Reputation
System.

Architecture Decentralized

Target Environment Peer-to-peer systems

Adversarial Model Malicious (Disruptive)

Key Security Mechanisms Trusted platform, MIX cascades, Digital signa-
tures

Privacy Guarantee Security goals are satisfied if the underlying primi-
tives (trusted platform, MIX cascades, digital sig-
natures) are secure

Complexity (Messages) Not Provided

2.3.8 Steinbrecher [126] – Privacy-Respecting Reputation
Systems within Centralized Internet Communities

Steinbrecher [126] argues that traditional cryptographic techniques such as en-
cryption and digital signatures can provide only “technical” security guarantees.
For example, encryption and digital signatures can guarantee the confidentiality
and integrity of the text of a reply sent by an expert to a user on a self help fo-
rum. However, these techniques cannot guarantee the misbehavior of the users
themselves. For example, the user might violate confidentiality by relaying the
content of the text to a third party, or the expert may violate integrity by giving
false advice. It is argued that trust can mitigate these risks and that reputation
systems are a suitable technology for acquiring trust.

However, the author contests that the design of current reputation systems
(such as the eBay reputation system) allow open access to the interests and
behavior profiles of users. A third-party may acquire information such as the
time and frequency of participation, interests in specific items, feedback provided
etc. Moreover, it is easy to associate the pseudonym of a user with their real
identity, for example, through a mailing address.

To counter this issue, Steinbrecher presents a privacy-respecting reputation
system for centralized Internet communities. The system relies on simultaneous
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use of multiple pseudonyms and changing them frequently to achieve anonymity
and unlinkability.

A Generalized Model for Centralized Reputation Systems

The paper presents a generalized model for centralized reputation systems.
Users use global pseudonyms tied to global reputations. The set of global
pseudonyms at time t is considered as Pt = {pt,1, . . . , pt,m}. The set of pos-
sible reputations that might be associated with a pseudonym is given as R.
(R,+) is a commutative group and + an operator to combine elements from
R independently of t. At time t1, each pseudonym pt1,l has the reputation
rep(t1, pt1,l) ∈ R, where l ∈ 1 . . .m. After pt1,i receives a rating rj,i,t1 from
pt1,j , the reputation of pt1,i at time t2 is computed as:

rep(t2, pt1,i) = rep(t1, pt1,i) + rj,i,t1 (2.12)

where t2 ≥ t1, and pt1,i does not receive any rating other than rj,i,t1 between t1
and t2.

Using Pseudonyms for Unlinkability and Anonymity

The system proposes simultaneous use of multiple pseudonyms by a user. The
idea is to have a separate pseudonym for each context (for example, the context
of a seller on an auction site, the context of an expert on a self help forum, etc.).
It is suggested that this design leads to unlinkability between the different roles
of a user on the Internet.

The system permits users to regularly change their pseudonyms to achieve
anonymity. A new and an old pseudonym are unlinkable from the perspective
of third-parties, however, the provider (central server) is able to link the two
pseudonyms. The unlinkability also assumes that a large number of pseudonyms
have the same reputation.

To prevent the provider from linking new and old pseudonyms, the system
suggests using a set of non-colluding trustworthy third parties who make incre-
mental changes to the pseudonym of the user.

Steinbrecher’s work on reputation and privacy also includes [122, 108]. These
proposals are oriented for centralized environments as well.

Critique: An adversary may compromise unlinkability by monitoring all
pseudonyms with the same reputation. The adversary can deduce that a new
pseudonym with the same reputation as a recently deleted pseudonym belong
to the same user.

2.3.9 Discussion

Tables 2.11 and 2.12 provide a comparison of the reputation systems that aim
to preserve privacy under the semi-honest adversarial model and the disruptive
malicious adversarial model respectively.
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Table 2.10: Steinbrecher [126] – A Centralized Privacy Preserving Reputation
System.

Architecture Centralized

Target Environment E-commerce, Self-help forums, etc.

Adversarial Model Malicious (Disruptive)

Key Security Mechanisms Pseudonym / Identity management

Privacy Guarantee Unlinkability and anonymity are satisfied if the
provider (central server) is honest and secure

Complexity (Messages) O(1)

The Semi-Honest Adversarial Model

Table 2.11: Literature – Privacy under the Semi-Honest Adversarial Model.

System /
Protocol

Archi-
tecture

Target En-
vironment

Key Secu-
rity Mech-
anisms

Privacy
Guarantee

Complexity
(Mes-
sages)

Clifton et al.
[31] – Secure
Sum

D Distributed
environ-
ments

Secure
multi-party
computa-
tion

Probability:
1

m+1 , only if

nodes don’t
collude

O(n), where
n = number
of sites

Pavlov et
al. [105] –
WSS-1

D Distributed
environ-
ments

Secure
multi-party
computa-
tion, secret
sharing

(1 −
1
n )(N−b−1

N−1 )

O(N) +
O(n2),
where N
= no. of
potential
witnesses,
and n = no.
of selected
witnesses

Gudes et
al. [61] –
Scheme 1

D Distributed
environ-
ments

TTP,
Public-key
cryptogra-
phy

Random
guess across
|TrustSetx(A)|

O(n),
where n =

|TrustSetx(A)|

Gudes et
al. [61] –
Scheme 2

D Distributed
environ-
ments

TTP,
Public-key
cryptogra-
phy, Secure
product

Random
guess across
|TrustSetx(A)|

O(n),
where n =

|TrustSetx(A)|

Gudes et
al. [61] –
Scheme 3

D Distributed
environ-
ments

Secure
multi-party
computa-
tion

A does not
learn more
informa-
tion about
DTE(B, x),
where B ∈
TrustSetx(A)

O(n2),
where n =

|TrustSetx(A)|

Nin et al.
[101]

D Private col-
laborative
networks

ElGamal
encryption
scheme

If the un-
derlying
encryption
scheme is
secure

O(1)

The Secure Sum protocol is simple and efficient. However, secure sum is

44



secure only under a restricted semi-honest adversarial model where the entities
are not allowed to collude. The protocol is therefore not suitable for preserving
privacy under the more realistic model where collusion is possible.

The schemes 1 and 2 by Gudes et al. provide security under the full semi-
honest model. However, both schemes rely on Trusted Third Parties (TTPs).
The issue with TTPs is that if they are not fully honest, they can learn private
data with little or no effort.

The reputation system by Nin et al. is very efficient. It requires exchange of
a constant number of messages. However, the system is limited to Private Col-
laborative Networks, where reputation is computed based on the access control
decisions of an entity. The reputation system is not applicable to more general
areas, such as e-commerce, peer-to-peer file sharing, etc.

The protocol by Pavlov et al. (based on their first witness selection scheme)
is secure under the full semi-honest model. Moreover, the protocol is general
purpose, that is, it may be used for many different applications. The proto-
col also does not rely on any TTPs or centralized constructs. The scheme 3
by Gudes et al. has similar properties. However, both these protocols have
communication complexity upwards of O(n2), which is quite expensive.

The Disruptive Malicious Adversarial Model

The reputation systems by Androulaki et al. and Steinbrecher are very efficient.
They require a constant number of messages to be exchanged despite the number
of feedback providers and the size of the system. However, each of these systems
relies on a centralized construct. The reputation system by Androulaki et al. is
based on the E-Cash system, which uses a centralized construct called the bank.
Steinbrecher’s reputation system has a central server as an integral part of its
architecture. These centralized entities make these two systems unsuitable for
fully decentralized environments.

Kinateder et al.’s reputation system provides anonymity in peer-to-peer sys-
tems under the disruptive malicious model. However, the system requires the
presence of special hardware called Trusted Platform (TP) at each peer. Addi-
tionally, the system requires that messages be exchanged using MIX cascades.
These requirements limit the reputation system to specialized networks where
TPs are available at each peer and where MIX cascades are in use.

The protocol by Pavlov et al. (based on their second witness selection
scheme) is secure under the disruptive malicious model. The protocol does
not require centralized constructs or specialized networks. However, the issue
with the protocol is that it needs O(n3) messages to be exchanged, which is
very expensive.

Challenges

We identify the following challenges in privacy preserving reputation systems:

• To the best of our knowledge, there is no framework that provides an
integrated model of trust, reputation, privacy in reputation systems, and
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Table 2.12: Literature – Privacy under the Disruptive Malicious Adversarial
Model.

System /
Protocol

Archi-
tecture

Target En-
vironment

Key Secu-
rity Mech-
anisms

Privacy
Guarantee

Complexity
(Mes-
sages)

Pavlov et
al. [105] –
WSS-2

D Distributed
environ-
ments

Verifiable
secret shar-
ing, discrete
log commit-
ment

If b < N
2 −n O(n3),

where n =
number of
witnesses

Androulaki
et al. [9]

D Peer-to-peer
systems

Anonymous
credential
systems, E-
cash (bank),
Blind sig-
natures,
Mixnets
/ Onion
Routing

If the un-
derlying
primitives
(anonymous
credential
system, e-
cash system,
and blind
signatures)
are secure

O(1)

Kinateder
and Pearson
[81]

D Peer-to-peer
systems

Trusted
platform,
MIX cas-
cades,
Digital
signatures

If the un-
derlying
primitives
(trusted
platform,
MIX cas-
cades,
digital sig-
natures) are
secure

Not Pro-
vided

Steinbrecher
[126]

C E-
commerce,
Self-help
forums, etc.

Pseudonym
/ Identity
manage-
ment

If the
provider
(central
server) is
honest and
secure

O(1)

trust recommendation and propagation. We address this issue in the next
chapter.

• The privacy preserving reputation systems discussed for the semi-honest
model, either rely on TTPs or specialized networks, or require a high
communication complexity of O(n2), where n is the number of feedback
providers. In Chapter 4, we present several protocols for the semi-honest
model, which do not depend on TTPs and specialized networks, and re-
quire a communication complexity of only O(n).

• It is assumed in [105] that it is not possible to achieve perfect privacy in
decentralized additive reputation systems. However, we argue (in Section
4.5.1) that perfect privacy is possible by allowing feedback providers to
quantify their privacy guarantee and to abstain if it is insufficient.

• We have not found any privacy preserving reputation systems for the non-
disruptive malicious model (described in Section 3.4.1). In Chapter 5, we
discuss a protocol for this model.
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• The privacy preserving reputation systems discussed for the disruptive ma-
licious model, either rely on centralized constructs or specialized hardware,
or require a very high communication complexity of O(n3). In Chapter
5, we present a protocol for the disruptive malicious model, which does
not require centralized constructs or specialized hardware. The commu-
nication complexity of our protocol is O(n) + O(log N), where n is the
number of feedback providers and N is the number of all the entities in
the system.

In Chapter 6, we will introduce and address some challenges related to trust
recommendation and propagation.
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Chapter 3

General Framework

We establish a general framework that provides a unified view of trust, reputa-
tion, privacy in reputation systems, and trust recommendation and propagation.

The framework is founded as a multi-agent system. The formalization of
trust draws upon the definition given by sociologist Diego Gambetta, which
characterizes trust as binary relational, directional, contextual, and quantifiable
as subjective probability. We define the reputation of a target agent as a function
that aggregates the quantification of trust of other agents in that target agent.

We adopt the Ideal-Real approach to formalize the privacy preservation prop-
erty of a reputation protocol. An ideal protocol for computing reputation is one
in which a Trusted Third Party (TTP) receives all inputs and then locally com-
putes the reputation. On the other hand, a real protocol computes reputation
without the participation of any TTP. The real protocol is said to preserve pri-
vacy if the adversary, with high probability, cannot obtain any more information
about the private input of an agent than it can learn in the ideal protocol.

Extensions to the general framework that allow it to encompass the notions
of trust recommendation and propagation are presented in Chapter 6.

3.1 Agents

We model our environment as a multi-agent environment.

The Set of all Agents

Let A denote the set of all agents in the environment. The cardinality of set A
is N , that is, |A| = N .

3.2 Trust

Our objective in this section is to arrive at a formal definition of trust. We begin
by citing the definition of trust given by sociologist Diego Gambetta [52]. We
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adopt this definition as the foundation for our formal model. After identifying
the various characteristics of trust with the help of Gambetta’s definition, we
proceed to develop our formal definition of trust. The section concludes with a
graphical interpretation of the model.

3.2.1 Gambetta’s Definition of Trust

As discussed in Section 2.1.1, we subscribe to the definition of trust by sociologist
Diego Gambetta. The reason for this choice is the ability to quantify trust
as probability, which consequently makes it possible to quantify the security
guarantees of the protocols that we build. The definition is given as follows
[52]:

“Trust (or, symmetrically, distrust) is a particular level of the subjective
probability with which an agent assesses that another agent or group of agents
will perform a particular action, both before he can monitor such action (or
independently of his capacity ever to be able to monitor it) and in a context in
which it affects his own action.”

As discussed in Section 2.1.2, we infer from Gambetta’s definition that trust
is binary-relational, directional, contextual, and quantifiable as subjective prob-
ability. Other characteristics of trust include: non-reflexive, asymmetric, non-
transitive, and dynamic.

3.2.2 Formal Definition of Trust

We first give some notations, which are followed by the formal definition of trust
in Definition 1.

The Binary Relation T

Let T denote a binary relation on the set A, such that the binary relation is
non-reflexive, asymmetric, and non-transitive.

Although Gambetta’s definition includes “group of agents” as an entity that
may be trusted, we limit our model only to individual agents. This choice
yields a simpler model, which is sufficient for discussing trust between individual
agents.

The Set of all Actions

Let Ψ denote the set of all actions. Some examples of actions: “prescribe correct
medicine”, “repair car”, “deliver product sold online”, etc. We refer the reader
to [70] for a comprehensive discussion of actions.

The Function perform

Let perform denote a function, such that perform : T ×Ψ→ {true, false}. Let
a, b ∈ A, (a, b) ∈ T , and ψ ∈ Ψ be an action that agent a anticipates agent b to
perform. Then perform((a, b), ψ) outputs true if agent b performs the action ψ
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anticipated by agent a, or it outputs false if b does not perform the anticipated
action.

In the rest of the thesis, we use the simplified notation perform(a, b, ψ) in-
stead of perform((a, b), ψ).

The Subjective Probability P (perform(a, b, ψ) = true)

Let a, b ∈ A, (a, b) ∈ T , and ψ ∈ Ψ be an action that agent a anticipates agent
b to perform. Then let the subjective probability P (perform(a, b, ψ) = true)
denote agent a ’s belief that agent b will perform the action ψ.

The Set of all Timestamps

Let T denote the set of all timestamps.

The 4-ary Relation U

Let U denote a 4-ary relation on the sets T , Ψ, [0, 1], and T . We call the 4-ary
relation U as the “Trust Space”.

Trust

Definition 1. Trust. The trust of an agent a in an agent b is given as the
4-tuple 〈aTb, ψ, P (perform(a, b, ψ) = true), τ〉 ∈ U, where a, b ∈ A, (a, b) ∈ T ,
ψ ∈ Ψ, P (perform(a, b, ψ) = true) ∈ [0, 1], and τ ∈ T .

Truster

Definition 2. Truster. Let a 4-tuple 〈aTb, ψ, P (perform(a, b, ψ) = true), τ〉 ∈
U be the trust of an agent a in an agent b, where a, b ∈ A, (a, b) ∈ T , ψ ∈ Ψ,
P (perform(a, b, ψ) = true) ∈ [0, 1], and τ ∈ T . Then agent a is said to be the
truster.

Trustee

Definition 3. Trustee. Let a 4-tuple 〈aTb, ψ, P (perform(a, b, ψ) = true), τ〉 ∈
U be the trust of an agent a in an agent b, where a, b ∈ A, (a, b) ∈ T , ψ ∈ Ψ,
P (perform(a, b, ψ) = true) ∈ [0, 1], and τ ∈ T . Then agent b is said to be the
trustee.

Context of Trust

Definition 4. Context of Trust. Let a 4-tuple 〈aTb, ψ, P (perform(a, b, ψ) =
true), τ〉 ∈ U be the trust of an agent a in an agent b, where a, b ∈ A, (a, b) ∈ T ,
ψ ∈ Ψ, P (perform(a, b, ψ) = true) ∈ [0, 1], and τ ∈ T . Then action ψ is said
to be the context of trust.
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Quantification of Trust

Definition 5. Quantification of Trust. Let a 4-tuple
〈aTb, ψ, P (perform(a, b, ψ) = true), τ〉 ∈ U be the trust of an agent a in an
agent b, where a, b ∈ A, (a, b) ∈ T , ψ ∈ Ψ, P (perform(a, b, ψ) = true) ∈ [0, 1],
and τ ∈ T . Then the subjective probability P (perform(a, b, ψ) = true) is said to
be the quantification of trust.

Thus, a truster’s trust in a trustee is quantified as the subjective probabil-
ity that the trustee will perform the action that the truster anticipates. For
example, if the truster and the trustee are an online buyer and an online seller
respectively, and the context is “deliver product sold online”, then the amount of
trust that the buyer has in the seller would be given as the subjective probability
P (perform(buyer, seller,“deliver product sold online”) = true).

When the context of trust is clear, we adopt the simplified notation lab for
P (perform(a, b, ψ) = true), that is, lab ≡ P (perform(a, b, ψ) = true).

Time of Trust

Definition 6. Time of Trust. Let a 4-tuple 〈aTb, ψ, P (perform(a, b, ψ) =
true), τ〉 ∈ U be the trust of an agent a in an agent b, where a, b ∈ A, (a, b) ∈ T ,
ψ ∈ Ψ, P (perform(a, b, ψ) = true) ∈ [0, 1], and τ ∈ T . Then the time given by
the timestamp τ is said to be the time of trust.

The time component of trust reflects its dynamicity. If, 1) it is understood
that the trust of a truster a in a trustee b refers to its most recent update, and
2) we are not concerned with the actual time of update, then we may simplify
the definition of trust by removing the time component and stating it as a tuple
in a 3-ary relation on the sets T , Ψ, [0, 1]. The trust of a truster a in a trustee
b is then given as the tuple 〈aTb, ψ, P (perform(a, b, ψ) = true)〉 or 〈aTb, ψ, lab〉.

Discussion

Our formal definition of trust captures each of the following eight characteris-
tics identified in Section 2.1.2: binary-relational, directional, contextual, quan-
tifiable as subjective probability, non-reflexive, asymmetric, non-transitive, and
dynamic.

The trust of a truster a in a trustee b is given as a 4-tuple
〈aTb, ψ, P (perform(a, b, ψ) = true), τ〉. T is a binary relation between agents a
and b, which is inherently directional. The binary relation is defined as non-
reflexive, asymmetric, and non-transitive. The action ψ is considered as the
context of the trust. P (perform(a, b, ψ) = true) quantifies trust as subjective
probability.

3.2.3 Graphical Interpretation of Trust

The trust of a truster a in a trustee b, given as
〈aTb, ψ, P (perform(a, b, ψ) = true)〉, may be interpreted as the graph Gψ =

52



({a, b}, {(a, b)}, {P (perform(a, b, ψ) = true)}). The graph G has two vertices a
and b representing the truster and the trustee respectively. The edge (a, b) corre-
sponds to the binary relation aTb. The quantification of trust
P (perform(a, b, ψ) = true) is given as the weight of the edge. Action ψ is
the context of the graph.

A graph has a single context. If there is trust between agents in multiple
contexts then a separate graph is required for each context. We do not consider
the time component in the graphical interpretation.

Web of Trust

Definition 7. Web of Trust. Let a web of trust in context ψ be defined as a
weighted directed graph Gψ = (A, T, [0, 1]).

The agents in the set A form the vertices of the graph. The binary relations
between agents given as ordered pairs in the set T are the edges of the graph.
The weights of the edges lie in the set [0, 1]. A web of trust has an action ψ as
its context, which is drawn from the set Ψ.

3.3 Reputation

In this section we present our formal definitions of reputation, reputation pro-
tocols, and reputation systems.

3.3.1 Definition of Reputation

Source Agent

Definition 8. Source Agent. An agent a is said to be a source agent of an
agent b in the context of an action ψ if a has trust in b in the context ψ. In other
words, agent a is a source agent of agent b in context ψ if
〈aTb, ψ, P (perform(a, b, ψ) = true)〉 ∈ U.

The set of all source agents of an agent b in context ψ is given as Sb,ψ =
{a | 〈aTb, ψ, P (perform(a, b, ψ) = true)〉 ∈ U}. When the context is clear, the
notation Sb may be used instead of Sb,ψ. The quantification of a source agent a ’s
trust in agent b, that is P (perform(a, b, ψ) = true), is referred to as feedback.

Reputation

Definition 9. Reputation. Let St = {a1 . . . an} be the set of source agents
of an agent t in context ψ. This implies that each agent a ∈ St has the trust
〈aT t, ψ, P (perform(a, t, ψ) = true)〉 in agent t. Let rep denote a function, such
that rep : [0, 1]1× . . .× [0, 1]n → R. Then the reputation of agent t in context ψ
is given as: rep(P (perform(a1, t, ψ) = true), . . . , P (perform(an, t, ψ) = true)),
or in simplified notation: rep(la1t, . . . , lant).
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The reputation of an agent t is denoted by rt,ψ, or rt when the context is
clear.

We have defined the reputation of an agent as any function that aggregates
the feedback of its source agents. In the following two sections we present
possible realizations of this function.

The Function rep+

Let function rep+ denote the reputation of an agent t in context ψ, such that:

rep+(la1t . . . lant) =
n∑
i=1

lait (3.1)

The function rep+ implements the reputation of an agent t as the sum of
the feedback values of its source agents.

The Function rep⊕

Let function rep⊕ denote the reputation of an agent t in context ψ, such that:

rep⊕(la1t . . . lant) =
∑n
i=1 lait
n

(3.2)

The function rep⊕ implements the reputation of an agent t as the mean of
the feedback values of its source agents. We will use this realization of reputation
in the upcoming chapters. The reason for this choice is that mean is a statistic
which is intuitive and easy to understand for human users. The eBay reputation
system (ebay.com), which is one of the most successful reputation systems,
represents reputation as the simple sum of all feedback. Our decision to define
reputation in simple and intuitive terms is influenced substantially by the success
of the eBay reputation system. However, we go one step further and derive the
average from the sum in order to normalize the reputation values.

Please note that rep⊕ is essentially a function of rep+. The protocols that
we develop in subsequent chapters for computing rep⊕, first compute rep+ and
then use the result to obtain rep⊕.

3.3.2 Reputation Protocols

Reputation Protocol

Definition 10. Reputation Protocol. Let Π be a multi-party protocol. Then
Π is defined as a Reputation Protocol, if 1) the participants of the protocol
include: agents q, t and all n source agents of t in the context ψ, 2) the inputs
include: the feedbacks of the source agents in context ψ, and 3) the output of
the protocol is: agent q learns the reputation rt,ψ of agent t.
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Querying Agent

Definition 11. Querying Agent. When an agent q initiates a reputation
protocol to determine the reputation of an agent t, we refer to agent q as the
querying agent.

Target Agent

Definition 12. Target Agent. When an agent q initiates a reputation protocol
to determine the reputation of an agent t, we refer to agent t as the target agent.

Decentralized Reputation Protocol

Definition 13. Decentralized Reputation Protocol. A reputation protocol
Π is said to be a decentralized reputation protocol, if there does not exist an
agent C (a central entity) whose participation is required in every execution of
the protocol.

3.3.3 Reputation Systems

Reputation System

Definition 14. Reputation System. A reputation system R is defined as a
pair (A,Π), where A is the set of all agents in the environment, and Π is a
reputation protocol whose participants are in A.

Decentralized Reputation System

Definition 15. Decentralized Reputation System. A reputation system
D = (A,Π) is defined as a decentralized reputation system, if Π is a decentralized
reputation protocol.

3.4 Adversary

The goal of a multi-party protocol is to compute the specified output from
the inputs of the participants. All participants of the protocol are expected to
pursue this and only this goal. An honest participant is one who conforms to this
expectation. However, there may exist dishonest participants who have ulterior
motives. Those motives may include learning the inputs of other participants,
tampering with the output, disrupting the protocol, etc.

Unless stated otherwise, we assume that the dishonest agents in a protocol
collude to achieve their ulterior objectives. We refer to this coalition of dishonest
agents as the adversary.

We identify three adversarial models, which characterize the behavior of
dishonest agents. The models are: Semi-Honest, Non-Disruptive Malicious, and
Disruptive Malicious. When developing a protocol, we will assume that all
dishonest agents operate under one of these three models.
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The semi-honest and the disruptive malicious models are standard adversar-
ial models [56]. We also consider an intermediate model that we call the non-
disruptive malicious model. The non-disruptive malicious model adds an extra
layer of granularity between the standard semi-honest and disruptive malicious
models. We describe the three adversarial models in the following subsection.

3.4.1 Adversarial Models

Semi-Honest. In the semi-honest model, the agents do not deviate from the
specified protocol. In other words, they always execute the protocol according
to the specifications. The adversary abstains from wiretapping and tampering of
the communication channels. However, within these constraints, the adversary
passively attempts to learn the inputs of honest agents by using intermediate
information received during the protocol and any other information that it can
gain through other legitimate means.

Non-Disruptive Malicious. Malicious agents are not bound to conform to
the protocol. Agents under a malicious model may deviate from the protocol
as and when they deem necessary. They actively attempt to achieve their ob-
jectives. They may participate in extra-protocol activities, devise sophisticated
strategies, and exhibit arbitrary behavior. Specifically, malicious agents may
1) refuse to participate in the protocol, 2) provide out of range values as their
inputs, 3) selectively drop messages that they are supposed to send, 4) prema-
turely abort the protocol, 5) distort information, and 6) wiretap and tamper
with all communication channels.

We define a non-disruptive malicious adversary as a malicious adversary who
executes the malicious actions only if they lead to the disclosure of the inputs of
honest agents. Non-disruptive agents have a single objective: learn the inputs
of honest agents. They do not disrupt the normal function of the protocol other
than to achieve this objective.

Disruptive Malicious. We define a disruptive malicious adversary as a mali-
cious adversary who has the following objectives: 1) learn the inputs of honest
agents, and 2) disrupt the protocol for honest agents. The reasons for disrupting
the protocol may range from gaining illegitimate advantage over honest agents
to completely denying the service of the protocol to honest agents.

3.4.2 General Limitations of the Adversary

We assume the adversary to be limited in the aspects defined below.

Non-Adaptive. We consider that the adversary is non-adaptive. This means
that the set of dishonest agents is fixed before the execution of the protocol and
it remains fixed throughout the execution of the protocol. However, the honest
agents do not know the members of the set of dishonest agents.
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Computationally PPT Bounded. We assume that the computational power
of the adversary is Probabilistic Polynomial Time (PPT) bounded. Intuitively,
a computationally PPT bounded adversary can only run an algorithm that takes
polynomial amount of time. The adversary is thus unable to break any crypto-
graphic scheme that requires more than polynomial time to do so. We refer the
reader to [56] for a discussion of computationally PPT bounded adversaries.

3.5 Security

We consider a protocol to be secure under a given adversarial model if it satisfies
the following two requirements under that adversarial model: correctness and
privacy preservation.

3.5.1 Correctness

A protocol satisfies the correctness requirement if it always produces an output
consistent with its specification. This means that the value of the output is
correct, and that all recipients learn the correct value.

Let us consider a protocol Π which takes input xi from each participant ai,
where i ∈ {1 . . . n}. The protocol is stipulated to output the sum of all inputs,
that is,

∑
xi, to all participants. Then the protocol Π is said to be correct if

upon every execution, each participant learns the output y and y =
∑
xi.

3.5.2 Privacy

We first give our definitions of some important concepts regarding privacy. We
then proceed to describe the privacy preservation property of a protocol.

Private Data

Definition 16. Private Data. Let x be some data and an agent a be the owner
of x. Then x is agent a’s private data if agent a desires that no other agent
learns x. An exception is those agents to whom a reveals x herself. However,
if a reveals x to an agent b, then a desires that b does not use x to infer more
information. Moreover, a desires that b does not reveal x to any third party.

Preservation of Privacy

Definition 17. Preservation of Privacy (by an Agent). Let x be an
agent a’s private data that agent a reveals to an agent b. Then agent b is said
to preserve the privacy of agent a w.r.t. x, if 1) b does not use x to infer more
information, and 2) b does not reveal x to any third party.

57



The Action ρ

Let action ρ = “preserve privacy”. The action “preserve privacy” is synonymous
with the action “be honest”, since an agent preserves privacy only if it is honest,
and an honest agent always preserves privacy since it has no ulterior motives.

Trusted Third Party (TTP)

Definition 18. Trusted Third Party (TTP). Let S ⊆ A be a set of n agents,
and TTPS ∈ A be an agent. Then TTPS is a Trusted Third Party (TTP) for
the set of agents S if for each a ∈ S, P (perform(a, TTPS , ρ) = true) = 100%.

Thus, a Trusted Third Party (TTP) for a set of agents is an entity whom
every agent in the set fully trusts to preserve its privacy.

We now give an intuitive description of the privacy preservation property of
a protocol.

Privacy Preserving Protocol

We adopt the Ideal-Real approach [56, 25, 24] to formalize the privacy preser-
vation property of a protocol.

Intuitively, a multi-party protocol in the Ideal Model is a protocol that
comprises of a TTP as a participant. The TTP receives all inputs in the protocol
and then locally computes the output. On the other hand, a multi-party protocol
in the Real Model is a protocol that does not rely on a TTP, and computes the
output in a distributed manner.

The privacy preservation property of a real protocol R is formalized as fol-
lows: An ideal protocol I is first defined which has the same functionality as
the protocol R. This means that the ideal protocol has the same parameters
(participants, inputs, outputs, etc.) as the protocol R, with the exception of
a TTP as an additional participant. In the ideal protocol, the TTP receives
the private inputs of the participants, computes the output, and sends it to the
recipients. It is assumed that the privacy of the participants is preserved since
the TTP is honest and fully trusted. In an ideal protocol the adversary cannot
obtain any more information about the private input of a participant other than
what it can learn from the information that it has beforehand and the output
of the protocol that it receives.

The real protocol, which cannot consider a TTP as a participant, is said to
preserve privacy if it can emulate the ideal protocol. Emulating the ideal pro-
tocol means that the adversary, with high probability (see Section 3.6), cannot
obtain any more information about the private input of an agent than it can
learn in the ideal protocol.
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3.6 Privacy Preserving Reputation Protocols

Security Threshold

The security threshold is a parameter that can be assigned a value in [0, 1] ac-
cording to the security needs of an application. A value of the security threshold
closer to 1 indicates a stricter security requirement. For example, in the exper-
iments (Section 4.8) on the Advogato.org web of trust, the security threshold
is realized as 0.90. We consider high probability as probability greater than or
equal to the security threshold, and low probability as probability less than the
security threshold.

Ideal Privacy Preserving Reputation Protocol

Definition 19. Ideal Privacy Preserving Reputation Protocol. Let Π be
a reputation protocol. Then Π is an ideal privacy preserving reputation protocol
under a given adversarial model, if: 1) the inputs of all n source agents of t
are private, 2) TTPSt is a participant, where St = St,ψ is the set of all source
agents, 3) m < n of the source agents (given as set M) and agents q and t
are considered to be dishonest, however, q wishes to learn the correct output,
4) agents St −M and TTPSt are honest, 5) as part of the protocol, the TTPSt
receives the private inputs from the source agents and outputs the reputation
rt,ψ to agent q, and 6) over the course of the protocol, the private input of each
agent a ∈ St −M may be revealed only to the TTPSt .

In an ideal privacy preserving reputation protocol, it is assumed that for
each agent a ∈ St−M , the adversary does not gain any more information about
the private input of agent a from the protocol other than what he can deduce
from what he knows before the execution of the protocol and the output, with
probability P (perform(a, TTPSt , ρ) = true) = 100%, under the given adversarial
model.

Real Privacy Preserving Reputation Protocol

Definition 20. Real Privacy Preserving Reputation Protocol. Let I
be an ideal privacy preserving reputation protocol. Then R is a real privacy
preserving reputation protocol w.r.t. I under a given adversarial model, if: 1)
R has the same parameters (participants, private inputs, output, adversary,
honest agents, setup, etc.) as I, except that there is no TTPSt as a participant
2) the adversary learns no more information about the private input of any agent
a than it can learn in protocol I, with high probability, when both protocols are
operating under the given adversarial model.

3.7 Communication

The communication model is considered to have the characteristics listed below.
These are standard assumptions for defining secure protocols [56].
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Point-to-Point. A point-to-point communication channel exists between every
two parties in the network.

Synchronous. The communication is synchronous.

A malicious adversary may wire-tap and tamper with the communication
channels. We describe these two malicious actions as follows:

Wire-Tapping. Wire-tapping of a communication channel between two honest
parties implies that the adversary is able to obtain all messages transmitted
between the two parties.

Tampering. Tampering with a communication channel between two honest
parties comprises of malicious activities such as modifying, duplicating, and
generating messages on a communication channel between the two parties.

3.8 Discussion

Our framework has the following characteristics:

• The framework provides a unified view of trust, reputation, preserving
privacy in reputation protocols, and trust recommendation and propaga-
tion.

• Trust is defined as contextual and an action is considered as the context
of trust. Trust is quantified as the subjective probability that the trustee
will perform the action. Moreover, trust is not considered to be necessarily
reflexive and transitive.

• The reputation of an agent is defined as any function that aggregates the
feedback of its source agents. Realizations of the feedback aggregation
function include summation and mean.

• The framework considers three adversarial models: semi-honest, non-
disruptive malicious, and disruptive malicious.

• The privacy preservation property of a reputation protocol is formalized
using the Ideal-Real approach.

• The framework is general, that is, it is not coupled with any specialized
hardware platforms or networks.

There are a number of frameworks in the literature that model trust (Sant
and Maple [120], Capra [26], Abdul-Rahman and Hailes [1], Marsh [90]), rep-
utation (Levien [87], Kamvar et al. [80], Josang and Ismail [76]), and privacy
in reputation systems (Nin et al. [101], Androulaki et al. [9], Pavlov et al.
[105], Kinateder and Pearson [81]). However, these frameworks do not provide
an integrated model of trust, reputation, privacy in general decentralized rep-
utation systems, and trust recommendation and propagation. As discussed in
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Section 2.3, the frameworks provided by Nin et al. [101], Androulaki et al. [9],
and Kinateder and Pearson [81] are specific to private collaborative networks,
anonymous networks, and trusted platforms respectively. The framework given
by Pavlov et al. [105] integrates trust, reputation, and privacy. However, their
model differs from ours as they do not quantify trust as subjective probability
and they do not formalize the privacy preservation property of a reputation
protocol using the Ideal-Real approach.
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Chapter 4

Reputation Protocols for
the Semi-Honest
Adversarial Model

In this chapter, we propose some reputation protocols that are decentralized and
secure under the semi-honest adversarial model (discussed in Section 3.4.1).

Our first step is to define the problem. We then give an ideal privacy preserv-
ing reputation protocol, which is considered secure by definition. The privacy
preservation property of the subsequent real protocols is established by compar-
ing them with this ideal protocol.

We then proceed to develop and analyze a simple real privacy preserving
reputation protocol based on the secure sum protocol [31]. Although the proto-
col is secure only under a restricted semi-honest model, it gives insight into the
challenges faced in developing a real privacy preserving reputation protocol.

The main contributions of this chapter are two privacy preserving reputation
protocols (Round-Trip and k-Shares), which provide security under the full semi-
honest adversarial model.

The Round-Trip protocol (Section 4.4) builds upon the secure multi-party
computation techniques of the secure-sum protocol. Additional techniques uti-
lized by the protocol include trust awareness, data perturbation, and a “round-
trip” of messages instead of messages forwarded in a single direction. In Section
4.5, we present two extensions to the round-trip protocol. The first extension
allows agents to abstain from providing feedback when the privacy guarantee
offered by the protocol is insufficient. The second extension introduces seed
agents, which further strengthens the protocol.

The k-Shares protocol (Section 4.6) combines trust awareness with secret
sharing. Compared to Round-Trip, the k-Shares protocol provides each agent
with a greater choice of trustworthy agents to rely on. In Section 4.7, we propose
algorithms that determine the suitability of the k-shares protocol for a given
complete or partial web of trust.
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We present the experimental results in Section 4.8 and a comparison of our
protocols with the existing protocols in Section 4.9.

4.1 Problem Definition

Definition 21. Problem Definition (Semi-Honest). Let St,ψ = {a1 . . . an}
be the set of all source agents of agent t in the context of action ψ. Find a
reputation protocol Π, which takes private input lat ≡ P (perform(a, t, ψ) = true)
from each agent a ∈ St, and outputs the reputation rt,ψ of the target agent t to a
querying agent q. Reputation is computed as rep⊕ (Equation 3.2). Agents q, t,
and m < n of the source agents (given as set M) are considered to be dishonest,
however, q wishes to learn the correct output. The reputation protocol Π is
required to be decentralized and secure under the semi-honest model.

4.2 An Ideal Reputation Protocol

We first present an ideal privacy preserving reputation protocol. The subsequent
protocols in the real model will attempt to emulate the privacy preservation
property of this protocol. The protocol is straight forward: the TTP receives
the private inputs of all source agents, computes the output and sends it to
the querying agent. Since the agents are semi-honest, they follow the protocol
according to the specification, and the adversary does not wire-tap or tamper
with the communication channels.

4.2.1 Protocol Specification

The protocol is specified in Figure 4.1.

4.2.2 Security

Correctness

Theorem 1. In the protocol Semi-Honest-Ideal (Figure 4.1), agent q learns the
correct reputation of agent t in the context ψ, under the semi-honest model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification and that the messages are not tampered with.

Each agent a ∈ St sends lat to TTPSt . TTPSt computes rt,ψ = (
∑n
i=1 lait)/n,

which is the correct reputation of t in the context ψ (Equation 3.2). The TTPSt
sends rt,ψ to q. Thus agent q learns the correct reputation of agent t in the
context ψ, under the semi-honest model.

Privacy

Theorem 2. Semi-Honest-Ideal is an ideal privacy preserving reputation pro-
tocol under the semi-honest model. Moreover, the adversary does not gain any
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Protocol: Semi-Honest-Ideal
Participants: Agents: q, t, St ≡ St,ψ = {a1 . . . an}, TTPSt . Agents q, t, and
a subset of St,ψ of size m < n are considered to be dishonest, however, q wishes
to learn the correct output. n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ, the reputation of agent t in the context ψ.
Setup: Each agent a maintains Sa ≡ Sa,ψ, the set of its source agents in the
context ψ. All participants know the identity of TTPSt .
Steps:

1. The querying agent q sends a request for the set St to the target agent t.
2. Agent q receives the set St from agent t.
3. Agent q sends the set St and the identity of agent t to TTPSt .
4. Agent q sends the identity of agent t and ψ to each agent a ∈ St.
5. Each agent a ∈ St sends lat to TTPSt .
6. TTPSt after receiving lat from each agent a ∈ St, computes the reputation

of agent t as rt,ψ = (
∑n
i=1 lait)/n.

7. TTPSt sends rt,ψ to q.

Figure 4.1: Protocol: Semi-Honest-Ideal

more information about the private input of each agent a ∈ St −M other than
what he can deduce from what he knows before the execution of the protocol and
from the output, with probability P (perform(a, TTPSt , ρ) = true), under the
semi-honest model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification, and the communication channels are not wire-
tapped and not tampered with.

Semi-Honest-Ideal is an ideal privacy preserving reputation protocol (Def-
inition 19) under the semi-honest model since: 1) the inputs of the n source
agents of t are private, 2) TTPSt is a participant, where St is the set of all
source agents, 3) m < n of the source agents (given as set M) and agents q and
t are considered to be dishonest, however, q wishes to learn the correct output,
4) agents St −M and TTPSt are honest, 5) as part of the protocol, the TTPSt
receives the private inputs from the source agents and outputs the reputation
rt,ψ to agent q (the source agents and TTPSt follow the protocol according to
the specification), and 6) over the course of the protocol, the private input of
each agent a ∈ St −M is revealed only to the TTPSt (the adversary cannot
wire-tap the communication channels).

It follows from Definition 19, that the adversary does not gain any more
information about the private input of each agent a ∈ St −M other than what
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he can deduce from what he knows before the execution of the protocol and
from the output, with probability P (perform(a, TTPSt , ρ) = true), under the
semi-honest model.

4.2.3 Complexity

Table 4.1: Protocol Semi-Honest-Ideal – Complexity.

Steps Messages IDs Numbers
1 1
2 1 n
3 1 n + 1
4 n n
5 n n
6
7 1 1
Total 2n + 4 3n + 1 n + 1
Complexity O(n) O(n) O(n)

The protocol requires 2n+ 4 messages to be exchanged (complexity: O(n)).
In terms of bandwidth used, the protocol requires transmission of the fol-

lowing amount of information: 3n+ 1 agent IDs (complexity: O(n)), and n+ 1
numbers (complexity: O(n)).

4.3 The Secure Sum Reputation Protocol

The secure sum protocol [31], [134] is a well known protocol that computes the
sum of local values of multiple sites without revealing the local value of any site.
The protocol is clearly applicable to the problem of computing the reputation
of an agent in an additive manner while preserving the privacy of local feedback
values. However, the secure sum protocol has the shortcoming that it does not
preserve privacy when the sites are allowed to collude. We include the secure
sum protocol here to establish a sense of the challenges faced in developing
a privacy preserving reputation protocol for the real model. Moreover, our
Round-Trip protocol (Section 4.4) is inspired by the secure sum protocol.

4.3.1 Tools and Techniques: Data Perturbation

Data perturbation is a technique for hiding a data item by adding noise to it.
The noise added is sufficiently large in order to make the derivation or estimation
of the data item from the resulting sum highly improbable.

We quote the Data Perturbation Assumption from [43] as follows (variable
names differ from the original definition):
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Definition 22. Data Perturbation Assumption. If an input is x ∈ X, we
assume that x+ y effectively preserves the privacy of x if y is a secret random
number uniformly distributed in a domain Y , where |Y | � |X|.

As an example, let’s consider that a value x = 0.5 ∈ [0, 1] is to be hidden. If
we add a secret random number y = 3.2 ∈ [0, 10] to x, then the sum x+y = 3.7.
In this case it is impossible to learn any information about x from the sum.

The data perturbation technique is well established in several domains in-
cluding privacy-preserving data mining [4], [134], and secure two party [43], [55]
and multi-party [55] computation.

With data perturbation, there is some probability that x will not be hidden
completely. In the above example, if x = 1 and the secret random number turns
out to be y = 10, then the sum would be x+y = 11, which would give away the
value of x. As another case, if x = 1 and the secret random number is y = 9.5,
then the sum would be x+ y = 10.5, which informs that x ≥ 0.5.

For x ∈ [0, 1] and y ∈ [0,Υ], we state the data perturbation assumption as
follows:

Definition 23. Data Perturbation of x ∈ [0, 1] with y ∈ [0,Υ]. We assume
that for x ∈ [0, 1], the interval [0,Υ] is large enough that when a secret random
number y, uniformly distributed in [0,Υ], is added to x, the probability that x
will be completely hidden is high.

4.3.2 Protocol Specification

A variant of the secure sum protocol adapted for computing the reputation of
a target agent t is specified in Figure 4.2.

4.3.3 Security

Correctness

Theorem 3. In the protocol Semi-Honest-Secure-Sum (Figure 4.2), agent q
learns the correct reputation of agent t in the context ψ, under the semi-honest
model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification and that the messages are not tampered with.

Agent q sends
−→
St and a random number y to a1. Agent a1 adds la1t to y and

sends the sum σ1 to a2. Subsequently, each agent ai ∈ {a2 . . . an} adds lait to
the sum. Thus, when an sends the total σn to q, σn = y+

∑n
i=1 lait. q computes

rt,ψ = (σn − y)/n, which is the correct reputation of agent t (Equation 3.2).
Thus the execution of the protocol results in q learning the correct reputation
of agent t in the context ψ, under the semi-honest model.
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Protocol: Semi-Honest-Secure-Sum
Participants: Agents: q, t, St ≡ St,ψ = {a1 . . . an}. Agents q, t, and a subset
of St,ψ of size m < n are considered to be dishonest, however, q wishes to learn
the correct output. n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ, the reputation of agent t in the context ψ.
Setup: Each agent a maintains Sa ≡ Sa,ψ, the set of its source agents in the
context ψ.
Steps:

1. The querying agent q sends a request for the set St to the target agent t.
2. Agent q receives the set St from agent t.
3. Agent q creates an ordered list of the agents in St, which is given as the

vector
−→
St = 〈a1, a2, . . . , an〉.

4. Agent q sends the identity of agent t, the vector
−→
St, and a random number

y ∈ [0,Υ] to agent a1.
5. Agent a1 computes σ1 = y + la1t. Agent a1 then sends the identity of agent
t, vector 〈a2, a3, . . . , an〉, and σ1 to a2.

6. Each subsequent agent ai receives the identity of agent t, vector
〈ai, ai+1, . . . , an〉, and σi−1. Agent ai then computes σi = σi−1 + lait and
sends the identity of agent t, vector 〈ai+1, ai+2, . . . , an〉, and σi to ai+1.

7. The last agent an upon receipt of the identity of agent t, vector 〈an〉, and
σn−1, computes σn = σn−1 + lant, and sends σn to q.

8. q computes rt,ψ = (σn − y)/n.

Figure 4.2: Protocol: Semi-Honest-Secure-Sum

Privacy

In the secure sum protocol, the predecessor and the successor of an agent can
collude to breach the privacy of the agent. An agent ai receives σi−1 from
its predecessor ai−1. Agent ai then sends σi = σi−1 + lait to its successor
ai+1. If agents ai−1 and ai+1 share the values σi−1 and σi, they can compute
lait = σi − σi−1. Therefore, the secure sum protocol is not a real privacy
preserving protocol under the full semi-honest model. The protocol preserves
privacy only under a restricted semi-honest model, in which agents are not
allowed to collude.

Theorem 4. Let’s add the following restriction to the semi-honest model: dis-
honest agents do not collude. Then Semi-Honest-Secure-Sum is a real privacy
preserving protocol under the restricted semi-honest model.

68



Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification, and that the communication channels are not
wire-tapped and not tampered with. Additionally, it is assumed in the restricted
model that agents do not collude.

When agent a2 receives σ1 = y + la1t from agent a1, agent a2 learns no
information about la1t, with high probability, due to the data perturbation
provided by y ∈ [0,Υ] (Definition 22). Agent a2 has no knowledge of y and it
does not collude with any other agent to be able to learn y.

Subsequently, when each agent ai ∈ {a2 . . . an−1} sends σi to agent ai+1,
agent ai+1 cannot learn any information about lajt ∈ {la1t . . . lait}, with high
probability, since each lajt is perturbed by y +

∑
k∈{1...i}−{j} lakt. y and lakt ∈

{la1t . . . lait} are not known to ai+1.
Towards the end of the protocol, when agent an sends σn = y+

∑n
i=1 lait to

agent q, agent q can only learn
∑n
i=1 lait by subtracting y from σn.

∑n
i=1 lait is

also known to q in the Semi-Honest-Ideal protocol (as the product of rt,ψ and
n), therefore whatever q can learn at this point can also be obtained in the ideal
protocol.

The protocol Semi-Honest-Secure-Sum is a real privacy preserving reputa-
tion protocol (Definition 20) under the restricted semi-honest model, since: 1)
Semi-Honest-Secure-Sum has the same parameters as Semi-Honest-Ideal (ex-
cept the TTP ), and 2) the adversary (each of the dishonest agents) learns no
more information about the private input of an agent a in Semi-Honest-Secure-
Sum than it can learn in Semi-Honest-Ideal, with high probability, under the
restricted semi-honest adversarial model.

4.3.4 Complexity

Table 4.2: Protocol Semi-Honest-Secure-Sum – Complexity.

Steps Messages IDs Numbers
1-2 2 n

4-7 n + 1
n(n+1)

2
+ n n + 1

8

Total n + 3
n(n+1)

2
+ 2n n + 1

Complexity O(n) O(n2) O(n)

The protocol requires n+ 3 messages to be exchanged (complexity: O(n)).
In terms of bandwidth used, the protocol requires transmission of the fol-

lowing amount of information: n(n+1)
2 + 2n agent IDs (complexity: O(n2)), and

n+ 1 numbers (complexity: O(n)).
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4.3.5 Discussion

In the secure sum protocol, the order in which agents contribute to the sum
is pre-determined by the querying agent. A source agent has no choice in the
selection of its predecessor and successor. This enables the predecessor and the
successor of an agent to collude and breach the privacy of the agent.

4.4 The Round-Trip Reputation Protocol

In this section, we present our round-trip protocol, which is a real privacy
preserving reputation protocol under the semi-honest model. The round-trip
protocol is inspired by the secure sum protocol. However, the round-trip proto-
col provides security under the semi-honest model without the restriction that
agents do not collude.

4.4.1 Tools and Techniques: Trust Awareness

We define the trust awareness of an agent a as its knowledge of the trustworthi-
ness of fellow agents in the system in the context of preserving privacy. Having
this knowledge allows the agent to differentiate between fellow agents who are
more likely to preserve its privacy. This knowledge may be acquired by an agent
through any of the techniques discussed in Section 2.1.3, that is, direct interac-
tion, trust recommendation and propagation, trust negotiation, and reputation.

4.4.2 Protocol Outline

We outline below some of the key steps of the protocol.

1. Initiation. The protocol is initiated by a querying agent q to determine
the reputation of a target agent t. Agent q retrieves St from t and initiates
the forwards trip by sending S = St and r = 0 to an agent randomly
selected from St.

2. Forwards Trip. In the forwards trip, the receiving agent adds its local
feedback value and a random number y to r. After removing itself from
S, the agent sends the updated S and r to the agent in S that it trusts
the most to preserve its privacy. The protocol continues with the forwards
trip in this manner until the last agent in S updates r. The last agent
then initiates the backwards trip by sending S = St and r to a randomly
selected agent in St.

3. Backwards Trip. In the backwards trip, the receiving agent removes
the random number y from r that it added to it in the forwards trip.
The agent then removes itself from S and sends the updated S and r to
the agent in S that it trusts the most (preferably a different agent than
before). The backwards trip continues in this manner until the last agent
in S updates r. The last agent then sends r to q.
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4. Result. The value of r that q receives is the sum of the local feedback
values of all agents in St. Agent q computes rt,ψ = r/n.

The general ideas behind the correctness and privacy preservation properties
of the protocol are summarized below. Detailed security analysis of the protocol
is provided in Section 4.4.4. The innovations in the protocol are discussed in
Section 4.4.6.

Correctness. In the forwards trip, each source agent adds its feedback value
and a random number. Thus at the end of the forwards trip the sum
comprises of: 1) the sum of all feedback values, and 2) the sum of all
random numbers. In the backwards trip, each source agent subtracts the
random number that it added in the forwards trip. Thus the final sum is
the sum of all feedback values, which leads to the correct reputation value
of the target agent.

Privacy Preservation. In the forwards trip, the feedback value of an agent is
protected by data perturbation due to the secret random number that it
adds itself. In the backwards trip the feedback value is protected by data
perturbation due to the sum of the feedback values of all the other honest
agents added to it. As long as there are Υ + 1 honest source agents in
the protocol, data perturbation will hold for each honest agent’s feedback
value in the backwards trip. The only way for the adversary to learn the
feedback of an agent a is if the two agents that a selects as trustworthy
turn out to be dishonest. However, the probability of that is low since the
trustworthy agents are selected by a himself.

4.4.3 Protocol Specification

The protocol is specified in Figure 4.3. It is given as a collection of events and
associated actions for an agent a. The protocol is uniform for every participant.
Table 4.3 describes the functions used in the protocol.

4.4.4 Security

Correctness

Theorem 5. In the protocol Semi-Honest-Round-Trip (Figure 4.3), agent q
learns the correct reputation of agent t in the context ψ, under the semi-honest
adversarial model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification and that the messages are not tampered with.

When the querying agent initiates the query, the variable r = 0. In the
forwards trip, the tuple (FORWARDS, q, t, s, ψ, r, S) arrives once at each agent
a ∈ St, who adds the values of its lat and y(q,t,s) to it. When the tuple arrives
at the first agent in the backwards trip, each a ∈ St has added the values of its
lat and y(q,t,s) to r. For the purpose of this proof, let’s refer to the y(q,t,s) value
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Table 4.3: Description of the functions used in Semi-Honest-Round-Trip.

Function Description

random element(S) Returns a random element from the set S.

timestamp() Returns current time.

random(α,β) Returns a random number uniformly distributed over the
interval [α, β], where α and β are constants.

trustworthy(a, S) Returns an agent b from the set S such that
P (perform(a, b, ρ) = true) ≥ 0 ∧ ∀v ∈ S − {b},
P (perform(a, b, ρ) = true) ≥ P (perform(a, v, ρ) = true).
If two or more agents meet this criteria, then one of those
agents is selected at random. If none of the agents meet
this criteria, then an agent is selected at random from S.
Intuitively, function trustworthy returns an agent b that
the agent a trusts the most to preserve its privacy (out of
all the agents in the set S).
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Protocol: Semi-Honest-Round-Trip
Participants: Agents: q, t, St ≡ St,ψ = {a1 . . . an}. Agents q, t, and a subset
of St,ψ of size m < n are considered to be dishonest, however, q wishes to learn
the correct output. n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ, the reputation of agent t in the context ψ.
Setup: Each agent a maintains Sa ≡ Sa,ψ, the set of its source agents in the
context ψ.
Events and Associated Actions (for an Agent a):

need arises to determine rt,ψ

� initiate query
1 send tuple (request for sources, ψ) to t
2 receive tuple (sources, ψ, St) from t
3 a(f,out) ← random element(St)
4 q ← a
5 s← timestamp()
6 r ← 0
7 send tuple (forwards, q, t, s, ψ, r, St) to a(f,out)

tuple (request for sources, ψ) received from agent q
1 send tuple (sources, ψ, Sa) to q

tuple (forwards, q, t, s, ψ, r, S) received from agent a(f,in)

1 r(f,in) ← r
2 y(q,t,s) ← random(0,Υ)
3 r(f,out) ← r(f,in) + lat + y(q,t,s)

4 S(f,in) ← S
5 S(f,out) ← S(f,in) − {a}
6 if |S(f,out)| > 0
7 then a(f,out) ← trustworthy(a, S(f,out))
8 a(q,t,s) ← a(f,out)

9 send tuple (forwards, q, t, s, ψ, r(f,out), S(f,out)) to a(f,out)

10 else send tuple (request for sources, ψ) to t
11 receive tuple (sources, ψ, St) from t
12 a(f,out) ← trustworthy(a, St)
13 a(q,t,s) ← a(f,out)

14 send tuple (backwards, q, t, s, r(f,out), St) to a(f,out)

15 store y(q,t,s) and a(q,t,s)

Figure 4.3: Protocol: Semi-Honest-Round-Trip
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Protocol: Semi-Honest-Round-Trip (contd.)

tuple (backwards, q, t, s, r, S) received from agent a(b,in)

1 r(b,in) ← r
2 r(b,out) ← r(b,in) − y(q,t,s)

3 S(b,in) ← S
4 S(b,out) ← S(b,in) − {a}
5 if S(b,out) 6= φ and |S(b,out) − {a(q,t,s)}| > 0
6 then a(b,out) ← trustworthy(a, S(b,out) − {a(q,t,s)})
7 send tuple (backwards, q, t, s, r(b,out), S(b,out)) to a(b,out)

8 else if |S(b,out)| > 0
9 then a(b,out) ← trustworthy(a, S(b,out))

10 send tuple (backwards, q, t, s, r(b,out), S(b,out)) to a(b,out)

11 else a(b,out) ← q
12 send tuple (result, q, t, s, r(b,out)) to a(b,out)

13 discard y(q,t,s) and a(q,t,s)

tuple (result, q, t, s, r) received from agent a(b,in)

1 rt,ψ ← r/n

Figure 4.4: Protocol: Semi-Honest-Round-Trip (contd.)
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of an agent a as ya. Then the value of r when it reaches the first agent in the
backwards trip is r =

∑
a∈St(lat + ya).

In the backwards trip, the tuple (BACKWARDS, q, t, s, ψ, r, S) arrives once at
each agent. Each of those n agents, a ∈ St, subtracts ya from r. Thus when
(RESULT, q, t, s, ψ, r, S) arrives at q, r =

∑
a∈St lat. q computes rt = r/n, which

is the correct reputation of agent t in the context ψ (Equation 3.2). Thus agent
q learns the correct reputation of agent t in the context ψ, under the semi-honest
adversarial model.

Privacy

Theorem 6. Let’s assume that in the Semi-Honest-Ideal and the Semi-Honest-
Round-Trip protocols, there are h + 1 honest source agents, such that h ≥ Υ.
Moreover, assume that for each agent a ∈ St in the Semi-Honest-Round-Trip
protocol, P (perform(a, a(f,out), ρ) = false) × P (perform(a, a(b,out), ρ) = false)
is low. Then Semi-Honest-Round-Trip is a real privacy preserving protocol un-
der the semi-honest model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification, and that the communication channels are not
wire-tapped and not tampered with.

Let’s consider a source agent a. In the forwards trip, a receives r(f,in) from
a(f,in), computes r(f,out) = r(f,in) +lat+y(q,t,s), and sends the r(f,out) to a(f,out).
At this point, if a(f,in) and a(f,out) are dishonest, they can learn lat + y(q,t,s) as
follows (c1, c2, . . . are constants):

a(f,in) has the following information:
r(f,in) = c1 (4.1)

a(f,out) knows:
r(f,in) + lat + y(q,t,s) = c2 (4.2)

From equations 4.1 and 4.2:
lat + y(q,t,s) = c2 − c1 = c3 (4.3)

However, equation 4.3 does not reveal any information about lat, with high
probability, due to data perturbation (Definition 22). Thus privacy is preserved
by the protocol up to this step.

The data perturbation, due to the addition of y(q,t,s), protects lat until agent
a computes r(b,out) = r(b,in) − y(q,t,s) in the backwards trip and sends r(b,out)

to a(b,out). However, at this point there are feedback values of h other honest
agents that have been added to lat. The sum of those feedback values lies in the
interval [0, h], where h ≥ Υ. The adversary has no knowledge of those feedback
values. Thus from this point onwards, the sum of the feedback values of the
other honest agents provides the data perturbation for lat. Thus privacy is
preserved by the protocol (except against a collusion of a(f,in), a(f,out), a(b,in),
and a(b,out), as we discuss below).

At this point, if a(b,in) and a(b,out) are dishonest, they can learn y(q,t,s) as
follows:
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a(b,in) has the following information:
r(b,in) = c4 (4.4)

a(b,out) knows:
r(b,in) − y(q,t,s) = c5 (4.5)

From equations 4.4, and 4.5:
y(q,t,s) = c4 − c5 = c6 (4.6)

However, y(q,t,s) does not give any information about lat. The only option
at this point for a(b,in) and a(b,out) to learn lat is to collude with a(f,in) and
a(f,out) from the previous trip. If a(f,in), a(f,out), a(b,in), and a(b,out) all collude,
then equations 4.3 and 4.6 give:

lat = c3 − c6 = c7

The probability that a(f,in), a(f,out), a(b,in), and a(b,out) will collude is given
as follows: P (a(f,in) ∈M)×P (a(f,out) ∈M)×P (a(b,in) ∈M)×P (a(b,out) ∈M).

Since a has no control over who a(f,in) and a(b,in) are, we assume that
they are in M and thus P (a(f,in) ∈ M) = 1 and P (a(b,in) ∈ M) = 1. The
probability that the four agents will collude can be revised as: P (a(f,out) ∈
M) × P (a(b,out) ∈ M), or equivalently: P (perform(a, a(f,out), ρ) = false) ×
P (perform(a, a(b,out), ρ) = false).

Since we assume that P (perform(a, a(f,out), ρ) = false) ×
P (perform(a, a(b,out), ρ) = false) is low, privacy is preserved by the protocol.

The worst case scenario after this point is that all remaining agents in the
backwards trip are dishonest. Even if that is the case, the adversary does not
learn any more information than in the ideal protocol. Thus privacy is preserved
by the protocol.

The protocol Semi-Honest-Round-Trip is a real privacy preserving reputation
protocol (Definition 20) under the semi-honest model, since: 1) Semi-Honest-
Round-Trip has the same parameters as Semi-Honest-Ideal (except the TTP ),
with the assumption that there are h+1 honest source agents in both, such that
h ≥ Υ, and 2) the adversary learns no more information about the private input
of an agent a in Semi-Honest-Round-Trip than it can learn in Semi-Honest-Ideal,
with high probability, under the semi-honest adversarial model.

We make the following two assumptions to show that the protocol Semi-
Honest-Round-Trip is a real privacy preserving protocol: 1) there are h+1 hon-
est source agents in the protocol, such that h ≥ Υ; and 2) P (perform(a, a(f,out), ρ)
= false)× P (perform(a, a(b,out), ρ) = false) is low for each agent a ∈ St.

The assumption that there are h+ 1 honest source agents, such that h ≥ Υ,
implies that the number of dishonest agents is: m = n − (h + 1), or m <
n− (Υ + 1). Since Υ is positive, this assumption conforms with the prior more
general assumption under both protocols (ideal and real) that the number of
dishonest agents is m < n. In Section 4.5.2, we propose an extension to the
protocol to cater for scenarios where the presence of h+ 1 honest source agents
cannot be assumed.
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In Section 4.5.1, we present an extension to the protocol that allows an
agent to abstain from providing feedback. This option preserves the privacy
of an agent a in the case when P (perform(a, a(f,out), ρ) = false) × P (perform
(a, a(b,out), ρ) = false) is not low. In Experiment 1 (Section 4.8.1), we study the
percentage of instances of source agents in a real web of trust (Advogato.org)
for whom this assumption does hold true.

4.4.5 Complexity

Table 4.4: Protocol Semi-Honest-Round-Trip – Complexity.

Tuple Occurrences IDs Numbers
REQUEST FOR SOURCES 2
SOURCES 2 2n

FORWARDS n 2n +
n(n+1)

2
n(1) = n

BACKWARDS n 2n +
n(n+1)

2
n(1) = n

RESULT 1 2 1
Total 2n + 3 n2 + 7n + 2 2n + 1
Complexity O(n) O(n2) O(n)

The protocol requires 2n+ 3 messages to be exchanged (complexity: O(n)).
In terms of bandwidth used, the protocol requires transmission of the fol-

lowing amount of information: n2 + 7n+ 2 agent IDs (complexity: O(n2)), and
2n+ 1 numbers (complexity: O(n)).

4.4.6 Discussion

The Round-Trip protocol has the following innovations:

1. An agent a is aware of its trust relationships with fellow source agents in
the context of preserving privacy / being honest.

2. An agent himself selects the agents that are critical for preserving its pri-
vacy. The agent a can select the agents that it trusts the most, in order
to maximize the probability that its privacy will be preserved. As a con-
sequence, the order of the agents in the protocol is not pre-determined by
the querying agent. Thus, unlike in the secure sum protocol, the querying
agent cannot set up a source agent for its privacy to be compromised.

3. Two trips disable the predecessor and the successor of only a single trip
from being able to breach an agent’s privacy.

4. An agent is able to quantify the privacy guarantee as subjective probabil-
ity, before it relies on trustworthy agents to preserve its privacy.
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As opposed to the secure sum protocol, the Round-Trip protocol is secure
under the full semi-honest model. Whereas the message complexity of both
protocols is the same, that is, linear in terms of the number of messages, and
quadratic in terms of the number of IDs exchanged. The extension presented in
the following section, which allows agents to abstain, ensures that their privacy
is preserved even when trustworthy agents are not available. Please see Section
4.8 for a discussion of the experimental results.

A drawback of the Round-Trip protocol is as follows: The first agent in the
forwards or backwards trip can choose its trustworthy agent from the full pool
of all source agents. However, subsequent agents in the trip have less and less
choice since agents who have already been chosen in that trip cannot be chosen
again. The k-Shares protocol (presented in Section 4.6) fixes this drawback and
offers each agent the full pool of fellow agents to choose from.

Another drawback of the Round-Trip protocol is that it requires at least
Υ + 1 honest source agents. The k-Shares protocol eliminates this requirement
as well.

As compared to the k-Shares protocol, the Round-Trip protocol places less
communication and processing overhead on the querying agent. The Round-
Trip protocol may be used instead of k-Shares if this property is desired.

4.5 Extensions to the Round-Trip Reputation
Protocol

4.5.1 The Option to Abstain

The privacy of the Round-Trip Reputation Protocol presented in the previous
section depends on the assumption that P (perform(a, a(f,out), ρ) = false) ×
P (perform(a, a(b,out), ρ) = false) is low for each agent a ∈ St. In other words,
the probability that the successors of an agent in the forwards trip and the back-
wards trip are both dishonest is low for each agent. In this section, we extend
the protocol such that an agent a has the option to abstain from contributing
his feedback when this assumption does not hold. The extensions are made to
the backwards trip and the result steps of the protocol.

Up to Perfect Privacy

Pavlov et al. [105] argue that it is impossible to guarantee perfect privacy for
an honest feedback provider in a decentralized additive reputation protocol.
The argument is that a dishonest agent may deterministically create a set of n
feedback providers, with n− 1 dishonest agents and the one honest agent under
attack. Given the inputs of the n − 1 dishonest agents and the output (the
reputation score), the secret feedback of the honest agent is easily obtained.

However, we argue that perfect privacy is in fact possible for an honest feed-
back provider in a decentralized additive reputation protocol. Our observation
is that the privacy of the honest agent is perfectly preserved if the agent abstains
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from providing its feedback. This option is not considered by Pavlov et al. In
their protocols, agents are not able to quantify the privacy guarantee, before
they rely on fellow agents to protect their privacy. Thus an agent is unable to
evaluate the risk to its privacy. On the other hand, in our protocols, an agent
knows the privacy guarantee, before it leaves it up to others to preserve its
privacy. If the guarantee quantified as subjective probability is insufficient, the
agent may abstain, thus perfectly preserving its privacy.

We note that allowing agents to abstain from providing feedback has an effect
on the correctness of the reputation values computed by the protocol. In Section
4.5.1, we define two metrics to measure the correctness of the reputation values
computed when agents are allowed to abstain: 1) Resolution, and 2) Disparity.

Protocol Outline

The extensions are described below.

• Backwards Trip. The first step now for an agent a in the backwards trip
is to select the agent in the set S−{a} that it trusts the most to preserve its
privacy. At this stage, agent a knows the identities of a(f,out) and a(b,out),
who are its successors in the forwards trip and backwards trip respectively.
Hence, agent a can compute the probability P (perform(a, a(f,out), ρ) =
false) × P (perform(a, a(b,out), ρ) = false). If agent a finds that this
probability is sufficiently low, he can proceed normally. Otherwise, the
agent a can opt to abstain and proceed as follows: Agent a removes y as
well as lat from r. This is in contrast to the original protocol in which
agent a removes only y from r. Agent a then adds itself to a set B, which
is the set of all agents who have abstained. Finally, it sends the updated
S, r, and B to its successor. The backwards trip continues in this manner
until the last agent in S has acted. The last agent then sends r to q.

• Result. The value of r that q receives in this extended version is the sum
of the local feedback values of the agents that did not abstain, that is, the
agents St −B. Agent q computes r′t,ψ = r/|St −B|.

Protocol Specification

The modifications to the Semi-Honest-Round-Trip protocol are given in Figure
4.5.

Security: Correctness

We define two metrics to measure the correctness of the reputation value com-
puted by the extended protocol: 1) Resolution, and 2) Disparity.

Definition 24. Resolution. Let’s consider that reputation is computed as
r′t,ψ =

∑
a∈St−B lat/|St − B|, instead of rt,ψ =

∑
a∈St lat/|St|. Then the res-

olution of the reputation is defined as res(r′t,ψ) = |St − B|/|St|%. That is,
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Protocol: Semi-Honest-Round-Trip-Abstain
Modified Events and Associated Actions:

tuple (forwards, q, t, s, ψ, r, S) received from agent a(f,in)

� lines 1 through 13 are the same as before
14 B ← φ
15 send tuple (backwards, q, t, s, r(f,out), St, B) to a(f,out)

16 store y(q,t,s) and a(q,t,s)

tuple (backwards, q, t, s, r, S,B) received from agent a(b,in)

1 r(b,in) ← r
2 S(b,in) ← S
3 S(b,out) ← S(b,in) − {a}
4 if S(b,out) 6= φ and |S(b,out) − {a(q,t,s)}| > 0
5 then a(b,out) ← trustworthy(a, S(b,out) − {a(q,t,s)})
6 else if |S(b,out)| > 0
7 then a(b,out) ← trustworthy(a, S(b,out))
8 else a(b,out) ← q
9 if P (perform(a, a(q,t,s), ρ) = false)×

P (perform(a, a(b,out), ρ) = false) is low
10 then r(b,out) ← r(b,in) − y(q,t,s)

11 Bout ← B
12 else r(b,out) ← r(b,in) − y(q,t,s) − lat
13 Bout ← B ∪ {a}
14 if a(b,out) = q
15 then send tuple (result, q, t, s, r(b,out), Bout) to a(b,out)

16 else send tuple (backwards, q, t, s, r(b,out), S(b,out), Bout) to a(b,out)

17 discard y(q,t,s) and a(q,t,s)

tuple (result, q, t, s, r, B) received from agent a(b,in)

1 r′t,ψ ← r/|St −B|

Figure 4.5: Protocol: Semi-Honest-Round-Trip-Abstain

the percentage of the total number of source agents that contributed towards the
computation of the reputation value.

A resolution of 0% means that no source agents contributed, whereas a
resolution of 100% signifies that all source agents contributed.

Definition 25. Disparity. Let’s consider that reputation is computed as r′t,ψ =∑
a∈St−B lat/|St − B|, instead of rt,ψ =

∑
a∈St lat/|St|. Then the disparity
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of the reputation value is defined as disp(rt,ψ) = |rt,ψ − r′t,ψ|. That is, the
absolute difference between the reputation computed with all source agents and
the reputation computed with only the source agents in St −B.

The disparity would range from 0 to 1. The lower the disparity, the more
accurate is the reputation. A disparity of 0 means that a reputation value
computed with less than all source agents is exactly the same as it would be if
computed with all source agents.

In Experiment 2 (Section 4.8.1), we determine the resolution and the dis-
parity of the reputation values computed by the protocol Semi-Honest-Round-
Trip-Abstain in the real web of trust of Advogato.org.

4.5.2 Seed Agents

The privacy of the Round-Trip Reputation Protocol also depends on the assump-
tion that there are h + 1 honest source agents in the protocol, where h ≥ Υ.
In this section, we extend the protocol such that the protocol preserves privacy
even if this assumption does not hold. The extensions are made to the forwards
trip and the backwards trip of the protocol. Moreover, an additional seed step
is added to the protocol.

Tools and Techniques: Seed Agents

The idea of seed agents is inspired by the reputation systems EigenTrust [80]
and Advogato [87]. Seed agents are known trustworthy agents in the environ-
ment. However, please note that the seed agents are not TTPs. In this protocol
extension, an agent does not rely completely on a seed agent for its privacy. If a
seed is dishonest, it would still have to collude with at minimum the successor
of a in the backwards trip to breach a ’s privacy.

Protocol Outline

The extensions are described below.

• Forwards Trip. The last agent in the forwards trip sends the updated
S and r to a seed agent. This is in contrast to the previous versions, in
which the last agent in the forwards trip directly initiated the backwards
trip.

• Seed. The seed agent generates random numbers x1 . . . xn−1 and then
selects xn such that the sum of the n numbers is equal to 0. It then sends
each xi to each ai ∈ St, where i ∈ {1 . . . n}. The seed then initiates the
backwards trip by sending S = St and r to a randomly selected agent in
St.

• Backwards Trip. As an additional step, each agent ai in the backwards
trip adds the xi value received from the seed to the sum r.
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Protocol Specification

The modifications to the Semi-Honest-Round-Trip-Abstain protocol are given
in Figure 4.6.

4.6 The k-Shares Reputation Protocol

In this section we present our k-shares protocol, which is also a real privacy
preserving reputation protocol under the semi-honest model. The k-Shares pro-
tocol allows each feedback provider to choose its trustworthy agents from the
complete set of source agents. In contrast, the Round-Trip offers most feedback
providers only a limited choice of source agents.

4.6.1 Tools and Techniques: Secret Sharing

Secret sharing is a technique that allows a secret to be shared among n players,
such that the secret can be learned only when a minimum of t of the n players
cooperate to learn the secret. Any coalition of less than t players is unable
to learn any information about the secret. We refer the reader to [123] for a
discussion on secret sharing.

In the k-shares protocol we use the simple case of secret sharing where t = n.

4.6.2 Protocol Outline

The important steps of the protocol are outlined below.

1. Initiation. The protocol is initiated by a querying agent q to determine
the reputation rt,ψ of a target agent t. Agent q retrieves St ≡ St,ψ, the
set of source agents of agent t in the context ψ. Agent q then sends St to
each agent a ∈ St.

2. Select Trustworthy Agents. Each agent a ∈ St selects up to k other
agents in St. Let’s refer to these agents selected by a as the set Ua =
{ua,1 . . . ua,ka}, where 1 ≤ ka ≤ k. Agent a selects these agents such that:
P (perform(a, ua,1, ρ) = false) × . . . × P (perform(a, ua,ka , ρ) = false) is
low. That is, the probability that all of the selected agents will collude to
break agent a ’s privacy is low.

3. Prepare Shares. Agent a then prepares ka + 1 shares of its secret
feedback value lat. The shares, given as: xa,1 . . .xa,ka+1, are prepared
as follows: The first ka shares are random numbers uniformly distributed
over a large interval. The last share is selected such that:

∑ka+1
i=1 xa,i = lat.

That is, the sum of the shares is equal to the feedback value. Since each of
the ka + 1 shares is a number uniformly distributed over a large interval,
no information about the secret can be learnt unless all of the shares are
known.

82



Protocol: Semi-Honest-Round-Trip-Seeds
Setup: In this extended protocol, each agent a additionally knows the set D,
which is the set of seed agents.
Modified Events and Associated Actions:

tuple (forwards, q, t, s, ψ, r, S) received from agent a(f,in)

� lines 1 through 9 are the same as before
10 else a(f,out) ← random element(D)
11 a(q,t,s) ← a(f,out)

12 send tuple (seed, q, t, s, ψ, r) to a(f,out)

13 store y(q,t,s) and a(q,t,s)

tuple (seed, q, t, s, ψ, r) received from agent a(f,in)

1 for i← 1 to n− 1
2 do xi ← random(−X,X)
3 xn ← −

∑n−1
i=1 xi

4 for each agent ai ∈ St = {a1 . . . an}
5 do send tuple (partx, q, t, s, ψ, xi) to agent ai
6 B ← φ
7 send tuple (request for sources, ψ) to t
8 receive tuple (sources, ψ, St) from t
9 a(b,out) ← random element(St)

10 send tuple (backwards, q, t, s, ψ, r, St, B) to a(b,out)

tuple (partx, q, t, s, ψ, x) received from agent d
1 x(q,t,s) ← x
2 storex(q,t,s)

tuple (backwards, q, t, s, ψ, r, S,B) received from agent a(b,in)

� lines 1 through 9 are the same as before
10 then r(b,out) ← r(b,in) − y(q,t,s) + x(q,t,s)

11 Bout ← B
12 else r(b,out) ← r(b,in) − y(q,t,s) − lat + x(q,t,s)

13 Bout ← B ∪ {a}
14 if a(b,out) = q
15 then send tuple (result, q, t, s, ψ, r(b,out), Bout) to a(b,out)

16 else send tuple (backwards, q, t, s, ψ, r(b,out), S(b,out), Bout) to a(b,out)

17 discard y(q,t,s), a(q,t,s), and x(q,t,s)

Figure 4.6: Protocol: Semi-Honest-Round-Trip-Seeds
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4. Send Shares. Agent a sends the set Ua = {ua,1 . . . ua,ka} to agent q.
Agent a sends xa,i to agent ua,i, where i ∈ {1 . . . ka}.

5. Receive Shares. Agent q receives Ua from each agent a ∈ St. Then for
each agent a, agent q: 1) compiles the list of agents from whom a should
expect to receive shares, and 2) sends this list to agent a. Agent a then
proceeds to receive shares from the agents on the list provided by q.

6. Compute Sums. Agent a computes σa, the sum of all shares received
and its own final share xa,ka+1. Agent a sends the sum σa to q.

7. Compute Reputation. Agent q receives the sum σa from each agent
a ∈ St. q computes rt,ψ = (

∑
a∈St σa)/n.

The correctness of the protocol is dependent on the assumption that the
querying agent will receive the sum of all shares of all agents. This is not
straightforward since each agent independently sends out an arbitrary number
of shares. The protocol ensures that each agent receives all shares by tasking
the querying agent to compile and distribute lists of the senders.

Regarding privacy preservation, the privacy of an agent a cannot be breached
unless all agents whom a sent shares to are dishonest. This is due to the fact
that the shares are random numbers uniformly distributed over a large interval
and thus do not reveal any information unless all of them are known.

4.6.3 Protocol Specification

The protocol is specified in Figure 4.7. Table 4.5 describes the functions used
in the protocol.

Table 4.5: Description of the functions used in Semi-Honest-k-Shares.

Function Description

timestamp() Returns current time.

random(α,β) Returns a random number uniformly distributed
over the interval [α, β], where α and β are con-
stants.

set of trustworthy(a, S) Returns a set of agents Ua = {ua,1 . . . ua,ka},
where 1 ≤ ka ≤ k, and Ua ⊆ S. The set
Ua is selected such that: P (perform(a, ua,1, ρ) =
false) × . . . × P (perform(a, ua,ka , ρ) = false) is
low, with the minimum possible ka.

84



Protocol: Semi-Honest-k-Shares
Participants: Agents: q, t, St ≡ St,ψ = {a1 . . . an}. Agents q, t, and a subset
of St,ψ of size m < n are considered to be dishonest, however, q wishes to learn
the correct output. n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ, the reputation of agent t in the context ψ.
Setup: Each agent a maintains Sa ≡ Sa,ψ, the set of its source agents in the
context ψ.
Events and Associated Actions (for an Agent a):

need arises to determine rt,ψ

� initiate query
1 send tuple (request for sources, ψ) to t
2 receive tuple (sources, ψ, St) from t
3 for each agent v ∈ St
4 do Jv ← φ � set of agents who have chosen agent v as trustworthy
5 S′t ← St � intermediate set of source agents
6 r ← 0 � intermediate sum of feedback
7 q ← a � the current agent is the querying agent
8 s← timestamp()
9 send tuple (prep, q, t, s, St) to each agent v ∈ St

tuple (request for sources, ψ) received from agent q
1 send tuple (sources, ψ, Sa) to q

tuple (prep, q, t, s, St) received from agent q
1 I ← φ � set of agents from whom the current agent has received shares
2 J ← φ � set of agents who have chosen the current agent as trustworthy
3 σa ← 0 � current agent’s local sum
4 Ua ← set of trustworthy(a, St − {a})
5 ka ← |Ua|
6 for i← 1 to ka � prepare shares
7 do xa,i ← random(−X,X)
8 xa,ka+1 ← lat −

∑ka
i=1 xa,i � prepare final share

9 send tuple (recipients, q, t, s, Ua) to agent q
10 for each agent ua,i ∈ Ua = {ua,1 . . . ua,ka}
11 do send tuple (share, q, t, s, xa,i) to agent ua,i

Figure 4.7: Protocol: Semi-Honest-k-Shares
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Protocol: Semi-Honest-k-Shares (contd.)

tuple (recipients, q, t, s, Uv) received from an agent v ∈ St
1 for each agent u ∈ Uv
2 do Ju ← Ju ∪ {v}
3 S′t ← S′t − {v}
4 if S′t = φ � if recipients has been received from all source agents
5 then S′t ← St
6 for each agent w ∈ St
7 do send tuple (senders, q, t, s, Jw) to agent w

tuple (share, q, t, s, xv) received from an agent v ∈ St
1 I ← I ∪ {v}
2 σa ← σa + xv
3 if I = J � if share has been received from all agents in J
4 then σa ← σa + xa,ka+1 � add current agent’s own final share
5 send tuple (sum, q, t, s, σa) to agent q

tuple (senders, q, t, s, Ja) received from agent q
1 J ← Ja � set of agents who have chosen the current agent as trustworthy
2 if I = J � if share has been received from all agents in J
3 then σa ← σa + xa,ka+1 � add current agent’s own final share
4 send tuple (sum, q, t, s, σa) to agent q

tuple (sum, q, t, s, σv) received from an agent v ∈ St
1 S′t ← S′t − {v}
2 r ← r + σv
3 if S′t = φ � if sum has been received from all source agents
4 then rt,ψ ← r/n

Figure 4.8: Protocol: Semi-Honest-k-Shares (contd.)
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4.6.4 Security

Correctness

Theorem 7. In the protocol Semi-Honest-k-Shares (Figure 4.7), agent q learns
the correct reputation of agent t in the context ψ, under the semi-honest adver-
sarial model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification and that the messages are not tampered with.

In the protocol, each agent a ∈ St prepares the shares xa,1 . . . xa,ka+1 of its
feedback value lat, such that:

∑ka+1
j=1 xa,j = lat.

The sum of the feedback values of all agents in St = {a1 . . . an} is given as:∑n
i=1 lait.
From the above two statements, the sum of the feedback values of all agents

in St can be stated as:
∑n
i=1(

∑kai+1

j=1 xai,j). That is, the sum of all shares of all
agents.

The steps of the protocol discussed in the following paragraph ensure that
all shares of all agents are included and that each share is included only once in
the sums σa1 . . . σan .

Each agent a ∈ St provides agent q the set Ua, which is the set of agents
whom a is going to send its shares. After q has received this set from all agents
in St, it compiles and sends to each agent a, the set Ja, which is the set of agents
who are in the process of sending a share to agent a. Thus, each agent a knows
exactly which and how many agents, it will receive a share from. When agent a
has received all of those shares, it sends σa, the sum of all shares received and
its final share, to agent q. Previously, each agent a ∈ St sends each of his shares
xa,1 . . . xa,ka , once to only one other agent, and adds the final share xa,ka+1 once
to his own σa. It follows that the sums σa1 . . . σan include all shares of all agents
and that they include each share only once.

The final value of r in the protocol is: r =
∑n
i=1 σai =

∑n
i=1(

∑kai+1

j=1 xai,j) =∑n
i=1 lait. Thus when q computes rt,ψ = r/n, it is the correct reputation of

agent t in the context ψ (Equation 3.2).
It follows that in the protocol Semi-Honest-k-Shares (Figure 4.7), agent q

learns the correct reputation of agent t in the context ψ, under the semi-honest
adversarial model.

Privacy

Theorem 8. Let’s assume that for each agent a ∈ St in the Semi-Honest-k-
Shares protocol, P (perform(a, ua,1, ρ) = false)× . . .× P (perform(a, ua,ka , ρ) =
false) is low. Then Semi-Honest-k-Shares is a real privacy preserving protocol
under the semi-honest model.

Proof. The semi-honest adversarial model implies that the protocol is followed
according to the specification, and that the communication channels are not
wire-tapped and not tampered with.
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Let’s consider an agent a ∈ St. Agent a prepares the shares xa,1 . . . xa,ka+1

of its secret feedback value lat. The first ka shares xa,1 . . . xa,ka are random
numbers uniformly distributed over a large interval [−X,X]. The final share,
xa,ka+1 = lat −

∑ka
i=1 xa,i, is also a number uniformly distributed over a large

interval since it is a function of the first ka shares which are random numbers.
Thus, individually each of the shares does not reveal any information about
the secret feedback value lat. Moreover, no information is learnt about lat even
if up to ka shares are known, since their sum would be some random number
uniformly distributed over a large interval. The only case in which information
can be gained about lat is if all ka+1 shares are known. Then, lat =

∑ka+1
i=1 xa,i.

We now analyze if the ka + 1 shares of an agent a can be learnt by the
adversary from the protocol.

Agent a sends each share xa,i only to agent ua,i, where i ∈ {1 . . . ka}. Each
ua,i then computes σua,i , which is the sum of all shares that it receives and its
own final share xua,i,kua,i+1. Even if agent a is the only agent to send agent ua,i
a share, σua,i = xa,i+xua,i,kua,i+1. That is, the sum of agent a ’s share and agent
ua,i’s final share. σua,i is a number uniformly distributed over a large interval.
Thus, when agent ua,i sends this number to agent q, it is impossible for q to
distinguish the individual shares from the number. Therefore, each share xa,i
that agent a sends to agent ua,i will only be known to agent ua,i. Unless, agent
ua,i is dishonest. The probability that agent ua,i is dishonest, that is, it will
attempt to breach agent a ’s privacy is given as: P (perform(a, ua,i, ρ) = false).

To learn the first ka shares of agent a, all agents ua,1 . . . ua,ka would have to
be dishonest. The probability of this scenario is given as: P (perform(a, ua,1, ρ)
= false)× . . .× P (perform(a, ua,ka , ρ) = false).

Even in the above scenario, the adversary does not gain information about
lat, without the knowledge of agent a ’s final share xa,ka+1. However, agent
a has to send σa = xa,ka+1 +

∑
v∈Ja xv, and agent a has no control over the∑

v∈Ja xv portion of the equation. If Ja = φ, then σa = xa,ka+1, which agent
a must send to agent q. Therefore, we assume that agent q can learn the final
share of agent a.

Thus the probability that the protocol will not preserve agent a ’s privacy
can be stated as: P (perform(a, ua,1, ρ) = false)× . . .×P (perform(a, ua,ka , ρ) =
false). We assume that the agents ua,1 . . . ua,ka are selected such that this
probability is low. Therefore, with high probability, the adversary learns no
more information about lat than it can learn in the ideal protocol with what it
knows before the execution of the protocol and the outcome.

The protocol Semi-Honest-k-Shares is a real privacy preserving reputation
protocol (Definition 20) under the semi-honest model, since: 1) Semi-Honest-k-
Shares has the same parameters as Semi-Honest-Ideal (except the TTP ), and
2) the adversary learns no more information about the private input of an agent
a in Semi-Honest-k-Shares than it can learn in Semi-Honest-Ideal, with high
probability, under the semi-honest adversarial model.

In the k-Shares protocol, an agent must send Ua to agent q, where Ua is the
set of agents whom a considers trustworthy. Although this step does not disclose
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any information about agent a ’s private feedback, it does reveal a ’s preferences
in terms of trustworthy agents. To counter this issue we propose the following
extension to the protocol: If |Ua| < k, then a can add k − |Ua| more agents to
Ua. These additional agents should be selected randomly from the remaining
source agents in St. The consequence of this extension is that the set Ua no
longer constitutes exclusively of agents whom agent a considers trustworthy.
Thus agent q cannot learn whether an agent in Ua is agent a ’s trustworthy
agent or an agent that has been randomly selected. An adversary may attempt
repeated queries to determine the agents that occur most frequently in Ua, thus
revealing a’s trustworthy agents. This attack can be countered if agent a selects
the same set of agents for each repeated query.

4.6.5 Complexity

Table 4.6: Protocol Semi-Honest-k-Shares – Complexity.

Tuple Occurrences IDs Numbers
REQUEST
FOR SOURCES

1

SOURCES 1 n
PREP n n(n + 1) = n2 + 2n
RECIPIENTS n n(k + 2) = kn + 2n
SHARE kn kn(2) = 2kn kn(1) = kn
SENDERS n n(n) = n2

SUM n n(1) = n
Total 4n + kn + 2 2n2 + 5n + 3kn n + kn
Complexity O(n), for k � n O(n2), for k � n O(n), for k � n

The protocol requires up to 4n + kn + 2 messages to be exchanged (com-
plexity: O(n)).

In terms of bandwidth used, the protocol requires transmission of up to the
following amount of information: 2n2 +5n+3kn agent IDs (complexity: O(n2)),
and n+ kn numbers (complexity: O(n)).

4.6.6 Discussion

A drawback of the Round-Trip protocol is as follows: The first agent in the
forwards or backwards trip may choose its trustworthy agent from the full pool
of all source agents. However, subsequent agents in the trip have less and less
choice since agents who have already been chosen in that trip cannot be chosen
again.

The k-Shares protocol allows each feedback provider to choose from all other
n−1 source agents in the protocol as its trustworthy agents. This is in contrast
to the Round-Trip protocol, which permits the feedback providers to choose
only from those agents who have not already been chosen by the others. As
a result, the k-Shares protocol can preserve the privacy of a higher percentage
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of instances of source agents in a given web of trust. Our experimental results
(Section 4.8) show that this percentage is over twice as high as compared to the
Round-Trip protocol in the web of trust of Advogato.org.

As compared to the Round-Trip protocol, the k-Shares protocol places addi-
tional communication and processing overhead on the querying agent. This may
be considered an advantage or a disadvantage. Advantage: The querying agent
who initiates the protocol has to invest its own resources towards the execution
of the protocol. This discourages agents from mounting a Denial of Service
(DoS) attack by initiating queries for the purpose of tying down the resources
of other agents. Disadvantage: It costs the querying agent more resources to
learn the reputation of a target agent.

The k-shares protocol requires up to 4n + kn + 2 or O(n) messages to be
exchanged, where k � n is a constant that represents the maximum number
of source agents that a feedback provider may trust to preserve its privacy. In
experiment 4 (Section 4.8), we observe that k can be set as low as 2, while
preserving the privacy of a high majority of agents.

The k-shares protocol is similar to the protocol in [105, section 5.2] in several
aspects. Both protocols use secret sharing and compute reputation in a decen-
tralized additive manner. However, there are also some key differences between
the two protocols.

The protocol in [105] depends on a witness selection scheme and requires
each feedback provider to exchange messages with all other n− 1 source agents
in the protocol. The message complexity of the protocol is therefore a high
O(N) +O(n2). In contrast, the k-Shares protocol requires an exchange of only
O(n) number of messages. This is achieved by placing a constant limit (k � n)
on the number of source agents that each feedback provider exchanges messages
with, and by relying on trust awareness instead of a witness selection scheme.
As we observe in Section 4.8.5, the privacy of a high majority of agents can be
ensured with k as small as 2. Moreover, increasing k to values approaching n−1
has no significant advantage.

The k-Shares protocol may also be extended such that agents are allowed to
abstain when they don’t find trustworthy agents. In that case, an agent would
generate two shares whose sum equals zero. One of the shares would be sent
to a random source agent and the other to the querying agent with any shares
received added to it. The abstaining agent would inform the querying agent
that it has abstained. We note that allowing agents to abstain from providing
feedback has an effect on the correctness of the reputation values computed
by the protocol. The sum of the feedback values would change, however, it is
possible that the reputation computed as mean remains unchanged or close to
the actual value. In Section 4.5.1, we define metrics to measure the correctness
of the reputation values computed when agents are allowed to abstain.

In the k-Shares protocol, an agent is able to quantify the privacy guaran-
tee as subjective probability before it relies on trustworthy agents to preserve
its privacy. This enables the agent (in the extended version) to abstain from
providing its feedback value if the privacy guarantee is insufficient.

Allowing agents to abstain implies that their privacy can be preserved up to
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100%. Perfect privacy cannot be achieved by the protocols presented in [105].
This topic is discussed in further detail in Section 4.5.1.

4.7 Determining the Suitability of the k-Shares
Protocol for a Given Web of Trust

4.7.1 Instances of Source Agents whose Privacy will be
Preserved

In the protocol Semi-Honest-k-Shares, the following assumption must hold for
an agent a ’s privacy to be preserved: P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,ka , ρ) = false) is low. That is, the probability that all agents
whom agent a trusts are dishonest must be low.

In the following section we develop an algorithm that determines the per-
centage of instances of source agents in a given web of trust for whom this
assumption indeed holds true. The k-Shares protocol is suitable for the web of
trust if this percentage is sufficiently high.

Global Algorithm

We describe a general algorithm that helps determine whether the protocol
Semi-Honest-k-Shares is suitable for a given web of trust. Consider a scenario
in which the reputation of every potential target agent in the web of trust is
queried once. This scenario instantiates all possible instances of source agents in
the given web of trust. The algorithm operates on any web of trust (Definition
7) and returns the percentage of instances of source agents whose privacy will
be preserved in such a scenario.

The algorithm takes the following four variables as input: Gψ, min, low,
and k. Gψ is the web of trust, with context ψ. The algorithm considers an
agent as a target agent if it has at least min source agents. low is the value of
P (perform(a, ua,1, ρ) = false)× . . .×P (perform(a, ua,ka , ρ) = false), below or
equal to which the privacy of an agent a is considered to be preserved. k is the
limit on the number of fellow source agents that an agent a can rely on for its
privacy to be preserved.

Let a set Ou,ψ = {v | trust of u in v exists in context ψ}. In other words,
Ou,ψ is the set of all agents for whom agent u is a source agent in the context
ψ. Ou,ψ may be noted as Ou when the context ψ is clear.

The algorithm is specified in Figure 4.9.

Local Algorithm

The algorithm specified in Figure 4.9 requires global knowledge of the web of
trust. However, this may not be possible, especially since the privacy of agents
is the main concern.
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Privacy-Preserved-Pc-Global(Gψ,min, low, k)
1 preserved -instances ← 0
2 total -instances ← 0

� for each agent who has assigned feedback to at least one other agent
3 for each agent a ∈ A, where |Oa − {a}| > 0
4 do � for each agent who has been assigned at least min feedback values
5 for each agent t ∈ Oa − {a}, where |St| ≥ min
6 do total -instances ← total -instances +1

� determine the set of candidate trustworthy agents
7 I ← (Oa − {t}) ∩ (St − {a})

� create a vector of feedback values assigned to agents in I

8
−→
V ← 〈las1 . . . las|I|〉, where I = {s1 . . . s|I|}

9 sort
−→
V in descending order

10 privacy-risk ← 1
11 i← 1
12 privacy-risk ← privacy-risk ×(1−

−→
V [i])

13 while (privacy-risk > low) and (i < k) and (i < |I|)
14 do i← i+ 1
15 privacy-risk ← privacy-risk ×(1−

−→
V [i])

16 if privacy-risk ≤ low
17 then preserved -instances ← preserved -instances +1
18 if total -instances 6= 0
19 then return (preserved -instances / total -instances)%
20 else return 0%

Figure 4.9: Percentage of Instances whose Privacy will be Preserved (Global).
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Consider an alternate scenario in which the reputation of every potential
target agent in the set Oa of an agent a is queried once. This scenario instanti-
ates all possible instances of agent a as a source agent. We describe a general
algorithm that returns the percentage of instances of agent a as a source agent
whose privacy will be preserved in such a scenario. The algorithm operates only
on the local knowledge of agent a and public knowledge.

If an agent finds that its percentage is too low, it knows that it can im-
prove its percentage by building trust relationships with the agents in the set⋃
∀t∈Oa St.

The algorithm takes as input the following three variables described previ-
ously: min, low, and k. Moreover, access to the local knowledge of a, that is
Oa and lab, for each b ∈ Oa, is assumed. St is public knowledge for each t ∈ Oa.

The algorithm is presented in Figure 4.10.

Privacy-Preserved-Pc-Local(min, low, k)
1 preserved -instances ← 0
2 total -instances ← 0

� for each agent who has been assigned at least min feedback values
3 for each agent t ∈ Oa − {a}, where |St| ≥ min
4 do total -instances ← total -instances +1
5 � determine the set of candidate trustworthy agents
6 I ← (Oa − {t}) ∩ (St − {a})

� create a vector of feedback values assigned to agents in I

7
−→
V ← 〈las1 . . . las|I|〉, where I = {s1 . . . s|I|}

8 sort
−→
V in descending order

9 privacy-risk ← 1
10 i← 1
11 privacy-risk ← privacy-risk ×(1−

−→
V [i])

12 while (privacy-risk > low) and (i < k) and (i < |I|)
13 do i← i+ 1
14 privacy-risk ← privacy-risk ×(1−

−→
V [i])

15 if privacy-risk ≤ low
16 then preserved -instances ← preserved -instances +1
17 if total -instances 6= 0
18 then return (preserved -instances / total -instances)%
19 else return 0%

Figure 4.10: Percentage of Instances whose Privacy will be Preserved (Local).
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4.7.2 Convergence of k and the Percentage of Instances
whose Privacy will be Preserved

We develop an algorithm (Figure 4.11) that takes any web of trust Gψ and
prints the values of k and the percentage of instances whose privacy will be
preserved at their points of convergence. This algorithm helps determine the
ideal value of k for a given web of trust. The local version of the algorithm is
given in Figure 4.12.

The function max-incoming(G) takes a graph G and gives the maximum
number of incoming edges for any vertex in the graph. In other words, the
function returns the maximum number of source agents for any agent in the
graph.

Privacy-Pc-Convergence-Global(Gψ,min, low,threshold)
1 pc-convergence ← 0
2 k -convergence ← 0
3 k ← 1
4 pc ← 0

� until the maximum possible value of k
5 while k ≤ max-incoming(Gψ)
6 do pc-prev ← pc
7 pc ← Privacy-Preserved-Pc-Global(Gψ,min, low, k)
8 if pc− pc-prev ≥ threshold
9 then pc-convergence ← pc

10 k -convergence ← k
11 k ← k + 1
12 print pc-convergence, k -convergence

Figure 4.11: Convergence (Global).

4.8 Experiments

4.8.1 The Dataset: Advogato.org

We use the real web of trust of Advogato.org [87] as the dataset for our experi-
ments. The members of Advogato rate each other in the context of being active
and responsible members of the open source software developer community. The
choice of feedback values are master, journeyer, apprentice, and observer, with
master being the highest level in that order. The result of these ratings is a
rich web of trust, which comprises of 13, 904 users and 57, 114 trust ratings
(November 20, 2009). The distribution of ratings is as follows: master : 31.7%,
journeyer : 40.3%, apprentice: 18.7%, and observer : 9.3%.
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Privacy-Pc-Convergence-Local(min, low,threshold,max-k)
1 pc-convergence ← 0
2 k -convergence ← 0
3 k ← 1
4 pc ← 0

� until the maximum possible value of k
5 while k ≤ max-k
6 do pc-prev ← pc
7 pc ← Privacy-Preserved-Pc-Local(min, low, k)
8 if pc− pc-prev ≥ threshold
9 then pc-convergence ← pc

10 k -convergence ← k
11 k ← k + 1
12 print pc-convergence, k -convergence

Figure 4.12: Convergence (Local).

The members of Advogato are expected to not post spam, not attack the
Advogato trust metric, etc. Thus we consider that on Advogato, the context
“be a responsible member of the open source software developer community”,
comprises of the context “be honest”. Since we quantify trust as probability,
we substitute the four feedback values of Advogato as follows: master = 0.99,
journeyer = 0.70, apprentice = 0.40, and observer = 0.10. These substitutions
are made heuristically based on our observation of the significance of these
feedback values on Advogato.org.

For the experiments, we define the lowest acceptable probability that privacy
will be preserved as 0.90. This means that a set of two trustworthy agents must
include either one master rated agent or two journeyer rated agents for this
threshold to be satisfied.

4.8.2 Experiment 1 – Semi-Honest-Round-Trip

Objective: In the protocol Semi-Honest-Round-Trip, the following assumption
must hold for an agent a ’s privacy to be preserved: P (perform(a, a(f,out), ρ) =
false)× P (perform(a, a(b,out), ρ) = false) is low. That is, the probability that
the successors of agent a in the forwards trip and the backwards trip are both
dishonest must be low. We would like to know the percentage of in-
stances of source agents for whom this assumption holds true.

Algorithm: A randomly selected querying agent queries the reputation
of every other agent who has at least min source agents. Over the course
of all queries, we observe the probability P (perform(a, a(f,out), ρ) = false) ×
P (perform(a, a(b,out), ρ) = false), for each source agent a. The experiment is
run for each value of min from 5 to 50 with intervals of 5.
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Results: For min = 5, we observe that the probability that privacy will
be preserved is sufficient (≥ 0.90) for 38.3% of instances of source agents. Fig-
ure 4.13 depicts the percentage of instances of source agents whose privacy is
preserved as we vary the minimum number of source agents. We note that the
increase in the percentage is not very substantial as we move min from 5 to 50.
The percentage stays around 40%, which is clearly quite low. This implies that
about 60% of instances of source agents are not assured that their privacy will
be preserved. These agents must abstain from providing their feedback in the
extended version of the protocol. However, as we observe in the next experi-
ment, even with around 40% of agents contributing, the disparity is very low
for a high majority of the reputation values computed.
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Figure 4.13: Semi-Honest-Round-Trip – Percentage of agents whose privacy is
assured

4.8.3 Experiment 2 – Semi-Honest-Round-Trip-Abstain

Objective: We would like to know the resolution (Definition 24) and
the disparity (Definition 25) of the reputation values computed by
the protocol Semi-Honest-Round-Trip-Abstain.

Algorithm: A randomly selected querying agent queries the reputation
of every other agent who has at least min source agents. Over the course of
all queries, we observe the resolution and disparity of the reputation values
computed by the protocol. The experiment is run for each value of min from 5
to 25 with intervals of 5.

Results: For min = 25, we observe that the resolution lies between 30%
and 50% for 56% of the reputation values. The resolution lies between 20% and
60% for 89% of the reputation values. Clearly, the resolution is quite low most
of the time. However, we also observe that for more than 95% of instances,
the disparity is less than 0.10, and for 99.6% of the instances, the disparity is
less than 0.2. Thus even though the resolution is low, a high majority of the
reputation values computed are quite accurate. We hypothesize that the reason
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for this accuracy is that the agents who are able to contribute represent a good
sample of the total population of the source agents in the protocol. Figure 4.14
depicts the change in the percentage of reputation values with disparity < 0.1
and disparity < 0.2 as min varies from 5 to 25.

0 5 10 15 20 25
70%

75%

80%

85%

90%

95%

100%

Minimum number of source agents

P
er

ce
nt

ag
e 

of
re

pu
ta

tio
n 

va
lu

es

 

 

Disparity < 0.1
Disparity < 0.2

Figure 4.14: Semi-Honest-Round-Trip-Abstain – Percentage of reputation val-
ues with disparity < 0.1 and disparity < 0.2

4.8.4 Experiment 3 – Semi-Honest-k-Shares

Objective: In the protocol Semi-Honest-k-Shares, the following assumption
must hold for an agent a ’s privacy to be preserved: P (perform(a, ua,1, ρ) =
false) × . . . × P (perform(a, ua,ka , ρ) = false) is low. That is, the probability
that the agents to whom agent a sends shares, are all dishonest must be low.
We would like to know the percentage of instances of source agents
for whom this assumption holds true.

Algorithm: A randomly selected querying agent queries the reputation
of every other agent who has at least min source agents. Over the course of
all queries, we observe the probability P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,ka , ρ) = false), for each source agent a. The experiment is run
for each value of min in {1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 500}, with k = 2.

Results: For min = 25, we observe that the assumption holds for 81.7%
of instances of source agents. Figure 4.15 depicts the percentage of instances
of source agents whose privacy is preserved as we vary the minimum number
of source agents, with k = 2. We note that the increase in the percentage is
significant from min = 5 to min = 100. This is due to the greater choice of
trustworthy agents available for each agent when the protocol has more source
agents. However, even at min = 5, the percentage is 72.5%, which is almost
twice as high as in the Round-Trip protocol. The remaining 10% to 30% of
the source agents will have to abstain. However, as observed for the Round-
Trip protocol, even a percentage of around 60% agents abstaining leads to quite
accurate reputation values.
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Figure 4.15: Semi-Honest-k-Shares – Percentage of agents whose privacy is as-
sured

4.8.5 Experiment 4 – Semi-Honest-k-Shares

Objective: We would like to know the effect of increasing k on the
percentage of instances of source agents whose privacy is preserved
in the protocol Semi-Honest-k-Shares.

Algorithm: A randomly selected querying agent queries the reputation of
every other agent who has at least min source agents. We vary k and observe
the percentage of instances of source agents whose privacy is preserved. The set
of experiments is first run with min = 5, and then with min = 50.

Results: For min = 50, and k = 1, we observe that the percentage is 75.4%,
and at k = 2, the percentage is 85.8% (Figure 4.16). The jump is due to the
possibility with k = 2 to rely on two journeyer agents. With k = 1, the only
possibility is to rely on one master agent. However, increasing k over 2, even
up to 500, does not result in a significant advantage. Thus, in this dataset,
privacy can be preserved for a high percentage of source agents with k as small
as 2. This results in a very efficient protocol. This is in contrast to the protocol
presented in [105], which requires each agent to send shares to n − 1 agents,
resulting in O(N) +O(n2) message complexity.

4.9 Discussion

Table 4.7 provides a comparison of our reputation protocols with the other
systems in the literature.

Our reputation protocols, Semi-Honest-Round-Trip and Semi-Honest-
k-Shares, are decentralized and provide security under the full semi-honest
model. The protocols do not rely on TTPs or specialized networks. The number
of messages required by each protocol is O(n), where n is the number of source
agents in the protocol.

In contrast, the systems discussed in the literature for the semi-honest model,
either rely on TTPs or specialized networks, or require a high communication
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Figure 4.16: Semi-Honest-k-Shares – Effect of increasing k on the percentage of
agents whose privacy is assured

complexity. The Secure Sum protocol [31] provides security under the semi-
honest model only with the added restriction that agents do not collude. The
scheme based on WSS-1 by Pavlov et al. [105] and the scheme 3 by Gudes et
al. [61] require at least O(n2) messages. The first two schemes by Gudes et al.
[61] and the reputation system by Nin et al. [101] are efficient, however, they
either rely on TTPs or specialized networks.

It is assumed in [105] that it is not possible to achieve perfect privacy in
decentralized additive reputation systems. However, the extended versions of
our protocols provide up to perfect privacy by allowing feedback providers to
quantify their privacy guarantee and to abstain if it is found to be insufficient.
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Table 4.7: Protocols for the Semi-Honest Adversarial Model – Comparison.

System /
Protocol

Archi-
tecture

Target En-
vironment

Key Secu-
rity Mech-
anisms

Privacy Guar-
antee

Complexity
(Mes-
sages)

Semi-Honest-
Round-Trip

D Distributed
environ-
ments

Secure
multi-party
computa-
tion, Trust
awareness,
Data per-
turbation

If h ≥ Υ and
P (perform
(a, a(f,out), ρ) =
false) ×
P (perform
(a, a(b,out), ρ) =
false) is low for
each a ∈ St

O(n)

Semi-Honest-
k-Shares

D Distributed
environ-
ments

Secure
multi-party
computa-
tion, Trust
awareness,
Secret shar-
ing

If P (perform
(a, ua,1, ρ) =
false) × . . . ×
P (perform
(a, ua,ka , ρ) =
false) is low for
each a ∈ St

O(n)

Clifton et al.
[31] – Secure
Sum

D Distributed
environ-
ments

Secure
multi-party
computa-
tion

Probability:
1

m+1 , only if

nodes don’t
collude

O(n), where
n = number
of sites

Pavlov et al.
[105] – WSS-1

D Distributed
environ-
ments

Secure
multi-party
computa-
tion, secret
sharing

(1− 1
n )(N−b−1

N−1 ) O(N) +
O(n2),
where N
= no. of
potential
witnesses,
and n = no.
of selected
witnesses

Gudes et al.
[61] – Scheme
1

D Distributed
environ-
ments

TTP,
Public-key
cryptogra-
phy

Random
guess across
|TrustSetx(A)|

O(n),
where n =

|TrustSetx(A)|

Gudes et al.
[61] – Scheme
2

D Distributed
environ-
ments

TTP,
Public-key
cryptogra-
phy, Secure
product

Random
guess across
|TrustSetx(A)|

O(n),
where n =

|TrustSetx(A)|

Gudes et al.
[61] – Scheme
3

D Distributed
environ-
ments

Secure
multi-party
computa-
tion

A does not
learn more in-
formation about
DTE(B, x),
where B ∈
TrustSetx(A)

O(n2),
where n =

|TrustSetx(A)|

Nin et al.
[101]

D Private col-
laborative
networks

ElGamal
encryption
scheme

If the underly-
ing encryption
scheme is secure

O(1)
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Chapter 5

Reputation Protocols for
the Malicious Adversarial
Models

In this chapter, we develop privacy preserving reputation protocols that are
secure under the stricter malicious adversarial models.

We begin the chapter with the problem definition. We then provide an ideal
privacy preserving reputation protocol in the disruptive malicious model that
relies on a trusted third party for security.

The tools and techniques that we use for the construction of the real privacy
preserving reputation protocol in the disruptive malicious model include addi-
tive homomorphic cryptosystems, randomized encryption, and zero-knowledge
proofs. These tools and techniques are discussed in Section 5.3.

In sections 5.4 and 5.5, we present the real privacy preserving reputation
protocols that are secure under the non-disruptive and the disruptive malicious
models respectively. We show that the real protocol for the disruptive malicious
model is secure by demonstrating that it is able to emulate the ideal protocol
for this model.

We conclude the chapter with a comparison of our new protocol for the
disruptive malicious model with the existing protocols.

5.1 Problem Definition

Definition 26. Problem Definition (Disruptive Malicious). Let St,ψ =
{a1 . . . an} be the set of all source agents of agent t in the context of action ψ.
Find a reputation protocol Π, which takes private input lat ≡ P (perform(a, t, ψ)
= true) from each agent a ∈ St, and outputs the reputation rt,ψ of the target
agent t to a querying agent q. Reputation is computed as rep⊕ (Equation 3.2).
Agents q, t, and m < n of the source agents (given as set M) are considered
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to be dishonest, however, q wishes to learn the correct output. The reputation
protocol Π is required to be secure under the disruptive malicious adversarial
model. If computing rt,ψ is not possible due to the disruptive actions of certain
agents, then instead of the reputation, the protocol outputs the identity of those
agents to the querying agent q.

5.2 An Ideal Reputation Protocol

We first present an ideal privacy preserving reputation protocol in the disruptive
malicious model. The subsequent real reputation protocol (Section 5.5) will
attempt to emulate the privacy preservation property of this protocol.

5.2.1 Protocol Specification

The protocol is specified in Figure 5.1.

5.2.2 Discussion

The TTPSt is 100% trustworthy (Definition 18). It performs all computations
correctly and preserves the privacy of all agents.

The protocol is correct since it outputs the correct reputation
(rt,ψ = (

∑
a∈St lat)/n, Equation 3.2) of the target agent to the querying agent.

In the scenario where the protocol is unable to compute the correct reputation
due to disruptive actions of source agents, the protocol outputs the identities
of those agents to the querying agent. The disruptive agents are identified eas-
ily since all communication goes through the TTPSt and it is able to verify
the correctness of the submitted feedback values. Communication takes place
over authenticated point-to-point communication channels that are resistant to
tampering, which ensures the integrity of the submitted feedback values.

The privacy of honest source agents is preserved since over the course of the
protocol, they submit their private feedback only to the TTPSt over authenti-
cated point-to-point communication channels that are resistant to wire-tapping.

The querying agent may re-initiate the protocol until no more disruptive
agents are present and it receives the reputation as output.

Please note that the “ideal” protocol is ideal only in terms of preserving
the privacy of agents. The protocol does not attempt to address issues other
than the lack of privacy, such as the sybil attack, slandering, self-promotion,
etc. (these issues are discussed in Section 2.2.3).

5.3 Tools and Techniques

In this section we discuss several tools and techniques that we use for the con-
struction of the real privacy preserving reputation protocol under the disruptive
malicious adversarial model (Section 5.5).
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Protocol: Disruptive-Malicious-Ideal
Participants: Agents: q, t, St ≡ St,ψ = {a1 . . . an}, TTPSt . Agents q, t, and
a subset of St,ψ of size m < n are considered to be dishonest, however, q wishes
to learn the correct output. n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ, the reputation of agent t in the context ψ, or
agent q learns the identity of the agents who disrupt the protocol.
Setup: The TTPSt maintains St. When an agent a assigns feedback to agent
t, agent a reports the event to the TTPSt , which updates St accordingly. All
participants know the identity of the TTPSt . All communication takes place
over authenticated point-to-point channels that are resistant to wire-tapping
and tampering.
Steps:
1. The querying agent q sends a request to the TTPSt for the reputation rt,ψ of

agent t.
2. The TTPSt requests each agent a ∈ St for feedback lat.
3. Each agent a ∈ St sends lat to the TTPSt .
4. After receiving lat from each agent a ∈ St, the TTPSt computes the reputa-

tion of agent t as rt,ψ = (
∑
a∈St lat)/n.

5. The TTPSt sends rt,ψ to q.
6. If there are source agents who disrupt the protocol by either not sending

the feedback to the TTPSt within a predetermined amount of time, or by
providing out of range feedback, then the TTPSt is unable to compute the
correct rt,ψ. In this scenario, the TTPSt sends the identities of these dis-
ruptive agents to q. Moreover, the TTPSt removes these agents from St for
future queries by q for rt,ψ.

Figure 5.1: Protocol: Disruptive-Malicious-Ideal

5.3.1 Additive Homomorphic Cryptosystems

Let Ea(.) denote the encryption function with the public key PKa of agent a
in an asymmetric cryptosystem C. The cryptosystem C is said to be additive
homomorphic if we can compute Ea(x+ y), given only Ea(x), Ea(y), and PKa.
In other words, a cryptosystem is additive homomorphic if we can compute the
encryption of the sum of two plaintexts, given only their ciphertexts and the
encrypting public key. As an example, let’s consider two integers, 3 and 4. A
cryptosystem C is additive homomorphic if given only Ea(3), Ea(4), and PKa,
we are able to obtain Ea(3 + 4) = Ea(7).

The Paillier cryptosystem [104] (described in Section 5.3.4) is a well-known
additive homomorphic cryptosystem. Other examples include the Okamoto-
Uchiyama cryptosystem [102] (a historical antecedent of Paillier), and the
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Damg̊ard-Jurik cryptosystem [34] (a generalization of Paillier).

5.3.2 Randomized Encryption

A randomized encryption function [115] generates the ciphertext for a given
plaintext and key in a non-deterministic manner. This implies that there may
exist several possible ciphertexts for the same plaintext and key. However, each
ciphertext generated by a randomized encryption function corresponds to only
one plaintext. As an example, consider c1 = Ea(3) and c2 = Ea(3). With
randomized encryption, it is possible that c1 6= c2. However, both c1 and c2 will
decrypt to the same plaintext, that is, 3.

The advantage of randomized encryption is that an attacker cannot distin-
guish between the encryptions of different plaintexts even if the plaintexts and
the key are known. For example, consider an attacker who is given two inte-
gers, 3 and 4, their encryptions, Ea(3) and Ea(4), and the encrypting public
key PKa. Randomized encryption implies that the attacker is unable to draw
correspondence between the ciphertexts Ea(3), Ea(4), and the integers 3, 4.

Cryptosystems that do not support randomized encryption (for example,
RSA [114] without padding), always generate the same ciphertext for a given
pair of plaintext and encryption key. Such cryptosystems are not suitable when
the plaintext space is small (for example, a plaintext space such as {1, 2, 3, 4, 5}).
The adversary can easily compute the ciphertext for each plaintext. Then given
any ciphertext, it can deduce the corresponding plaintext.

5.3.3 Semantic Security

An asymmetric cryptosystem is said to be semantically secure if given a cipher-
text and the encrypting public key, a computationally bounded adversary is
unable to learn any significant information about the plaintext.

A semantically secure cryptosystem is secure against the Chosen-Plaintext
Attack (CPA). The chosen-plaintext attack is an attack model for cryptanalysis
in which the attacker is able to choose any plaintext and observe its correspond-
ing ciphertext.

A semantically secure cryptosystem is not secure against the
Chosen-Ciphertext Attack (CCA). This attack-model assumes that the attacker
is able to choose any ciphertext and obtain its corresponding plaintext without
the knowledge of the secret key. The CPA and CCA are discussed in detail in
[56, Chapter 5].

Semantic security is sufficient when the chosen-ciphertext attack can be pre-
vented. This can be achieved by avoiding situations in which the adversary is
able to request the decryption of any chosen ciphertext.

Examples of semantically secure cryptosystems include Goldwasser-Micali
[57], ElGamal [46], and Paillier [104] (described in Section 5.3.4). A cryptosys-
tem that is not semantically secure is the RSA cryptosystem [114]. It is thus
vulnerable even to the chosen-plaintext attack. However, practical implementa-
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tions of RSA utilize padding (augmenting the plaintext with random data) to
provide security under this attack model.

5.3.4 The Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic cryptosystem. It provides
randomized encryption and is semantically secure. The scheme is described in
Figure 5.2, where k, m, and c, are the security parameter, the plaintext, and
the ciphertext respectively.

One of the building blocks of our protocol (Section 5.5) for the disruptive ma-
licious model is an additive homomorphic cryptosystem with the characteristics
listed in Section 5.5.1. The Paillier cryptosystem conforms to these require-
ments and therefore we use it as the additive homomorphic cryptosystem for
our protocol.

Key Generation

1. Select k, the length in bits of an RSA modulus n
2. Select two random and distinct primes p and q of length k/2
3. Compute n = p · q
4. Compute λ = lcm(p− 1, q − 1) = (p−1)(q−1)

gcd(p−1,q−1)

5. Select a random integer g ∈ Z∗
n2

6. Compute µ = (L(gλ mod n2))−1 mod n, where L(u) = (u− 1)/n
7. Public key: (n, g), private key: (λ, µ)

Encryption

1. Select a random integer r in Z∗
n

2. Compute ciphertext c = gm · rn mod n2

Decryption

1. Compute plaintext m = L(cλ mod n2) · µ mod n, where L(u) = (u− 1)/n

Additive Homomorphic Property

Given two integers m1 and m2, and their respective ciphertexts c1 and c2, the
following holds (D is the decryption function):

m1 +m2 mod n = D(c1 · c2 mod n2)

Figure 5.2: The Paillier Cryptosystem

Our implementation of an interactive demo of the Paillier cryptosystem is
available online [66].
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5.3.5 Zero-Knowledge Proofs

A zero-knowledge proof [58] is an interactive proof that allows a prover to con-
vince a verifier that a statement is true without revealing any information other
than the fact that the statement is valid.

As an example, consider a prover who knows an RSA modulus n and its two
large prime factors p and q. A verifier knows only n. Factoring n is considered
intractable therefore the verifier cannot learn p and q. An interactive proof
would be zero-knowledge if it allows the prover to convince the verifier that he
knows the factors of n without revealing any information about p and q.

A standard interactive zero-knowledge proof comprises of three moves, that
is, three messages exchanged between the prover and the verifier. In the first
move, the prover sends a cryptographic commitment to the verifier. In the
second move, the verifier sends a random challenge to the prover to test the
commitment. The third move is the prover’s response to the random challenge
of the verifier.

An interactive zero-knowledge proof can be converted to a non-interactive
zero-knowledge proof using the Fiat-Shamir heuristic [49]. A non-interactive
zero-knowledge proof comprises of only one move, that is, one message sent by
the prover to the verifier. An interactive zero-knowledge proof requires three
moves because the verifier must provide a random challenge to the prover. In
the non-interactive version, this random challenge is replaced with a hash of the
prover’s commitment that the prover can generate itself. The prover generates
the commitment, the challenge as the hash of the commitment, and the response
to the challenge. It then sends everything in one move to the verifier. In turn,
the verifier independently computes the hash and verifies the proof.

5.3.6 Zero-Knowledge Proof of Set Membership

In general, a zero-knowledge proof of set membership may be stated as follows:
Let S = {m1, . . . ,mp} be a public set of p messages, and E(mi) an encryp-

tion of mi with a prover’s public key, where i is secret. A zero-knowledge proof
of set membership allows the prover to convince a verifier that E(mi) encrypts
a message in S.

In a non-interactive version of the zero-knowledge proof of set member-
ship, we abstract the part of the proof generated by the prover as the function
setMembershipZKP (E(mi), S), abbreviated as smzkp(E(mi), S).

The zero-knowledge proof of set membership is specified for the Paillier
cryptosystem as follows:

Let (n, g) be a prover’s public key, S = {m1, . . . ,mp} be a public set of p
messages, and c = gmi · rn mod n2 an encryption of mi, where i is secret, and
r is a random integer. A zero-knowledge proof of set membership allows the
prover to convince a verifier that c encrypts a message in S.

An interactive zero-knowledge proof of set membership for the Paillier cryp-
tosystem is described in [13]. In Figures 5.3 and 5.4, we present the interactive
version and our non-interactive version of the proof respectively. We have ob-
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tained the non-interactive version of the proof using the Fiat-Shamir heurisitic.
To make the proof non-interactive, the challenge by the verifier in step 3 (move
2) has been replaced by a hash of the commitment.

The complexity (in terms of bandwidth used) of the proof described in [13]
is O(p), that is, linear with respect to the cardinality of the set S.

Protocol: Interactive-ZKP-Set-Membership
Participants: A prover and a verifier.
Input: Prover: n, g, mi, p, r, c = gmi · rn mod n2. Verifier: n, g, p, c.
Output: The verifier is convinced that c encrypts a message in S.
Setup: Public knowledge: A set S = {m1, . . . ,mp}, and the prover’s public
key (n, g).
Steps:

Prover

1. Prover picks at random ρ in Z∗
n

2. Prover randomly picks p− 1 values ej in Zn, where j 6= i

3. Prover randomly picks p− 1 values vj in Z∗
n
, where j 6= i

4. Prover computes uj = vnj ·(gmj/c)ej mod n2, where j 6= i, and ui = ρn mod n2

5. Move 1: Prover sends uj , where j in {1 . . . p}, to the verifier

Verifier

1. Verifier chooses a random challenge e in [0, A[
2. Move 2: Verifier sends e to the prover

Prover

1. Prover computes ei = e−
∑
j 6=i ej mod n

2. Prover computes vi = ρ · rei · g(e−
∑
j 6=i ej)/n mod n

3. Move 3: Prover sends vj , ej , where j ∈ {1 . . . p}, to the verifier

Verifier

1. Verifier checks that e =
∑
j ej mod n

2. Verifier checks that vnj = uj · (c/gmj )ej mod n2 for each j ∈ {1 . . . p}

Figure 5.3: Protocol: Interactive Zero-Knowledge Proof of Set Membership [13]

5.3.7 Zero-Knowledge Proof of Plaintext Equality

In general, a zero-knowledge proof of plaintext equality for two ciphertexts may
be stated as follows:

Let E1(m) and E2(m) be encryptions of a message m with the public key
of agents 1 and 2 respectively. A zero-knowledge proof of plaintext equality
allows a prover to convince a verifier that E1(m) and E2(m) encrypt the same
message.
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Protocol: Non-Interactive-ZKP-Set-Membership
Participants: A prover and a verifier.
Input: Prover: n, g, mi, p, r, c = gmi · rn mod n2. Verifier: n, g, p, c.
Output: The verifier is convinced that c encrypts a message in S.
Setup: Public knowledge: A set S = {m1, . . . ,mp}, and the prover’s public
key (n, g). hash(x) is a cryptographic hash function secure against a computa-
tionally PPT bounded adversary.
Steps:

Prover

1. Prover picks at random ρ in Z∗
n

2. Prover randomly picks p− 1 values ej in Zn, where j 6= i

3. Prover randomly picks p− 1 values vj in Z∗
n
, where j 6= i

4. Prover computes uj = vnj ·(gmj/c)ej mod n2, where j 6= i, and ui = ρn mod n2

5. Prover computes e = hash(〈u1 . . . up〉)
6. Prover computes ei = e−

∑
j 6=i ej mod n

7. Prover computes vi = ρ · rei · g(e−
∑
j 6=i ej)/n mod n

8. Move 1: Prover sends uj , vj , ej , where j ∈ {1 . . . p}, to the verifier

Verifier

1. Verifier computes e = hash(〈u1 . . . up〉)
2. Verifier checks that e =

∑
j ej mod n

3. Verifier checks that vnj = uj · (c/gmj )ej mod n2 for each j ∈ {1 . . . p}

Figure 5.4: Protocol: Non-Interactive Zero-Knowledge Proof of Set Membership

In a non-interactive version of the zero-knowledge proof of plaintext equal-
ity, we abstract the part of the proof generated by the prover as the function
plaintextEqualityZKP (Eu(m), Ev(m)), abbreviated as pezkp(Eu(m), Ev(m)).

The zero-knowledge proof of plaintext equality is specified for the Paillier
cryptosystem as follows:

Let (n1, g1) and (n2, g2) be the public keys of agents 1 and 2 respectively.
Given two encryptions c1 = gm1 · r

n1
1 mod n2

1 and c2 = gm2 · r
n2
2 mod n2

2, a zero-
knowledge proof of plaintext equality allows a prover to convince a verifier that
c1 and c2 encrypt the same message.

An interactive zero-knowledge proof of plaintext equality for the Paillier
cryptosystem is described in [13]. In Figure 5.5, we present our non-interactive
version of the proof, which has been obtained using the Fiat-Shamir heurisitic.

For two ciphertexts, the complexity (in terms of bandwidth used) of the
proof described in [13] is O(1), that is, constant.
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Protocol: Non-Interactive-ZKP-Plaintext-Equality
Participants: A prover and a verifier.
Input: Prover: n1, g1, n2, g2, m, r1, r2, c1 = gm1 · r

n1
1 mod n2

1, c2 = gm2 ·
r
n2
2 mod n2

2. Verifier: n1, g1, n2, g2, c1, c2.
Output: The verifier is convinced that c1 and c2 encrypt the same message.
Setup: Public knowledge: The public keys (n1, g1) and (n2, g2). hash(x) is
a cryptographic hash function secure against a computationally PPT bounded
adversary.
Steps:

Prover

1. Prover picks at random ρ in [0, 2k[
2. Prover randomly picks s1 ∈ Z∗

n1
and s2 ∈ Z∗

n2

3. Prover computes uj = gρj · s
nj

j mod n2
j , for each j ∈ {1, 2}

4. Prover computes e = hash(〈u1, u2〉)
5. Prover computes z = ρ+m · e
6. Prover computes vj = sj · rej mod nj , for each j ∈ {1, 2}
7. Move 1: Prover sends z, u1, u2, v1, v2 to the verifier

Verifier

1. Verifier computes e = hash(〈u1, u2〉)
2. Verifier checks that z ∈ [0, 2k[
3. Verifier checks that gzj · v

nj

j = uj · cej mod n2
j for each j ∈ {1, 2}

Figure 5.5: Protocol: Non-Interactive Zero-Knowledge Proof of Plaintext Equal-
ity

5.4 The Non-Disruptive Malicious Model

Malicious agents may 1) refuse to participate in the protocol, 2) prematurely
abort the protocol, 3) selectively drop messages that they are supposed to send,
4) tamper with the communication channels, 5) wiretap the communication
channels, and 6) provide incorrect information (for example, provide out of
range values as their inputs).

We have defined a non-disruptive malicious adversary as a malicious adver-
sary who executes the cited malicious actions only if they lead to the disclosure
of the inputs of honest agents. Non-disruptive agents have a single objective:
learn the inputs of honest agents. They do not disrupt the normal function of
the protocol other than to achieve this objective.

The Semi-Honest-k-Shares protocol (Section 4.6) provides security under the
semi-honest model. We analyze the possible malicious actions that agents can
take in the Semi-Honest-k-Shares protocol under the non-disruptive malicious
model.
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Agent t. To gain unfair advantage, agent t could drop the agents from St
whom he thinks might have rated him poorly.

All Agents. Agents could wiretap communication channels to learn the shares
of an agent under attack.

We propose the following extensions to secure the k-Shares protocol under
the non-disruptive malicious adversarial model.

5.4.1 Source Managers

The set Sa is no longer maintained by agent a. Instead, the set Sa is maintained
for agent a by two or more other agents in the system independently of each
other. Those agents are called the source managers of agent a. The idea of
source managers is inspired by score managers in EigenTrust [80].

When a source agent assigns feedback to a target agent, it reports that event
to each of the source managers of the target agent. The source managers add
the source agent to the set St that they each maintain for the target agent t.

Agent q retrieves the set St from the source managers of agent t. It is possible
that a number of the source managers are colluding with agent t and thus drop
agents from St as desired by t. To counter this problem, an agent that needs the
set St, retrieves it from all the source managers of agent t and then takes the
union of all those sets to get the final St. Thus even if a single source manager
is honest, the final set St would include all source agents of agent t.

To assign and locate source managers, a Distributed Hash Table (DHT), such
as Chord [128], is used. An agent’s source managers are located by hashing the
unique ID of the agent. Chord requires O(log N) messages for a lookup, where
N is the total number of agents in the system.

It is important to note that a source manager is not a special agent in the
system. Source manager is only a role that any regular agent can perform.
Moreover, a source manager is not considered to be honest. A querying agent
will receive the correct set St as long as at least one of all the source managers of
the target agent t is honest. A DHT is used to assign source managers, therefore
an agent has no influence over who serves as its source manager.

Let’s consider that there is an even probability that any given source manager
is either honest or dishonest. Then the probability that at least one of all ma
source managers of an agent a will be honest is 1 − 1

2ma
. This probability is

75% at ma = 2, 97% at ma = 5, and 99% at ma = 7.
A disadvantage of using source managers is the additional overhead on agents

who serve as source managers.

5.4.2 Secure Communication

Wiretapping may be prevented by requiring all messages to be exchanged via
communication channels that are resistant to wiretapping. This can be achieved
through a protocol such as SSL (Secure Sockets Layer) or IPSec.
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5.5 The k-Shares Reputation Protocol for the
Disruptive Malicious Model

We have defined a disruptive malicious adversary as a malicious adversary who
has the following objectives: 1) learn the inputs of honest agents, and 2) dis-
rupt the protocol for honest agents. The reasons for disrupting the protocol
may range from gaining illegitimate advantage over honest agents to completely
denying the service of the protocol to honest agents.

5.5.1 A Suitable Cryptosystem

To construct a reputation protocol that is secure under the disruptive mali-
cious adversarial model, we utilize an asymmetric cryptosystem that satisfies
the following properties:

• Additive homomorphic cryptography

• Randomized encryption

• At minimum, semantic security

• Efficient zero-knowledge proofs of set membership and plaintext equality

Let C be any asymmetric cryptosystem such that it has the properties de-
scribed above. Let Ea(.) denote the encryption function with the public key
PKa of agent a in C, and let Da(.) denote the decryption function with the
secret key SKa of agent a in C. A realization of C is the Paillier cryptosystem,
which we use for our protocol.

5.5.2 Protocol Outline

The important steps of the protocol are outlined below.

1. Initiation. The protocol is initiated by a querying agent q to determine
the reputation rt,ψ of a target agent t. Agent q retrieves St ≡ St,ψ, the
set of source agents of agent t in the context ψ. Agent q verifies St from
the source managers of t. Agent q then sends St to each agent a ∈ St.

2. Select Trustworthy Agents. Each agent a ∈ St selects up to k other
agents in St. Let’s refer to these agents selected by a as the set Ua =
{ua,1 . . . ua,ka}, where 1 ≤ ka ≤ k. Agent a selects these agents such that:
P (perform(a, ua,1, ρ) = false) × . . . × P (perform(a, ua,ka , ρ) = false) is
low. That is, the probability that all of the selected agents will collude to
break agent a ’s privacy is low.

3. Prepare Shares. Agent a then prepares ka + 1 shares of its secret
feedback value lat. The shares, given as: xa,1 . . . xa,ka+1, are prepared in
the following manner: The first ka shares are random numbers uniformly
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distributed over a large interval (for example, [0, 232 − 1]). The last share
is selected as follows: xa,ka+1 = (lat −

∑ka
i=1 xa,i) mod M , where M is a

publicly known modulus.

The preparation of the shares in this manner implies that:
(
∑ka+1
i=1 xa,i) mod M = lat. That is, the sum of the shares mod M is

equal to the feedback value. The sum of the shares,
∑ka+1
i=1 xa,i, lies in

[(ha×M), (ha×M)+L], where ha = (
∑ka+1
i=1 xa,i) div M , and lat ∈ [0, L].

Since each of the ka + 1 shares is a number uniformly distributed over a
large interval, no information about the secret can be learnt unless all of
the shares are known.

4. Encrypt Shares. Agent a then encrypts each of the ka + 1 shares with
its own public key to obtain: Ea(xa,1) . . . Ea(xa,ka+1). It also encrypts
each share xa,i with the public key of agent ua,i, for i ∈ {1 . . . ka}, to
obtain: Eua,1(xa,1) . . . Eua,ka (xa,ka).

In a later step, each encrypted share Eua,i(xa,i) will be delivered to the
agent ua,i.

5. Generate Zero-Knowledge Proofs. Agent a computes: βa = (Ea(xa,1)
× . . .×Ea(xa,ka+1)) mod n2

a, where na is the RSA modulus in the public
key of agent a. The result of this product is the encrypted sum of agent
a ’s shares, that is βa = Ea(

∑ka+1
i=1 xa,i) (due to the additive homomorphic

property).

Agent a then generates one non-interactive set membership zero-knowledge
proof: smzkp(βa, [(ha×M), (ha×M)+L]). The proof proves to a verifier
that the ciphertext βa encrypts a value that lies in [(ha×M), (ha×M)+L].
In other words, the proof shows that the ciphertext contains a valid feed-
back value (considering mod M).

Agent a also generates ka non-interactive plaintext equality zero-knowledge
proofs. Each proof pezkp(Ea(xa,i), Eua,i(xa,i)), where i ∈ {1 . . . ka}, proves
to a verifier that the two ciphertexts, one encrypted with the public key
of a and the other encrypted with the public key of ua,i, contain the same
plaintext.

A verifier who verifies these zero-knowledge proofs will be convinced that
agent a has prepared the shares such that they add up to a correct feed-
back value. Moreover, the verifier will be assured that the shares destined
for a ’s trustworthy agents correspond to those correct shares.

6. Send Encrypted Shares and Proofs. Agent a sends all encrypted
shares, that is, Ea(xa,1) . . . Ea(xa,ka+1) and Eua,1(xa,1) . . . Eua,ka (xa,ka),
as well as all zero-knowledge proofs, that is, smzkp(βa, [(ha ×M), (ha ×
M) + L]) and pezkp(Ea(xa,i), Eua,i(xa,i)), i ∈ {1 . . . ka}, to agent q.

7. Verify the Proofs. Agent q independently computes βa and verifies the
proofs received from each agent a. Their verification confirms that agent a
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has prepared the shares correctly. Agent q receives and verifies the proofs
of all source agents before proceeding to the next step.

8. Relay the Encrypted Shares. Agent q relays to each agent a, the
encrypted shares received for it from agents who considered it trustworthy.
That is, each encrypted share Euv,j (xv,j), prepared by an agent v for agent
uv,j , is relayed to agent uv,j .

Since the shares are relayed through q, any agent who drops a message
would be easily identified. However, q does not learn any of the shares by
relaying them since they are encrypted.

9. Compute Sum of the Shares. Each agent a receives the encrypted
shares of the agents who considered it trustworthy. Agent a computes γa
as the product of those encrypted shares along with the ciphertext of its
own ka + 1’th share xa,ka+1. Due to the additive homomorphic property,
γa is an encryption of the sum of the plaintexts of those shares. Agent a
decrypts γa to obtain the plaintext sum σa.

Adding the ka + 1’th share provides security in the case when a receives
only one share. If there is no ka + 1’th share to add, then q would learn
the received share. Secrecy of the ka + 1’th share itself is not critical to
the security of the protocol.

10. Encrypt the Sum. Agent a then encrypts σa with agent q’s public key
to obtain Eq(σa).

11. Generate Zero-Knowledge Proof. Agent a then generates a non-
interactive plaintext equality zero-knowledge proof: pezkp(γa, Eq(σa)).
The proof proves to a verifier that the two ciphertexts, one encrypted
with the public key of a and the other encrypted with the public key of
q, contain the same plaintext.

Agent q, who can independently compute γa, can be convinced by this
proof that Eq(σa) contains the correct sum of the shares.

12. Send Encrypted Sum and Proof. Agent a sends the encrypted sum
Eq(σa) and the zero-knowledge proof pezkp(γa, Eq(σa)) to agent q.

13. Verify the Proof. Agent q independently computes γa and verifies the
zero-knowledge proof received from each agent a. Its verification confirms
that the agent has computed the sum of the shares correctly. Agent q
receives and verifies the proofs of all source agents before proceeding to
the next step.

14. Compute Reputation. Agent q decrypts Eq(σa) to obtain σa for each
agent a ∈ St. Agent q then computes rt,ψ = ((

∑
a∈St σa) mod M)/n.
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5.5.3 Protocol Specification

The protocol is specified in Figures 5.6 through 5.9. Tables 5.1 and 5.2 describe
the functions and the variables used in the protocol respectively.

The Paillier cryptosystem can only encrypt integers. Therefore, for the pur-
pose of this protocol, we consider feedback values to be integers in the range
[0, L] (for example, [0, 10]). The reputation computed by the protocol can be
normalized to the interval [0, 1] by dividing the result by L.

Let M be a publicly known modulus, such that M > L, and ∀t ∈ A :∑
a∈St lat < M . Moreover, M is sufficiently smaller than 2k, where k is the

security parameter — the length in bits of the RSA modulus n in the crypto-
graphic keys of the agents (for example, k = 2048, and M = 280).

Let [0, X] be a large interval (for example, [0, 232 − 1]).
To generate the zero-knowledge proof setMembershipZKP (βa, [(ha ×M),

(ha × M) + L]) in step 10 of the event prep, an agent a requires the ran-
domization rβa of the encryption βa, which can be computed as follows: rβa =
ra,1 × . . . × ra,ka+1, where ra,i is the randomization used for the encryption of
Ea(xa,i).

To generate the zero-knowledge proof plaintextEqualityZKP (γa, Eq(σa)) in
step 4 of the event verified shares, an agent a requires the randomization rγa
of the encryption γa, which can be computed as follows:
rγa = (g−σa · γa)1/na mod (p−1)(q−1) mod na, where g and na are in the pub-
lic key of a, and p and q are in the secret key, na = pq.

Table 5.1: Description of the functions used in Disruptive-Malicious-k-Shares.

Function Description

timestamp() Returns current time.

random(α,β) Returns a random number uniformly distributed
over the interval [α, β].

set of trustworthy(a, S) Returns a set of agents Ua = {ua,1 . . . ua,ka},
where 1 ≤ ka ≤ k, and Ua ⊆ S. The set
Ua is selected such that: P (perform(a, ua,1, ρ) =
false) × . . . × P (perform(a, ua,ka , ρ) = false) is
low, with the minimum possible ka.
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Protocol: Disruptive-Malicious-k-Shares
Participants: Agents: q, t, and St ≡ St,ψ = {a1 . . . an}. Agents q, t, and a
subset of St,ψ of size m < n are considered to be dishonest, however, q wishes to
learn the correct output (and therefore does not disrupt the protocol). n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ, the reputation of agent t in the context ψ, or
agent q learns the identity of the agents who disrupt the protocol.
Setup: Each agent a maintains Sa ≡ Sa,ψ, the set of its source agents in the
context ψ. All communication takes place over authenticated point-to-point
channels that are resistant to wire-tapping and tampering.
Events and Associated Actions (for an Agent a):

need arises to determine rt

� initiate query
1 send tuple (request for sources, ψ) to t
2 receive tuple (sources, ψ, St) from t
3 verify St from the source managers of t
4 retrieve public key PKw of each agent w ∈ St from a certificate authority
5 S′t ← St � initialize the set of agents who are expected to send their shares
6 θ ← 0 � a cumulative sum for computing reputation
7 Vw ← φ, for each agent w ∈ St � initialize the sets of encrypted shares
8 s← timestamp()
9 send tuple (prep, q, t, s, St) to each agent w ∈ St

tuple (request for sources, ψ) received from agent q
1 send tuple (sources, ψ, Sa) to q

Figure 5.6: Protocol: Disruptive-Malicious-k-Shares

5.5.4 Security

Correctness

Theorem 9. Let’s assume that agent q is able to retrieve the correct St from
the source managers of agent t. Then, in the protocol Disruptive-Malicious-k-
Shares (Figure 5.6), agent q either learns the correct reputation of agent t in
the context ψ, or it learns the identity of a malicious agent who has disrupted
the protocol, under the disruptive malicious adversarial model.

Proof. First, we consider the semi-honest model, which assumes that the
protocol is followed according to the specification, and that the communication
channels are not wire-tapped and not tampered with.

In the protocol Disruptive-Malicious-k-Shares (prep: lines 3 – 5), each agent
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Protocol: Disruptive-Malicious-k-Shares (contd.)

tuple (prep, q, t, s, St) received from agent q
� select trustworthy agents

1 Ua ← set of trustworthy(a, St − {a})
2 ka ← |Ua|

� prepare shares
3 for i← 1 to ka
4 do xa,i ← random(0, X)
5 xa,ka+1 ← (lat −

∑ka
i=1 xa,i) mod M

6 ha ← (
∑ka+1
i=1 xa,i) div M

� retrieve public keys
7 retrieve the public key of each u ∈ Ua and the public key of q from

a certificate authority
� encrypt shares

8 encrypt xa,1 . . . xa,ka+1 with the public key of a to obtain
Ea(xa,1) . . . Ea(xa,ka+1) respectively

9 encrypt xa,1 . . . xa,ka with the public key of ua,1 . . . ua,ka to obtain
Eua,1(xa,1) . . . Eua,ka (xa,ka) respectively
� generate zero-knowledge proofs

10 βa ← (Ea(xa,1)× . . .× Ea(xa,ka+1)) mod n2
a

11 generate setMembershipZKP(βa, [(ha ×M), (ha ×M) + L])
12 for i← 1 to ka
13 do generate plaintextEqualityZKP(Ea(xa,i), Eua,i(xa,i))

� send the encrypted shares and the proofs to q
14

−→
Ia ← 〈ka, Ua, Ea(xa,1), . . . , Ea(xa,ka+1), Eua,1(xa,1), . . . , Eua,ka (xa,ka),

ha, setMembershipZKP(βa, [(ha ×M), (ha ×M) + L]),
plaintextEqualityZKP(Ea(xa,1), Eua,1(xa,1)), . . . ,
plaintextEqualityZKP(Ea(xa,ka), Eua,ka (xa,ka))〉

15 send tuple (shares, q, t, s,
−→
Ia) to agent q

Figure 5.7: Protocol: Disruptive-Malicious-k-Shares (contd.)
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Protocol: Disruptive-Malicious-k-Shares (contd.)

tuple (shares, q, t, s,
−→
Iv) received from an agent v ∈ St

� verify the set membership proof
1 (βv ← Ev(xv,1)× . . .× Ev(xv,kv+1)) mod n2

v

2 verify setMembershipZKP(βv, [(hv ×M), (hv ×M) + L])
� verify the plaintext equality proofs

3 for i← 1 to ka
4 do verify plaintextEqualityZKP(Ev(xv,i), Euv,i(xv,i))

� manage the sets of encrypted shares to be relayed
5 for i← 1 to ka
6 do Vuv,i ← Vuv,i ∪ Euv,i(xv,i)

� subtract v from the set of agents who are yet to send their shares
7 S′t ← S′t − {v}

� if shares have been received from all source agents then relay the shares
8 if S′t = φ
9 then S′t ← St � initialize the set of agents who are yet to send their sum

10 send tuple (verified shares, q, t, s, Vw) to each agent w ∈ St

tuple (verified shares, q, t, s, Va) received from agent q
� compute sum of the shares

1 γa ← ((
∏
c∈Va c)× Ea(xa,ka+1)) mod n2

a

2 σa ← Da(γa)
� encrypt the sum

3 encrypt σa with the public key of q to obtain Eq(σa)
� generate zero-knowledge proof

4 generate plaintextEqualityZKP(γa, Eq(σa))
� send the encrypted sum and the proof to agent q

5 send tuple (aggregate, q, t, s, Eq(σa), pezkp(γa, Eq(σa)) to q

Figure 5.8: Protocol: Disruptive-Malicious-k-Shares (contd.)
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Protocol: Disruptive-Malicious-k-Shares (contd.)

tuple (aggregate, q, t, s, Eq(σv), pezkp(γv, Eq(σv)) received from an agent
v ∈ St

� verify the proof
1 γv ← ((

∏
c∈Vv c)× Ev(xv,ka+1)) mod n2

v

2 verify plaintextEqualityZKP(γv, Eq(σv))
� decrypt the sum

3 σv ← Dq(Eq(σv))
� compute intermediate sum for reputation

4 θ ← θ + σv
� subtract v from the set of agents who are yet to send their sum

5 S′t ← S′t − {v}
� if sum has been received from all source agents, compute reputation

6 if S′t = φ
7 then rt,ψ ← (θ mod M)/n

Figure 5.9: Protocol: Disruptive-Malicious-k-Shares (contd.)
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Table 5.2: Description of the variables used in Disruptive-Malicious-k-Shares.

Variable Description

A The set of all agents in the environment

a A source agent. a ∈ St.
c A ciphertext

ha The quotient when the sum of the shares of an agent a is divided
by M . ha = (

∑ka+1
i=1 xa,i) div M .

−→
Ia A vector that contains the encrypted shares and the proofs sent

by an agent a to the agent q

ka The cardinality of the set Ua. ka = |Ua|.
k The security parameter. The length in bits of the RSA modulus

n in the cryptographic keys of the agents. For example, k = 2048.

L A positive integer constant. lat ∈ [0, L]. For example, L = 10.

lat The feedback of a source agent a about a target agent t

M A publicly known modulus. M > L. ∀t ∈ A :
∑
a∈St lat < M .

M � 2k. For example, k = 2048, M = 280.

m The number of dishonest source agents in St. m < n.

n The cardinality of the set St. n = |St|.
n The RSA modulus in the public key of an agent

na The RSA modulus in the public key of an agent a

PKa The public key of an agent a

q The querying agent

rt ≡ rt,ψ The reputation of an agent t in the context ψ

St ≡ St,ψ The set of source agents of agent t in the context ψ

S′t An intermediate set that is initialized to St. The set of agents
who are expected to send their shares and sums to agent q.

s A timestamp

t The target agent

Ua The set of fellow source agents that an agent a selects as trust-
worthy

u A source agent. u ∈ St.
Vw The set of encrypted shares that agent q receives from other

agents and then relays to agent w

v A source agent. v ∈ St.
w A source agent. w ∈ St.
X A large positive integer constant. xa,i ∈ [0, X]. For example,

X = 232 − 1.

xa,i The ith share of an agent a

βa The encrypted sum of an agent a ’s shares. βa = Ea(
∑ka+1
i=1 xa,i).

γa The encrypted sum of the shares received by an agent a and
agent a ’s ka + 1’th share xa,ka+1

θ A cumulative sum for computing reputation

σa The sum of the shares received by an agent a and agent a ’s
ka + 1’th share xa,ka+1

ψ An action. The context for trust.
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a ∈ St prepares the shares xa,1 . . . xa,ka+1, such that:

ka+1∑
i=1

xa,i = (lat + (ha ×M)) mod M (5.1)

The sum of all shares of all source agents may be given as:

∑
a∈St

ka+1∑
i=1

xa,i =
∑
a∈St

((lat + (ha ×M)) mod M) (5.2)

In the protocol (prep: line 15, shares: line 10), each agent a ∈ St sends
its share xa,i to another agent in St through q, where i ∈ {1 . . . ka}. Each agent
a ∈ St computes σa, which is the sum of the received shares and its own ka+1’th
share (verified shares: lines 1 – 2). We deduce that

∑
a∈St σa is the sum

of all shares received by all agents (that is,
∑
a∈St

∑ka
i=1 xa,i) and all ka + 1’th

shares (that is,
∑
a∈St xa,ka+1).

∑
a∈St

σa =
∑
a∈St

ka∑
i=1

xa,i +
∑
a∈St

xa,ka+1 (5.3)

=
∑
a∈St

ka+1∑
i=1

xa,i (5.4)

In the protocol, θ is computed as follows (need arises to determine rt: line
6, aggregate: line 4):

θ =
∑
a∈St

σa (5.5)

From equations 5.2, 5.3, and 5.5:

θ =
∑
a∈St

((lat + (ha ×M)) mod M) (5.6)

(θ mod M)/n = ((
∑
a∈St

((lat + (ha ×M)) mod M)) mod M)/n (5.7)

Since lat ≤ L < M for each a ∈ St, and
∑
a∈St lat < M , we get:

(θ mod M)/n = (
∑
a∈St

lat)/n (5.8)

In the protocol (aggregate: line 7), agent q learns the reputation of agent
t in the context ψ as:

rt,ψ = (θ mod M)/n (5.9)
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From equations 5.8, 5.9, and equation 3.2, we conclude that agent q learns
the correct reputation of agent t in the context ψ under the semi-honest model.

Now, we consider the disruptive malicious model.
Malicious agents may 1) refuse to participate in the protocol, 2) prematurely

abort the protocol, 3) selectively drop messages that they are supposed to send,
4) tamper with the communication channels, 5) wiretap the communication
channels, and 6) provide incorrect information (for example, provide out of
range values as their inputs, make incorrect computations).
Agent q.

Agent q wishes to learn the correct output therefore it would not take any
of the actions 1 to 4, and 6. Wiretapping the communication channels has no
effect on the correctness of the protocol.
Each Agent a ∈ St.

Each agent a ∈ St communicates exclusively with agent q. If an agent a
takes any of the actions 1 to 3, it would be exposed as malicious to agent q.
Note: Agent q can then remove the malicious agent from the set of source agents
and restart the protocol. Eventually, only those agents who do not take actions
1 to 3 will remain in the set of source agents.

An agent a ∈ St is unable to tamper with the communication channels since
we assume that all communication takes place over authenticated point-to-point
channels that are resistant to tampering. Since each agent a ∈ St communicates
exclusively with agent q, it will be exposed as malicious if it does not conform
to these requirements.

Wiretapping the communication channels has no effect on the correctness of
the protocol.

The first tuple of information that an agent a ∈ St provides agent q is:
(shares, q, t, s,

−→
Ia), where

−→
Ia = 〈 Ua, Ea(xa,1), . . ., Ea(xa,ka+1), Eua,1(xa,1),

. . ., Eua,ka (xa,ka), setMembershipZKP(βa, L), plaintextEqualityZKP(Ea(xa,1),
Eua,1(xa,1)), . . ., plaintextEqualityZKP(Ea(xa,ka), Eua,ka (xa,ka)) 〉.

The correctness of the first four elements of the tuple and the set Ua can be
trivially verified by agent q. The remaining information pertains to the shares
prepared by agent a. The shares have been prepared correctly if the following
conditions hold true: 1) the shares add up to a value in [(h×M), (h×M)+L]; 2)
Eua,1(xa,1), . . ., Eua,ka (xa,ka) encrypt the same shares as Ea(xa,1), . . ., Ea(xa,ka)
respectively; 3) Eua,1(xa,1), . . ., Eua,ka (xa,ka) are encrypted with the public keys
of agents ua,1 . . . ua,ka respectively.

The first condition holds true for an agent a if the verification of
setMembershipZKP(βa, [(ha×M), (ha×M)+L]) by agent q is successful. Agent
q can verify the proof since it can independently compute βa (due to the addi-
tive homomorphic property of the cryptosystem), L and M are publicly known,
and ha is provided by agent a. An incorrect value of ha will result in failure of
the verification of the zero-knowledge proof. A zero-knowledge proof that shows
membership in an interval with an incorrect ha has no effect on the final output
of the protocol since it is computed as mod M .

The second and third conditions hold true for an agent a if the verification of
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each plaintextEqualityZKP(Ea(xa,i), Eua,i(xa,i)) by agent q is successful, where
i ∈ {1 . . . ka}. Agent q can verify these proofs since it can independently retrieve
the public keys of agents a and ua,1 . . . ua,ka from a certificate authority.

If the verification of the one set-membership zero-knowledge proof and the
ka plaintext-equality zero-knowledge proofs provided by an agent a succeeds, it
implies that agent a has provided correct information pertaining to the shares
that it prepared. Otherwise, agent a has provided incorrect information and it
may therefore be considered as malicious.

The second tuple of information that an agent a ∈ St provides agent q is:
(aggregate, q, t, s, Eq(σa), pezkp(γa, Eq(σa)).

The correctness of the first four elements of the tuple can be trivially verified
by agent q. The remaining information pertains to the sum σa. The sum has
been computed correctly if the following condition holds true: γa and Eq(σa)
encrypt the same plaintext.

The condition holds true for an agent a if the verification of pezkp(γa, Eq(σa))
by agent q is successful. Agent q can verify the proof since it can independently
compute γa (due to the additive homomorphic property of the cryptosystem)
and it can independently retrieve the public key of agents a from a certificate
authority.

If the verification of the plaintext-equality zero-knowledge proof provided by
an agent a succeeds, it implies that agent a has provided correct information
pertaining to the sum σa. Otherwise, agent a has provided incorrect information
and it may therefore be considered as malicious.
Agent t.

We assume that agent q is able to retrieve the correct St from the source
managers of agent t.

It follows that in the protocol Disruptive-Malicious-k-Shares (Figure 5.6),
agent q either learns the correct reputation of agent t in the context ψ, or learns
the identity of a malicious agent who has disrupted the protocol, under the
disruptive malicious adversarial model.

Privacy

Theorem 10. Let’s assume that for each agent a ∈ St in the Disruptive-
Malicious-k-Shares protocol (Figure 5.6), P (perform(a, ua,1, ρ) = false) × . . .
× P (perform(a, ua,ka , ρ) = false) is low. Let’s assume that agent q is able to
retrieve the correct St from the source managers of agent t. Then Disruptive-
Malicious-k-Shares is a real privacy preserving protocol under the disruptive
malicious model.

Proof. First, we consider the semi-honest model, which assumes that the
protocol is followed according to the specification, and that the communication
channels are not wire-tapped and not tampered with. The proof for this model
is quite similar to the proof of privacy for the protocol semi-honest-k-shares.

Let’s consider an agent a ∈ St. Agent a prepares the shares xa,1 . . . xa,ka+1

of its secret feedback value lat. The first ka shares xa,1 . . . xa,ka are random
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numbers uniformly distributed over a large interval. The final share, xa,ka+1 =
(lat −

∑ka
i=1 xa,i) mod M , is also a number uniformly distributed over a large

interval since it is a function of the first ka shares which are random numbers.
Thus, individually each of the shares does not reveal any information about
the secret feedback value lat. Moreover, no information is learnt about lat
even if up to ka shares are known, since their sum would be some random
number uniformly distributed over a large interval. The only case in which
information can be gained about lat is if all ka + 1 shares are known. Then,
lat = (

∑ka+1
i=1 xa,i) mod M .

We now analyze if the ka + 1 shares of an agent a can be learnt by the
adversary from the protocol.

Agent a sends each share xa,i only to agent ua,i, where i ∈ {1 . . . ka}. Al-
though, agent q relays each share xa,i from agent a to agent ua,i, agent q or any
third agent is unable to learn the share xa,i since it is sent encrypted with agent
ua,i’s public key as Eua,i(xa,i). Only agent ua,i is able to decrypt Eua,i(xa,i)
and obtain xa,i.

Each agent ua,i computes σua,i , which is the sum of all shares that it receives
and its own final share xua,i,kua,i+1. Even if agent a is the only agent to send
agent ua,i a share, σua,i = xa,i + xua,i,kua,i+1. That is, the sum of agent a ’s
share and agent ua,i’s final share. Consequently, σua,i is a number uniformly
distributed over a large interval. Thus, when agent ua,i sends this number
to agent q, it is impossible for q to distinguish the individual shares from the
number. Therefore, each share xa,i that agent a sends to agent ua,i will only be
known to agent ua,i. Unless, agent ua,i is dishonest. The probability that agent
ua,i is dishonest, that is, it will attempt to breach agent a ’s privacy is given as:
P (perform(a, ua,i, ρ) = false).

To learn the first ka shares of agent a, all agents ua,1 . . . ua,ka would have to
be dishonest. The probability of this scenario is given as: P (perform(a, ua,1, ρ)
= false)× . . .× P (perform(a, ua,ka , ρ) = false).

Even in the above scenario, the adversary does not gain information about
lat, without the knowledge of agent a ’s final share xa,ka+1. However, agent
a has to send σa = xa,ka+1 +

∑
v∈Ja xv, and agent a has no control over the∑

v∈Ja xv portion of the equation. Therefore, we assume that agent q learns the
final share of agent a.

Thus the probability that the protocol will not preserve agent a ’s privacy
can be stated as: P (perform(a, ua,1, ρ) = false)× . . .×P (perform(a, ua,ka , ρ) =
false). We assume that the agents ua,1 . . . ua,ka are selected such that this
probability is low. Therefore, with high probability, the adversary learns no
more information about lat than it can learn in the ideal protocol with what it
knows before the execution of the protocol and the outcome.

Now, we consider the disruptive malicious model. Malicious agents may
1) refuse to participate in the protocol, 2) prematurely abort the protocol, 3)
selectively drop messages that they are supposed to send, 4) tamper with the
communication channels, 5) wiretap the communication channels, and 6) pro-
vide incorrect information (for example, provide out of range values as their
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inputs).
Privacy of Agent q and Agent t.

Agent q and agent t are not required to contribute any private information
during the protocol.
Privacy of Each Agent a ∈ St.
Attack 1. Refuse to Participate in the Protocol.

If a source agent v refuses to participate in the protocol, it has no effect
on the privacy of any agent a since agent v must receive a share of agent a ’s
private information before it can attack its privacy.

Agent t’s refusal to participate also has no effect on the protocol. Agent q
may retrieve St directly from agent t’s source managers.

Agent q does not refuse to participate in the protocol since it wishes to learn
the correct output of the protocol.
Attack 2. Prematurely Abort the Protocol.

If a source agent v prematurely aborts the protocol before receiving the
shares, it has no effect on the privacy of any agent a since agent v must receive
a share of agent a ’s private information before it can attack its privacy. The
other scenario is that the source agent v prematurely aborts the protocol after
receiving a share of agent a ’s private information. In that case, all first ka
shares of agent a must still be known to breach a ’s privacy. Thus prematurely
aborting the protocol does not give an agent v ∈ St any advantage in learning
agent a ’s private information.

If agent t aborts the protocol before providing St, agent q may retrieve St
directly from agent t’s source managers. Therefore agent t’s disruption has no
effect on the protocol.

Agent q has no incentive to prematurely abort the protocol since it wishes
to learn the correct output of the protocol, which is not learnt until after the
last step.
Attack 3. Selectively Drop Messages.

If a source agent v selectively drops messages or parts of messages, it has
no effect on the condition that all first ka shares of agent a must be known to
breach an agent a ’s privacy. Thus this is another action that does not give an
agent v ∈ St any advantage in learning agent a ’s private information.

Agent t may not provide St or may provide only a subset, however, that
has no effect on the protocol since q also retrieves and verifies St from agent t’s
source managers.

Agent q does not selectively drop messages since it wishes to learn the correct
output of the protocol. Note: Please see the discussion on Attack 6 for the case
where agent q may relay incorrect shares or may not relay them at all.
Attack 4. Tamper with the Communication Channels.

Any agent is unable to tamper with the communication channels since we
assume that all communication takes place over authenticated point-to-point
channels that are resistant to tampering.
Attack 5. Wiretap the Communication Channels.

Any agent is unable to wiretap the communication channels since we assume
that all communication takes place over authenticated point-to-point channels
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that are resistant to wiretapping.
Attack 6. Provide Incorrect Information.

If a source agent v provides incorrect information, that has no effect on the
condition that all first ka shares of agent a must be known to breach an agent
a ’s privacy. Agent v provides no information to agent a or agent q that would
result in agent a divulging any extra information.

Agent t may provide an incorrect St, however, that has no effect on the
protocol since q also retrieves and verifies St from agent t’s source managers.

Agent q sends two types of messages to source agents: PREP , and
V ERIFIED SHARES.

PREP : Agent q may create St itself in order to attack an agent a ∈ St. The
set may be created such that it contains all dishonest agents except agent a who
is under attack. However, we assume that P (perform(a, ua,1, ρ) = false)× . . .×
P (perform(a, ua,ka , ρ) = false) is low. That is, there exist trustworthy agents
in the protocol such that agent a receives a high enough privacy guarantee.
Note: the protocol may be extended such that an agent a is allowed to abstain
if the privacy guarantee is not sufficient. In that case, modifying St would not
help agent q to breach agent a ’s privacy. The extension would be as follows:
The agent who wishes to abstain would generate the shares such that their sum
equals zero. The abstaining agent would inform the querying agent that it has
abstained, and would prove that the sum of the shares equals zero. The effect
of this extension on the correctness of the protocol is discussed in sections 5.5.6
and 4.5.1.

V ERIFIED SHARES: Agent q may substitute the shares sent by other
agents to an agent a with shares that it has created itself. Agent q may also
not relay a share at all. In both these cases, the best outcome for q would be
to learn agent a ’s ka + 1’th share. This has no effect on the privacy of agent a
since agent q is still unable to learn its first ka shares. Each of those shares is
encrypted and may only be decrypted by its destination agent.

The protocol Disruptive-Malicious-k-Shares is a real privacy preserving rep-
utation protocol (Definition 20) under the disruptive malicious model, since: 1)
Disruptive-Malicious-k-Shares has the same parameters as Disruptive-Malicious-
Ideal (except the TTP ), and 2) the adversary does not learn any more in-
formation about the private input of any agent a in Disruptive-Malicious-k-
Shares than it can learn in Disruptive-Malicious-Ideal, with high probability
(1 − P (perform(a, ua,1, ρ) = false) × . . . × P (perform(a, ua,ka , ρ) = false)),
under the disruptive malicious adversarial model.

5.5.5 Complexity

The protocol requires O(n) messages to be exchanged. The protocol also per-
forms a DHT lookup in the initiation phase, which requires an additional
O(log N) messages (assuming Chord). Thus the total number of messages
exchanged is O(n) + O(log N), where n is the number of source agents in the
protocol and N is the total number of agents in the system respectively.

125



Table 5.3: Protocol Disruptive-Malicious-k-Shares – Complexity.

Tuple Occurrences IDs Numbers
REQUEST FOR SOURCES 1
SOURCES 1 n
PREP n n× n = n2

SHARES n kn
VERIFIED SHARES n
AGGREGATE n
Total 4n + 2 n + n2 + kn
Complexity O(n) O(n2), for k � n O(1)

Table 5.4: Protocol Disruptive-Malicious-k-Shares – Complexity (contd.).

Tuple Ciphertexts SMZKPs PEZKPs
REQUEST FOR SOURCES
SOURCES
PREP
SHARES kn n kn
VERIFIED SHARES kn
AGGREGATE n n
Total 2kn + n n kn + n
Complexity O(n), for k � n O(n) O(n), for k � n

In terms of bandwidth used, the protocol requires transmission of the fol-
lowing amount of information: O(n2) agent IDs, O(n) ciphertexts, O(n) non-
interactive zero-knowledge proofs of set membership, and O(n) non-interactive
zero-knowledge proofs of plaintext equality.

This complexity analysis assumes that k � n. In Experiments 3 and 4
(sections 4.8.4 and 4.8.5) on the Advogato.org web of trust, we observed that
k � n is a reasonable assumption. The experiments show that the privacy
of 81.7% of instances of source agents is preserved with k = 2 and n ≥ 25.
Similarly, the privacy of 85.8% of instances of source agents is preserved with
k = 2 and n ≥ 50. The maximum percentage of instances of source agents
whose privacy can be preserved (even with k = n) is around 87%.

5.5.6 Discussion

Table 5.5 provides a comparison of our reputation protocol for the disruptive
malicious model with the other systems in the literature.

Our protocol does not require centralized constructs or specialized hardware.
The communication complexity of the protocol is O(n) +O(log N), where n is
the number of feedback providers and N is the number of all entities in the
system.

In contrast, the privacy preserving reputation systems discussed in the lit-
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erature for the disruptive malicious model, either rely on centralized constructs
or specialized hardware, or require very high communication complexity.

The reputation systems by Androulaki et al. and Steinbrecher are very effi-
cient. However, these systems rely on centralized constructs, which makes them
unsuitable for decentralized networks. Kinateder et al.’s reputation system pro-
vides anonymity in peer-to-peer systems under the disruptive malicious model.
However, the system functions only for specialized networks. The protocol by
Pavlov et al. (based on their second witness selection scheme) is the only other
reputation protocol that we have found that does not require centralized con-
structs or specialized networks. However, this protocol needs O(n3) messages
to be exchanged, which makes it prohibitively expensive.

Table 5.5: Protocol Disruptive-Malicious-k-Shares – Comparison.

System /
Protocol

Archi-
tecture

Target En-
vironment

Key Secu-
rity Mech-
anisms

Privacy
Guarantee

Complexity
(Mes-
sages)

Disruptive-
Malicious-k-
Shares

D Distributed
environ-
ments

Additive ho-
momorphic
cryptosys-
tems, Zero-
knowledge
proofs

If
P (perform
(a, ua,1, ρ) =
false) × . . .
×
P (perform
(a, ua,ka , ρ) =
false) is
low for each
a ∈ St

O(n) +
O(log N)

Pavlov et
al. [105] –
WSS-2

D Distributed
environ-
ments

Verifiable
secret shar-
ing, discrete
log commit-
ment

If b < N
2 −n O(n3),

where n =
number of
witnesses

Androulaki
et al. [9]

D Peer-to-peer
systems

Anonymous
credential
systems, E-
cash (bank),
Blind sig-
natures,
Mixnets
/ Onion
Routing

If the un-
derlying
primitives
(anonymous
credential
system, e-
cash system,
and blind
signatures)
are secure

O(1)

Kinateder
and Pearson
[81]

D Peer-to-peer
systems

Trusted
platform,
MIX cas-
cades,
Digital
signatures

If the un-
derlying
primitives
(trusted
platform,
MIX cas-
cades,
digital sig-
natures) are
secure

Not Pro-
vided

Steinbrecher
[126]

C E-
commerce,
Self-help
forums, etc.

Pseudonym
/ Identity
manage-
ment

If the
provider
(central
server) is
honest and
secure

O(1)
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Chapter 6

Trust Recommendation and
Propagation

In this chapter, we focus on some issues related to trust recommendation and
propagation. The concepts of trust recommendation and propagation (intro-
duced in Section 2.1.3) are closely related to reputation as they are alternative
methods for establishing trust.

Establishing trust in an unknown entity through trust recommendation and
propagation takes advantage of the possible transitivity of trust. Let’s say
that Alice wishes to establish trust in an unknown individual Carol. If another
individual Bob trusts Carol, then he could give a recommendation to Alice about
Carol’s trustworthiness. Taking Bob’s trust recommendation and her own trust
in Bob into account, Alice may establish a trust relationship with Carol. Thus
a transitive path of trust that leads from Alice to Bob to Carol, enables Alice to
develop trust in Carol. If Alice wishes to establish trust in Carol through Bob’s
recommendation, we say that Bob’s trust in Carol has propagated to Alice.

The first issue that we address in this chapter is the effect of subjectivity
on trust recommendation. We highlight the problem that when a trust value
is recommended by one user to another, it may lose its real meaning due to
subjectivity. As an example, consider that an agent Alice regards a trust value
such as 0.8 as a very high value of trust. It is possible that another agent Bob
perceives this same trust value as only average. If Bob conveys to Alice that his
trust in an agent Carol is 0.8, Alice may misinterpret Carol as highly trustwor-
thy, whereas according to Bob’s belief Carol has only average trustworthiness.
We present a solution based on the notion of percentiles for the elimination
of subjectivity from trust recommendation. We run experiments to compare
our subjectivity-eliminated trust recommendation method with the unmodified
method that does not take subjectivity into account. It is observed that our
method can give better results over 90% of the time.

The second issue that we explore in this chapter is related to one of the im-
portant applications of trust propagation, namely access control in multi-domain
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environments. There are a number of models for access control in multi-domain
environments that are based on trust propagation. Iterative multiplication of
the trust values on a path from a querying entity to a target entity is one of the
common strategies for trust propagation. We evaluate the effectiveness of this
strategy. The data set used for this evaluation is the real web of trust of Ad-
vogato.org. We find that a substantial positive linear correlation exists between
trust values based on direct experience and the corresponding propagated trust
values derived through the iterative multiplication approach.

We also shed light on the problem of privacy as it relates to each of the two
issues explored in this chapter.

6.1 Extensions to the General Framework

In this section, we extend the general framework, presented in Chapter 3, to
accommodate trust recommendation and propagation. We differentiate between
two types of trust propagation: simple (atomic) and compound (iterative) trust
propagation.

For readability we include the definition of source agent from Chapter 3.

Definition. Source Agent. An agent a is said to be a source agent of an agent
b in the context of an action ψ if a has trust in b in the context ψ. In other
words, agent a is a source agent of agent b in context ψ if
〈aTb, ψ, P (perform(a, b, ψ) = true)〉 ∈ U.

Definition 27. Trust Recommendation. Let an agent a be a source agent
for an agent t in context ψ. Let an agent q request the source agent a for
lat ≡ P (perform(a, t, ψ) = true). If agent a reports lat to agent q, then the act
of reporting the trust value is said to be a trust recommendation from a to q
about t. Additionally, the reported trust value lat is said to be a recommended
trust value from a to q about t.

Definition 28. Querying Agent (In the context of trust recommenda-
tion). When an agent q requests a source agent a to report
lat ≡ P (perform(a, t, ψ) = true) as a recommended trust value, then we re-
fer to agent q as the querying agent.

Definition 29. Target Agent (In the context of trust recommendation).
When an agent q requests a source agent a to report lat ≡ P (perform(a, t, ψ) =
true) as a recommended trust value, then we refer to agent t as the target agent.

Definition 30. Simple (Atomic) Trust Propagation. Let an agent q be a
querying agent who receives recommended trust lat from a source agent a about
a target agent t. Let’s say that as a consequence of the trust recommendation,
agent q establishes P (perform(q, t, ψ) = true) = lat. Then this act of q estab-
lishing trust in t as a consequence of a trust recommendation from a is said
to be a simple trust propagation from a to q about t. Additionally, the newly
established trust value P (perform(q, t, ψ) = true) is said to be simple propagated
trust from a to q about t.
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Definition 31. Trust Path. We define a trust path pψ(a1, an) from an agent
a1 to an agent an as a sequence of agents 〈a1 . . . an〉 such that trust
〈ai−1 T ai, ψ, P (perform(ai−1, ai, ψ) = true)〉 ∈ U for i = 2 . . . n. The length of
a trust path pψ(a1, an) is the number of agents in the sequence 〈a1 . . . an〉, which
is n in this case.

In other words, a trust path is a sequence of agents such that each agent has
trust in its successor agent in a context ψ.

Definition 32. Function ptrust. Let pψ(a1, an) be a trust path from an agent
a1 to an agent an. Then, ptrust(pψ(a1, an)) is defined as a function, such that:
ptrust : trust path → [0, 1].

The function ptrust (abbreviation of “propagated trust”), given a path
〈a1, . . . , an〉, computes a weight for the edge (a1, an).

Definition 33. Compound Trust Propagation. Let an agent a1 be a query-
ing agent who receives recommended trust la2a3 . . . lan−1an in context ψ from
source agents a2 . . . an−1 respectively about target agents a3 . . . an respectively.
Let’s say that as a consequence of the trust recommendations, agent a1 estab-
lishes P (perform(a1, an, ψ) = true) = ptrust(pψ(a1, an)), where a trust path
pψ(a1, an) exists from agent a1 to agent an. Then this act of a1 establishing
trust in an as a consequence of the trust recommendations by agents a2 . . . an−1

is said to be compound trust propagation. Additionally, the newly established
trust value P (perform(a1, an, ψ) = true) is said to be compound propagated
trust.

6.2 Subjectivity in Trust Recommendation

The quantification of trust by agents is subjective, therefore two agents may
assign different trust values to a third party even if it exhibits similar behavior
towards both. We argue that this subjectivity bears an undesirable effect on
trust recommendation. A querying agent and a source agent may associate very
different meanings with a particular trust value. Thus the true meaning of a
trust value may not be conveyed in a trust recommendation due to subjectivity.

Let’s consider the following scenario: Alice and Bob are two online shoppers
and Carol is an online vendor. The context for Carol’s trustworthiness is the
action “deliver product on time”. Alice and Bob both place an order with Carol
who delivers the product 2 days late to each of them with an assurance that
the delay will not occur again. In this scenario, the behavior of Carol is the
same towards both Alice and Bob, however, each of them will quantify their
trust subjectively according to their own perception. Bob who is trusting might
believe Carol’s assurance and quantify his trust as let’s say 70% (subjective
probability). Whereas, Alice who is less trusting might be inclined towards a
lower value such as 40%. Imagine if Alice had not interacted with Carol and
received a recommendation of 70% about her from Bob. She would clearly mis-
interpret Carol as being someone with higher trustworthiness. In the following
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section we observe that this issue is not limited to the quantification of trust as
subjective probability.

Several works [26], [60], [98] propose trust models that aim to capture the
subjectivity aspect of human trust. However, the focus is on enabling agents to
form trust opinions that are uniquely their own in contrast to delegating trust
formation to some external authority. None of the cited works address subjec-
tivity as it affects trust recommendation. In this thesis, we focus specifically on
the problem of subjectivity in trust recommendation. We are interested in de-
veloping a method for trust recommendation in which subjectivity causes lesser
distortion in the meaning of the recommended trust value.

6.2.1 Trust Representation and Subjectivity

How does one represent the amount of trust that one agent associates with an-
other? A common approach is to represent the spectrum of trust quantitatively
as a numerical range. Marsh’s formalism [90] represents trust as a continuous
variable over an interval of [−1,1]. Golbeck’s FilmTrust [54] defines an integer
range of 1 to 10. Gambetta [52], Griffiths [60], and Toivonen [131] utilize an
interval of [0,1] for the purpose.

An alternate approach is to divide the span of trust into strata and assign
them qualitative labels. The stratification used by Abdul-Rahman and Hailes
[1] is given as the set {Very Trustworthy, Trustworthy, Untrustworthy, Very
Untrustworthy}. Jonker and Treur [75] use a similar stratification defined as the
ordering: Unconditional Distrust < Conditional Distrust < Conditional Trust
< Unconditional Trust. Levien’s Advogato [86] allows users to rate each other
as Observer (minimum trust), Apprentice, Journeyer, or as Master (maximum
trust).

Consider a scenario where Bob assigns a trust value of 0.8 to Carol on an
interval of [0,1] with 1 representing maximum trust. Let’s assume that 0.8 is
an average trust value if it is viewed in the context of trust values that Bob
has assigned to other entities. Thus Bob perceives Carol as someone being
moderately trustworthy. With whatever skew Bob assigns trust values to other
entities, it presents no problem inside his local environment since all those values
occur in the same context.

The problem of subjectivity arises when Bob conveys to Alice that his trust
in Carol is represented by the value 0.8. It is likely that a value of 0.8 signifies
something very different to Alice. Is 0.8 an average value of trust for Alice as
was the case for Bob? Or is 0.8 a very high value of trust for Alice? Given
the context of Alice’s history of trust value assignments, we may discover that
Alice rarely assigns a value of 0.8 to any entity and thus associates very high
trust with such a value. In Bob’s position Alice might have assigned a value
such as 0.6 to Carol. Alice may make a misjudgment of Carol’s trustworthiness
if she bases her decision on her own perception of the trust value conveyed to
her by Bob. We observe that due to subjectivity, the meaning of a trust value
is distorted when it is transferred between agents. Subjectivity occurs due to
differences in dispositions to trust. Disposition to trust is defined and discussed
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in the next section.
We subscribe to the definition of subjectivity given by the Merriam-Webster

dictionary (merriam-webster.com) as a judgment that is “modified or affected
by personal views, experience, or background” and is “peculiar to a particular
individual”.

The use of strata with qualitative labels may initially be considered as a
solution to the problem of subjectivity. We may argue that a stratified trust
representation model, such as the four distinct strata defined by Abdul-Rahman
and Hailes [1], provides clear semantics and avoids the ambiguity associated
with numerical values. The reasoning being that a qualitative label such as
“trustworthy” should hold the same meaning for one entity as it does for another.

However, we concur with Griffiths [60] and Marsh [90] that the stratification
approach also suffers from the problem of subjectivity. Different entities may
associate the same experiences with different strata. For example, based on
their own perception of trust, what is viewed by Bob as “very trustworthy”
may be judged as merely “trustworthy” by Alice.

We further observe that subjectivity is an issue when the resolution of the
scale for quantifying trust is high. Let’s consider the boolean scale {0, 1}, where
0 represents “not trustworthy” and 1 represents “trustworthy”. Such a scale
allows little room for misinterpretation as compared to a scale with higher res-
olution such as {1 . . . 10} or [0, 1].

6.2.2 Disposition to Trust

Disposition to trust is the inherent propensity of an individual to trust or dis-
trust others. An individual’s disposition to trust does not vary for specific
entities but is a stable characteristic of their personality that governs how they
view the trustworthiness of every other entity that they encounter.

McKnight et al [95] define disposition to trust as the “extent to which a
person displays a tendency to be willing to depend on others across a broad
spectrum of situations and persons”.

Rotter [116], [117] notes that an individual’s “generalized attitude” towards
trust is a product of life experiences, such as interactions with parents, peers,
and authorities. Boone and Holmes [19] suggest that good experiences lead to
a greater disposition to trust and vice versa.

A study in the context of ecommerce by McCord and Ratnasingam [93]
has demonstrated that there is a strong relationship between an individual’s
disposition to trust and the trust related decisions that they make.

A thorough treatment of the literature on disposition to trust is provided by
Kaluscha [79].

We now revisit Alice, Bob, and Carol from our previous example. Alice
and Bob are two individuals with different dispositions to trust. Bob has a
high disposition to trust and thus assigns a high trust value of 0.8 to Carol. In
contrast, Alice who has a lower disposition to trust, rates Carol’s trustworthiness
as only 0.6. This subjectivity occurs despite the fact that Carol exhibits the
same behavior in her interactions with both Alice and Bob.
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Quantitative Representation of an Agent’s Disposition to Trust

The method that we present in the next section requires quantitative representa-
tion of the disposition to trust of agents. We discuss three possible alternatives
for this purpose.

Manually specified by the agent. The agent may be presented with a
scale, for example, 1 to 10 or [0,1] and asked to rate their disposition to
trust manually. The approach is simple and straightforward. However,
the disadvantage of this approach is that the agent has to be explicitly
engaged by the process. Moreover, it is debatable if an agent himself is a
true judge of his own disposition to trust.

Assessed through a trust scale. A number of researchers have developed
trust scales that help assess the disposition to trust of a person. The
subject is required to respond to a series of questions with weighted mul-
tiple choice answers. The cumulative score of the subject indicates their
disposition to trust.

Rotter’s Interpersonal Trust Scale [117] and Christie and Geis’s Machi-
avellianism Scale [30] are examples of this approach. A sample question
from Rotter’s Interpersonal Trust Scale is as follows:

“In dealing with strangers one is better off to be cautious until
they have provided evidence that they are trustworthy.”
Answer choices: strongly agree (weight: 1), mildly agree (2),
agree and disagree equally (3), mildly disagree (4), strongly dis-
agree (weight: 5).

Rotter’s and the Machiavellianism trust scales are likely to assess the dis-
position to trust of an individual accurately. However, the requirement
that each agent make themselves available for a series of questions dis-
counts their practicality.

Inferred from an agent’s history of trust value assignments. Several
examples from computer science literature may be cited where historical
patterns are used to predict future behavior with considerable success. In-
stances include Self-Customizing Software [68] or Adaptive User Interfaces
[85], and Branch Predictors in Microprocessors [50].

We propose an approach based on similar lines for determining the dispo-
sition to trust of an agent. The trust values that an agent has assigned in
the past may be considered as an indication of their disposition to trust.
For example, given an agent who has a pattern of assigning high values
of trust, we may infer that the agent has a high disposition to trust, and
vice versa. We thus propose to represent an agent’s disposition to trust
by the collection of their previous trust value assignments in a system.

A close approximation of an agent’s disposition to trust is possible only
if they have made a significant number of trust value assignments in the
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past. The question is what number can be considered as significant. We
attempt to address this question in the experiments.

A key reason why we choose this approach for the representation of dispo-
sition to trust is that it does not require additional input from an agent.
This also implies that given a web of trust, we can test our method without
requiring each agent to explicitly establish their disposition to trust.

Definition 34. Disposition to Trust. Let a set Ou,ψ = {v | trust of
u in v in the context ψ exists in U}. In other words, Ou,ψ is the set
of all agents for whom agent u is a source agent in the context ψ. Let
a vector ou,ψ = 〈luv1 . . . luvnu,ψ 〉, where vi ∈ Ou,ψ, nu,ψ = |Ou,ψ|, and
luvi ≡ P (perform(u, vi, ψ) = true). The vector ou,ψ comprises of all trust
values that agent u has assigned to other agents in the context ψ. The
disposition to trust of agent u in the context ψ is given as the vector
du,ψ = sort(ou,ψ), where function sort returns a vector which comprises
of the elements of ou,ψ sorted in ascending order. The elements of du,ψ
are given as du,ψ,j, where the index j ∈ {1 . . . nu,ψ}.

Definition 35. Function first. Let du,ψ be the disposition to trust of
an agent u in the context ψ. Let luv be an element in du,ψ, such that
v ∈ Ou,ψ. Then, first(luv, du,ψ) is defined as a function that outputs the
lowest index (the index of the first occurrence) of the element luv in du,ψ.

6.2.3 A Method for Elimination of Subjectivity from Trust
Recommendation

In this section we introduce our method for the elimination of subjectivity from
trust recommendation.

As we have discussed earlier, the trust values assigned by an agent are sub-
jective to its disposition to trust. When a source agent recommends a target
agent, the meaning of the associated trust value is distorted due to the different
disposition to trust of the querying agent.

The solution we propose is to report trust not as an absolute score but a
value that is relative to the disposition to trust of the source agent. In other
words, we report the relative standing of the source agent’s trust in the target
agent in terms of the entire trust value assignments that the source agent has
made.

Two options for implementing this idea are reporting trust as either a stan-
dard score (z-score), or as a percentile. If we report as z-score, then it is required
that the trust values assigned by agents be normally distributed. On the other
hand if we report as percentile then there is no such requirement. We therefore
opt for a solution based on percentiles.

A percentile value indicates the source agent’s perception of the target agent
in relation to the others that the source agent has rated.

Going back to the example (discussed in the opening of the chapter), if Bob
conveys to Alice an absolute value such as 0.8, Alice does not know if according
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to Bob, the value 0.8 is an average value or a very high value of trust. However, if
the trust is reported as a percentile value, Alice does have this information. For
example, if the percentile value is in the vicinity of 50%, Alice would know that
according to Bob, Carol has an average trustworthiness. If the percentile value
is around 80% or 90%, it is clear that Bob regards Carol as highly trustworthy.
The absolute value that Bob locally assigned to Carol becomes irrelevant.

To convert the percentile to a local absolute score, the querying agent reads
the value that is at the given percentile in the collection of trust values that he
himself has assigned to other agents. This absolute score holds perfect meaning
for the querying agent since it is in the context of his own disposition to trust.

Thus we attempt to eliminate the subjectivity and misinterpretation associ-
ated with an absolute value of trust by going through an intermediate relative
value.

We note that this method does not require agents to make any modifications
to the way they evaluate other agents. Locally, each agent establishes their trust
beliefs as usual, in terms of their own disposition to trust. Another key aspect
of this solution is that it does not require the involvement of any third parties
or centralized entities and is therefore suitable for decentralized environments.

6.2.4 Formal Description of the Method

The implementation of the functions percentile and fbvalue is based on the
method for the estimation of percentiles given by NIST [100].

Definition 36. Function percentile. percentile(luv, du,ψ) is defined as a
function that outputs cuv, the percentile of a feedback value luv in du,ψ, where
luv ≡ P (perform(u, v, ψ) = true) and v ∈ Ou,ψ.

cuv = percentile(luv, du,ψ)

=
100 · first(luv, du,ψ)

nu,ψ + 1

where nu,ψ = |Ou,ψ|.
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Definition 37. Function fbvalue. fbvalue(cuv, dw,ψ) is defined as a function
that outputs luv:w, the feedback value at the cuv percentile in dw,ψ, where cuv =
percentile(luv, du,ψ).

luv:w = fbvalue(cuv, dw,ψ)

=

 dw,ψ,i + f · (dw,ψ,i+1 − dw,ψ,i) if 0 < i < nw,ψ
dw,ψ,1 if i = 0

dw,ψ,nw,ψ if i = nw,ψ

where,

i =
⌊
cuv · (nw,ψ + 1)

100

⌋
and,

f =
cuv · (nw,ψ + 1)

100
− i

i is an integer and 0 ≤ f < 1.

Definition 38. Subjectivity Eliminated Trust Recommendation. Let an
agent a be a source agent for an agent t in the context ψ. Then an agent q may
request the source agent a for cat = percentile(lat, da,ψ). If a reports cat or lat:q
to agent q, then the act of reporting either or both of these values is said to be a
subjectivity eliminated trust recommendation from a to q about t. Additionally,
lat:q = fbvalue(cat, dq,ψ) is said to be a subjectivity eliminated recommended
trust value from a to q about t.

We may think of luv:w as the value luv transformed such that instead of
being in reference to the disposition to trust of agent u, it is now in reference
to the disposition to trust of agent w.

Instead of reporting luv, an agent u computes cuv and communicates this
percentile value to agent w. Given cuv, agent w determines luv:w and considers
that as the recommended value. Agent u can also directly report luv:w to agent
w if dw,ψ is made available to agent u.

6.2.5 An Example of the Method in Use

As an example, consider dBob,ψ = 〈0.4, 0.4, 0.5, 0.6, 0.8, 0.8, 0.8, 0.8, 0.8, 0.9, 0.9〉
and lBob Carol = 0.8. Then nBob,ψ = 11 and first(lBob Carol, dBob,ψ) = 5.
cBob Carol is computed as follows:

cBob Carol = percentile(lBob Carol, dBob,ψ)

=
100 · first(lBob Carol, dBob,ψ)

nBob,ψ + 1

=
100 · 5
11 + 1

= 41.67percentile
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Now consider dAlice,ψ = 〈0.2, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 0.6, 0.8〉. Then:

lBob Carol : Alice = fbvalue(cBob Carol, dAlice,ψ)
= dAlice,ψ,i + f · (dAlice,ψ,i+1 − dAlice,ψ,i)
= dAlice,ψ,4 + 0.17 · (dAlice,ψ,5 − dAlice,ψ,4)
= 0.3 + 0.17 · (0.5− 0.3) = 0.33

where,

i =
⌊
cBob Carol · (nAlice,ψ + 1)

100

⌋
=
⌊

41.67 · (9 + 1)
100

⌋
= 4

and,

f =
cBob Carol · (nAlice,ψ + 1)

100
− i

=
41.67 · (9 + 1)

100
− 4 = 0.17

Thus the subjectivity eliminated recommended trust from Bob to Alice
about Carol is 0.33. This is in contrast to 0.8, which would have been the
un-altered recommended trust. Note: Values have been rounded to two decimal
places in the above example.

6.2.6 Experiment Design

Our objective is to test if the trust values recommended through the subjectivity-
eliminated trust recommendation method are of higher quality than those given
by the unmodified trust recommendation method in which trust values are con-
veyed without any alteration.

The quality of a recommended trust value is stated as its closeness to the
trust value that the querying agent would assign to the target agent if it had
direct experience with it.

The experiment takes a web of trust as input. We consider each edge (q, t)
in the graph. Let’s designate q as the querying agent and t as the target agent.
We know that the trust of q in t is lqt, which is the weight of the edge (q, t).
The querying agent then receives trust recommendations (both un-altered – lat,
as well as subjectivity-eliminated – lat:q) from each of the source agents of the
target agent. In this scenario, not only do we have both the un-altered and
the subjectivity-eliminated recommended trust values from each of the source
agents but we also know what trust value the querying agent has assigned to
the target agent based on direct experience. We therefore have a reference value
with which we can compare the two recommended trust values.
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If the value given by the subjectivity-eliminated trust recommendation method
is significantly closer to the reference value than the one given by the unmodi-
fied trust recommendation method, we consider the experiment run as a success
(hit) for our method. If the opposite is true, we consider it as a failure (miss).
If both values are the same or are within a small range (0.03) of each other, we
count a tie.

To facilitate the discussion we establish the following terminology:

α – recommended trust value given by the unmodified trust recommendation
method which does not take subjectivity into account

β – recommended trust value derived from the subjectivity-eliminated trust
recommendation method

γ – trust value depicting the source agent’s trust in the target agent based on
direct experience

Given Gψ, a web of trust in context ψ, and min, the minimum number
of elements in the dispositions to trust of the querying and source agents, the
experiment is algorithmically described in Figure 6.1.

Subjectivity-Experiment(Gψ,min)
1 hits ← 0
2 misses ← 0
3 equals ← 0
4 for each vertex q in Gψ, such that nq,ψ ≥ min
5 do for each vertex t in Gψ, such that edge (q, t) exists
6 do γ ← lqt
7 remove the edge (q, t)
8 for each vertex a in Gψ, such that edge (a, t) exists,

and na,ψ ≥ min
9 do α← lat

10 β ← fbvalue(percentile(lat, da,ψ), dq,ψ)
11 if |α− β| < 0.03
12 then equals+ +
13 elseif |β − γ| < |α− γ|
14 then hits+ +
15 elseif |α− γ| < |β − γ|
16 then misses+ +
17 restore the edge (q, t)
18 print hits, misses, equals

Figure 6.1: Experiment design.

Given a large and diverse web of trust we can assume that there will be both
hits and misses. However, if the number of hits is significantly larger than the
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number of misses, we have an indication that the method is effective. On the
contrary, if the number of misses is considerably greater than the number of
hits or if there is no significant pattern then we may infer that the method is
ineffective. The success rate of the method for a given experiment run is defined
as: success = hits

hits+misses .

6.2.7 The Dataset for the Experiment

Consider the following environment:
There are N agents in the environment. The context of the trustworthiness

of the agents is an action ψ. After an agent interacts with another agent, it
quantifies its trust in that agent based on its experience. For example, after an
agent Bob interacts with an agent Carol, he quantifies his trust in her based
on the behavior that she exhibited. The scale for representing trust is of high
resolution. An agent quantifies his trust subjectively according to his own dis-
position to trust. For example, an agent Alice would quantify her trust in Carol
according to her own disposition to trust whereas Bob would do so according
to his own. Each agent exhibits fairly consistent behavior in terms of action ψ.
That is, if two agents Alice and Bob interact with an agent Carol, then there
is high probability that Carol will exhibit the same behavior towards both in
terms of action ψ.

This is clearly an environment where subjectivity would be an issue in trust
recommendations. Arguments: 1) Each agent quantifies its trust subjectively
according to its own disposition to trust. 2) The scale for representing trust is
of high resolution. 3) The behavior exhibited by an agent is fairly consistent,
thus source agents assign different trust values not due to different experiences,
but due to differences in disposition to trust.

We generate a simulated web of trust representing the above described en-
vironment. A simulated dataset is used since we have not come across any
publicly available real and large web of trusts which employ a high resolution
scale for trust representation. The Advogato web of trust that we have used in
our other experiments employs a scale comprising of only four values.

The simulated web of trust is generated as described in Figure 6.2. n is the
number of vertices of the graph, m is the number of edges of the graph, and G
is the generated graph.

The trustworthiness factor tf
u

represents the experience that other agents
would have as a result of their interaction with an agent u. Since tf

u
remains

constant for agent u, any agent that interacts with it has the same experience.
Trustworthiness factor ∈ [0, 1].

The skew factor af
u

represents the individual disposition to trust of an agent
u. Although different agents have the same experience with a given agent, they
each assign it a different trust value based on their own disposition to trust.
Skew factor ∈ [0, 2].

The weight of an edge (u, v), which is also the trust value luv, is obtained
as tfafu

v
. If the skew factor af

u
is less than 1, the trustworthiness factor tf

v
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Generate-Web-of-Trust(n,m)
1 generate a directed weighted random graph (without multiple edges

between any two vertices), G(V,E, [0, 1]), where V is the set
of vertices and E is the set of edges, |V | = n, and |E| = m

2 label the vertices as u1 . . . un
3 with each vertex ui, associate a trustworthiness factor tf

ui
,

randomly (uniform) selected from the interval [0, 1], i = {1 . . . n}
4 with each vertex ui, associate a skew factor af

ui
,

randomly (uniform) selected from the interval [0, 2], i = {1 . . . n}
5 for each vertex ui, i = {1 . . . n}
6 do let {v1 . . . vηi} be the set of vertices who have an incoming edge

from ui, where ηi is the number of outgoing edges of ui
7 for each vertex vj , j = {1 . . . ηi}
8 do assign the weight tf

af
ui

vj
to the edge (ui, vj)

9 return G

Figure 6.2: Pseudo code for generating the web of trust.

is skewed upwards. Otherwise, if the skew factor af
u

is greater than 1, tf
v

is
skewed downwards. The resulting weight ∈ [0, 1].

The trust values lie in the set of real numbers between 0 and 1. The resolu-
tion for expressing trust is therefore high.

6.2.8 Experiment Runs and Results

The experiment and the generation of the dataset have been implemented in
Java with the Java Graph library (JGraphT).

We iterate m from 500 through 6000 with an interval of 500. For each
iteration of m, we generate three datasets, with the number of vertices n = 100.
The mean outgoing edges per vertex for each iteration is given as m/n. For each
of the datasets, we run the experiment and obtain the number of hits, misses
and equals. The results of the experiment runs are given in Table 6.1.

6.2.9 Discussion of Experiment Results

The first observation we can make is that in each of the experiment runs the
number of hits is significantly higher than the number of misses, thus result-
ing in a high success rate for the subjectivity-eliminated trust recommendation
method.

The second observation is that the success rate of the method rises as the
average number of outgoing edges per vertex increases. We observe that at
m/n = 60, the success rate for each of the three experiment runs is a high 91%.
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Table 6.1: Experiment runs, n = 100,min = 1.

m m/n
Dataset 1 Dataset 2 Dataset 3 success

hits missesequalssuccess hits missesequalssuccess hits missesequalssuccess(mean)
500 5 1485 585 312 72% 1416 637 395 69% 1552 570 328 73% 71%
1000 10 6186 2156 1400 74% 5989 2291 1586 72% 5881 2230 1507 73% 73%
1500 15 15354 3447 3113 82% 13800 4379 3289 76% 13671 4679 3336 75% 78%
2000 20 26685 6398 5635 81% 26725 6745 5436 80% 26039 6707 5982 80% 80%
2500 25 41075 9721 9494 81% 39850 10475 9935 79% 41967 8784 9439 83% 81%
3000 30 62377 11125 13950 85% 56182 13836 16906 80% 58813 13429 15070 81% 82%
3500 35 91172 12075 16157 88% 84481 14510 20231 85% 85920 14055 18683 86% 86%
4000 40 115889 15971 23770 88% 111402 17523 26743 86% 106994 21135 27323 84% 86%
4500 45 138885 23663 34172 85% 148721 16879 31094 90% 141431 20161 34630 88% 88%
5000 50 171168 23617 46827 88% 173932 25857 42311 87% 179835 22475 39458 89% 88%
5500 55 204641 29591 58408 87% 218158 25927 49689 89% 220398 25487 46981 90% 89%
6000 60 263296 24550 60324 91% 269041 25055 55684 91% 255199 26263 67688 91% 91%

Even with lower numbers of outgoing edges, the method still outperforms the
one that does not account for subjectivity.

These results provide a positive indication that the subjectivity-eliminated
trust recommendation method is more effective than the unmodified method.
However, we must note that at this moment these results hold true for the
type of web of trust used for the experiments. The primary characteristics of
this type of web of trust include: wired as a directed random graph, agents
exhibit consistent behavior and disposition to trust, both factors are uniformly
distributed, a trust value is a function of the behavior of the trustee and the
disposition to trust of the truster, and the trust values lie in the interval [0, 1].

Although the simulated web of trust takes into account real world issues such
as truster’s bias in forming trust beliefs, some other aspects are simplified. For
example, it is wired as a random graph. Another simplification is the uniform
distribution of the dispositions to trust and the trustworthiness of the agents.
These simplifications may very well not have any impact on the effectiveness of
the method however that is a hypothesis which would need to be tested.

An evident direction for future work is to test the method on a real web of
trust or a closely approximated simulated web of trust. Some ideas for generat-
ing a more realistic web of trust include: 1) connectivity based on small-world
[138] or scale-free networks [7], which are better representations of social net-
works, and 2) representing the dispositions to trust and the trustworthiness of
the agents by a distribution such as normal or power-law.

6.2.10 A Limitation of the Proposed Method

We have proposed to represent an agent’s disposition to trust by the collection
of the trust values that he has assigned. This proposal is based on the idea that
if an agent has a pattern of assigning high values of trust, we may infer that the
agent has a high disposition to trust, and vice versa.
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However, it is possible that an agent (such as Bob in our running example)
assigns mostly high values of trust because he encounters agents with mostly
high trustworthiness (and not because Bob has a high disposition to trust).
Similarly, it is possible that an agent (such as Alice) assigns a majority of low
values of trust because she encounters a large proportion of agents with low
trustworthiness. In such cases, the collection of the trust values that an agent
has assigned would not be an accurate representation of his or her disposition
to trust.

Let’s consider an agent who encounters and evaluates agents that are uni-
formly distributed over A (the set of all agents). Then the set of agents evaluated
(given as the set Ou,ψ for an agent u in the context ψ in definition 34) is likely
to include agents that span the spectrum of trustworthiness. This is the case in
our simulated data set for all agents.

Our method for the elimination of subjectivity would clearly misinterpret
the trustworthiness of an agent if the disposition to trust of either the querying
or the source agent is misrepresented. For example, if an agent only evaluates
other agents from a specific cross-section of trustworthiness. We propose the
following alternatives to overcome this limitation:

1. Assess the disposition to trust of the agents through a trust scale (such
as Rotter’s interpersonal trust scale) as discussed in Section 6.2.2. How-
ever, the disadvantage of this approach is that it demands input from the
individual.

Alternatively, we may require agents to rate their own disposition to trust
manually. We followed this approach in [118] (a paper co-authored with
Saadi, Pierson, and Brunie), where administrators of a domain collec-
tively select a common disposition to trust from the range [0, 9]. The
trustworthiness of remote sites is then evaluated with respect to the se-
lected disposition to trust instead of the varying individual dispositions to
trust of the administrators.

2. Compute the intersection between the sets Oq,ψ and Oa,ψ, where q is the
querying agent and a is the source agent. Then consider only those agents
for the disposition to trust of the two agents that lie in the intersection
set. Having evaluated the same set of agents would make the dispositions
of trust of the querying agent and the source agent comparable.

However, this approach may not always work since the intersection set may
turn out to be empty. To alleviate this issue, we may require each agent to
evaluate a certain global set of agents before they utilize the elimination
of subjectivity method. Thus any two given agents would have at least
that set of agents in common.
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6.3 An Application of Trust Propagation: Ac-
cess Control in Multi-Domain Environments

In this part of the chapter, we focus on one of the important applications of
trust propagation, namely access control in multi-domain environments. The
goal of access control in multi-domain environments is to provide users with
seamless access to resources at their home site as well as at foreign sites. Access
control for such an environment is inherently challenging since sites may have
no knowledge of remote users who visit them. Traditional access control models
based on roles (as in RBAC [48]) or identities (as in IBAC [71]) are often not
suitable for such environments since roles or identities that exist at one site may
not exist at another.

We present a solution to access control in multi-domain environments based
on trust propagation. The proposal is to consider the trustworthiness level of
users as the criterion for granting access to resources. A site has direct knowl-
edge of the trustworthiness of its own users. Whereas, the trustworthiness of an
unknown user can be determined through trust propagation. Trust propagation
enables the foreign site to acquire trust in the unknown user through a path of
trust recommendations that link the site to the user. For example, a site x may
acquire trust in an unknown user u, if u’s home site y which is trusted by x,
makes a recommendation to x about u.

A number of works, which include [92, 5, 73, 78, 119, 124, 113], have intro-
duced solutions based on trust propagation to access control in multi-domain
environments. Our proposal is similar to Saadi et al. [119], Richardson et al.
[113], and some other models in the sense that we use the multiplication operator
to implement the trust propagation function.

Compound propagated trust is computed by iteratively multiplying the trust
values on the path from a querying entity to the target entity. The novel contri-
bution of our work is experimental evidence that there is a positive correlation
between trust acquired through direct interaction and trust acquired through
trust propagation using the iterative multiplication strategy.

The data set used for the experiment is the real web of trust of Advogato.org.
The instance of the web of trust of Advogato.org used for the experiment com-
prises of over 11, 000 vertices (users) and over 50, 000 directed weighted edges
(trust relationships between users). Results show that a substantial positive
linear correlation exists between trust values established from direct experience
and propagated trust values derived through the iterative multiplication ap-
proach. To the best of our knowledge, this is the first work to provide evidence
of this correlation based on a real and large web of trust.

6.3.1 Problem Setting

The environment comprises of nx number of sites given as the set
X = {x1, x2, . . . , xnx}. A site is characterized by its association to a set of
member users, a set of resources under its ownership, and an access control
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policy. Some examples of sites include university campuses, corporate offices,
airports, etc.

The set of member users associated with a site x is given as
Ux = {ux,1, ux,2, . . . , ux,nux}, where nux is the number of member users. For
simplicity we assume that the set of users of any two sites x and y are disjoint,
that is Ux ∩ Uy = φ.

The set of resources of site x is given as Rx = {rx,1, rx,2, . . . , rx,nrx}, where
nrx is the number of resources of site x.

A user may request access to a resource at his home site or he may roam
in the environment and request access to the resources of foreign sites. Each
site has an access control policy that determines if a user is qualified to access
a resource that he has requested.

The goal is to make the access control process for a user as ubiquitous at a
foreign site as it is at his home site.

6.3.2 The Access Control Model

In this section we present our model for access control in multi-domain environ-
ments that uses the iterative multiplication strategy for trust propagation. The
model is founded upon our extended general framework presented in Section
6.1.

Definition 39. User. A user u is defined as an agent such that it has no
relationship of the form u T a, where a is any agent in A (the set of all agents
in the environment). That is, (u, a) 6∈ T, ∀a ∈ A.

A user is defined as an agent who does not form trust relationships towards
other agents. The sole interest of a user in this model is to access desired
resources. The trust relationships are formed among sites and by sites towards
their member users.

Definition 40. Resource. A resource r is defined as any non-agent entity or
service of potential value to users.

Definition 41. Site. A site x is defined as an agent such that there exists a set
Ux = {ux,1, ux,2, . . . , ux,nux}, where ux,i is a user and trust of x in ux,i exists
in a context ψ for i ∈ {1 . . . nux}. For any two sites x and y, Ux ∩ Uy = φ.
Moreover, there exists a set Rx = {rx,1, rx,2, . . . , rx,nrx}, where rx,i is a resource.
For any two sites x and y, Rx∩Ry = φ. Additionally, the set of trustees of site x
may only include members of set Ux and other sites. That is, ∀(x, a) ∈ T, a ∈ Ux
or a is a site.

A site is defined as an agent who has a set of users associated with it and it
has trust in each of those users. The set of a site’s users is mutually exclusive of
the sets of users of other sites. Moreover, a site is also associated with a set of
resources, which is also mutually exclusive of the sets of resources of other sites.
A site has trust relationships only towards its member users or other sites.
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Definition 42. Site-to-User Trust Path. A site-to-user trust path pψ(x1, u)
is defined as a trust path such that the sequence of agents 〈x1 . . . u〉 is composed of
n sites x1 . . . xn, followed by a user u, where n ≥ 2. In other words, pψ(x1, u) =
〈x1 . . . xn, u〉, where x1 . . . xn are sites and u is a user.

Definition 43. Function ptrust’. ptrust′(pψ(x1, u)) is a realization of the
function ptrust (Definition 32). ptrust′ : site-to-user trust path→ [0, 1]. ptrust′

is implemented as follows:

ptrust′(pψ(x1, u))
= ptrust′(〈x1 . . . xn, u〉)
= lx1x2 × . . .× lxn−1xn × lxnu

= (
n−1∏
i=1

lxixi+1)× lxnu

Please see the next subsection for our reasoning for using multiplication.

Definition 44. Access Control Policy. An access control policy of a site
x is defined as a set ACP x of pairs of the form (r,minr), where r ∈ Rx and
minr ∈ [0, 1]. A one-to-one correspondence exits between the set Rx and the
set ACP x. Site x grants a user u access to a resource r only if lxu ≥ minr or
ptrust′(pψ(x, u)) ≥ minr.

With each resource r, the site x defines a threshold value minr. The access
control policy of a site lists all its resources and associated thresholds.

Access is granted to a user u that requests a resource r at a site x only if
lxu ≥ minr or ptrust′(pψ(x, u)) ≥ minr. In other words, access to a resource
is granted if the site has equal or greater trust in the requesting user than the
threshold for that resource.

The access control policy defined in definition 44 can be classified as Manda-
tory Access Control (MAC) [89], since access is controlled based on mandatory
rules determined by a central site. However, it is important to note that in
our model, the user u may or may not be a member of the site x. If u is a
member of the site x then the site has direct knowledge of the user’s trustwor-
thiness. In case u is not a member then access may still be granted if trust in u
can be established through trust propagation and ptrust′(pψ(x, u)) passes the
trustworthiness threshold.

What makes the model ubiquitous is that a site does not need to have
pre-defined access rights for a certain user to be able to grant them access to
resources. The site can establish trust in a previously unknown user through
trust propagation and it can grant them access based on that acquired trust.
From the user’s point of view, access to resources at foreign sites is as seamless
as at their home site.

The access control model that we have described, only allows a simple scalar
threshold as the condition for access to a particular resource. A more sophis-
ticated language for defining access control conditions would be required for a
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practical deployment of the model. A few things that the language should han-
dle include: 1) different thresholds for different operations such as read, write,
and execute, and 2) specifying contextual conditions such as those based on
time, location etc.

Reasoning for Using Multiplication

The suggested propagated trust value is the product of all the trust values on
the path. We implement the function as such for its simplicity and intuitiveness.
We consider a few examples to illustrate our point.

Let’s assume that all the trust values on the path are 1. The trust value
suggested by the function in this case would be 1, which reflects the fact that
absolute trust exists throughout the chain.

As another case let’s consider that any one or more of the trust values on
a path are 0. That is, one of the sites has no trust in the entity that it has
a trust relationship with. The trust value suggested by the function would be
0. Thus the fact that one of the sites does not trust an entity on the path is
appropriately reflected in the suggested value.

Let’s now consider a path of length 3 with each of the trust values as 0.9.
The suggested trust value would be 0.9 × 0.9 × 0.9 = 0.73. Although each of
the sites has a high trust of 0.9 in the recommended site or user, the suggested
trust value is a lower 0.73. This value is reflective of the degree of separation
between the source site and the target user. Intuitively, trust attenuates as the
degree of separation between the source site and the target user grows.

As the final example we consider the path 〈x1, x2, x3, u〉 with t(x1, x2) =
0.1, t(x2, x3) = 0.8, and t(x3, u) = 0.9. The suggested trust value would be
0.1 × 0.8 × 0.9 = 0.07. Although x2 and x3 have very high trust in x3 and u
respectively, since x1 has low trust in x2, the propagated trust value remains
low.

We refer the reader to [135] (section 20.2.2) and [113] (section 3) for further
discussion on using multiplication as the operator for trust propagation.

6.3.3 The Experiment

The objective of this experiment is to determine whether it is prudent to es-
tablish trust in an unknown entity based on trust propagation. More precisely,
whether a substantial positive correlation exists between direct trust and prop-
agated trust. Direct trust is the amount of trust that a source agent establishes
in a target agent based on direct experience.

Tools and Techniques: Correlation

Correlation is a coefficient that measures the strength and the direction of the
linear relationship between two variables.

The correlation coefficient lies on the interval [−1, 1]. Values near 1 and −1
indicate a strong linear relationship between the two variables. Values close to
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0 indicate a weak relationship. A positive value implies that the relationship
is proportional, that is, increase in the value of one variable is likely to result
in the increase of the value of the other variable. A negative value implies an
inverse relationship.

The correlation r between two variables x and y is given as follows:

r =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
(6.1)

where, x̄ and sx are the mean and the standard deviation of variable x, and n
is the size of the bivariate data.

Correlation computed with this specific method is also known as the Pearson
Product-Moment Correlation.

Experiment Design

In a web of trust, the weight of an edge from a truster to a trustee represents
the direct trust that the truster holds for the latter. If an alternate path exists
from that truster to the trustee, we can compute the propagated trust between
the two vertices from that path. Based on these observations we design the
experiment as follows:

We consider every edge in a given web of trust. An exception is those edges
that have the same source and target vertex. The direct trust of an edge’s source
vertex (the truster) in its target vertex (the trustee) is the weight of that edge.
Having noted the direct trust from the truster to the trustee, we consider the
scenario that direct trust between the two vertices does not exist. We remove
the direct edge and using Dijkstra’s algorithm, we find an alternate path from
the truster to the trustee. If an alternate path exists, we obtain the propagated
trust using the ptrust’ function. Now we know the direct trust of the truster
in the trustee as well as the propagated trust. After obtaining all such pairs of
direct trust and propagated trust, we calculate the correlation between the two
variables. It is important to note that the values of direct trust and propagated
trust are obtained independently of each other in this experiment.

The Dijkstra’s algorithm may return several alternate shortest paths. In this
experiment, we always consider the first path that is returned by the algorithm.
As future work, a variation on the experiment could be to identify and select
the path that yields the optimal trust value. Such a path may or may not be
the shortest one.

The experiment is algorithmically described in Figure 6.3. G is a web of
trust. dijkstra(x, y) is a function which returns a path from vertex x to vertex
y, given as p(x, y), using Dijkstra’s shortest-path algorithm. correlation(

−→
X ,
−→
Y )

is a function which returns the correlation r between two variables represented
by vectors

−→
X and

−→
Y .

The experiment has been implemented in Java with the Java Graph library
(JGraphT).
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Trust-Propagation-Experiment(G)
1 i ← 0
2 for all edges in G, whose source vertex (given as as) and

target vertex (given as at) are not the same
3 do direct-trust ← t(as, at)
4 remove the edge (as, at)
5 p(as, at)← dijkstra(as, at)
6 if |p(as, at)| > 0
7 then prop-trust ← ptrust′(p(as, at))
8 add direct-trust to vector

−→
D at index i

9 add prop-trust to vector
−→
P at index i

10 i ← i +1
11 restore the edge (as, at)
12 r ← correlation(

−→
D ,
−→
P )

13 print r

Figure 6.3: Experiment Design.

The Data Set for the Experiment

The data set that we use for our experiment is the real web of trust of Ad-
vogato.org [87, 88]. The reader is referred to Section 4.8.1 for a detailed dis-
cussion of Advogato.org. The instance of the Advogato web of trust refer-
enced in this experiment was retrieved on November 19, 2007. The choice of
trust values in this instance are master, journeyer and apprentice, with master
being the highest level in that order. The web of trust comprises of 11, 558
users and 51, 119 trust ratings. The distribution of trust values is as follows:
master : 17, 478, journeyer : 22, 894, and apprentice: 10, 747. To conform this
web of trust to our framework, we substitute its three trust values as follows:
master = 1.0, journeyer = 0.66, and apprentice = 0.33.

6.3.4 Experiment Runs, Results and Analysis

We run the experiment with the adapted Advogato web of trust as G. The
number of instances when an alternate path was found between two vertices with
a direct edge is 44, 959. The final value of i in the algorithm of the experiment
gives this value. A histogram of the lengths of the alternate paths is given in
Figure 6.4. The outcome of the experiment, the correlation between direct trust
and propagated trust, is 0.61 (rounded down to two decimal places).

The histogram shows that the edge count is at most 3 for over 96% of the
instances when a path is found from the source vertex to the target vertex.
As we discussed in Section 6.3.2, fewer edges on the path between two entities
leads to lower attenuation of trust propagated over that path. The observation
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Figure 6.4: Histogram of Path Lengths.
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thus implies that a high percentage of the propagated trust values have low
attenuation.

The experiment indicates that a substantial positive linear correlation (0.61)
exists between direct trust and propagated trust acquired through the iterative
multiplication approach. We note again that the values of direct trust and
propagated trust are obtained independently of each other in the experiment.

6.4 Privacy

The ideas of trust recommendation and privacy are hard to reconcile since by
definition trust recommendation is the disclosure of a feedback value to another
agent. However, we can imagine approximations of the trust recommendation
technique that are better at preserving the privacy of the source agent.

One such technique is as follows: Instead of reporting the feedback value, the
source agent may only respond to a query that demands whether his trust in the
target agent is higher (or equal to) or lower than a given level. For example, Alice
could ask Bob whether his trust in Carol is higher (or equal to) or lower than
0.8. A binary response of higher or lower may be sufficient for Alice to make
a decision whether to trust Carol or not. The disadvantages of this technique
are that: 1) the privacy of the source agent is not completely preserved, that
is, the querying agent gains partial information about the feedback value; 2) an
adversary could make repeated queries in order to narrow down on the feedback
value. This attack may be prevented if the source agent is able to identify
repeated queries by the adversary (and any members in his clique).

Another technique is to perturb the feedback value before providing it to
the querying agent. This technique also has the potential to divulge partial
information about the feedback value. An attacker could also sabotage this
technique by repeated queries. If the value is perturbed randomly each time,
then the attacker can use distribution reconstruction to derive the feedback
value. However, this may be prevented if the perturbation is kept constant for
a feedback value.

6.5 Summary

In this chapter we studied some issues related to trust recommendation and
propagation. The techniques of trust recommendation and propagation are re-
lated to reputation as they also enable agents to establish trust in other agents.
In Section 6.1, we extended our general framework to accommodate trust rec-
ommendation and propagation.

In Section 6.2, we explored the problem of subjectivity in trust recommen-
dation. We argued that subjectivity prevents the real meaning of a trust value
from being conveyed by one agent to another. A method that attempts to elim-
inate subjectivity from trust recommendation was then presented. The method
proposes to use percentiles, which are equally meaningful among two agents.
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Experiments conducted on simulated web of trusts indicate that the method is
fairly effective for the elimination of subjectivity from trust recommendation.
The method is non-intrusive and does not require any change in how agents lo-
cally evaluate other agents. Furthermore, the method does not involve any third
party mediation, thus making it suitable for decentralized networks. Validation
of the experiment results on a real web of trust or a closely approximated simu-
lated web of trust is suggested for establishing further confidence in the proposed
method.

In Section 6.3, we analyzed the iterative multiplication strategy for trust
propagation employed by various access control models for multi-domain en-
vironments. Through an experiment on the real and large web of trust of
Advogato.org, we showed that a substantial positive linear correlation exists
between direct trust and propagated trust acquired through the iterative mul-
tiplication approach. This result raises confidence in the notion of establishing
trust in an unknown entity through the discussed trust propagation method.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions

In this thesis, we focused on privacy preserving reputation systems. These
systems compute reputation scores without revealing the individual feedback of
any user. Preserving the privacy of users gives them the freedom to provide
truthful feedback. Our objective was to construct privacy preserving reputation
protocols that are decentralized, do not require specialized platforms nor trusted
third parties, and protect privacy under standard adversarial models. Another
primary goal was to design the protocols such that they are more efficient than
the existing protocols that meet the above criteria.

We presented Round-Trip, a privacy preserving protocol for computing repu-
tation under the semi-honest adversarial model. The protocol draws its strength
from elements that include secure multi-party computation, data perturbation,
seed agents, and most importantly, trust awareness in the context of preserv-
ing privacy. Trust awareness allows a feedback provider to select trustworthy
agents, whom he can rely on to preserve his privacy. It also enables the feedback
provider to quantify the probability that his privacy will be preserved. Since
the risk to privacy can be quantified, a feedback provider can decide to abstain
from providing feedback if the risk is too high. The ability to abstain means
that agents can achieve up to perfect privacy, which was previously considered
impossible in decentralized additive reputation systems.

Experiments conducted on the real and large web of trust of Advogato.org
demonstrate that the protocol is able to guarantee the privacy of around 40%
of the feedback providers. Although this success rate is low, we observe from
the experiments that even if the remaining agents abstain, the protocol still
computes very accurate reputation scores as the mean of the available feedback.
The protocol requires O(n) messages to be exchanged, where n is the number
of feedback providers in the protocol.
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We also presented the k-Shares privacy preserving reputation protocol. The
k-Shares protocol is secure under the semi-honest model. In contrast to the
Round-Trip protocol, it preserves the privacy of a high majority of feedback
providers. The protocol builds upon the techniques of secret sharing and trust
awareness. k is a constant that represents the maximum number of trustwor-
thy agents that a feedback provider can rely on to preserve his privacy, where
k � n, and n is the number of feedback providers in the protocol. Keeping k
significantly less than n results in linear message complexity for the protocol,
that is, O(n).

Experiments conducted on the web of trust of Advogato.org show that the
privacy of around 85% of the feedback providers can be ensured with k as small
as 2. The experiments also demonstrate that increasing k to values approach-
ing n gives little improvement in this percentage. Thus the k-Shares protocol
achieves near optimal success rate while maintaining linear message complexity.
Agents in the k-Shares protocol can also quantify the risk to their privacy due
to trust awareness. Therefore, the protocol may be extended such that agents
can abstain if the risk to their privacy is not acceptable.

Our protocol for the disruptive malicious model is a version of our k-Shares
protocol enhanced with cryptographic constructs, which include an additive ho-
momorphic cryptosystem and zero knowledge proofs. The number of messages
exchanged is O(n) +O(log N), where n is the number of feedback providers in
the protocol and N is the total number of agents in the system.

All three protocols are fully decentralized and do not require any specialized
hardware nor trusted third parties. Each of the protocols has lower communi-
cation complexity than the existing protocols that meet these criteria and that
are secure under the same adversarial model.

In this thesis, we also addressed the problem of subjectivity in trust recom-
mendation. Subjectivity prevents the real meaning of a trust value from being
conveyed by one agent to another. We presented a method for the elimination
of subjectivity from trust recommendation, which proposes to exchange per-
centiles rather than raw trust scores. Experiments conducted on a simulated
web of trust demonstrate that the method gives more accurate trust recom-
mendations than the unmodified method, up to 91% of the time. The method
is non-intrusive and does not require any change in how agents locally evalu-
ate other agents. Furthermore, the method does not involve any third party
mediation, thus making it suitable for decentralized networks.

Another contribution was the analysis of the iterative multiplication strategy
for trust propagation, which is employed by a number of access control models
for multi-domain environments. Through an experiment on the web of trust
of Advogato.org, we showed that a substantial positive linear correlation (0.61)
exists between direct trust and propagated trust acquired through the iterative
multiplication approach. This result raises confidence in the notion of estab-
lishing trust in an unknown entity through trust propagation based on iterative
multiplication.
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7.2 Future Work

As future work, we would like to address the issue of privacy in conjunction with
other challenges faced by reputation systems. As discussed in Section 2.2.3,
these challenges include sybil attack, self-promotion, slandering, whitewashing,
and oscillation. Existing solutions to these problems are oriented mainly to-
wards non-privacy preserving reputation systems. Let’s consider the problem of
detecting sybil attacks in reputation systems. Advogato.org accomplishes this
task by running a network flow operation on a global view of the trust graph.
This approach cannot be directly applied to decentralized privacy preserving
reputation systems, because a global view of the trust graph is not available,
and moreover the feedback of agents must remain private. We would like to
explore the use of privacy enhancing technologies (such as secure multi-party
computation, data obfuscation, etc.) for adapting existing approaches to decen-
tralized privacy preserving reputation systems.

Another area of interest is privacy preserving reputation systems for location
sensitive networks. Consider a network where feedback is generally assigned
to immediate neighbors. Examples of such networks include MANETs and
VANETs. If an agent u assigns feedback to some agent v at location x, then
it can be inferred that agent u was also present at location x. This is clearly a
breach of agent u’s privacy. The challenge is to develop a protocol that allows
agents to assign feedback without compromising their geographical location. We
would like to explore a solution based on the k-anonymity model [130].

Work in progress includes a new privacy preserving reputation protocol that
builds upon the data perturbation technique and the Expectation-Maximization
(EM) algorithm for distribution reconstruction [3]. Each ith source agent sends
the value zi = xi + yi to the querying agent, where xi is its feedback value and
yi is a random number large enough to hide xi. Given z1 . . . zn and the distri-
bution of y1 . . . yn, the querying agent uses the EM algorithm to reconstruct the
distribution of x1 . . . xn. The querying agent can subsequently use the recon-
structed distribution of the feedback values to derive the reputation score. The
advantage of this protocol is that it is very efficient in terms of the number and
size of messages exchanged. Moreover, an agent does not need to rely on fellow
agents for its privacy. However, preliminary results show that the protocol is
suitable only for computing the reputation of target agents who have a large
number of source agents (due to the effect of the size of the dataset on the
success of the EM algorithm). We are also interested in developing a version of
the EM-based protocol that is secure under the malicious model. An incorrect
distribution of the y values can result in failure of the reconstruction algorithm.
Therefore, an issue to be addressed under the malicious model is to ensure that
each ith source agent generates the random number yi in the distribution that
is expected by the querying agent.
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