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SPÉCIALITÉ : Informatique

par
Omar HASAN

Soutenue le 16 juin 2023 devant la commission d’examen

Rapporteurs :

M. Nicolas ANCIAUX Directeur de recherche Inria Saclay
M. François CHAROY Professeur Université de Lorraine / Inria Nancy
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Abstract

Decentralized distributed systems can provide certain advantages over their centralized counter-
parts. These include improved fault tolerance and attack resistance due to the elimination of
a single point of failure, better censorship resistance and openness because of the absence of a
central authority, as well as higher autonomy of the nodes due to self-governance of resources.
Distributed ledger and blockchain technologies have played a key role in the increasing adoption
of decentralized systems. One of the notable contributions of blockchains to decentralized systems
is that they are able to ensure properties such as integrity, immutability, and verifiability even in
trust-deficient environments where nodes lack trust in each other. However, ensuring the privacy
of users still remains a challenge in decentralized systems where the application requires users to
contribute confidential or identifiable information. Privacy is particularly challenging to achieve in
trust-deficient environments due to the nodes not being able to rely on fellow nodes for privacy guar-
antees. My work addresses privacy preservation in trust-deficient decentralized systems.
In this habilitation thesis, we include some selected contributions from our work in three broad
areas: privacy-preserving decentralized reputation systems, privacy-preserving message routing in
decentralized networks, and privacy preservation in decentralized financial networks.

The reputation of a user in a distributed system may be computed as an aggregate of the
feedback provided by fellow users. Privacy-preserving reputation systems enable users to
provide feedback in a private and thus uninhibited manner. We present several contributions
in this area, which include a decentralized privacy-preserving reputation protocol based on the
computation of mean that is secure under the malicious adversarial model. The protocol offers
significant improvement in performance as compared to earlier protocols in the literature. Addi-
tionally, we define an attack called Reputation-based Re-identification (RR attack), which can link
successive contributions provided by a participant in participatory sensing applications and sub-
sequently re-identify them. We then propose PrivaSense, a privacy-preserving reputation system
that defends against this attack. Experiments on a real dataset demonstrate that PrivaSense is
successful in decreasing the number of contributions linked to their providers. Furthermore, we
propose a voting protocol (as a generalized instance of a privacy-preserving reputation protocol)
that ensures transparency, confidentiality, and integrity in a decentralized trust-deficient setup.
The persistence and immutability of the protocol’s communication allow verifiability of the out-
come by the voters themselves. Our contribution on secure voting is further extended by our work
on collusion-resistant worker set selection. We propose protocols that select a subset of workers
(who process data during the protocol execution) from the set of participants such that the risk of
collusion between workers is minimized.

Mobile Delay Tolerant Networks (MDTNs) are composed of mobile devices that communicate
in a decentralized manner without the help of fixed infrastructure. A prediction-based routing
protocol for MDTNs functions by forwarding a message from one intermediate node to another if
the latter has higher probability of encountering the destination node. However, this process com-
promises the privacy of the nodes by revealing their mobility patterns. We propose the Privacy-
Preserving Probabilistic Prediction-based Routing (4PR) protocol that forwards messages
by comparing information about communities of nodes instead of individual nodes in order to
protect their privacy. The protocol computes a probability function in a decentralized privacy-
preserving manner. Simulations on a community-based mobility model demonstrate that our
protocol is able to preserve privacy while offering performance comparable to protocols that do
not protect privacy.

Many Decentralized Finance (DeFi) Peer-to-Peer (P2P) lending platforms offer users to
obtain a loan by committing a collateral or by calculating a credit score. However, the requirements
of collateral and credit history are quite burdensome for certain groups of users. We propose to use
a social trustworthiness score drawn from users’ social interactions as an alternative risk mitigator
for lending instead of collateral. Privacy considerations are taken into account in order to protect
the borrower’s privacy despite the use of social interaction data. Another application that we

i



address is Supplier Impersonation Fraud (SIF) detection in the Business-to-Business (B2B)
context. This type of fraud occurs when a company supplying goods and services to another
company is impersonated by a fraudster in order to trigger a payment to an illegitimate bank
account. We introduce GraphSIF, a SIF detection system that aims to infer knowledge from the
relational properties created by the transactions of a company. GraphSIF analyzes data that
has been heavily anonymized in order to preserve the privacy of the participating companies.
The classification of a targeted transaction is performed by first clustering the graphs, and then
comparing the similarity between the targeted transaction’s graph with the other graphs of its
cluster. The model shows good efficiency in terms of computational time needed to create the
behavior sequence and to classify the transactions.
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Chapter 1

Introduction

Decentralized systems have gained tremendous interest in recent years. In contrast to their
centralized counterparts, decentralized systems exclude any central controlling entity or authority.
This architectural choice allows decentralized systems to inherently favor fault tolerance and attack
resistance due to the elimination of a single point of failure, offer better censorship resistance and
openness because of the absence of a central authority, as well as support higher autonomy of the
nodes due to self-governance of resources.

Decentralized systems, particularly in the form of Peer-to-Peer (P2P) systems, have been popu-
lar since over two decades. File sharing (e.g., using the BitTorrent protocol) was an early significant
application of P2P systems. However, with the advent of distributed ledger and blockchain tech-
nologies in the previous decade, decentralized systems now find application in a variety of areas.
These applications range from providing basic infrastructure, such as decentralized storage (e.g.,
Sia, Storj), to offering sophisticated decentralized financial services, such as decentralized lending
(e.g., Aave, Compound, MakerDao), as well as cryptocurrencies (e.g., Bitcoin, Ether). At the
time of this writing, the global cryptocurrency and decentralized application market capitalization
stands at 1.15 Trillion Euros [21].

The reasons for the interest and popularity of decentralized systems are multifold. The mon-
etary incentives on offer for the miners, validators, and investors are obvious draws. However,
there are also some reasons behind the increasing adoption of decentralized systems that are more
profound in nature. The case of the Web3 movement is an example. The web at its inception
was largely decentralized with servers (owned by companies as well as individuals) offering original
content. However, the web eventually shifted to a mostly centralized architecture where content
is either owned, published, or algorithmically selected and ranked by a few major central enti-
ties. Web3 is a vision for the future of the web where individuals exercise higher control over the
ownership, publication and accessibility of content.

Distributed ledger and blockchain technologies made new and innovative decentralized systems
possible mainly because these technologies enable building consensus in large open networks in
the presence of high ratios of self-serving or malicious nodes. Blockchain-based decentralized
systems take advantage of consensus mechanisms to provide many desirable properties, such as
immutability, transparency, verifiability, etc. However, blockchain-based decentralized systems
are not without their problems. Some challenges that they currently face are limited scalability
and efficiency, high energy consumption, difficult to achieve interoperability, and lack of privacy
preservation.

Trust is an element that is necessary for the correct functionality and security of many dis-
tributed systems. Informally, trust implies a belief by the trusting node that the node being
trusted will behave in an expected manner. As an example, a user needs to trust a cloud provider
to maintain the promised quality of service. Moreover, the user trusts the cloud provider to uphold
the security of their processes and data. Another example in a centralized system is a user on a
creative content sharing platform trusting the central authority to list and promote their content
in an unbiased manner. In a decentralized system, such as a vehicular network, an example would
be a vehicle needing to trust the legitimacy of road conditions shared by a peer vehicle.

Unfortunately, trust in distributed systems can be misplaced and trust can be breached, which
can harm the interests of the trusting nodes. Nodes can turn out to be partly honest, self-serving,
or outright malicious. A cloud provider could promise high quality of service and security yet
provide poor quality of service and insufficient security. A centralized content platform could bias
search results in favor of selected creators. A vehicle could withhold information or even falsify
it. A previously unknown node poses particularly high risk for being untrustworthy. However,
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even a well-known and trustworthy node can switch behavior and become malicious. Due to this
uncertainty, trust can be deficient or lacking in distributed systems.

Trust needs to be established by nodes in order to securely participate in such distributed
systems. In the case of centralized systems of global scale, users may trust the central entity by
choice because of its recognizability and its cultivated image. On the other hand, users may trust
the central entity simply out of necessity because equivalent alternatives are not available. In
decentralized systems, globally well-recognized entities are generally absent. In these systems, one
of the main approaches of establishing trust is through reputation.

Trustless systems propose an alternative to the need of trusting nodes. These systems replace
subjective trust by a process of proofs and their verification. Bitcoin and other blockchain-based
systems are examples of trustless systems. They assume trust to be completely nonexistent in the
network, that is, no node trusts any other node. Bitcoin’s Proof of Work (PoW) mechanism allows
one node to prove the discovery of the solution to a cryptographic hash puzzle and all other nodes
to efficiently verify the claim. This mechanism allows the nodes of the network to agree on the
next node to append to the blockchain without knowing or trusting that node or even each other.

Systems that rely on trusted central entities and trustless systems that assume total absence
of trust are on the two opposite ends of the trustfulness spectrum. However, we observe that trust
deficiency in a network can range between these two limits. As we discuss later in Section 2.2.1, a
node in a decentralized distributed system could be willing to trust a Trusted Third Party (TTP),
some arbitrary fellow nodes, some chosen partially trusted nodes, or no nodes at all.

Even in blockchain-based systems, there are varying degrees of trustfulness that is assumed.
In Bitcoin, as discussed above, trust is considered to be entirely absent. Whereas, in Proof of
Authority (PoA) based systems such as VeChain, a small number of nodes are trusted as validators.
The security of the blockchain system relies on the honesty of this subset of nodes. PoA based
blockchains are favored by permissioned or consortium blockchains where trust is not completely
deficient.

In the current digital era, an enormous amount of personal data is being collected by central
entities (such as governments, institutions, and corporations). This data includes biographical
data, professional activities data, medical data, mobility and travel data, communication and
social interaction data, utility usage data, financial data including daily expenses, opinion and
political views, images and videos, and even physical activities data (such as sleep cycles, heart
rate, number of steps taken, etc. through fitness trackers).

The collection and analysis of such diverse and large amounts of data has allowed the central
entities to offer helpful and innovative services. As an example, analysis of personal data has even
resulted in life saving diagnosis of rare diseases [286]. However, the utility of these services often
comes at the expense of the privacy of the users. Central entities may learn information about
individuals that may be considered sensitive.

Sharing personal data is essential for the functionality of many distributed systems whether they
be centralized or decentralized. Some decentralized systems that we consider in this work include
reputation systems, voting systems, message routing in mobile delay tolerant networks, and peer-
to-peer lending. In each of these systems, users must share their personal data in order to benefit
from their functionality in the long term. In reputation systems, the users are required to express
their personal opinion in order to establish the reputation of entities that would eventually help
the community. In voting systems, users submit their personal choice in order to reach majority
consensus. In certain social-interaction-based message routing protocols, users are required to
share their mobility and social interaction patterns in order to help efficient delivery of messages
for the users of the network. In peer-to-peer lending, the borrower must demonstrate to the lender
their creditworthiness by divulging their credit history or other personal information.

Our broad goal is to enable users to avail useful services provided by decentralized systems while
preserving their privacy. Looking back at the systems mentioned above, we could ask the following
questions: Could we compute reputation without the users revealing their feedback? Could we
determine the legitimate majority choice in a decentralized manner without anybody learning the
votes? Could a message be routed taking advantage of the mobility patterns of users without them
divulging their behaviors? Could a lender establish confidence in the intention and the ability of
a borrower to reimburse a loan without acquiring their personal information? These are some of
the themes that we address in our work.

We are particularly interested in privacy-preserving decentralized protocols. In these protocols,
there are n nodes that need to compute a function such that each user holds a confidential input.
This is a reflection of the problem that is studied by the field of secure multi-party computation.
Privacy in such a decentralized system can be trivial to achieve when trust is not deficient. Let’s
assume that the n nodes all trust a single entity (a trusted third party, or TTP) to uphold their
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privacy, and to perform computations correctly and fairly. This TTP does not need to be central-
ized. It can be chosen by the nodes for a given instance of the protocol. In this case, all n nodes
can submit their inputs to the TTP, who then computes the function and discloses the outcome.
None of the n nodes learn the confidential inputs of the fellow nodes (except what can be inferred
from the output).

However, in a system where trust is deficient, achieving privacy becomes a challenge since the
above solution is no longer viable. In trust deficient systems, we need to rely on a combination of
partial trust (depending on the level of trust deficiency) and cryptographic building blocks, such
as verifiable secret sharing, homomorphic encryption, zero-knowledge proofs, etc. (discussed in
Section 2.3.2). In trustless systems where trust is considered to be absent, we need to turn to proofs
and verification. However, there do not exist generic efficient solutions for privacy preservation
in trust-deficient decentralized systems. We need to develop protocols that optimize resource
utilization while guaranteeing correctness and privacy.

1.1 Contributions

In this habilitation thesis, we include some selected contributions from our work published in the
last 10 years, i.e., from the year 2013 to the year 2022. These selected contributions can be grouped
under three main categories that we summarize below.

1.1.1 Privacy-Preserving Reputation Systems

The purpose of a reputation system is to hold the users of a distributed application accountable for
their behavior. The reputation of a user is computed as an aggregate of the feedback provided by
fellow users in the system. Truthful feedback is clearly a prerequisite for computing a reputation
score that accurately represents the behavior of a user. However, it has been observed that users
can hesitate in providing truthful feedback because, for example, of fear of retaliation. Privacy-
preserving reputation systems enable users to provide feedback in a private and thus uninhibited
manner.

� We present a comprehensive survey of privacy-preserving reputation systems with
emphasis on blockchain-based decentralized systems. Blockchain-based privacy-preserving
reputation systems have properties, such as trustlessness, transparency, and immutability,
which prior systems do not have. We propose analysis frameworks that we use to review and
compare the existing systems. Our analysis provides several insights and directions for future
research. These include leveraging blockchain to its full potential in order to develop truly
trustless systems, to achieve some important security properties, and to include defenses
against common attacks that have so far not been addressed by most current systems.

� We develop a decentralized privacy-preserving reputation protocol for the mali-
cious adversarial model. The malicious users in this model actively attempt to learn
the private feedback values of honest users as well as to disrupt the protocol. Our protocol
does not require centralized entities, trusted third parties, or specialized platforms, such as
anonymous networks and trusted hardware. Moreover, our protocol is efficient. It requires
an exchange of O(n+ log N) messages, where n and N are the number of users in the proto-
col and the environment respectively. This is a significant improvement because comparable
protocols in the literature require as much as O(n3 + N) messages using similar building
blocks.

� Privacy-preserving reputation systems used in participatory sensing applications
have two seemingly conflicting objectives of monitoring the behavior of the participants over
subsequent interactions and yet unlinking those subsequent interactions in order to preserve
participants’ privacy. We define an attack called Reputation-based Re-identification (RR
attack) that exploits this conflict in order to detect the succession of contributions provided
by the same participant and to re-identify their original identity. We show that using this
attack, more than 35% of contributions can be associated to their successive contributions in
each campaign. We then propose PrivaSense as a new privacy-preserving reputation system
that integrates both reputation and privacy such that their objectives are simultaneously
achieved. Experiments conducted using a real dataset show that PrivaSense decreases the
number of contributions linked to their original providers by up to 80%.
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� Secure electronic voting is a vision for the future of elections and referendums. However,
this vision brings transparency and confidentiality requirements that render the design of
such solutions challenging. Specifically, the counting must be implemented in a reproducible
way and the ballots of individual voters must remain concealed. We propose a voting protocol
(as a generalized instance of a privacy-preserving reputation protocol) that ensures trans-
parency, confidentiality, and integrity in a decentralized trust-deficient setup.
The persistence and immutability of the protocol’s communication allow verifiability of the
outcome by the voters themselves. The protocol is built by combining Secure Multi-Party
Computation (SMPC) and decentralized distributed ledger technology.

� Our contribution on secure voting is further extended in our work on collusion-resistant
worker set selection for transparent and verifiable voting. Collusion between workers
can be particularly harmful to the security of the protocol. We propose protocols that
select a subset of workers (who process data during the protocol execution) from the set
of participants such that the risk of the workers colluding together is minimized. Our first
solution is a decentralized protocol that randomly selects workers in a verifiable manner
without any trusted entities. The second solution is an algorithm that uses a social graph of
participants and community detection to select workers that are socially distant in order to
reduce the risk of collusion.

1.1.2 Privacy-Preserving Message Routing

The pervasiveness of mobile devices with networking capabilities led to the emergence of Mobile
Delay Tolerant Networks (MDTNs). These networks are often decentralized in nature and partici-
pating nodes communicate without the help of fixed infrastructure. The characteristics of MDTNs,
which include frequent and long-term partitions, make message routing a major challenge.

� Message routing in mobile delay tolerant networks inherently relies on the cooperation be-
tween nodes. In most existing routing protocols, the participation of nodes in the routing
process is taken as granted. However, in reality, nodes can be unwilling to participate. We
study the impact of the unwillingness of nodes to participate in existing routing
protocols through a set of experiments. Results show that in the presence of even a small
proportion of nodes that do not forward messages, performance is heavily degraded. We
then analyze two major reasons of the unwillingness of nodes to participate, i.e., their ratio-
nal behavior (also called selfishness) and their wariness of disclosing private mobility
information. We conduct experiments to compare the performance of existing strategies
for preventing different types of selfish behavior. For protocols that preserve the privacy
of users, we classify the existing approaches and provide an analytical comparison of their
security guarantees.

� A prediction-based routing protocol for MDTNs functions by forwarding a message from one
intermediate node to another if the latter has higher probability of encountering the desti-
nation node. However, this process compromises the privacy of the nodes by revealing their
mobility patterns. We propose the Privacy-Preserving Probabilistic Prediction-based
Routing (4PR) protocol that forwards messages by comparing information about commu-
nities of nodes instead of individual nodes. The privacy of individual nodes is preserved since
only aggregate information about a community as a whole is disclosed. The 4PR protocol
is an improvement over our prior protocol called 3PR. The 4PR protocol provides better
privacy-preservation as well as higher efficiency.

1.1.3 Privacy Preservation in Financial Networks

There are many Decentralized Finance (DeFi) Peer-to-Peer (P2P) lending platforms that offer
users to obtain a loan by committing a collateral or by calculating a credit score, which is based on
factors such as the users’ credit history. However, the requirements of collateral and credit history
are quite burdensome for certain groups of users. Although these platforms are innovative in the
sense that they are decentralized, they end up relying on the same loan-securing approaches as
traditional banks and lending institutions. Therefore, a portion of the population is deprived from
loan opportunities on these DeFi P2P lending platforms as well.

� We propose to use personal social media data as an alternative risk mitigator for lending.
Users’ professional behavior and reliability may be gleaned from such data allowing us to
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predict their trustworthiness in the lending context. We develop an Ethereum blockchain-
enabled decentralized lending platform that calculates a “social score” based on the social
media data of a user. Privacy considerations are taken into account in order to protect the
borrower’s privacy despite the use of personal and social data.

Another application that we address is Supplier Impersonation Fraud (SIF) detection in the
Business-to-Business (B2B) context. This type of fraud occurs when a company supplying goods
and services to another company is impersonated by a fraudster in order to trigger a payment to
an illegitimate bank account. Information pertaining to successful fraud events against a company
is sensitive and therefore there is little exchange between businesses of pertaining data. Absence of
useful data poses an obstacle in the development of innovative data-driven fraud detection systems.

� We introduce GraphSIF, a supplier impersonation fraud detection system that aims
to infer knowledge from the relational properties created by the transactions of a company.
GraphSIF analyzes data that has been heavily anonymized in order to preserve the privacy
of the participating companies. First, a sequence of graphs modeling the links between
companies and accounts is created by aggregating the transactions. It is called the behavior
graph. A targeted transaction’s legitimacy is asserted by analyzing the patterns formed when
it is added to the most recent graph of this sequence. Due to the potentially high number of
patterns that can be found in the behavior sequence, a Self-Organizing Map is used to regroup
graphs with similar patterns. The classification of a targeted transaction is performed by first
clustering the graphs, and then comparing the similarity between the targeted transaction’s
graph with the other graphs of its cluster. The model shows good efficiency in terms of
computational time needed to create the behavior sequence and to classify the transactions.

1.2 Outline

Chapter 2, the next chapter in this part, discusses some general concepts as the background for
the rest of the work. The parts II, III, and IV of this habilitation thesis correspond respectively
to each of the categories of contributions discussed in the previous section. Part V comprises of
Chapter 12 and 13 that summarize the contributions and present directions for future research
respectively. The outline of the next three parts is given below. Each chapter in these three parts
is an adapted and abridged version of the published article that is indicated in the outline.

PART II – Privacy-Preserving Reputation Systems
Chapter 3 Privacy Preserving Reputation Systems based on Blockchain and

other Cryptographic Building Blocks: A Survey. O. Hasan, L.
Brunie, E. Bertino. ACM Computing Surveys. 2023. Vol. 55, no. 2,
article 32, pp 1-37. Published online: January 2022.

Chapter 4 A Decentralized Privacy Preserving Reputation Protocol for the
Malicious Adversarial Model. O. Hasan, L. Brunie, E. Bertino, and N.
Shang. IEEE Transactions on Information Forensics and Security. 2013.
Vol. 8, no. 6, pp 949-962.

Chapter 5 PrivaSense: Privacy-Preserving and Reputation-Aware Mobile
Participatory Sensing. H. Mousa, S. B. Mokhtar, O. Hasan, L. Brunie,
O. Younes, and M. Hadhoud. In Proceedings of the 14th Intl. Conference
on Mobile and Ubiquitous Systems. November 2017. Pp. 38-47.

Chapter 6 A Transparent Referendum Protocol with Immutable Proceedings
and Verifiable Outcome for Trustless Networks. M. Schiedermeier,
O. Hasan, L. Brunie, T. Mayer, and H. Kosch. In Proceedings of the 8th
Intl. Conference on Complex Networks and their Applications. December
2019. Pp. 647-658.

Chapter 7 Collusion-Resistant Worker Set Selection for Transparent and
Verifiable Voting. M. Bettinger, L. Barbero, O. Hasan. SN Computer
Science (Springer Nature). 2022. Vol. 3, no. 5, article 334.
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PART III – Privacy-Preserving Message Routing
Chapter 8 An Investigation on the Unwillingness of Nodes to Participate in

Mobile Delay Tolerant Network Routing. J. Miao, O. Hasan, S. B.
Mokhtar, L. Brunie, and K. Yim. International Journal of Information
Management (Elsevier). 2013. Vol. 33, no. 2, pp. 252-262.

Chapter 9 4PR: Privacy Preserving Routing in Mobile Delay Tolerant Net-
works. J. Miao, O. Hasan, S. B. Mokhtar, L. Brunie, and A. Hasan. Com-
puter Networks (Elsevier). 2016. Vol. 111, pp. 17-28.

PART IV – Privacy Preservation in Financial Networks
Chapter 10 Privacy Considerations for a Decentralized Finance (DeFi) Loans

Platform. J. Hartmann and O. Hasan. Cluster Computing (Springer).
2022. https://doi.org/10.1007/s10586-022-03772-3.

Chapter 11 GraphSIF: Analyzing Flow of Payments in a Business-to-Business
Network to Detect Supplier Impersonation. R. Canillas, O. Hasan,
L. Sarrat, and L. Brunie. Applied Network Science (Springer). 2020. Vol.
5, article 40.
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Chapter 2

Background

2.1 Decentralized Systems

We begin by briefly describing the general concept of distributed systems, which encompass de-
centralized systems.

2.1.1 Distributed Systems

As defined by Steen and Tanenbaum [272], a distributed system is a collection of autonomous
computing elements that appears to its users as a single coherent system. An autonomous com-
puting element, which may also be referred to as a node, is an instance of a hardware device or
a software process that exists and acts independently from others. The nodes of a distributed
system collaborate with each other in order to provide some expected functionality to the user.
From the user’s point of view, the distributed system acts as a single coherent entity, even though
it is composed of a collection of independent nodes.

Distributed systems can be categorized according to their system architecture, which includes
centralized, federated, and decentralized architectures. The system architecture of a distributed
system guides how its software components are distributed and organized over nodes. It also
dictates the authority that the various components exercise over other components. The centralized
architecture assumes the presence of a central entity that provides services to nodes that consume
those services. On the other hand, the decentralized architecture considers all nodes to assume
the role of providing services to each other. In the next sections, we take a more in depth look at
distributed systems based on the decentralized architecture.

2.1.2 An Overview of Decentralized Systems

The organization of nodes in a decentralized system may be structured, unstructured, or hybrid.
In a structured system, the nodes are organized in a pre-defined topology. This means that a given
node (often also referred to as a peer in the decentralized architecture) has specific neighbors that
it can interact with as part of the system. The topology may be in the form of a structure such as
a ring or a tree. The purpose of the structure is to allow efficient access to nodes for a target use
case. In contrast, an unstructured system allows nodes to interact with any other nodes as well as
to change neighborhoods and form new neighbors. This aspect of unstructured systems provides
complete flexibility to the nodes, however, the absence of structure also means lack of efficiency
in communication in some use cases. Hybrid systems borrow aspects of both types of system, for
example by imposing structure on a small set of nodes or assigning them specialized roles.

The decentralized architecture inherently favors certain properties that may be desirable in
distributed systems. A few of these properties are listed below.

� Fault tolerance. In centralized systems, their exists a central entity or server, which is
fundamental to the correct functioning of the entire system. The failure of the central entity
can lead to the failure of the system as a whole. In contrast, decentralized systems do not
consist of such centralized entities that have the potential to become single points of failure.

� Attack resistance. Central servers in centralized systems are easily identifiable high-value
targets for attackers. Decentralized systems are generally more attack resistant since there
may be hundreds or thousands of nodes that may need to be breached in order to compromise
the security of the entire system.
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� Censorship resistance. Centralized networks have choke points that make it possible to
control the flow of information and censor information that is unfavorable to the central
authority in control. Information is able to flow more freely in decentralized systems due
to the absence of such choke points. Information may pass from node to node without the
intervention of a central authority.

� Higher autonomy. The nodes in a decentralized system control their own resources and
therefore they have higher autonomy than in centralized systems where resources are centrally
managed.

� Decentralized governance. Decentralized systems have mechanisms for decentralized gov-
ernance, which may lead to more democratic policy and decision making for the system. This
is often not the case in centralized systems where the central authority can dictate policies
and decisions to the member nodes.

Although decentralized systems offer many advantages as listed above, their design and imple-
mentation entails several challenges as well. We point out some of them below.

� Lack of a single point of reference. Central systems have a significant advantage that
a central entity is present that can provide a single point of reference. This implies that
coordination, synchronization, and ordering of tasks becomes relatively straight forward.
Decentralized systems lack a single central entity, which makes organization more challenging.

� Trust deficiency. In centralized systems, the central entity is often well-known throughout
the system and thus trusted to a certain degree to perform some critical functions correctly.
In decentralized systems, their may exist a large number of nodes whose reputation is not
known and consequently there is lack of trust in the services that they may provide. This
trust deficiency can impact the willingness of the users to participate in the system. We note
that the trust placed in a central entity can also be considered a liability since a breach of
that trust can have a significant negative impact on the security of the users.

� Concerns about privacy. The central entity in a central system is also often trusted
to protect the privacy of users according to their privacy policy. A direct consequence of
the lack of trust in decentralized systems is that nodes are not trusted in the context of
privacy protection either. However, we note that lack of privacy can be a major problem in
centralized systems as well where an unscrupulous central entity could exploit the private
information of its users.

� Higher cost. The cost of operations in terms of resources consumed is generally higher in
decentralized systems. The operation may require processing by many distant nodes and
results may need to be propagated to a large network of nodes. A given operation in a
centralized system may require a few messages, a small amount of bandwidth, and a few
processing cycles on the central server. In order to accomplish the same operation, the scale
of the resources required can be much larger in a decentralized system.

2.1.3 Applications of Decentralized Systems

We now take a brief look at some categories of applications of decentralized systems. Our selected
contributions that are presented in later chapters address applications from these categories.

� Web3. The World Wide Web (which we now call ‘Web 1.0’) was initially conceived as a
means of sharing information using decentralized protocols. This version of the web was
composed of static websites created by companies as well as users that were mostly read-
only. The second and the current version of the web (now called ‘Web 2.0’) was mainly
a consequence of the emergence of social networks in the early to mid 2000s, which are
platforms that enable visitors to generate and share content as well. However, this model
resulted in the centralization of information on a few platforms. The entities that own these
platforms also own the user information. They need to be fully trusted for maintaining the
information as well as for ethical concerns such as those related to monetization, privacy,
etc. Web3 (or ‘Web 3.0’) is a vision for the re-decentralization of the web such that the users
generate as well as own their information and make it available for use according to their
own policies. Web3 is composed of decentralized protocols primarily based on the distributed
ledger or blockchain technology that enable this vision. Some examples of these protocols
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are Bitcoin for payments, Ethereum for smart contracts, Inter-Planetary File System (IPFS)
for decentralized storage, Non-Fungible Tokens (NFTs) for ownership of digital assets, etc.
We discuss Web3 in further detail in Section 2.1.4.

� Decentralized reputation systems. Decentralized reputation systems enable determining
the trustworthiness of users in decentralized environments where there is no pre-established
trust in users. Reputation of a target user is computed by aggregating the subjective feedback
provided by other users, referred to as source users. These are users who have previously
interacted with the target user and have consequently gained personal experience regarding
her actions in the context of the given application. Reputation systems thus assist in holding
users accountable for their actions despite the initial absence of trust in the users.

� Mobile delay tolerant networks. Mobile Delay Tolerant Networks (MDTNs) are con-
structed by the intermittent connection of co-located mobile devices. The short range net-
working interfaces (e.g., Bluetooth) of these devices enable neighboring devices to interact
through short-range communications in a decentralized manner without the help of fixed
infrastructure. However, routing messages between two nodes that are not within communi-
cation range is a challenge in MDTNs since an end-to-end routing path cannot be guaranteed.

� Mobile participatory sensing. Mobile participatory sensing is an application where users
sense various environmental conditions with their mobile devices and then aggregate the
sensing data for statistical analysis. The data may be aggregated by a central entity or
it may aggregated by the mobile devices themselves in a decentralized manner. A related
application area is participatory sensing in Vehicular Adhoc Networks (VANETs), where
vehicles collect information about road conditions.

2.1.4 Web3

A distributed ledger or blockchain is a data structure that is composed of a set of blocks linked by
cryptographic hash pointers. The blocks are chronologically ordered. Each block comprises of the
record of a set of transactions or operations that have recently taken place between the users.

As introduced in the previous section, Web3 is composed of decentralized protocols primarily
based on the distributed ledger technology and aims to offer a decentralized version of the web.
According to Jay Graber [125] and as discussed by Korpal and Scott [175], the difference between
the subsequent versions of the web can be summarized as below.

� Web 1.0 – Host-generated content, host-generated authority

� Web 2.0 – User-generated content, host-generated authority

� Web 3.0 – User-generated content, user-generated authority

We look at two fundamental building blocks of Web3: 1) decentralized payments based on
cryptocurrencies, and 2) decentralized applications based on smart contracts.

Decentralized Payments – Cryptocurrencies

Cryptocurrencies enable native decentralized payments in Web3 instead of relying on the tradi-
tional mostly centralized financial infrastructure. A large number of cryptocurrencies have been
introduced since the advent of Bitcoin, which was the first successful decentralized cryptocurrency.
Many subsequent cryptocurrencies have proposed improvements to the original designs of Bitcoin
to achieve better scalability, interoperability, energy efficiency, privacy, etc. However, Bitcoin still
remains the largest cryptocurrency in terms of market capitalization [21]. Bitcoin was the first
cryptocurrency to utilize many of the fundamental ideas together upon which many of the later
cryptocurrencies have been founded. In this section, we give an overview of some aspects of how
Bitcoin achieves decentralization.

Bitcoin succeeds by solving several important challenges for a digital currency in a decentralized
manner. This is done through the use of crytpographic and other technical building blocks as well
as innovative incentive engineering. Some of these challenges addressed include:

� Maintaining an immutable and incontestable ledger of the ownership of coins.

� Allowing authentication of valid ownership of coins.
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� Preventing a user from double spending a coin.

� Enabling efficient consensus on a single valid state of the ledger.

� Incentivizing nodes to volunteer computing resources for the upkeep of the ledger.

� Decentralized identity management.

� Preventing Sybil attacks.

� Creation and distribution of new coins.

A block that comprises of newly carried out transactions is appended at regular intervals to
the Bitcoin ledger. Several nodes in the system may propose their own versions of the block to
be appended next. The nodes in the Bitcoin system aim to reach consensus on a single state of
the ledger where a unique block gets appended. The block must be valid and consequently must
contain only valid transactions.

The above problem is an instance of the classic problem of distributed consensus. In this prob-
lem, n nodes in a distributed system each have an input value. Some of the nodes are considered
to be malicious (or faulty or ‘Byzantine’). A distributed consensus protocol must terminate with
all non-malicious, i.e. honest nodes, in agreement on a single value, which has been proposed by
an honest node. The absence of a common global clock poses several hurdles in this problem.
An impossibility result by Lamport et al. [179] shows the impossibility of reaching consensus in
the representative Byzantine Generals Problem when one third or a higher portion of the generals
(or nodes) are malicious. In fact, another impossibility result by Fischer et al. [112] shows that
consensus is impossible even if only one node is malicious or may simply crash.

As discussed by Narayanan et al. [222], Bitcoin overcomes the above impossibility results as it
operates in a model that is different from the one in which the impossibility results were proven.
Specifically, Bitcoin introduces financial rewards for the nodes to behave honestly. These incentives
are practical since the notion of currency is built into the protocol, which is not the case in the
model of the impossibility results. Moreover, Bitcoin accepts eventual probabilistic consensus
instead of deterministic consensus. This implies that the nodes in the Bitcoin system may not
be in agreement on the state of the ledger at a given time, however, in practice the majority is
expected to eventually reach consensus on the state of the ledger up to a certain block.

Bitcoin utilizes the Proof of Work (PoW) algorithm that requires a hash puzzle to be solved
by the node that wishes to propose the next block. The solution of the puzzle lies in finding a
suitable nonce value. The hash of this nonce concatenated with the hash of the previous block and
all its transactions must be a number that falls within a required target space. The solution to
such a puzzle is non-trivial due to primarily two reasons: Firstly, since the hash function SHA-256
is a one-way hash function, there is no efficient way of deducing the solution. Secondly, the target
space is very small as compared to the complete output space of the hash function. The node that
solves the puzzle for the current block, gets to propose the block. Any node can efficiently verify
the solution to be correct due to the low asymptotic complexity of hashing the solution string.
Honest nodes accept the new block into their local copies of the ledger if all the transactions are
correctly formed and do not contain cases of double or un-authorized spending. This mechanism
allows ‘implicit’ consensus between the nodes since no explicit coordination is required. The node
whose valid block is accepted into the Bitcoin blockchain gets rewarded with an incentive in new
Bitcoins, therefore it is in the interest of nodes to propose blocks that are valid.

A user in Bitcoin is able to create their unique identity themselves without the involvement of
a central authority. The user first generates a pair of public and private keys. A hashed derivative
of the user’s public key is considered as the address of that user. In order to authorize spending
transactions from a given address, the user must digitally sign them using the underlying public
key’s corresponding private key that is known only to the user who is the legitimate owner of
the coins. The private keys are drawn from the large interval of 256 bit integers, therefore, the
probability of collisions between multiple users is considered insignificant. A user may generate as
many identities as they wish. However, owning multiple identities does not endow a user with any
disproportional advantage over other users and does not favor Sybil attacks. The reason is due
to the utilization of the Proof of Work (PoW) algorithm discussed before, which is not impacted
by the number of identities owned by a node. A user owning one or multiple identities can only
gain an advantage to solve the hash puzzle and receive the Bitcoin reward by increasing their
computational processing power.
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Decentralized Applications – Smart Contracts

Bitcoin proposes a native scripting language that is used mainly for processing transactions to
be recorded in the next block. The scripting language supports cryptographic operations such
as hashing, checking that a public key hashes to a given address, checking the validity of digital
signatures, etc. The Bitcoin scripting language is stack-based, which means that each instruction
specified in a given script gets executed only once in the exact order in which the instructions are
listed. This implies that it is not possible to implement loops and that the language is not Turing-
complete. This is intended in the design of Bitcoin so that users are unable to submit scripts
that take arbitrarily long to process or that can even potentially contain infinite loops. A node
who is compiling the next block executes the script submitted for the processing of an associated
transaction. Arbitrary scripts would have the potential to unfairly consume valuable resources
and slow down the system. The consequence of only offering a primitive scripting language is that
Bitcoin does not support the execution of general purpose programs. It is limited to only processing
financial transactions and some applications that are able to work within the constraints imposed
by the language.

Subsequent alternative blockchains, notably Ethereum, proposed the notion of smart contracts.
The goal of smart contracts is to remove the limitation discussed above and support general purpose
computing on a blockchain. A smart contract is a program that is written in a Turing-complete
programming language and that can execute on the blockchain platform. This implies that any
application can be built using smart contracts. The term smart contract is used because the
program can be considered as a contract between the users. The terms and outcomes of the
program are enforced by the blockchain platform. For example, users may submit coins to a smart
contract and agree upon the terms of the distribution of those coins at a later moment under
certain conditions. The smart contract would hold the coins and precisely follow the initially laid
out terms and conditions without any intervention or cheating on behalf of the participating users.

Ethereum implements a decentralized embedded canonical computer that is called the Ethereum
Virtual Machine (EVM). All nodes maintain a local copy of the state of the machine and update
state changes at regular intervals. Computation on the EVM can be requested by any participating
node by calling a function of a deployed smart contract. Requests for computation are called
transactions in Ethereum. All nodes of the Etherem network verify the transaction and in case
of a valid request, they execute the computation. The resulting state change in the EVM is
propagated throughout the network. The state of the EVM is stored on the Ethereum blockchain.
The nodes reach consensus on a single valid state of the blockchain.

Similar to Bitcoin, the identities are managed in a decentralized manner. Transactions that
spend the native cryptocurrency, called Ether, must be signed by the user in order to authenticate
ownership. Economic incentives are provided to the nodes that commit computational resources
for the verification and execution of transactions. A transaction request i.e. a call to a function of a
smart contract must be accompanied by a fee in Ether proportionate to the amount of computation
that is required by the function. A reward or a bounty is awarded to the node who performs the
processing required for verifying and executing the transaction and appending it to the blockchain.
This concept of fees prevents malicious users from congesting the system by requesting arbitrarily
lengthy computation. This countermeasure allows Ethereum to be able to support Turing-complete
computation.

A decentralized application (dapp) is an application that provides a front end user interface
with its backend logic implemented on smart contracts. This is in contrast to centralized appli-
cations in which the backend logic is hosted on centralized servers. Dapps inherit the benefits
of decentralization and smart contracts. They offer high availability, censorship resistance, data
integrity and immutability, transparency and verifiability of all computation, without reliance on
any trusted third party.

The current version (called the London upgrade) of Ethereum employs a Proof of Stake (PoS)
algorithm for the consensus mechanism instead of the PoW algorithm that Bitcoin uses. Nodes who
wish to participate in verifying and creating new blocks are required to stake capital in Ether into a
smart contract, which acts as collateral. These nodes are called validating nodes or validators. The
validators receive rewards in Ether if they provide computational resources for validation purposes
as well as behave honestly. On the other hand, they are penalized and their stake is destroyed if
they do not make resources available when needed or behave dishonestly. The PoS algorithm is
comparatively energy efficient.
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2.2 Trust

In order to use the functionality of a distributed system, the users may be required to trust certain
entities, such as a central authority, or some fellow users in the system. The trust implies a belief
by the trusting user that the trusted entity or the trusted fellow users will behave in an expected
manner.

2.2.1 Degrees of Trustfulness (or Inversely Trust Deficiency)

In our work on privacy-preserving reputation systems [136], we identified four different models
of trust that users are required to engage in. These models are listed below in descending order
according to the degree of trustfulness that is required. Inversely, the models vary in the level of
trust deficiency that is assumed in the system. The first model is fully trustful, that is, it requires
users to completely trust another entity. Whereas, the last model is trustless or in other words
fully trust deficient, that is, no trust is assumed to exist between fellow entities.

� Trusted Third Party. A Trusted Third Party (TTP) for a set of users is an entity whom
every user in the set trusts completely for certain actions. In this model, all users of the
system must trust the designated TTP entities in the system. A user in a system who needs
to be fully trusted is also considered as a TTP.

� Trust on arbitrary k fellow users. A user in the system is required to place her trust in
k different fellow users for the security guarantees, where k ≤ n, and n is the total number of
users participating in the protocol. These k users are selected by the system without taking
the user’s preferences into account. Thus from the perspective of the user, the set of trusted
users is selected arbitrarily. Generally, only a partial level of trust is required in each of the
trusted users in this model.

� Trust on chosen k fellow users. In this trust model, a user in the system also places her
trust in k distinct fellow users. However, these fellow users are chosen by the user herself.
The user may select the trusted users based on the level of their subjective trustworthiness
in order to maximize the security or privacy guarantees. This model requires that a user is
able to determine the trustworthiness of fellow users and choose accordingly from a pool of
available users.

In the context of our work on privacy-preserving reputation systems [139], we note that
there is a difference between choosing fellow users for establishing security guarantees versus
choosing feedback providers for personalizing the reputation score of the target entity. In
the first case, a user chooses fellow users who specifically influence the security and privacy
guarantees that she would receive in the reputation system. In the latter case, there is no
impact intended on the security guarantees. The “Trust on chosen k fellow users” model
addresses choosing k users specifically for the purposes of security in the reputation system.

As an example, consider the systems by Hasan et al. [139] and Gudes et al. [128]. In the
system by Hasan et al., the selection of k fellow users is made for preserving privacy. The trust
model of this system can thus be classified under the chosen k users category. In contrast, in
the system by Gudes et al., even though a user selects a subset of fellow users, the system’s
trust model cannot be classified as the chosen k users model. The reason being that the
selection of users in this latter system is made purely for personalizing the reputation score.

� Trustless. In the trustless model, the users in a system do not need to trust any entities
or any fellow users. Thus, this model does not expect users to have pre-existing trust to-
ward fellow users or entities in the system. The users need to rely solely on the underlying
algorithms and protocols of the system and their verification in order to receive the security
guarantees.

However, we note that even though the users do not need to directly trust any entities or
users in this model, there may exist a requirement of trustworthiness for the overall correct
and secure working of the system. Trustless systems are based primarily on the blockchain
technology. As an example, the Bitcoin blockchain requires that a majority of all participants
in the system act honestly in order to ensure integrity.

The trustless model may be considered a special case of the “Trust on arbitrary k fellow users”
model, where k is at least greater than half of the total number of all participants in the entire
system (not just a protocol instance). A blockchain system functions by building consensus
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among peers. In the case of Bitcoin, if a majority of peers are dishonest, consensus cannot
be achieved and the entire system malfunctions. Thus, the breach of the trustworthiness
requirement in such systems does not simply threaten the security of a given user but the
integrity of the entire system. It is therefore in the collective interest of all honest users in
the system to prevent any breach of trustworthiness.

2.2.2 Defining Trust

There has been extensive research on the concept of trust in many different domains, such as
sociology, philosophy, social psychology, economics, and computer science. Therefore, a number of
definitions of trust have been proposed in the literature with different perspectives. According to
Marsh [205, page 20], a common element that links all studies on trust is the assumption of the
presence of a society. In this section, drawn from our prior work in the area of trust management
[133, chapter 2], we present some of the influential definitions of trust that appear in the literature.

One of the earlier notable definitions of trust is formulated by social psychologist Morton
Deutsch [92]. The definition states that when:

1. “the individual is confronted with an ambiguous path, a path that can lead to
an event perceived to be beneficial (V a+) or to an event perceived to be harmful
(V a−);

2. he perceives that the occurrence of V a+ or V a− is contingent on the behavior of
another person; and

3. he perceives the strength of V a− to be greater than the strength of V a+.

If he chooses to take an ambiguous path with such properties, I shall say he makes a
trusting choice; if he chooses not to take the path, he makes a distrustful choice.”

We interpret Deutsch as follows: Trust and distrust are discrete, distinct choices that arise when
an individual must rely on another person to gain a benefit. However, there is also a possibility
that relying on that person may actually lead to harm instead of benefit. The individual trusts
that person if he chooses to rely on him, and distrusts him if he chooses otherwise.

In [116], sociologist Diego Gambetta proposes the following definition of trust:

Trust (or, symmetrically, distrust) is a particular level of the subjective probability with
which an agent assesses that another agent or group of agents will perform a particular
action, both before he can monitor such action (or independently of his capacity ever
to be able to monitor it) and in a context in which it affects his own action.

This is one of the seminal definitions that describe trust as a quantifiable construct. Gambetta
observes that trust is an agent’s degree of belief (the level of subjective probability) that another
entity will perform an expected action. An additional important aspect of this definition is the
recognition that trust is contextual.

McKnight et al. [207], a prominent work in the field of trust in information systems, regards
trust as a multidimensional concept composed of two constructs: trusting intention, and trusting
beliefs. Trusting intention means that one is willing to depend on the other person in a given
situation, and trusting beliefs imply that one believes the other person to be competent, benevolent,
and having integrity. Competence is the ability of the trustee to do what the truster needs,
benevolence is the trustee’s caring and motivation to act in the truster’s interests, and integrity is
the trustee’s honesty and promise keeping.

Grandison and Sloman [126] discuss trust from a computer science perspective. They consider
trust to be a composition of many different attributes such as reliability, dependability, honesty,
truthfulness, security, competence, and timeliness. Their definition of trust is as follows:

The firm belief in the competence of an entity to act dependably, securely and reliably
within a specified context (assuming dependability covers reliability and timeliness).

Jøsang et al.’s survey on trust and reputation systems [160] differentiates between two types
of trust: reliability trust, and decision trust. Reliability trust, which is inspired by Gambetta’s
definition, is stated as:

Trust (reliability trust) is the subjective probability by which an individual, A, expects
that another individual, B, performs a given action on which its welfare depends.
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This definition stresses on the dependence on a trustee, and the reliability (probability) of the
trustee. However, Jøsang et al. concur with Falcone and Castelfranchi [108], and McKnight and
Chervany [206] in recognizing that having high reliability trust in a person is not necessarily enough
to decide to enter into a situation of dependence on that person. For example, if the stakes are
too high, then even a small probability of failure may lead an individual to decide to not depend
on a potential trustee. Thus, trust could be viewed as the decision to depend or not depend on
another entity. Jøsang et al. summarize decision trust as:

Trust (decision trust) is the extent to which one party is willing to depend on something
or somebody in a given situation with a feeling of relative security, even though negative
consequences are possible.

2.3 Privacy

In this work, we are mainly interested in protocols where a number of nodes wish to collaboratively
compute some function on inputs that they provide. This scenario gives a general description of
many protocols in distributed systems. For example, in an election protocol, individual voters
submit votes as their inputs and seek to compute a function that produces the winner of the
election as its output.

2.3.1 Privacy-Preserving Protocols

A protocol can be said to be privacy-preserving if the participating nodes do not learn any infor-
mation from the execution of the protocol other than the output itself and what can be inferred
from the output. One of the main goals of privacy preservation in protocols is to protect the
confidentiality of the sensitive information of participating nodes. In the example of an election
protocol given above, the protocol could be considered as privacy-preserving if its execution does
not reveal confidential information such as the individual votes of the nodes.

In addition to not revealing unnecessary information, we expect a privacy-preserving protocol
to be overall secure. The security of a protocol goes beyond protecting confidentiality. Secure
Multi-Party Computation (SMPC) is an area of cryptography that studies the security of privacy-
preserving protocols. In SMPC, we assume that the protocol operates under a given adversarial
model where a malicious entity has corrupted a set of the participating nodes (or parties) and
controls them in order to learn private information or even to prevent correct execution of the
protocol. We summarize below a set of properties that a secure protocol must achieve as discussed
by Lindell and Pinkas [190]. However, we note that the list of properties does not constitute a
complete definition of security. We will look at a more precise formulation of security later in this
section with the discussion of the ideal/real simulation paradigm.

� Privacy. As discussed earlier, the protocol should not divulge information about the inputs
of the participating parties other than what can be derived from the output itself. We take
the example of an auction protocol where the execution of the protocol is expected to disclose
the bid of the the highest bidder. In this case, it is straightforward to derive that the non-
winning bids are lower than the winning one. The disclosure of this information is inherent
in the protocol, however, in order to be considered as privacy-preserving, the protocol should
not reveal any further information.

� Correctness. The protocol should guarantee that the output computed is correct and that
each participating party receives that correct output. In the example of the auction protocol,
this property implies that only the party who has submitted the legitimate highest bid can
be declared the winner. No other party with a lower bid is able to cheat and become the
winner.

� Independence of inputs. A corrupted party is unable to choose an input such that it is
derived from the inputs of honest parties. In the example above, the bids in the auction
are supposed to be secret and independent of each other. Deriving a bid that is higher than
others gives the malicious party unfair advantage. We note that the property of privacy
does not guarantee the property of independence of inputs. For example, it is possible in
some homomorphic cryptosystems to derive an encryption of x+ 1 given an encryption of x
without learning the value of x.
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� Guaranteed output delivery. The protocol should guarantee that the adversary will not
be able to prevent the computation of the output of the protocol. The adversary should not
be able to carry out a denial of service attack in order to disrupt the complete execution of
the protocol.

� Fairness. This property implies that the corrupted parties should receive the outputs of the
protocol if and only if the honest parties receive their outputs as well. Guaranteeing this
property is critical in some scenarios. For example, in the case of a contract signing protocol,
both participating parties must receive the signed contract.

The above list of properties are the general requirements for a secure protocol. However, the
security of a privacy-preserving protocol needs to be defined in a more precise manner. Listing a
set of properties is not adequate for a complete definition of security because it is possible to miss
some properties and unforeseen attacks in this approach. Therefore, the approach used in SMPC
is to define the security of a protocol in a practical or real model in relation to a similar fully secure
protocol that exists in a theoretical or ideal model. This formulation of security of protocols is
termed as the ideal/real simulation paradigm. We give below a brief informal description of this
formulation of security as discussed by several authors [70, 121, 190, 295] in this area as well as in
our prior work [133].

Intuitively, a multi-party protocol in the ideal model is a protocol that comprises of a Trusted
Third Party (TTP) as a participant. The TTP receives all inputs in the protocol and then locally
computes the output. On the other hand, a multi-party protocol in the real model is a protocol
that does not rely on a TTP and computes the output in a distributed manner.

The privacy preservation property of a real protocol R under a given adversarial model is stated
as follows: An ideal protocol I is first defined which has the same functionality as the protocol R.
This means that the ideal protocol has the same parameters (participants, inputs, outputs, etc.)
as the protocol R, with the exception of a TTP as an additional participant. In the ideal protocol,
the TTP receives the private inputs of the participants, computes the output, and sends it to the
recipients. It is assumed that the privacy of the participants is preserved since the TTP is honest
and fully trusted. In an ideal protocol the adversary cannot obtain any more information about
the private input of a participant other than what it can learn from the information that it has
beforehand and the output of the protocol that it receives. The real protocol, which cannot consider
a TTP as a participant, is said to preserve privacy if it can emulate the ideal protocol. Emulating
the ideal protocol essentially means that the adversary, cannot obtain any more information about
the private input of an agent than it can learn in the ideal protocol.

There is a very limited number of actions that are available to the participating parties in
the ideal model. The honest as well as the corrupted parties can only send their inputs to the
TTP and then receive the outputs. The corrupted parties have no interaction with the honest
parties therefore they are unable to obtain any information directly from them. Moreover, the
TTP performs all the computations locally without outside interaction and is considered to do so
in a fully trusted and incorruptible manner. Therefore, this setup does not allow the adversary
to collect any information other than the output. The only manipulation that the adversary can
perform is to alter the inputs of the corrupted parties. However, the TTP still computes the correct
output considering the submitted inputs, which is what is expected from a secure protocol.

In the corresponding protocol in the real model, whose security is to be analyzed, the parties
compute the same function without the assistance of a trusted and incorruptible third party.
The participating parties that include the honest and corrupted nodes must interact and share
some intermediate information with each other. This practical setup creates opportunities for the
adversary to derive inferences as well as for disruptions to the protocol. This protocol is said to be
secure if it can be shown that the adversary cannot achieve more success than it can in the ideal
model. More specifically, the outcome of a real protocol execution is compared to the outcome of
the execution of the corresponding ideal protocol in order to analyze its security. The protocol is
determined to be secure if for any adversary that successfully attacks the real protocol, there also
exists an adversary in the ideal protocol such that the execution of both protocols results in the
same distributions of the input and output values of all participants (honest as well as corrupted).
This implies that the adversaries in the ideal model are able to simulate the executions of the
corresponding protocol in the real model.

2.3.2 Cryptographic Building-Blocks for Privacy-Preserving Protocols

There exist a number of useful cryptographic building blocks that can be used for constructing
privacy-preserving protocols. These include homomorphic cryptosystems, zero-knowledge proofs,
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verifiable secret sharing, blind signatures, ring signatures, Trusted Execution Environments (TEEs),
etc. among many others. We give below an overview of homomorphic cryptosystems and zero-
knowledge proofs, which are some of the building blocks that we use in our systems.

Homomorphic Cryptosystems

Homomorphic cryptosystems are useful for privacy-preserving protocols as they allow operations
on multiple values in their encrypted form. The operations can be carried out while obfuscating
individual values.

Let Eu(.) denote an encryption function with the public key PKu of user u in an asymmetric
cryptosystem C. The cryptosystem C is said to be additive homomorphic if we can compute Eu(x+
y), given only Eu(x), Eu(y), and PKu. In other words, a cryptosystem is additive homomorphic
if we can compute the encryption of the sum of two plaintexts, given only their ciphertexts and
the encrypting public key.

The Paillier cryptosystem [230] is a well-known additive homomorphic cryptosystem. Simi-
larly, a multiplicative homomorphic cryptosystem such as the ElGamal Cryptosystem [107] allows
computation of the encryption of the product of two plaintexts from their ciphertexts and the en-
crypting public key. The Paillier and ElGamal cryptosystems are classified as partial homomorphic
cryptosystems as they only allow a single specific operation.

More recent homomorphic cryptosystems such as CKKS (Cheon, Kim, Kim and Song) [77] and
GSW (Gentry, Sahai, and Waters) [117] are fully homomorphic. This means that a cryptosystem
allows multiple types of operations, for example addition as well as multiplication.

Zero-Knowledge Proofs

A zero-knowledge proof [122] is an interactive proof that allows a prover to convince a verifier that
a statement is true without revealing any information other than the fact that the statement is
valid. Zero-knowledge proofs are helpful in building privacy-preserving protocols as they enable a
node to demonstrate that an input or the result of an intermediate computation is correctly formed
while keeping its value private.

As an example, consider a prover who knows an RSA modulus n and its two large prime factors
p and q. A verifier knows only n. Factoring n is considered intractable therefore the verifier cannot
learn p and q. An interactive proof would be zero-knowledge if it allows the prover to convince the
verifier that he knows the factors of n without revealing any information about p and q.

A standard interactive zero-knowledge proof comprises of three moves, that is, three messages
exchanged between the prover and the verifier. In the first move, the prover sends a cryptographic
commitment to the verifier. In the second move, the verifier sends a random challenge to the prover
to test the commitment. The third move is the prover’s response to the random challenge of the
verifier.

An interactive zero-knowledge proof can be converted to a non-interactive zero-knowledge proof
using the Fiat-Shamir heuristic [110]. A non-interactive zero-knowledge proof comprises of only one
move, that is, one message sent by the prover to the verifier. An interactive zero-knowledge proof
requires three moves because the verifier must provide a random challenge to the prover. In the
non-interactive version, this random challenge is replaced with a hash of the prover’s commitment
that the prover can generate itself. The prover generates the commitment, the challenge as the
hash of the commitment, and the response to the challenge. It then sends everything in one move
to the verifier. In turn, the verifier independently computes the hash and verifies the proof.

zk-SNARK (zero-knowledge Succinct Non-interactive ARgument of Knowledge) [53] and zk-
STARK (zero-knowledge Scalable Transparent ARgument of Knowledge) [46] are two popular types
of non-interactive zero-knowledge proof systems that are currently in use. zk-SNARK systems
have the advantage that they are relatively efficient in terms of the proof size as well as proof
and verification times. Proof size is particularly important for decentralized blockchain-based
systems, where storing information on the blockchain can be costly. However, zk-SNARK systems
require a trusted setup, which means that when the keys are initially generated for the system,
the participants need to be trusted to perform certain operations correctly. Otherwise, the system
can lead to false proofs and verifications. zk-STARK systems avoid the requirement of trusted
setup and are thus well-suited for systems where trust is deficient. On the other hand, zk-STARK
systems are less efficient in terms of proof size and verification times [36], therefore their use can
incur higher costs.
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Part II

Privacy-Preserving Reputation
Systems
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Chapter 3

A Survey of Decentralized
Privacy-Preserving Reputation
Systems

The purpose of a reputation system is to hold the users of a distributed application accountable
for their behavior. The reputation of a user is computed as an aggregate of the feedback pro-
vided by fellow users in the system. Truthful feedback is clearly a prerequisite for computing a
reputation score that accurately represents the behavior of a user. However, it has been observed
that users can hesitate in providing truthful feedback because, for example, of fear of retaliation.
Privacy-preserving reputation systems enable users to provide feedback in a private and thus unin-
hibited manner. In this survey, we propose analysis frameworks for privacy-preserving reputation
systems. We use these analysis frameworks to review and compare the existing approaches. Em-
phasis is placed on blockchain-based systems as they are a recent significant development in the
area. Blockchain-based privacy-preserving reputation systems have properties, such as trustless-
ness, transparency, and immutability, which prior systems do not have. Our analysis provides
several insights and directions for future research. These include leveraging blockchain to its full
potential in order to develop truly trustless systems, to achieve some important security proper-
ties, and to include defenses against common attacks that have so far not been addressed by most
current systems.

This chapter is an adapted version of the article: “Privacy Preserving Reputation Systems
based on Blockchain and other Cryptographic Building Blocks: A Survey.” O. Hasan, L. Brunie,
E. Bertino. ACM Computing Surveys. 2023. Vol. 55, no. 2, article 32, pp 1-37. Published online:
January 2022.

3.1 Introduction

Reputation systems are an essential tool for determining the trustworthiness of users in environ-
ments where there is no pre-established trust in users. Reputation of a target user is computed by
aggregating the subjective feedback provided by other users, referred to as source users. These are
users who have previously interacted with the target user and have consequently gained personal
experience regarding her actions in the context of the given application. It is expected that ac-
tions perceived as legitimate will lead to high positive feedback and thus to an aggregated positive
reputation score. Inversely, a target user acting dishonestly will elicit negative feedback resulting
in a low aggregated reputation score. Any users concerned about the legitimacy of future actions
of a potential transacting partner can consider the computed reputation score of this partner as
an indication of her trustworthiness. Reputation systems thus assist in holding users accountable
for their actions despite the initial absence of trust in the users.

E-commerce marketplaces and sharing economy based platforms are some popular applications
where reputation systems are employed. Sites and mobile applications such as ebay.com, airbnb.
com, and uber.com are significant examples. Additionally, systems by Liu et al. [192], Azad et
al. [39], Bag et al. [42], and Schaub et al. [255] are some of the academic approaches for managing
reputation in e-commerce and retail environments. Let’s consider Airbnb (airbnb.com), which is
an online marketplace for vacation rentals. The platform enables independent hosts to offer their
private lodgings to guests for short stays. The reputation system of the platform plays a critical
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role since the guests seeking satisfactory accommodations can only rely on the reputation of the
hosts and their offerings stemming from reviews by previous guests. Similarly, hosts concerned
about lending out their lodgings to well-behaving guests also depend on the reputation system.

Another application that relies on reputation systems is mobile participatory sensing, where
users sense various environmental conditions with their mobile devices and submit sensing data
to a central entity for analysis. Reputation is used to discourage users from providing corrupted
information. Systems by Jo and Choi [159], Ma et al. [200], and Mousa et al. [218] are examples of
reputation systems that focus on this application area. A related application area is participatory
sensing in Vehicular Adhoc Networks (VANETs), where vehicles collect and upload information
about road conditions. Reputation systems by Zhao et al. [296], Lu et al. [198], and Chen et al. [76]
aim to hold the vehicles and their owners accountable for submitting false data. One more notable
application area, among several others, that relies on reputation systems is the Internet of Things
(IoT). Trusting corrupted devices in the IoT can undermine network security [40]. Recent systems
by Azad et al. [38, 40] are instances of reputation systems for this application domain.

It has been documented that users may hesitate to provide truthful feedback [213, 247]. Reasons
range from fear of retaliation to negative reviews [213, 247] to concerns about revealing sensitive
personal information [215]. Returning to the example of Airbnb, we note that its reputation system
escrows the feedback until both parties have submitted their opinion. The reason is to prevent
tit for tat retribution by the hosts and the guests. However, the truthfulness and the impartiality
of user feedback can still be impacted by the personal nature of the reviews [145]. Hiding the
identities of the users has been recommended as a solution [145]. Moreover, it has been observed
that the lack of anonymity on Airbnb “causes people to feel pressure to post reviews that lean
positive” [221].

Privacy-preserving reputation systems are designed to allay the fears of feedback providers by
protecting the confidentiality of their individual feedback. The implication is that providing feed-
back in a private manner encourages the raters to submit honest and accurate feedback. Another
approach that privacy-preserving reputation systems take to motivate users to submit their truth-
ful feedback is guaranteeing their anonymity. Operating in an anonymous manner in the system
means that a third party is unable to attribute sensitive personal information to the user or to
profile the user in the long term. Privacy-preserving reputation systems are therefore an important
category of reputation systems for scenarios where user privacy or anonymity needs to be upheld.

The research area of privacy-preserving reputation systems is fairly mature. All academic
reputation systems cited above are in fact privacy-preserving. Reputation systems that support
user privacy were first proposed in the mid 2000s. Some notable original works include those by
Pavlov et al. [235], Kinateder and Pearson [173], and Dingledine et al. [99], among others. However,
privacy-preserving reputation systems continue to evolve to cater for emerging application areas,
such as Social IoT (Azad et al. [40]), Industrial IoT-enabled retail marketing (Liu et al. [192]),
and Intercloud (Dou et al. [103]). Moreover, the advent of the blockchain technology has recently
fueled further research in this area. The use of blockchain as a building block has resulted in
privacy-preserving reputation systems that have important novel properties such as trustlessness,
transparency, and immutability. For example, Schaub et al.’s [255] system does not require users
to trust third parties or any fellow users in order to guarantee their privacy and thus provides
trustlessness. This property was absent from prior systems. Another important reason for recent
research in the area of privacy-preserving reputation systems is that a number of issues still remain
open. As we discuss in Section 3.8, these issues include lack of important security properties and
defenses against common attacks.

We believe that a comprehensive survey is needed to offer a uniform perspective to the rich
literature in this area. Moreover, we believe that our survey is timely because of the recent emer-
gence of systems based on blockchain as well as novel systems for emerging application domains.
In this survey, we analyze 44 privacy-preserving reputation systems proposed between the years
2003 and 2021 inclusive, while placing emphasis on recent systems based on blockchain.

Reputation systems that support user privacy have always mostly relied on cryptographic build-
ing blocks and their combinations to provide strong security guarantees. These building blocks
include Secure Multi-Party Computation (SMPC), secret sharing, homomorphic encryption, zero-
knowledge proofs, and cryptographic signatures. Blockchain is a recent addition to this arsenal
of cryptographic building blocks utilized by privacy-preserving reputation systems. We analyze
blockchain-based systems as well as systems based on other building blocks and security mecha-
nisms in this survey.
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3.1.1 Contributions

This survey makes the following contributions:

� Identification of the various dimensions of privacy-preserving reputation systems. An analysis
framework that allows for the decomposition and comparison of privacy-preserving reputation
systems in a normalized manner.

� Identification of the security requirements of privacy-preserving reputation systems that cut
across multiple types of these systems.

� Definition of broad categories of privacy-preserving reputation systems proposed in the lit-
erature according to their security mechanisms.

� Fine-grained analysis and comparison of 44 privacy-preserving reputation systems using the
proposed analysis frameworks.

� Detailed review of several significant and representative privacy-preserving reputation sys-
tems proposed in the literature.

� Discussion of the analysis results, and based on these results, insights and directions for
future work in this research area.

3.1.2 Organization

The rest of the chapter is organized as follows. Section 3.2 proposes an analysis framework that
identifies the dimensions and the requirements of privacy-preserving reputation systems. Sec-
tion 3.3 defines two broad categories of privacy-preserving reputation systems with respect to
their security objectives. Section 3.4 develops an analysis framework encompassing the various
non-privacy related dimensions of reputation systems. Section 3.5 defines broad categories of
the privacy-preserving reputation systems proposed in the literature according to their security
mechanisms. Section 3.6 presents a fine-grained analysis of privacy-preserving reputation systems
proposed in the literature according to the frameworks established in Sections 3.2 through 3.4.
Section 3.7 describes in greater detail some of the blockchain-based systems. Section 3.8 discusses
the analysis results and relevant insights. Section 3.9 concludes the survey.

3.2 An Analysis Framework for Privacy-Preserving Repu-
tation Systems

In this section, we introduce our analysis framework that identifies the common dimensions and
requirements of privacy-preserving reputation systems. The dimensions of the analysis framework
regarding security objectives are described in Section 3.3. We conduct a fine-grained analysis
and comparison of privacy-preserving reputation systems proposed in the literature using this
framework in Section 3.6.

Some fundamental concepts in reputation systems are as follows:

Source User (Rater). A user u is said to be a source user or rater of a user t if u has feedback
about t in a given context.

Target User (Ratee). When a source user assigns feedback to a user t, or a user q initiates a
query to determine the reputation of user t, the user t is referred to as the target user or the
ratee.

Querying User (Querier, Inquirer). When a user q initiates a query to determine the reputa-
tion of a user t, the user q is referred to as the querying user, the querier, or the inquirer.

Reputation. The reputation of a target user is any function that aggregates the feedback of its
source users. In Section 3.4, we list some possible realizations of the aggregation function.

Our analysis framework is graphically represented in Figure 3.1.
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Figure 3.1: Analysis framework for privacy-preserving reputation systems.

3.2.1 Adversary

The goal of a reputation system is to compute the reputation from the inputs of the participants. All
participants of the protocol are expected to pursue this and only this goal. An honest participant
is one who conforms to this expectation. However, there may exist dishonest participants who have
ulterior motives. Those motives may include learning the inputs of other participants, tampering
with the output, disrupting the protocol, etc.

Adversarial Model

We list below two standard adversarial models [121] that characterize the behavior of dishonest
users. A privacy-preserving reputation system is considered secure under one of these models if it
can show correctness and meet its privacy requirements under the given model.

Semi-Honest. In the semi-honest model, the users do not deviate from the specified protocol.
In other words, they always execute the protocol according to the specifications. However,
the adversary passively attempts to learn the inputs of honest users by using intermediate
information received during the protocol execution and any other information that it can
gain through legitimate means.

Malicious. Malicious users are not bound to conform to the protocol. Users under a malicious
model may deviate from the protocol as and when they deem necessary. They actively
attempt to achieve their objectives. A malicious adversary may have either or both of the
following objectives: 1) learn the inputs of honest users, and 2) disrupt the protocol for
honest users. The reasons for disrupting the protocol may range from gaining illegitimate
advantage over honest users to completely denying the service of the protocol to honest users.

Collusion

A dishonest user may act alone or multiple dishonest users may act in agreement to achieve
their ulterior motives. The collaboration of multiple dishonest users is referred to as collusion.
Privacy-preserving reputation systems either consider that collusion can take place between users
or consider that collusion does not take place.

Collusion can be bounded or unbounded. Bounded collusion implies that the number of dis-
honest colluding participants is limited, for example, by 1

2 or 1
3 of all n participants. Unbounded

collusion places no limit on the number of dishonest participants who can collude with each other,
thus n− 1 of the participants can be dishonest and collude, except for the one honest participant
whose privacy needs to be preserved.

3.2.2 Reputation Binding

A privacy-preserving reputation system can be either pseudonym-bound or identity-bound.
In a pseudonym-bound system, the reputation of the ratee is associated with her pseudonym.

If she changes or creates a new pseudonym, then she looses her reputation. The use of pseudonyms
has the drawback that the reputation is not transferable between a ratee’s multiple pseudonyms.
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An additional major drawback is that a dishonest ratee can drop a pseudonym with bad reputation
and re-enter the system with a new pseudonym and a fresh reputation. This common attack against
pseudonym-bound systems is known as whitewashing.

On the other hand, in an identity-bound system, the reputation of a ratee is bound to her
real identity. Even if she changes pseudonyms, she maintains her reputation. This is often made
possible by verifying the true identity of a ratee before issuing a new pseudonym.

3.2.3 Trust Model

The security and privacy guarantees that users receive in a privacy-preserving reputation system
often require that they trust certain entities, such as a central authority, or some fellow users in
the system. The trust implies a belief by the trusting user that the trusted entity or the trusted
fellow users will behave in an expected manner in order to ensure their security and privacy. In
Section 2.2.1, we identified four different types of trust models that privacy-preserving reputation
systems are based on: 1) Trusted Third Party (TTP), 2) Trust on arbitrary k fellow users, 3) Trust
on chosen k fellow users, and 4) Trustless.

3.2.4 Building Blocks: Blockchain

In order to achieve their security objectives, privacy-preserving reputation systems utilize various
building blocks, which are generally cryptographic in nature. These building blocks include secure
multi-party computation, homomorphic cryptosystems, zero-knowledge proofs, blockchain, etc. In
Section 2.1.4, we presented an overview of blockchains. The description of the more traditional
cryptographic building blocks can be found in cryptography texts as well as in the extended version
of this survey [135] released as a research report.

3.3 Security Objectives of Privacy-Preserving Reputation
Systems

We have identified two broad categories of privacy-preserving reputation systems with respect to
their security objectives. The goal of the systems in the first category is to preserve the anonymity
of the users. The systems in the second category do not aim to hide the identity of the users but
focus on preserving the confidentiality of the feedback that the users provide. The two categories
of privacy-preserving reputation systems are defined as follows:

1. User anonymity-oriented privacy-preserving reputation systems. The true identity
of the users is hidden in these systems. The feedback providers thus remain anonymous. A
user is represented in the system by one or more pseudonyms which are unlinkable to her
real identity. This setup allows the user to anonymously carry out transactions with others
and submit feedback. The submitted feedback does not need to be confidential since the
anonymity of the users prevents the feedback from being linked to them.

2. Feedback confidentiality-oriented privacy-preserving reputation systems. These
systems do not attempt to hide the identity of the users beyond assigning each user a single
pseudonym. Moreover, these systems do not conceal the act of a user assigning feedback
to another user. However, the value of the submitted feedback and any other related infor-
mation are considered private. This type of systems is necessary since complete anonymity
is not always possible due to the nature of real world transactions. For example, even if
anonymity is preserved online on an e-commerce site, the exchange of physical items sold
and bought through the site would reveal the real identities of the participants. Preserving
the confidentiality of the feedback is a practical alternative to enable users to submit truthful
feedback without fear of retaliation.

The security objectives of a privacy-preserving reputation system can be further categorized
as those fulfilling privacy and those fulfilling integrity or correctness. The privacy objectives are
related to hiding information about users, for example, preserving the anonymity of the rater
and the ratee. On the other hand, the integrity objectives aim at maintaining the correctness of
the functions of the reputation system while preserving the privacy of the users. An example of
integrity objectives is preventing a malicious user from manipulating the reputation aggregation
function to forge an unmerited good reputation.
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Figure 3.2 graphically represents the classification of the security objectives of privacy-preserving
reputation systems. In Sections 3.3.1 and 3.3.2, we describe specific security objectives of user
anonymity and feedback confidentiality-oriented privacy-preserving reputation systems, respec-
tively. A given reputation system may pursue a few or more of these objectives depending on the
stringency of its security requirements.
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Figure 3.2: Security objectives of privacy-preserving reputation systems.

3.3.1 User Anonymity-Oriented Privacy-Preserving Reputation Systems

Privacy Objectives

Multiple Pseudonyms. A user is able to assume multiple pseudonyms in the system. As noted
by Anwar and Greer [33, 34], the variation in the pseudonyms of a user may be on a per con-
text or a per transaction basis. In the first case, a user may adopt a different pseudonym for
each context in the system. For example, a tutor could use different pseudonyms for different
subjects in an e-learning system. Alternatively, a user may choose a different pseudonym for
each transaction in the system.

User-Pseudonym Unlinkability. User-pseudonym unlinkability implies that the true identity
of a user is not linkable to any pseudonym that she uses in the system. Androulaki et al. [32]
characterize this requirement as follows: Given a pseudonym P that does not belong to
a corrupted party, the adversary can learn which peer owns P no better than guessing at
random among all non-corrupted peers that appear consistent with P .

Pseudonym-Pseudonym Unlinkability. Pseudonym-pseudonym unlinkability implies that two
different pseudonyms that belong to the same user cannot be linked to each other. The ad-
versary is unable to tell whether two given pseudonyms belong to the same user. Androulaki
et al. [32] specify this property as follows: Given two pseudonyms P1, P2 that do not belong
to corrupted parties, the adversary has no advantage in telling whether P1, P2 belong to
the same peer or not. This requirement should hold as long as there are at least two non-
corrupted peers who appear consistent with both P1 and P2 (because if there is only one
such uncorrupted peer, clearly both pseudonyms belong to the same one).

Rater Anonymity. A user is able to rate another user without her true identity being revealed.
The purpose of rating anonymously is to prevent the adversary from linking the rater to her
interaction with the ratee and the rating that she submitted. Schiffner et al. [257] specify this
property as follows: A pseudonym P1 that interacted with a ratee R should not be linkable
to the pseudonym P2 that rated R.

Ratee Anonymity. A user is able to receive a rating without her real identity being disclosed.
A ratee may not wish to be associated with her past transactions and ratings since they
could influence the ratings for her future transactions. According to Schiffner et al. [257],
this property implies that a ratee R can use a different pseudonym for each transaction.
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Inquirer Anonymity. A user is able to inquire about the reputation of another user. However,
others are not able to learn whose reputation she is querying or even the fact that she is
inquiring about another user’s reputation. Users wish to query the reputation of other users
anonymously in order to prevent the adversary from compiling a profile of their interactions
and interests.

Reputation Transfer and Aggregation. A ratee is able to transfer reputation among mul-
tiple pseudonyms that she owns without letting the adversary infer associations between
these pseudonyms. Consequently, a ratee is able to aggregate the reputation of her multiple
pseudonyms into the reputation of one pseudonym.

Integrity Objectives

Reputation Unforgeability. A ratee is unable to show reputation higher than the cumulative
reputation of her pseudonyms. A ratee is also unable to borrow good reputation from another
ratee.

Distinctness. It is possible to prove that the reputation of a ratee is an aggregate of votes or
feedback from distinct raters while simultaneously hiding the identities of those raters. The
advantage of this property is that one or a few dishonest raters are not able to submit multiple
votes or feedback (ballot stuffing) for artificially increasing or decreasing the reputation of
the ratee.

Accountability. If and only if a user commits a predefined adversarial act, such as ballot stuff-
ing, then her pseudonym becomes linkable to her real identity. This property ensures that
anonymous users are still accountable for adversarial actions.

The properties of authorizability and verifiability are discussed in Section 3.3.3.

3.3.2 Feedback Confidentiality-Oriented Privacy-Preserving Reputation
Systems

Privacy Objectives

No Inference from Intermediate Information. This property requires that a rating assigned
by a rater to a ratee is never revealed to any other party including the ratee. The system
must protect the confidentiality of the feedback such that the feedback is neither divulged
explicitly nor inferred from any intermediate information gained by the adversary during a
reputation query. The system may define the confidentiality of the feedback as deterministic
or probabilistic. In the first case, the adversary is unable to learn any information about
the feedback. However, in the latter case of probabilistic confidentiality, the amount of
information leakage depends on certain variables, such as the number of raters, the reputation
score, etc.

No Inference from Public Information. The reputation score of any ratee is by definition
public and any other user in the system is authorized to learn this score. The issue is that a
dishonest user may use this public information to derive the private feedback of honest raters.
For example, in a basic additive reputation system, the adversary simply needs to observe the
reputation score before and after the latest rater submits her feedback to learn its value. The
requirement of confidentiality of feedback, with no inference from public information, implies
that the adversary is unable to learn information about the feedback even from publicly
available information.

Privacy of Relationships. A user may have relationships with multiple users in the system.
These other users may include fellow users who have rated the same ratees. The relationships
between the users could be in various contexts, for example, the context of trust in preserving
each others privacy. This requirement implies that information about the relationships of a
rater is not revealed during the course of a reputation query. This information includes the
amount of trust that the rater has in the fellow users.
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Integrity Objectives

No Out of Range Feedback. A dishonest rater is unable to submit out of range feedback. A
dishonest rater may take advantage of the fact that the feedback is confidential and submit
out of range feedback in order to mount an attack such as bad mouthing or ballot stuffing.
A system enforcing this property does not permit out of range feedback even though the
feedback is hidden.

No Incorrect Computations. A dishonest user is unable to carry out incorrect computations.
A reputation query may require users to perform certain computations, for example, the
summation of some values. This property requires that a dishonest user is unable to submit
erroneous results for these computations.

3.3.3 Integrity Objectives Common to Both Types of Privacy-Preserving
Reputation Systems

Authorizability of Ratings. The requirement of authorizability of ratings implies that only the
users who have had a transaction with the ratee are allowed to rate her. This property
prevents users who have not transacted with a ratee from assigning her feedback and thus
possibly reduces the impact of attacks such as bad mouthing and self promotion.

Verifiability by Ratee. The requirement of verifiability by ratee, as identified by Kerschbaum [169],
suggests that a ratee R should be able to identify all published feedback linked to her iden-
tity and verify that they are related to a recorded transaction and the correct transaction
partners. Moreover, a ratee R should be able to identify all published feedback linked to her
identity and verify that the inquirer has computed its reputation score according to them.

3.4 An Analysis Framework for Reputation Systems

In this section, we develop an analysis framework that identifies the various non-privacy related
dimensions of reputation systems. Since privacy-preserving reputation systems are fundamentally
reputation systems, we need to establish a uniform framework to analyze and compare their non-
privacy features as well. However, we do not describe these dimensions in detail in this chapter
since they have been covered extensively by prior works (such as the surveys by Braga et al. [60],
Hendrikx et al. [144] and Hoffman et al. [146]). Additionally, the details of these properties can be
found in the extended version of this survey [135] released as a research report.
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Figure 3.3: Analysis framework for reputation systems.

The architecture of a reputation system is one of the key factors in determining how the
following activities are conducted: 1) Feedback collection; 2) Feedback aggregation (reputation
computation); and 3) Reputation dissemination. The architecture of a reputation system can be
centralized, decentralized, or hybrid.

The properties of feedback include the set or range that the feedback belongs to, for exam-
ple, {−1, 0, 1}, [0, 1]. Additionally, the granularity of the feedback of a rater reflects either the
experience with the ratee for a single given transaction or the cumulative experience over multiple
transactions.

The properties of reputation include the set or range of its values, for example, R, [0, 1]. Some
other properties of reputation are liveliness, visibility, durability, and monotonicity. As noted
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by Schiffner et al. [257], reputation liveliness implies that a reputation system does not offer
users the possibility to reach a final state of reputation in which bad behavior no longer damages
their reputation. For example, for a reputation score in the set R, there are no minimum and
maximum limits, whereas, for a reputation score in the interval [0, 1], the reputation can reach
the mininum value of 0 or the maximum value of 1. The visibility of a reputation score may be
global or local. Global visibility implies that all nodes in the system view the same reputation
score of a certain entity. Whereas with local visibility, the reputation score available to a subset
of the nodes may be different than elsewhere in the system. Reputation durability refers to the
transience of a reputation score. Once a reputation score is computed, it may be stored permanently
until the reputation changes or may remain transient and require re-computation for every query.
Monotonic reputation implies that the reputation score increments in only one direction. For
example, consider a reputation system in which a ratee can receive integer feedback between 1 and
5 for each transaction, and reputation is considered as the sum of feedback. The reputation in
such a system cannot be decremented.

There are a number of models for aggregating feedback to obtain reputation scores. Some
common models include sum, mean, flow network, Markov chain, and Bayesian ones. A compre-
hensive survey of feedback aggregation models (also referred to as reputation computation engines)
is provided by Jøsang et al. [160].

Reputation systems can be classified by the attacks that they address and their success in de-
fending against them. Some of the attacks that reputation systems have to contend with include
Sybil attack (a single user owning and exploiting multiple identities for malicious purposes), self-
promotion or ballot stuffing (improving a ratee’s reputation by providing false positive feedback),
slandering or bad-mouthing (damaging a ratee’s reputation by providing false negative feedback),
whitewashing (leaving the system and then re-entering with a fresh reputation), oscillation (cul-
tivating good reputation with the intention to exploit it for malicious purposes), random ratings
(submitting randomly generated feedback in order to demonstrate active participation), and free
riding (benefiting from the reputation system without providing any contribution). Surveys by
Hoffman et al. [146] and Mármol and Pérez [204] describe some of these attacks in detail.

The operations of a reputation system, which include feedback collection, feedback aggrega-
tion (reputation computation), and reputation dissemination, incur various computational costs.
The costs of these operations can be measured as follows: 1) number of messages exchanged; 2)
bandwidth consumed; 3) computational resources consumed; and 4) storage required.

3.5 Categorization of Privacy-Preserving Reputation Sys-
tems according to their Security Mechanisms

In this section, we identify broad categories of the privacy-preserving reputation systems proposed
in the literature. These categories are based on the general mechanisms that these systems rely on
in order to guarantee privacy and other critical security properties, for example, authorizability,
verifiability, etc.

We also briefly discuss the contributions of the systems that belong to each of these categories.
Each system is further analyzed in depth and compared in Section 3.6. Five of the listed blockchain-
based systems are discussed in detail in Section 3.7.

Note that these categories are not mutually exclusive and a system may belong to multiple of
these categories. For example, the system by Schiedermeier et al. [256] can belong to the category
of blockchain-based systems as well as SMPC-based systems. However, we place a system under
a single category based on its main novel idea. For example, even though Schiedermeier et al.’s
work uses SMPC, the novel idea and the main contribution is rather the use of a blockchain-
based public ledger as the sole communication medium between the parties of the SMPC protocol.
The blockchain-based protocol provides transparency and verifiability properties that are usually
missing from SMPC-only systems. The system by Schiedermeier et al. is therefore categorized as
a blockchain-based system.

Article Selection Methodology: In this survey, we have included the systems that we are aware
of in this area of research as well as those discovered using the following approach. We searched
for articles on Google Scholar published during the period of 2000 to July 2021. The search
phrases included the keyword ‘reputation’ along with one of the keywords ‘privacy’, ‘anonymous’,
and ‘anonymity’. For each relevant article found, we studied its list of references to find other
potential systems. Moreover, we also looked at the article’s “Cited by . . . ” list on Google Scholar
to discover later relevant papers that cite the given article. All articles that present privacy-
preserving reputation systems that we discovered have been included in this survey. We have
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excluded some articles that present systems similar to those that have been included, for example,
articles by the same authors that describe predecessors of their subsequent systems. We have also
excluded short papers (4 pages or less) that do not describe the proposed systems in sufficient
detail.

3.5.1 Blockchain-based Systems

These systems rely on a blockchain or smart contracts as an integral building block for achieving
their security objectives. This is one of two categories (the other one being SMPC-based systems,
described in the next subsection) that constitute mainly of decentralized systems. Moreover, this
is the only category that comprises of systems that can guarantee trustlessness.

Schaub et al. [255] introduced the first blockchain-based trustless privacy-preserving reputation
system. The system does not need to rely on trusted third parties, arbitrary trusted nodes,
or subjective trust relationships in order to guarantee security. Using blinded tokens issued by
service providers, raters anonymously submit feedback, which is recorded on a public immutable
blockchain. Issuing a token requires spending the system’s cryptocurrency, which provides an
incentive to mine and maintain the blockchain and also discourages ballot-stuffing. Bazin et al. [45]
present a system, which in addition to protecting rater privacy, enables retrieval of a self-reported
reputation score directly from the target service provider. The validity of the reputation score is
verifiable and only a constant number of messages need to be exchanged for its retrieval.

Azad et al. [39, 40] propose privacy-preserving reputation systems for online marketplaces and
for the Social Internet of Things environment. Self-enforcing computation is a property of their
latter system, which implies that the computation process is independent of any trusted third
party and it allows verification of the integrity of the scores in an autonomous and public manner.
Bag et al. [42] describe a system for computing personalized global reputation of a target, which
considers only the feedback from a set of trusted participants. This is done without disclosing the
identities of the members of the trusted set and their feedback. The systems by Azad et al. and
Bag et al. rely on a public bulletin board for communication, which according to the authors may
be realized by a blockchain.

Dou et al. [103] propose a distributed trust evaluation protocol with privacy protection for the
Intercloud environment. A distinctive feature of the protocol is that it can continue to function
even if some of the feedback providers go offline. Kang et al. [163] devise a blockchain-based scheme
for secure data sharing among vehicles in Vehicular Edge COmputing and Networks (VECONs).
A reputation system based on a three-weight subjective logic model is employed to manage the
trustworthiness of vehicles in terms of the quality of data shared. The anonymity of the vehicles
is maintained by allowing multiple pseudonyms. Lu et al. [198] present a privacy-preserving trust
model based on blockchain for vehicular adhoc networks. Vehicles can anonymously submit alerts
about traffic conditions and neighboring vehicles can provide feedback about the validity of the
alerts. The anonymous reputation of a vehicle reflects the feedback received regarding its contri-
butions. Owiyo et al. [229] propose a decentralized privacy-preserving reputation system based on
blockchain that is claimed to provide low transaction overheads.

Jo and Choi [159] describe a blockchain-based privacy-preserving reputation framework for
participatory sensing systems. The system includes a smart contract that manages the reputation
of participants based on their sensing data and the corresponding feedback. The smart contract and
the underlying blockchain enable transparency and public auditability of the reputation scores. Liu
et al. [192] present an anonymous reputation system for retail marketing in the Industrial Internet
of Things environment. The system, which also uses smart contracts on a Proof of Stake blockchain
as a building block, is able to provide transparency and public verifiability under the malicious
adversarial model. Schiedermeier et al. [256] describe a protocol for holding referendums in trustless
networks, which can also serve as a reputation protocol. The protocol combines SMPC with a
blockchain as the unique channel for communication between the parties. The protocol ensures
transparency, that is, maintaining a public trace of all operations performed and the information
exchanged among the participants. Moreover, any participant is able to autonomously verify the
correctness of the outcome of the referendum.

Zhao et al. [296] propose a privacy-preserving reputation system that takes advantage of
blockchain technology in the resource-constrained environment of mobile crowdsensing. The global
reputation scores are updated by a smart contract based on the average of all feedback. The system
overcomes the challenge of user dynamics, that is, frequent user turnover, by including a delegation
protocol. Zhang et al. [293] present another privacy-preserving reputation management scheme for
mobile crowdsensing that is based on blockchain. The well-known Eigentrust distributed repu-
tation computing algorithm is adapted in this system such that participant privacy is preserved.
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Dimitriou [96] develops a blockchain-based fully decentralized privacy-preserving reputation sys-
tem. The participants can change pseudonyms as frequently as they wish, yet they can maintain
user-pseudonym and pseudonym-pseudonym unlinkability, while being able to aggregate reputa-
tion among those pseudonyms. The system provides fully trustless operations, except for the user
registration operation that relies on the trustworthiness of an entity called the Registrar, which
may be composed of a single server or a decentralized set of nodes. However, the Registrar is
trusted only for ensuring uniqueness of user identities and for reputation soundness.

3.5.2 SMPC-based Systems

These systems use feedback score as direct evidence from witnesses to compute a reputation score.
Their goal is to obfuscate the feedback score of the witnesses from the querier as well as from
fellow witnesses. These systems use Secure Multi-Party Computation to achieve their goal. The
reputation systems in this category focus primarily on feedback confidentiality as their security
objective. Decentralization is one of the key advantages of SMPC-based systems over systems in
the categories discussed next that are mostly centralized.

Pavlov et al. [235] introduced SMPC-based privacy-preserving reputation systems by proposing
a number of protocols for decentralized additive reputation systems. Two of their protocols are
secure under the semi-honest and the malicious adversarial models, respectively. The protocols
draw their strength from witness selection schemes, which guarantee the inclusion of a certain
number of honest witnesses as participants. Gudes et al. [128] and Gal-Oz et al. [114] present
several schemes that augment their Knots reputation system [115] with privacy-preserving features.
A defining characteristic of the Knots reputation model is the notion of subjective reputation. The
reputation of a target member is computed by each querying member using a different set of
feedback, thus the reputation is subjective for each querying member. Nithyanand and Raman’s
system [225] complements an SMPC mechanism for privacy with a fuzzy technique and an Ordered
Weighted Average (OWA) operator in order to compute local as well as global reputation scores.

Hasan et al. [139] present a system that operates under the more demanding malicious adver-
sarial model and offers the chosen k trust model (discussed in Section 3.2.3) instead of the usual
arbitrary k trust model for privacy preservation. Dimitriou and Michalas [97, 98] describe a decen-
tralized privacy-preserving scheme that is formally shown to be resistant to collusion against up
to n − 1 malicious participants. Dolev et al. [101, 102] propose SMPC-based reputation schemes
that are more efficient than the previous ones in terms of the number of messages exchanged.
Their schemes privately compute reputation scores with a communication overhead of O(n) mes-
sages, where n is the number of participants in the protocol. Clark et al. [83] present a dynamic
privacy-preserving decentralized reputation system. They specifically address the problem of the
dynamicity of the nodes in a network. Nodes may frequently leave along with their feedback,
which then becomes unavailable for reputation computation in a decentralized manner. Clark
et al. propose a privacy-preserving reputation information delegation protocol to counter this
problem. Bakas et al. [43] propose an SMPC-based privacy-preserving decentralized additive repu-
tation system, which is the first one to practically utilize Functional Encryption (FE), an emerging
cryptographic building block that permits selective computations on encrypted data.

3.5.3 Token-based Systems

These systems are a type of privacy-preserving reputation systems in which a cryptographic token
is issued to a pseudonymous user participating in a transaction. The token is implemented using a
blind signature or another scheme. The token is issued either by a central entity (called the bank
in the system by Androulaki et al. [32]) or directly by the ratee to the rater (as in the system
by Kerschbaum [169]). A variation of the following approach is then employed in order to credit
the ratee with a reputation point while preserving the privacy of the token depositing user. The
token is deposited by the user to an account maintained by the central entity using a different
pseudonym or even their real identity. The blinded nature of the token unlinks the user from the
initial pseudonym while assuring the central entity of the legitimacy of the deposit. The number
and the value of the tokens deposited reflect the reputation of the ratee. An advantage of user
anonymity-oriented token-based systems over SMPC-based systems is the ability of users to assume
multiple pseudonyms.

The system by Androulaki et al. [32] addresses the difficulties outlined by Dingledine et al. [99]
for building reputation systems in anonymous user networks. Androulaki et al.’s system achieves:
1) unlinkability between a pseudonym and the identity of its user; 2) no double-awarding or forging
of a token; 3) no false accusations of forgery; and 4) non-transferability of reputation, that is, a
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user cannot borrow reputation from another user. The system by Kerschbaum [169] builds on the
blinded token idea to achieve feedback confidentiality while enforcing the property of verifiability.
Schiffner et al. [257, 258] improve upon Androulaki et al.’s work by introducing systems that
support the properties of liveliness and non-monotonicity.

Zhang et al. [292] propose a reputation system that preserves the privacy of feedback providers
and resists Sybil attacks. The system is based on the Camenisch and Lysyanskaya (CL) signature
scheme. Busom et al. [66] describe a privacy-preserving reputation system based on Chaum-
Pedersen blind signatures that allows users to anonymously submit text feedback about a target
entity. Fellow users can in turn anonymously endorse a text feedback that they find helpful. The
system thus encourages honest feedback. Moreover, the system offers a privileged status for users
who earn sufficient endorsements thus also incentivizing feedback submission.

3.5.4 Proxy-based Systems

These systems aim to maintain privacy through the use of a trusted third party as a proxy between
the raters and the reputation querier. The proxy may forward the anonymized feedback scores
to the querier or the proxy may compute the aggregated reputation and only report that to the
querier. Additionally, the querier and the raters may interact directly. However, in this case, a
rater is generally issued an anonymous identity or an encryption key by the proxy to protect their
privacy. The proxy may be composed of one or several central entities. Usually, the architecture
of these systems comprises of one to three central entities that are considered not to collude with
each other in order to guarantee security. The proxy may be considered partially or fully trusted.

Ries et al. [250] propose an approach for privacy-preserving computation of trust. A key con-
tribution of this approach is that in addition to computing reputation based on encrypted private
feedback, the querier can also evaluate the trustworthiness of the raters. Petrlic et al. [237] propose
a reputation management system that focuses on privacy (anonymity in reputation retrieval, and
anonymity in rating) as well as robustness (authorization, authentication, integrity, and accuracy).
A semi-honest Reputation Provider (RP) entity serves as an intermediary between the raters and
the service providers. The RP manages the reputation of the service providers and helps enforce
some of the above listed security objectives.

Mousa et al. [218] present PrivaSense, a privacy-preserving reputation system for mobile par-
ticipatory sensing applications. The system implements a sequence of registration and authen-
tication phases orchestrated by independent central servers that ensure participants’ anonymity
and improve the system’s resilience against Sybil and replay attacks. Ma et al. [200] propose a
privacy-preserving reputation management system for edge computing enhanced mobile crowd-
sensing. The architecture comprises of a Central Manager (CM), a Reputation Manager (RM),
and a Central Authority (CA). Participants submit sensing data in homomorphic encrypted form.
The encrypted deviation of a participant’s data from the aggregated result is computed and the
RM updates reputation according to the deviation.

3.5.5 Signature-based Systems

Inspired by cryptographic digital signatures and group signature schemes, Benthencourt et al. [49]
propose a new cryptographic framework called signatures of reputation. In a scheme based on this
framework, the verification of the signature of a user reveals her reputation instead of revealing
her identity. This is in contrast to a conventional signature scheme where the verification of the
signature of a user results in the confirmation of the identity of the user associated with the
corresponding public key.

Guo et al. [129] build upon the notion of signatures of reputation to propose a fine-grained
attribute-based privacy-preserving reputation system. The system enables users to rate each other’s
attributes instead of real identities. The signature verification process provides authenticity of
the reputation value of a user for a given attribute. Bethencourt et al.’s system is improved by
the work of Anceaume et al. [31] and Lajoie-Mazenc et al. [178], who implement non-monotonic
signature-based reputation systems. Whereas, Bethencourt et al.’s system only supports monotonic
reputation.

Chen et al. [76] present a privacy and reputation-aware announcement scheme for vehicular
adhoc networks where vehicles can report road conditions. The scheme is based on the Boneh-
Boyen-Shacham (BBS) short group signatures. The scheme overcomes the problem of having to
establish a secure channel for reputation score retrieval in prior systems.
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3.5.6 Transitory Pseudonym-based Systems

Transitory pseudonym-based systems aim to obfuscate a user’s identity by assigning them multiple
short-term pseudonyms. The focus is on how to make the multiple pseudonyms of a user unlink-
able with the user as well as with one another. Moreover, how to transfer reputation from one
pseudonym to another while preventing observation and profiling is also addressed.

One of the first systems in this category is RuP (Reputation using Pseudonyms) by Miranda
and Rodrigues [216]. In their system, a user is identified by a certified pseudonym that is valid
only for a predefined time slot. The certified pseudonyms are issued by a TTP called Pseudonym
Certification Authority (PCA). However, the link between the real identity of the user and the
pseudonym is hidden from the PCA as well. The system also includes a scheme based on blind
signatures that allows a user to transfer their reputation associated with an old pseudonym to a
new one, without disclosing the link between them or their real identity. Another early work in this
category is by Steinbrecher [273]. Their system enables simultaneous use of multiple pseudonyms
by a user and permits them to regularly change their pseudonyms to achieve anonymity. To
prevent an adversary from linking new and old pseudonyms, the system suggests using a set of
non-colluding trustworthy third parties who make incremental changes to the pseudonym of the
user.

Anceaume et al. [30] propose a privacy-preserving distributed reputation mechanism. The sys-
tem allows users to themselves generate pseudonyms in order to achieve anonymity. They introduce
the concept of mailboxes, which are agents that replicate anonymous feedback, in order to provide
resistance against network dynamicity and user misbehavior. Christin et al. [81] present Incog-
niSense, another improvement on the RuP scheme, which is claimed to achieve better protection
against reputation manipulation and reduce the cryptographic overhead for the client.

3.5.7 Other Systems

In this category, we include systems that propose unique approaches and therefore cannot be placed
in the above defined categories.

Kinateder and Pearson [173] introduced one of the earliest privacy-oriented decentralized repu-
tation systems. The system requires a Trusted Platform Module (TPM) chip at each agent, which
enables an agent to demonstrate that it is a valid agent and a legitimate member of the system
without disclosing its true identity. This permits the agent to provide feedback anonymously. Bo et
al. [56] present a privacy-preserving reputation system, which offers incentives to users for feedback
submission. A user who anonymously submits feedback can also anonymously receive a discount
token (an incentive) from the ratee. The architecture of the system comprises of a Card Issuer
(CI) entity and a Registration Center (RC) entity that are responsible for issuing smart cards and
anonymous identities to users, respectively.

3.6 Fine-Grained Analysis and Comparison of Privacy-Preserving
Reputation Systems

In this section, we conduct fine-grained analysis of privacy-preserving reputation systems in the
literature according to the frameworks established in Sections 3.2 through 3.4. The analysis is
presented in the form of Tables 3.1 through 3.6. The tables also permit side by side comparison of
the systems.

We have analyzed 44 privacy-preserving reputation systems in depth and summarized their
properties in the given tables. We report information about the systems as gleaned from the
articles. In case of multiple variants of a system presented in the same article, we have selected
the variant that provides the strongest security guarantees. The systems are grouped in the
tables according to the category of their security mechanisms. The categories are ordered by the
number of included systems and then alphabetically. Under each category, the systems are ordered
chronologically to allow observation of the evolution of the systems.

Table 3.1 identifies the fundamental characteristics of each reputation system according to the
analysis framework developed in Section 3.4. The architecture of the systems and the properties
of their feedback and reputation are presented.

Table 3.2 and Table 3.3 present the security related fundamentals of user anonymity and feed-
back confidentiality-oriented systems, respectively. In accordance with the analysis framework for
privacy-preserving reputation systems formulated in Section 3.2, the properties reported include
the adversarial model, the extent of collusion resistance, reputation binding, the trust model, and
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the main security building blocks. Multiple adversarial models are listed if a scheme uses different
adversarial models for different entities, for example, semi-honest for the server, and malicious for
the users. We note strong collusion resistance if t out of the n users in the protocol must collude
to breach security, where t < n, and t is variable. For example, t = 1

2n, or t =
1
3n. Alternatively,

we note partial collusion resistance if a constant number of colluding entities, for example, two
partially trusted colluding servers, are able to breach security. Multiple trust models are noted for
the systems that rely on different models for their different security properties. The aggregation
model is stated as open where the system is not constrained to one specific function.

The details of the security objectives of user anonymity and feedback confidentiality-oriented
systems are presented in Table 3.4 and Table 3.5, respectively. As discussed in Section 3.3, the
security objectives of privacy-preserving reputation systems include those aiming to enforce privacy
and those targeting integrity or correctness.

The robustness of the reputation systems against common attacks listed in Section 3.4 is sum-
marized in Table 3.6.

Table 3.1: Fundamentals.
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Aggregation Model

Blockchain-based Systems

Schaub et al. 2016 D Z S R G Open

Bazin et al. 2017 D Z S R G Open

Azad et al. 2018 D {−,+} S Z G Beta reputation

Bag et al. 2018 D {0, 1} M [1, 10] L Mean

Dou et al. 2018 D S G Weighted mean

Kang et al. 2018 H [0, 1], multi-criteria M R G Subjective logic

Lu et al. 2018 C {−1, 0, 1}, [0, 1] S R, [0, 1] G Polynomial

Owiyo et al. 2018 D S G Open

Jo and Choi 2019 H {−1, 1} S R G Sum

Liu et al. 2019 C [1, 10] S N G Sum

Schiedermeier et al. 2019 D {−1, 1} S Z G Sum

Zhao et al. 2019 C [0, 1] S [0, 1] G Mean

Azad et al. 2020 D {−1, 1} S Z G Weighted sum

Zhang et al. 2020 D [0, 1] M R G Weighted sum

Dimitriou 2021 D M Z G Sum

SMPC-based Systems

Pavlov et al. 2004 D R M R, [0, 1] L Sum, beta reputation

Gudes et al. 2009 D R M R L Weighted sum, mean

Nithyanand and Raman 2009 D R, {0, 1} M R L Ordered weighted average

Gal-Oz et al. 2010 D R M R L Weighted sum, mean

Hasan et al. 2013 D [0, 1] M R, [0, 1] G Sum, mean

Dimitriou and Michalas 2014 D Z M Z G Sum

Dolev et al. 2014 D {1, 2, . . . , 10} M R L Weighted mean

Clark et al. 2016 D [0, vmax] M [0, vmax] L Mean

Bakas et al. 2021 D {n1, n2, . . . , nk} M Z L Sum

Token-based Systems

Androulaki et al. 2008 C {0, 1} S Z G Sum

Kerschbaum 2009 C {0, 1} S [0, 1] G Beta reputation

Schiffner et al. 2009 C {−1, 1} S Z G Sum

Schiffner et al. 2011 C {−,+} S R G Open

Zhang et al. 2014 H S R G Open

Busom et al. 2017 C Text S G Union

Proxy-based Systems

Ries et al. 2011 C {0, 1} M [0, 1] L Beta reputation

Petrlic et al. 2014 C Vector, {0, 1} S Z G Sum

Mousa et al. 2017 C {−1, 0, 1}, [0, 1] S [0, 1] G Bounded sum

Ma et al. 2018 C [0, 1] M [0, 1] G Weighted mean

Signature-based Systems

Bethencourt et al. 2010 H {0, 1} S Z G Sum

Guo et al. 2013 C {−1, 1} S Z G Sum

Lajoie-Mazenc et al. 2015 H {−,+}, Z S R G Open

Chen et al. 2016 C S {0, 1, . . . ,m} G Time discount function

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006 C S G Open

Steinbrecher 2006 C S G Open

Anceaume et al. 2013 D [0, 1] S [0, 1] G Beta reputation

Christin et al. 2013 C S G Open

Other Systems

Kinateder and Pearson 2003 D [0, 1] S R L Open

Bo et al. 2007 H S G Open

Legend
C – D – H Centralized – Decentralized – Hybrid Property satisfied
S – M Single – Multiple Property not satisfied
G – L Global – Local Property not specified or not applicable
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Table 3.2: User Anonymity-Oriented Systems – Security Fundamentals and Building Blocks.
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Building Blocks

Blockchain-based Systems

Schaub et al. 2016 M P Trustless Okamoto / Chaum blind signatures, PoS blockchain

Bazin et al. 2017 M P A-k, TTP Merkle trees, blind signatures, non-interactive zero-knowledge proofs, blockchain

Dou et al. 2018 SH, M P A-k, TTP Additive homomorphic encryption, verifiable secret sharing, blockchain for feedback storage

Kang et al. 2018 SH, M I A-k, TTP Elliptic curve digital signatures, blockchain, smart contracts

Lu et al. 2018 SH, M I TTP Merkle trees, digital certificates, blockchain

Owiyo et al. 2018 SH P SMPC, blind signatures, blockchain

Jo and Choi 2019 SH, M I TTP Group signatures, blind signatures, blockchain, smart contracts

Liu et al. 2019 M I A-k, TTP PS signature, bulletproof system, non-interactive zero-knowledge proofs, PoS blockchain,

smart contracts

Dimitriou 2021 SH, M I Trustless, TTP Pedersen commitments, blockchain, zkSNARK proofs

Token-based Systems

Androulaki et al. 2008 SH, M I A-k, TTP E-cash, anonymous credential system, blind signatures

Schiffner et al. 2009 SH, M I A-k, TTP E-cash, cryptographic signatures, one-show credentials

Schiffner et al. 2011 SH, M I A-k, TTP Symmetric key encryption, homomorphic encryption, DC-Net, Diffie-Hellman key exchange

Zhang et al. 2014 SH, M I TTP Bilinear maps, Camenisch and Lysyanskaya (CL) signatures, Pedersen commitment, non-

interactive zero-knowledge proofs

Busom et al. 2017 SH, M I TTP Chaum-Pedersen zero-knowledge proofs, Chaum-Pedersen blind signatures, verifiable secret

sharing, oblivious transfer

Proxy-based Systems

Petrlic et al. 2014 SH, M I TTP Paillier additive homomorphic encryption, zero-knowledge proofs

Mousa et al. 2017 SH, M I TTP Digital certificates

Signature-based Systems

Bethencourt et al. 2010 SH, M I TTP Homomorphic encryption, selective-tag weakly CCA-secure encryption, zero-knowledge

proofs, one-time signatures

Guo et al. 2013 SH, M I TTP Boneh-Boyen signature scheme, homomorphic encryption, selective-tag encryption, Groth-

Sahai non-interactive proofs

Lajoie-Mazenc et al. 2015 SH, M I A-k, TTP Verifiable secret sharing, non-interactive zero-knowledge proofs, anonymous proxy signa-

tures, SXDH commitments

Chen et al. 2016 SH, M P TTP Boneh-Boyen-Shacham (BBS) short group signature scheme

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006 SH, M I TTP Cryptographic signatures, blind signatures

Steinbrecher 2006 SH, M I TTP Identity management, cryptographic credentials, cryptographic signatures

Anceaume et al. 2013 M I A-k, TTP Overlay network, Distributed Hash Tables (DHTs), cryptographic commitments

Christin et al. 2013 SH, M I TTP Cryptographic signatures, blind signatures

Other Systems

Kinateder and Pearson 2003 SH, M I TTP Trusted Platform Module (TPM), cryptographic signatures

Bo et al. 2007 SH, M I TTP Smart cards, cryptographic signatures, hash chain, zero-knowledge proof of possession

Legend
SH – M Semi-Honest – Malicious
I – P Identity – Pseudonym

A-k – C-k – TTP Arbitrary k – Chosen k – Trusted Third Party
Strong resistance to collusion
Partial resistance to collusion
Weak or no resistance to collusion
Collusion resistance not specified or not applicable
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Table 3.3: Feedback Confidentiality-Oriented Systems – Security Fundamentals and Building
Blocks.
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Building Blocks

Blockchain-based Systems

Azad et al. 2018 SH, M P A-k Homomorphic encryption, non-interactive zero-knowledge proofs, public bulletin board (may

be implemented by a blockchain)

Bag et al. 2018 M P A-k SMPC, homomorphic encryption, zero-knowledge proofs, Schnorr signature protocol, public

bulletin board (may be implemented by a blockchain)

Schiedermeier et al. 2019 M P A-k SMPC, secret sharing, homomorphic encryption, blockchain

Zhao et al. 2019 SH, M P TTP SMPC, additive secret sharing, blockchain, smart contracts

Azad et al. 2020 M P A-k SMPC, homomorphic encryption, zero-knowledge proofs, public bulletin board (may be

implemented by a blockchain)

Zhang et al. 2020 M P A-k, TTP SMPC, Eigentrust algorithm, blockchain, smart contracts, verifiable secret sharing

SMPC-based Systems

Pavlov et al. 2004 M P A-k SMPC, Pederson verifiable secret sharing scheme, discrete-log commitment, zero-knowledge

proofs

Gudes et al. 2009 SH P A-k SMPC

Nithyanand and Raman 2009 SH P A-k SMPC, Paillier additive homomorphic encryption

Gal-Oz et al. 2010 SH P A-k SMPC, semantically-secure public-key encryption, homomorphic encryption

Hasan et al. 2013 M P C-k SMPC, Paillier additive homomorphic encryption, non-interactive zero-knowledge proofs

Dimitriou and Michalas 2014 M P A-k SMPC, Paillier additive homomorphic encryption, non-interactive zero-knowledge proofs

Dolev et al. 2014 M P A-k SMPC, Paillier additive homomorphic encryption, Polhig-Hellman commutative encryption,

ElGamal encryption

Clark et al. 2016 SH P C-k SMPC, secret sharing, digital signatures

Bakas et al. 2021 SH P A-k SMPC, Multi-Input Functional Encryption (MIFE), Trusted Execution Environment (TEE)

Token-based Systems

Kerschbaum 2009 SH, M I A-k, TTP Homomorphic encryption, cryptographic pairings, zero-knowledge proofs

Proxy-based Systems

Ries et al. 2011 SH, M P TTP Homomorphic encryption, zero-knowledge proofs

Ma et al. 2018 SH P TTP Somewhat-homomorphic encryption, cloud

Legend
SH – M Semi-Honest – Malicious
I – P Identity – Pseudonym

A-k – C-k – TTP Arbitrary k – Chosen k – Trusted Third Party
Strong resistance to collusion
Partial resistance to collusion
Weak or no resistance to collusion
Collusion resistance not specified or not applicable

3.7 Blockchain-based Privacy-Preserving Reputation Sys-
tems

In this section, we describe in greater detail the system by Schaub et al. [255], which is the first
blockchain-based trustless privacy-preserving reputation system. This system was developed in the
context of the final year projects of Master’s students A. Schaub and R. Bazin. Other significant
blockchain-based privacy-preserving reputation systems are discussed in the full article [136] that
this chapter is based on.

3.7.1 A Trustless Privacy-Preserving Reputation System. A. Schaub,
R. Bazin, O. Hasan, and L. Brunie. 2016

Schaub et al. [255] design a reputation system for real-world e-commerce applications. It is therefore
assumed that a customer c’s real identity will be disclosed to the service provider SP during a
transaction. Instead of complete anonymity, the system emphasizes user anonymity specifically
for the feedback submission stage. The system requires unlinkability of the rater to the rating,
unlinkability of the rating to the transaction, and unlinkability of the rating to other ratings by
the same rater. These properties ensure that c can submit a rating without identification by the
SP , and thus achieve user anonymity for feedback submission.

In order to receive a rating from a customer, the service provider SP is required to spend a
certain amount of coins of the native cryptocurrency of the system. This approach is advantageous
in a number of ways. It discourages the ballot stuffing attack, since the SP will need to spend coins
proportional to the number of artificial ratings. Moreover, the cryptocurrency allows the system to
incentivize mining its blockchain by rewarding the creation of new blocks with coins. The service
providers can either mine the coins themselves or they may acquire the coins on open market
from other miners. The system thus ensures the continuity of the blockchain through incentivized
mining, which in turn also ensures the trustlessness property of the system.

A customer c can compute the reputation of a service provider SP by aggregating the ratings
about the SP available in the public blockchain of the system. The ratings are aggregation function
agnostic. Therefore, any aggregation function of the customer’s choosing can be used for computing
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Table 3.4: User Anonymity-Oriented Systems – Security Objectives.
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Blockchain-based Systems

Schaub et al. 2016

Bazin et al. 2017

Dou et al. 2018

Kang et al. 2018

Lu et al. 2018

Owiyo et al. 2018

Jo and Choi 2019

Liu et al. 2019

Dimitriou 2021

Token-based Systems

Androulaki et al. 2008

Schiffner et al. 2009

Schiffner et al. 2011

Zhang et al. 2014

Busom et al. 2017

Proxy-based Systems

Petrlic et al. 2014

Mousa et al. 2017

Signature-based Systems

Bethencourt et al. 2010

Guo et al. 2013

Lajoie-Mazenc et al. 2015

Chen et al. 2016

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006

Steinbrecher 2006

Anceaume et al. 2013

Christin et al. 2013

Other Systems

Kinateder and Pearson 2003

Bo et al. 2007

Legend
Property satisfied
Property partially satisfied
Property not satisfied
Property not specified or not applicable

Table 3.5: Feedback Confidentiality-Oriented Systems – Security Objectives.
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Blockchain-based Systems

Azad et al. 2018

Bag et al. 2018

Schiedermeier et al. 2019

Zhao et al. 2019

Azad et al. 2020

Zhang et al. 2020

SMPC-based Systems

Pavlov et al. 2004

Gudes et al. 2009

Nithyanand and Raman 2009

Gal-Oz et al. 2010

Hasan et al. 2013

Dimitriou and Michalas 2014

Dolev et al. 2014

Clark et al. 2016

Bakas et al. 2021

Token-based Systems

Kerschbaum 2009

Proxy-based Systems

Ries et al. 2011

Ma et al. 2018

Legend
Property satisfied
Property partially satisfied
Property not satisfied
Property not specified or not applicable
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Table 3.6: Countermeasures Against Common Attacks.
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Blockchain-based Systems

Schaub et al. 2016

Bazin et al. 2017

Azad et al. 2018

Bag et al. 2018

Dou et al. 2018

Kang et al. 2018

Lu et al. 2018

Owiyo et al. 2018

Jo and Choi 2019

Liu et al. 2019

Schiedermeier et al. 2019

Zhao et al. 2019

Azad et al. 2020

Zhang et al. 2020

Dimitriou 2021

SMPC-Based Systems

Pavlov et al. 2004

Gudes et al. 2009

Nithyanand and Raman 2009

Gal-Oz et al. 2010

Hasan et al. 2013

Dimitriou and Michalas 2014

Dolev et al. 2014

Clark et al. 2016

Bakas et al. 2021

Token-based Systems

Androulaki et al. 2008

Kerschbaum 2009

Schiffner et al. 2009

Schiffner et al. 2011

Zhang et al. 2014

Busom et al. 2017

Proxy-based Systems

Ries et al. 2011

Petrlic et al. 2014

Mousa et al. 2017

Ma et al. 2018

Signature-based Systems

Bethencourt et al. 2010

Guo et al. 2013

Lajoie-Mazenc et al. 2015

Chen et al. 2016

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006

Steinbrecher 2006

Anceaume et al. 2013

Christin et al. 2013

Other Systems

Kinateder and Pearson 2003

Bo et al. 2007

Legend
Strong or explicit countermeasures
Partial or implicit countermeasures
Weak or no countermeasures
Countermeasures not specified or not applicable
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the reputation. Moreover, the user can consult text reviews submitted along with the numerical
ratings. If the reputation is acceptable, c generates a one time private/public key pair specifically
for the transaction with SP .

After the transaction has taken place, c asks SP for a blinded token authenticating the transac-
tion. SP can issue a token to c if SP has at least n coins available on her address on the blockchain.
The n coins are necessary, since this amount will be deducted from SP upon submission of a rating
by the customer. c then verifies the token and unblinds it, breaking the link between herself and
the transaction. When c wishes to rate SP , she broadcasts a message containing SP ’s address, the
unblinded token, and her rating. A miner of the blockchain who creates a new block then verifies
and includes this rating in the block, which is eventually appended to the blockchain.

In addition to ballot stuffing, the system also offers resistance against bad mouthing. In order
to submit a feedback about SP , a real transaction needs to take place and its cost needs to be paid
to the service provider. It is therefore not possible for an adversary to submit frivolous negative
feedback about the service provider without incurring a cost. A Sybil attack is not feasible for
either the customer or the service provider since owning multiple addresses in the system does not
provide any apparent adversarial advantage. The system is also fairly immune to free riding because
(other than potentially generating some network traffic) consulting the blockchain for computing
the reputation of a service provider does not directly draw any resources from the raters or the
ratee. Moreover, the system is robust against out of range feedback since feedback is public and is
verified by miners before integration into the blockchain.

As our analysis in Section 3.6 shows, the limitations of the system include the inability to
guarantee ratee anonymity, reputation transfer, distinctness, and accountability. Moreover, the
system does not offer strong countermeasures against ballot stuffing, slandering, and whitewashing
attacks. No countermeasures are offered against the oscillation and random ratings attacks.

3.8 Future Research Directions

The fine-grained analysis and comparison of privacy-preserving reputation systems carried out in
this survey, according to the proposed analysis frameworks, reveal a number of insights into this
area of research. We are able to identify several future research directions, which are summarized
in Table 3.7 and labeled as Di. Our complete discussion that leads to the identification of these
future research directions is given in Chapter 12 (Section 13.1) as part of the general discussion on
future work on privacy preservation in trust-deficient decentralized systems.

Table 3.7: Future Research Directions.

ID Description

D1 The development of non-blockchain-based privacy-preserving reputation systems still holds importance and should

continue in parallel with the development of blockchain-based systems.

D2 The blockchain technology should be leveraged to its full potential in order to build truly trustless systems.

D3 User anonymity-oriented systems should aim for guaranteeing ratee anonymity and inquirer anonymity.

D4 Reputation transfer and aggregation among pseudonyms should be given priority by user anonymity-oriented systems.

D5 The property of authorizability has been incorporated by a higher percentage of user anonymity-oriented systems in

recent years than in the past. This trend of providing authorizability should continue.

D6 Future systems that do not prevent inference of feedback values from publicly available information, must take measures

to either warn raters or prevent execution of protocol instances when their privacy is at risk.

D7 Feedback confidentiality-oriented systems should protect the privacy of relationships in addition to the confidentiality

of feedback.

D8 Future work on feedback confidentiality-oriented privacy-preserving reputation systems should focus on the inclusion

of the property of authorizability.

D9 Privacy-preserving reputation systems should be designed such that they provide comprehensive protection against

the broad range of common attacks.

3.9 Conclusion

In this survey, we presented an in-depth analysis of a broad range of privacy-preserving reputation
systems. We proposed an analysis framework that decomposes privacy-preserving reputation sys-
tems according to the following dimensions: the nature of the adversary, reputation binding, the
trust model, the security objectives of the system, and the building blocks utilized. Additionally,
we identified the security requirements of privacy-preserving reputation systems that cut across
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multiple types of such systems. It is observed that there are two main types of privacy-preserving
reputation systems: 1) systems that preserve the anonymity of the users, and 2) systems that
don’t necessarily preserve the anonymity of the users but preserve the confidentiality of their feed-
back. We noted that the security-related requirements can be further subdivided into privacy
requirements and integrity requirements. We also presented an analysis framework that covers
the fundamental elements that are common to all reputation systems. The following elements
were identified for this framework: the architecture of the system, the properties of the feedback,
the properties of the reputation, the feedback aggregation model, the attacks addressed, and the
reputation query costs.

We conducted a fine-grained analysis and comparison of 44 privacy-preserving reputation sys-
tems using our analysis frameworks. We established several categories of systems according to their
security mechanisms and classified the privacy-preserving reputation systems according to these
categories. Our detailed comparison of privacy-preserving reputation systems in a normalized
manner using our analysis frameworks reveals the differences between the systems in the literature
as well as their chronological evolution. The survey presented detailed descriptions of a number
of blockchain-based systems, which included the first trustless decentralized system by Schaub et
al. [255] as well as more recent systems. We discussed the details of their protocols and security
approaches as well as highlighted their individual strengths and other salient features.

Our fine-grained analysis, comparison, and discussion led to the identification of a number of
insights into this area of research. We observed that the advent of the blockchain technology has
provided a fresh impetus to research on privacy-preserving reputation systems. A majority of the
systems published since 2016 that are listed in this survey utilize blockchain as one of the building
blocks. However, we also noted that one of the future directions is to leverage the blockchain
technology to its full potential and build truly trustless systems. We looked at the success of
the surveyed systems in guaranteeing the security of users. It was observed that a high majority
of both anonymity-oriented and feedback confidentiality-oriented systems are able to guarantee
their respective essential privacy and integrity properties. However, there are also many properties
that have been mostly ignored. We identified authorizability as one of the important properties
that needs to be addressed by systems in the future. Lastly, analyzing the systems in terms of
their countermeasures against common attacks, we observed that designing systems that provide
comprehensive protection against a broad range of attacks is an evident direction for future research
in the area.
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Chapter 4

A Decentralized
Privacy-Preserving Reputation
Protocol for the Malicious
Adversarial Model

Users hesitate to submit negative feedback in reputation systems due to the fear of retaliation
from the recipient user. A privacy preserving reputation protocol protects users by hiding their
individual feedback and revealing only the reputation score. We present a privacy preserving
reputation protocol for the malicious adversarial model. The malicious users in this model actively
attempt to learn the private feedback values of honest users as well as to disrupt the protocol. Our
protocol does not require centralized entities, trusted third parties, or specialized platforms, such
as anonymous networks and trusted hardware. Moreover, our protocol is efficient. It requires an
exchange of O(n + log N) messages, where n and N are the number of users in the protocol and
the environment respectively.

This chapter is an adapted version of the article: “A Decentralized Privacy Preserving Rep-
utation Protocol for the Malicious Adversarial Model.” O. Hasan, L. Brunie, E. Bertino, and
N. Shang. IEEE Transactions on Information Forensics and Security. 2013. Vol. 8, no. 6, pp
949-962.

4.1 Introduction

We consider a multi-agent environment composed of N agents. Let us consider an agent t in the
environment and refer to it as the target agent. Agent t has interacted with n < N other agents in
the environment who have assigned it private feedback values. We refer to these feedback providers
as the source agents of the target agent t. The Malicious-k-shares protocol allows a querying agent
q to compute the reputation of a target agent t as the mean of the private feedback values held
by its source agents. The protocol aims to preserve the privacy of the source agents by preventing
disclosure of their private feedback values under the malicious adversarial model (described in
Section 4.2.2). The novel contributions of our work are summarized below.

In the Malicious-k-shares protocol, an agent can preserve its privacy by partially trusting on
only k fellow feedback providers, where k is much smaller than n− 1, the size of the set of fellow
feedback providers. This idea is central in our protocol and allows us to build a protocol that
requires an exchange of only O(n + log N) messages and O(n2 + log N) bytes of information,
where n and N are the number of agents in the protocol and the environment respectively. This
approach improves on the classic approach (as employed by Gudes et al. [128] and Pavlov et al.
[235]) where an agent is required to partially trust on all n−1 fellow feedback providers to preserve
its privacy which results in high communication complexity. In this work, we use three real and
large trust graphs to demonstrate that a high majority of agents can find k sufficiently trustworthy
agents in a set of n − 1 fellow feedback providers such that k is very small compared to n − 1
(Section 4.5.2).

Agents in our protocol can quantify the risk to their privacy before submitting their feedback.
This allows us to extend the protocol such that agents can abstain if the risk to their privacy is
above the desired threshold. We show using the three real trust graphs that even if agents abstain,
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accurate reputation values can be computed from the feedback submitted by only those agents
whose privacy is preserved (Section 4.5.3).

The Malicious-k-shares protocol prevents malicious agents from taking two actions that are
particularly challenging to address in a decentralized privacy preserving reputation system without
relying on trusted third parties: (1) A malicious agent can take advantage of private feedback and
submit a value that is outside the legal interval for feedback. For example, a malicious agent can
submit a value such as −99 when the feedback interval is [0, 1]. (2) A malicious agent can make
erroneous computations, for example, it can report a random number instead of reporting a correct
sum.

The protocol addresses the above challenges through innovative constructions (described in
Section 4.4.1) based on set-membership and plain-text equality non-interactive zero-knowledge
proofs and an additive homomorphic cryptosystem. To the best of our knowledge, our protocol is
the most efficient decentralized additive privacy preserving reputation protocol under the malicious
adversarial model. It requires the exchange of only O(n + log N) messages and O(n2 + log N)
bytes of information. Compare this to the protocol by Pavlov et al. [235] that requires O(n3 +N)
messages and at least O(n3 +N) bytes of information using similar building blocks.

4.1.1 Outline

In Section 4.2, we give a general framework for decentralized privacy preserving reputation systems
in the malicious adversarial model. In Section 4.3, we describe some building blocks that we utilize
in the construction of our protocol. In Section 4.4, we present our proposal for a new decentralized
privacy preserving reputation protocol. We also analyze the security and the complexity of the
protocol in this section. In Section 4.5, we use three real trust graphs to experimentally evaluate
two hypotheses that the protocol is based on. In Section 4.6, we give a comparison of our protocol
with other reputation systems in the literature. We conclude the work in Section 4.7.

4.2 Framework

In this section, we establish a framework that allows us to describe and analyze the protocol in
Section 4.4. However, the reader may skip directly to Section 4.4.1 for a quick overview of the
protocol without delving into the specifics of the framework.

4.2.1 Agents, Trust, and Reputation

We model our environment as a multi-agent environment. An agent represents a user. Let A
denote the set of all agents in the environment. |A| = N .

We subscribe to the definition of trust by sociologist Diego Gambetta [116], which characterizes
trust as binary-relational, directional, contextual, and quantifiable as subjective probability. Our
formal definition of trust attempts to capture each of these characteristics.

Let D denote an asymmetric binary relation on the set A. Let T ⊆ D be the set of all existing
trust relationships between agents. (s, t) ∈ T, where s, t ∈ A, implies that an agent s has a trust
relationship toward an agent t.

Let Ψ denote the set of all actions. Examples of actions include: “prescribe correct medicine”,
“deliver product sold online”, “preserve privacy”, etc.

Let perform denote a function, such that perform : T × Ψ → {true, false}. The func-
tion perform(s, t, ψ) outputs true if agent t performs the action ψ anticipated by agent s, or
it outputs false if t does not perform the anticipated action. Let the subjective probability
P (perform(s, t, ψ) = true) denote agent s’s belief that agent t will perform the action ψ.

Definition 1. Trust. The trust of an agent s in an agent t is given as the triple ⟨sTt, ψ, P (perform(s, t, ψ) =
true)⟩, where s, t ∈ A, (s, t) ∈ T, ψ ∈ Ψ, and P (perform(s, t, ψ) = true) ∈ [0, 1].

When the context of trust (action ψ) is clear, we adopt the simplified notation fst for P (perform(s, t, ψ) =
true). We can also refer to fst as agent s’s feedback about agent t.

An agent s is said to be a source agent of an agent t in the context of an action ψ if s has a
trust relationship toward t in the context ψ. The set of all source agents of an agent t in context
ψ is given as St,ψ. The simplified notation St is used instead of St,ψ when the context ψ is clear.
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Definition 2. Reputation. Let St = {s1 . . . sn} be the set of source agents of an agent t in
context ψ. The reputation of agent t in context ψ is given as:

rep⊕(fs1t . . . fsnt) =

∑n
i=1 fsit
n

(4.1)

The function rep⊕ implements the reputation of an agent t as the mean of the feedback values
of its source agents. The reputation of an agent t is denoted by rt,ψ, or rt when the context ψ is
clear.

A limitation of the reputation protocol that we present in this chapter is that it can only
compute reputation as the mean of the feedback values. An alternative function that can be
implemented by the protocol is the sum of the feedback values. However, other possible functions
for computing reputation such as weighted mean and probability distribution are not supported
by the current protocol.

We note that an advantage of reputation computed as mean is that it is an intuitive statistic.
The eBay reputation system (ebay.com), which is one of the most successful reputation systems,
represents reputation as the simple sum of feedback values. We derive the mean from the sum in
order to normalize the reputation values. However, it is an interesting avenue for future work to
explore efficient decentralized privacy preserving solutions for computing reputation as weighted
mean, probability distribution, etc.

Definition 3. Reputation Protocol. Let Π be a multi-party protocol. Then Π is defined as a
Reputation Protocol, if (1) the participants of the protocol include: a querying agent q, a target
agent t, and n source agents of t in the context ψ, (2) the inputs include: the feedback of the source
agents in context ψ, and (3) the output of the protocol is: agent q learns the reputation rt,ψ of
agent t.

4.2.2 Adversary

We refer to the coalition of dishonest agents as the adversary. In this work, we propose a solution
for the malicious adversarial model. Malicious agents actively attempt to learn private information
of honest agents as well as to disrupt the protocol. Specifically, malicious agents may (1) refuse
to participate in the protocol, (2) prematurely abort the protocol, (3) selectively drop messages
that they are supposed to send, (4) tamper with the communication channels, (5) wiretap the
communication channels, and (6) provide illegal information (for example, provide out of range
values as their inputs, make incorrect computations).

4.2.3 Privacy

Definition 4. Preservation of Privacy (by an Agent). Let x be an agent s’s private data
that agent s reveals to an agent u. Then agent u is said to preserve the privacy of agent s w.r.t. x,
if (1) u does not use x to infer more information, and (2) u does not reveal x to any third party.

Let action ρ = “preserve privacy”.

Definition 5. Trusted Third Party (TTP). Let S ⊆ A be a set of n agents, and TTPS ∈ A be
an agent. Then TTPS is a Trusted Third Party (TTP) for the set of agents S if for each s ∈ S,
P (perform(s, TTPS, ρ) = true) = 1.

We define security threshold as a parameter that can be assigned a value in [0, 1] according
to the security needs of an application. A value of the security threshold closer to 1 indicates a
stricter security requirement. We consider as high any probability greater than or equal to the
security threshold, and as low any probability less than 1− security threshold.

We adopt the Ideal-Real approach [121] to define privacy preserving reputation protocols.

Definition 6. Ideal Privacy Preserving Reputation Protocol. Let Π be a reputation protocol
(Definition 3). Then Π is an ideal privacy preserving reputation protocol under a given adversarial
model, if: (1) the inputs of all n source agents of t are private, (2) TTPSt is a participant, where
St ≡ St,ψ is the set of all source agents, (3) m < n of the source agents (given as set M) and
agents q and t are considered to be dishonest, however, q wishes to learn the correct output, (4)
agents St−M and TTPSt are honest, (5) as part of the protocol, TTPSt receives the private inputs
from the source agents and outputs the reputation rt,ψ to agent q, and (6) over the course of the
protocol, the private input of each agent s ∈ St −M may be revealed only to the TTPSt .
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In an ideal privacy preserving reputation protocol, it is assumed that for each agent s ∈ St−M,
the adversary does not gain any more information about the private input of agent s from the
protocol other than what he can deduce from what he knows before the execution of the protocol and
the output, with probability P (perform(s, TTPSt , ρ) = true) = 1.

Definition 7. Real Privacy Preserving Reputation Protocol. Let I be an ideal privacy pre-
serving reputation protocol (Definition 6). Then R is a real privacy preserving reputation protocol
w.r.t. I, if: (1) R has the same parameters (participants, private inputs, output, adversary, etc.)
as I, except that there is no TTPSt as a participant (2) with high probability, the adversary learns
no more information about the private input of any agent s than it can learn in protocol I.

4.2.4 Problem Definition

Let St,ψ = {s1 . . . sn} be the set of all source agents of agent t in the context of action ψ. Find a
reputation protocol Π, which takes private input fst ≡ P (perform(s, t, ψ) = true) from each agent
s ∈ St, and outputs the reputation rt,ψ of the target agent t to a querying agent q. Reputation
is computed as rep⊕. Agents q, t, and an additional m of the source agents are considered to be
dishonest, where m < n. However, q wishes to learn the correct output and therefore does not
take any action that alters the output. The reputation protocol Π is required to be decentralized
and secure under the malicious adversarial model. If computing rt,ψ is not possible due to the
disruptive actions of certain agents, then the protocol outputs the identity of those agents to the
querying agent q.

4.3 Building Blocks

4.3.1 Additive Homomorphic Cryptosystem

Let Es(.) denote the encryption function with the public key PKs of agent s in an asymmetric
cryptosystem C. The cryptosystem C is said to be additive homomorphic if we can compute
Es(x+ y), given only Es(x), Es(y), and PKs. As an example, let us consider two integers, 3 and
4. A cryptosystem C is additive homomorphic if given only Es(3), Es(4), and PKs, we are able to
obtain Es(3 + 4) = Es(7).

We use the Paillier cryptosystem [230] as it offers the following properties (in addition to
additive homomorphic encryption) that allow us to construct a secure reputation protocol:

� Randomized encryption. Randomized encryption implies that an attacker cannot distin-
guish between the encryptions of different plaintexts even if the plaintexts and the key are
known. For example, consider an attacker who is given two integers, 3 and 4, their encryp-
tions, Es(3) and Es(4), and the encrypting public key PKs. The attacker is unable to draw
correspondence between the ciphertexts Es(3), Es(4), and the integers 3, 4. Cryptosystems
that do not support randomized encryption (for example, RSA [251] without padding), al-
ways generate the same ciphertext for a given pair of plaintext and encryption key. Such
cryptosystems are not suitable when the plaintext space is small (for example, a plaintext
space such as {1, 2, 3, 4, 5}).

� Non-interactive zero-knowledge proofs. The Paillier cryptosystem allows construction
of efficient non-interactive zero-knowledge proofs of set membership (Section 4.3.2) and plain-
text equality (Section 4.3.3).

The additive homomorphic encryption property of the Paillier cryptosystem can be informally
stated as: Es(m1)×Es(m2) = Es(m1 +m2), where m1 and m2 are two plaintext messages. This
implies that the multiplication of two ciphertexts gives the encrypted sum of their plaintexts.

4.3.2 Zero-Knowledge Proof of Set Membership

Let F = {m1, . . . ,mp} be a public set of p messages, and E(mi) be an encryption of mi with
a prover’s public key, where mi is secret. A zero-knowledge proof of set membership allows the
prover to convince a verifier that E(mi) encrypts a message in F.

A standard interactive zero-knowledge proof comprises of three moves, that is, three messages
exchanged between the prover and the verifier. In the first move, the prover sends a cryptographic
commitment to the verifier. In the second move, the verifier sends a random challenge to the prover
to test the commitment. The third move is the prover’s response to the random challenge of the
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verifier. An interactive zero-knowledge proof can be converted to a non-interactive zero-knowledge
proof using the Fiat-Shamir heuristic [110]. In a non-interactive proof, there is only one move
made by the prover in which he sends the cryptographic commitment as well as a hash of the
commitment to the verifier. The proof can be verified with this supplemental information without
the need for additional moves.

In a non-interactive version of the zero-knowledge proof of set membership, we abstract the part
of the proof generated by the prover as the function setMembershipZKP (E(mi),F), abbreviated
as smzkp(E(mi),F).

The zero-knowledge proof of set membership is specified for the Paillier cryptosystem as follows:
Let (n, g) be a prover’s public key, F = {m1, . . . ,mp} be a public set of p messages, and c =
gmi ·rn mod n2 an encryption of mi, where i is secret, and r is a random integer. A zero-knowledge
proof of set membership allows the prover to convince a verifier that c encrypts a message in F.

4.3.3 Zero-Knowledge Proof of Plaintext Equality

Let Eu(m) and Ev(m) be the encryptions of a message m with the public key of agents u and v
respectively. A zero-knowledge proof of plaintext equality allows a prover to convince a verifier
that Eu(m) and Ev(m) encrypt the same message.

In a non-interactive version of the zero-knowledge proof of plaintext equality, we abstract the
part of the proof generated by the prover as the function plaintextEqualityZKP (Eu(m), Ev(m)),
abbreviated as pezkp(Eu(m), Ev(m)).

The zero-knowledge proof of plaintext equality is specified for the Paillier cryptosystem as
follows: Let (n1, g1) and (n2, g2) be the public keys of agents 1 and 2 respectively. Given two
encryptions c1 = gm1 · rn1

1 mod n2
1 and c2 = gm2 · rn2

2 mod n2
2, a zero-knowledge proof of plaintext

equality allows a prover to convince a verifier that c1 and c2 encrypt the same message.

4.3.4 Source Managers

We define a source manager of an agent t as a fellow agent who maintains the set St. The idea of
source managers is inspired by score managers in EigenTrust [162]. When a source agent assigns
feedback to a target agent t, it reports that event to each of its source managers. The source
managers add the source agent to the set St that they each maintain. A Distributed Hash Table
(DHT), such as Chord [274], is used to locate the source managers.

It is important to note that the source managers are considered to be potentially dishonest.
To learn a set Ŝt ⊃ St, a querying agent can retrieve the set maintained by each of the source
managers and take a union of the sets. The querying agent will learn Ŝt ⊃ St as long as at least
one of the source managers is honest. Let us consider that there is an even probability that any
given source manager is either honest or dishonest. Then the probability that at least one of all
ηt source managers of an agent t will be honest is 1− 1

2ηt . This probability is 75% at ηt = 2, 97%
at ηt = 5, and 99% at ηt = 7.

4.4 The Malicious-k-shares Protocol

4.4.1 Protocol Overview

In the Malicious-k-shares protocol, each source agent s relies on at most k agents to preserve his
privacy. Agent s selects these k agents based on his own knowledge of their trustworthiness in
the context of preserving privacy and sends each of them an additive share of his private feedback
value. The advantages of this approach are twofold. Firstly, an agent is able to quantify and
maximize the probability that its privacy will be preserved. This also allows us to extend the
protocol such that an agent can abstain from providing feedback if the risk to its privacy is high.
Secondly, limiting the number of shares to k ≪ n, results in a protocol that requires an exchange
of only O(n+ log N) messages and O(n2 + log N) bytes of information.

In the Malicious-k-shares protocol, each source agent s must prove that it has generated correct
shares, that is, the sum of all shares is a value that lies in the legal interval for feedback. An agent
s sends each of the k trusted agents a share encrypted with the recipient agent’s public key. The
shares are relayed through the querying agent q. We would like q to add these shares using the
additive homomorphic property, however, this is not possible because the shares are encrypted
with different keys. As a solution, agent s also encrypts each of the shares with his own public
key and submits them to q. Additionally, it submits a set-membership zero-knowledge proof that
the sum of these shares belongs to the legal interval. The querying agent can verify the veracity
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of this claim by using the additive homomorphic property to add the set of shares encrypted with
agent s’s key and then by verifying the proof. It still remains to show that the original shares sent
to the trusted agents are correct. To show this, agent s gives a plaintext-equality zero-knowledge
proof for each share that shows that a share encrypted with the recipient’s public key and a share
encrypted with the sender’s public key contain the same plaintext. Verification of the equality of
all pairs of shares verifies that agent s indeed sent correct shares.

In the Malicious-k-shares protocol, each source agent s must prove that it has computed the
correct sum of the shares. The querying agent q can compute the encrypted sum of the shares
from the copies of the encrypted shares that it received and relayed to agent s. However, q cannot
decrypt the sum because it is encrypted with the recipient agent’s public key. Agent s computes
the sum and sends it to q encrypted with q’s public key. Agent s also sends a plaintext-equality
zero-knowledge proof that shows that the encrypted sum independently computed by q and the
encrypted sum sent by agent s hold the same value. Verification of the proof convinces q that
agent s computed the sum correctly.

4.4.2 Protocol Outline

The important steps of the protocol are outlined below. The steps 1, 7, 8, 13, and 14 are performed
by the querying agent q. Whereas, the steps 2 – 6, and 9 – 12, are performed by each source agent
s ∈ St.

1. Initiation. The protocol is initiated by a querying agent q to determine the reputation rt,ψ
of a target agent t. Agent q retrieves St ≡ St,ψ, which is the set of source agents of agent t
in the context ψ. Agent q verifies St from the source managers of t. Agent q then sends St
to each source agent s ∈ St.

2. Select Trustworthy Agents. Each agent s ∈ St selects k other agents in St. Let us refer
to these agents selected by s as the set Us = {us,1 . . . us,k}. Agent s selects these agents such
that: P (¬perform(s, us,1, ρ))× . . .× P (¬perform(s, us,k, ρ)) is low. That is, the probability
that all of the selected agents will collude to breach agent s’s privacy is low.

3. Prepare Shares. Agent s then prepares k + 1 shares of its secret feedback value fst. The
shares, given as: xs,1 . . . xs,k+1, are prepared in the following manner: The first k shares are
random numbers uniformly distributed over a large interval (for example, [0, 232 − 1]). The

last share is selected as follows: xs,k+1 = (fst −
∑k
i=1 xs,i) mod M , where M is a publicly

known modulus.

The preparation of the shares in this manner implies that: (
∑k+1
i=1 xs,i) mod M = fst. That

is, the sum of the shares mod M is equal to the feedback value. The sum of the shares,∑k+1
i=1 xs,i, lies in the interval [(hs ×M), (hs ×M) + F ], where hs = (

∑k+1
i=1 xs,i) div M , and

fst ∈ [0, F ].

Since each of the k + 1 shares is a number uniformly distributed over a large interval, no
information about the secret can be learned unless all of the shares are known.

4. Encrypt Shares. Agent s then encrypts each of the k+1 shares with its own public key to
obtain: Es(xs,1) . . . Es(xs,k+1). It also encrypts each share xs,i with the public key of agent
us,i, for i ∈ {1 . . . k}, to obtain: Eus,1(xs,1) . . . Eus,k(xs,k).

5. Generate Zero-Knowledge Proofs. Agent s computes: βs = (Es(xs,1)×. . .×Es(xs,k+1))mod n
2
s,

where ns is the RSA modulus in the public key of agent s. The result of this product is the
encrypted sum of agent s’s shares, that is βs = Es(

∑k+1
i=1 xs,i) (due to the additive homo-

morphic property).

Agent s then generates one non-interactive set membership zero-knowledge proof: smzkp(βs, [(hs×
M), (hs ×M) + F ]). The proof proves to a verifier that the ciphertext βs encrypts a value
that lies in the interval [(hs ×M), (hs ×M) + F ]. In other words, the proof shows that the
ciphertext contains a valid feedback value (considering mod M).

Agent s also generates k non-interactive plaintext equality zero-knowledge proofs. Each proof
pezkp(Es(xs,i), Eus,i(xs,i)), where i ∈ {1 . . . k}, proves to a verifier that the two ciphertexts,
one encrypted with the public key of s and the other encrypted with the public key of us,i,
contain the same plaintext.

A verifier who verifies these zero-knowledge proofs will be convinced that agent s has prepared
the shares such that they add up to a correct feedback value. Moreover, the verifier will be
assured that the shares destined for s’s trustworthy agents correspond to those correct shares.
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6. Send Encrypted Shares and Proofs. Agent s sends all encrypted shares, that is,
Es(xs,1) . . . Es(xs,k+1) and Eus,1(xs,1) . . . Eus,k(xs,k), as well as all zero-knowledge proofs,
that is, smzkp(βs, [(hs ×M), (hs ×M) + F ]) and pezkp(Es(xs,i), Eus,i(xs,i)), i ∈ {1 . . . k},
to agent q.

7. Verify the Proofs. Agent q independently computes βs and verifies the proofs received
from each agent s. Their verification confirms that agent s has prepared the shares correctly.
Agent q receives and verifies the proofs of all source agents before proceeding to the next
step.

8. Relay the Encrypted Shares. Agent q relays to each agent u ∈ St, the encrypted shares
received for it from agents who considered it trustworthy. That is, each encrypted share
Eus,i(xs,i), prepared by an agent s for agent us,i, is relayed to agent us,i.

The shares are relayed through agent q, therefore, any agent who drops a message would be
easily identified. However, agent q does not learn any of the shares by relaying them since
the shares are encrypted with the public keys of the destination agents.

9. Compute Sum of the Shares. Each agent s ∈ St receives the encrypted shares of the
agents who considered it trustworthy. Agent s computes γs as the product of those encrypted
shares along with the ciphertext of its own (k + 1)’th share xs,k+1. Due to the additive
homomorphic property, γs is an encryption of the sum of the plaintexts of those shares.
Agent s decrypts γs to obtain the plaintext sum σs.

Adding the (k + 1)’th share provides security in the case when s receives only one share. If
there is no (k + 1)’th share to add, then agent q would learn the received share. Secrecy of
the (k + 1)’th share itself is not critical to the security of the protocol.

10. Encrypt the Sum. Agent s then encrypts σs with agent q’s public key to obtain Eq(σs).

11. Generate Zero-Knowledge Proof. Agent s then generates a non-interactive plaintext
equality zero-knowledge proof: pezkp(γs, Eq(σs)). The proof proves to a verifier that the two
ciphertexts, one encrypted with the public key of s and the other encrypted with the public
key of q, contain the same plaintext.

Agent q, who can independently compute γs, can be convinced by this proof that Eq(σs)
contains the correct sum of the shares.

12. Send Encrypted Sum and Proof. Agent s sends the encrypted sum Eq(σs) and the
zero-knowledge proof pezkp(γs, Eq(σs)) to agent q.

13. Verify the Proof. Agent q independently computes γs and verifies the zero-knowledge
proof received from each agent s. Its verification confirms that the agent has computed the
sum of the shares correctly. Agent q receives and verifies the proofs of all source agents before
proceeding to the next step.

14. Compute Reputation. Agent q decrypts Eq(σs) to obtain σs for each agent s ∈ St. Agent
q then computes rt,ψ = ((

∑
s∈St σs) mod M)/n.

4.4.3 Protocol Specification

The protocol is specified in Figures 4.1 and 4.2.
For the purpose of this protocol, we consider feedback values to be integers in the range [0, F ]

(for example, [0, 10]). The reputation computed by the protocol can be normalized to the interval
[0, 1] by dividing the result by F .

LetM be a publicly known modulus, such thatM > F , and ∀t ∈ A :
∑
s∈St fst < M . Moreover,

M is sufficiently smaller than 2k, where k is the security parameter — the length in bits of the
RSA modulus n in the cryptographic keys of the agents (for example, k = 2048, and M = 280).

Let [0, X] be a large interval (for example, [0, 232 − 1]).
To generate the zero-knowledge proof setMembershipZKP (βs, [(hs ×M), (hs ×M) + F ]) in

step 10 of the event prep, an agent s requires the randomization rβs of the encryption βs, which
can be computed as follows: rβs = rs,1 × . . .× rs,k+1, where rs,i is the randomization used for the
encryption of Es(xs,i).

To generate the zero-knowledge proof plaintextEqualityZKP (γs, Eq(σs)) in step 4 of the event
verified shares, an agent s requires the randomization rγs of the encryption γs, which can be
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computed as follows: rγs = (g−σs · γs)1/ns mod (p−1)(q−1) mod ns, where g and ns are in the public
key of s, and p and q are in the secret key, ns = pq.

The protocol uses the following functions: timestamp() – Returns current time. random(ξ,ζ)
– Returns a random number uniformly distributed over the interval [ξ, ζ], where ξ < ζ. set of trustworthy(s, S)
– Returns a set of agents Us = {us,1 . . . us,k}, where Us ⊆ S. The set Us is selected such that:
P (¬perform(s, us,1, ρ))× . . .× P (¬perform(s, us,k, ρ)) is low.

Protocol: Malicious-k-shares
Participants: Agents: q, t, and the agents in the set St ≡ St,ψ = {s1 . . . sn}. Agents q, t, and a subset of St of size m < n are
considered to be dishonest, however, q wishes to learn the correct output and therefore does not disrupt the protocol. n ≥ 3.
Input: Each agent s ∈ St has a private input fst ≡ P (perform(s, t, ψ) = true).
Output: Agent q learns rt,ψ , the reputation of agent t in the context ψ, or agent q learns the identity of the agents who disrupt the protocol.
Setup: Agent t maintains St ≡ St,ψ , the set of its source agents in the context ψ. All communication takes place over authenticated
point-to-point channels that are resistant to wire-tapping and tampering.
Events and Associated Actions:

agent q initiates the protocol to determine rt
1 send tuple (request for sources, ψ) to t
2 receive tuple (sources, ψ, St) from t
3 verify St from the source managers of t
4 retrieve the public key PKs of each agent s ∈ St from a certificate authority
5 S′t ← St � initialize the set of agents who are expected to send their shares
6 θ ← 0� a cumulative sum for computing reputation
7 Vs ← ϕ, for each agent s ∈ St � initialize the sets of encrypted shares
8 τ ← timestamp()
9 send tuple (prep, q, t, τ, St) to each agent s ∈ St

agent t receives the tuple (request for sources, ψ) from agent q

1 send tuple (sources, ψ, St) to q

an agent s ∈ St receives the tuple (prep, q, t, τ, St) from agent q

� select trustworthy agents
1 Us ← set of trustworthy(s, St − {s})

� prepare shares
2 for i← 1 to k
3 do xs,i ← random(0, X)

4 xs,k+1 ← (fst −
∑k
i=1 xs,i)mod M

5 hs ← (
∑k+1
i=1 xs,i) div M

� retrieve public keys
6 retrieve the public key of each u ∈ Us and the public key of q

from a certificate authority
� encrypt shares

7 encrypt xs,1 . . . xs,k+1 with the public key of s
to obtain Es(xs,1) . . . Es(xs,k+1)

8 encrypt xs,1 . . . xs,k with the public key of us,1 . . . us,k
respectively to obtain Eus,1 (xs,1) . . . Eus,k (xs,k)
� generate zero-knowledge proofs

9 βs ← (Es(xs,1)× . . .× Es(xs,k+1)) mod n2
s

10 generate setMembershipZKP(βs, [(hs ×M), (hs ×M) + F ])
11 for i← 1 to k
12 do generate plaintextEqualityZKP(Es(xs,i), Eus,i (xs,i))

� send the encrypted shares and the proofs to q
13
−→
Is ← ⟨Us, Es(xs,1), . . . , Es(xs,k+1), Eus,1 (xs,1), . . . , Eus,k (xs,k),

hs, setMembershipZKP(βs, [(hs ×M), (hs ×M) + F ]),
plaintextEqualityZKP(Es(xs,1), Eus,1 (xs,1)), . . . ,

plaintextEqualityZKP(Es(xs,k), Eus,k (xs,k))⟩
14 send tuple (shares, q, t, τ,

−→
Is) to q

Figure 4.1: Protocol: Malicious-k-shares

4.4.4 Security Analysis – Correctness

In the protocol Malicious-k-shares (Figure 4.1), agent q either learns the correct reputation of
agent t in the context ψ, or learns the identity of a malicious agent who has disrupted the protocol,
under the malicious adversarial model.

In this section we analyze correctness in the context of the messages sent by the source agents
under the malicious adversarial model. Correctness under the semi-honest model is analyzed in
detail in the extended technical report [137].

Each agent s ∈ St communicates exclusively with agent q. If an agent s takes any of the actions
1 to 3 (Section 4.2.2), it would be exposed as malicious to agent q. Note: Agent q can then remove
the malicious agent from the set of source agents and restart the protocol. Eventually, only those
agents who do not take actions 1 to 3 will remain in the set of source agents.
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Protocol: Malicious-k-shares (contd.)

agent q receives the tuple (shares, q, t, τ,
−→
Is) from an agent s ∈ St

� verify the set membership proof
1 βs ← (Es(xs,1)× . . .× Es(xs,k+1)) mod n2

s
2 verify setMembershipZKP(βs, [(hs ×M), (hs ×M) + F ])

� verify the plaintext equality proofs
3 for i← 1 to k
4 do verify plaintextEqualityZKP(Es(xs,i), Eus,i (xs,i))

� manage the sets of encrypted shares to be relayed
5 for i← 1 to k
6 do Vus,i ← Vus,i ∪ {Eus,i (xs,i)}

� subtract s from the set of agents who are yet to send their shares
7 S′t ← S′t − {s}

� if shares have been received from all source agents then relay the shares
8 if S′t = ϕ
9 then S′t ← St � initialize the set of agents who are yet to send their sum

10 send tuple (verified shares, q, t, τ,Vu) to each agent u ∈ St

an agent s ∈ St receives the tuple (verified shares, q, t, τ,Vs) from agent q

� compute sum of the shares
1 γs ← ((

∏
c∈Vs c)× Es(xs,k+1)) mod n2

s

2 σs ← Ds(γs)
� encrypt the sum

3 encrypt σs with the public key of q to obtain Eq(σs)
� generate zero-knowledge proof

4 generate plaintextEqualityZKP(γs, Eq(σs))
� send the encrypted sum and the proof to q

5 send tuple (aggregate, q, t, τ, Eq(σs), pezkp(γs, Eq(σs)) to q

agent q receives the tuple (aggregate, q, t, τ, Eq(σs), pezkp(γs, Eq(σs)) from an agent s ∈ St
� verify the proof

1 γs ← ((
∏
c∈Vs c)× Es(xs,k+1)) mod n2

s

2 verify plaintextEqualityZKP(γs, Eq(σs))
� decrypt the sum

3 σs ← Dq(Eq(σs))
� compute intermediate sum for reputation

4 θ ← θ + σs
� subtract s from the set of agents who are yet to send their sum

5 S′t ← S′t − {s}
� if sum has been received from all source agents, compute reputation

6 if S′t = ϕ
7 then rt,ψ ← (θ mod M)/n

Figure 4.2: Protocol: Malicious-k-shares (contd.)

An agent s ∈ St is unable to tamper with the communication channels since we assume that
all communication takes place over authenticated point-to-point channels that are resistant to
tampering. Since each agent s ∈ St communicates exclusively with agent q, it will be exposed as
malicious if it does not conform to these requirements.

Wiretapping the communication channels has no effect on the correctness of the protocol.

The first tuple of information that an agent s ∈ St provides to agent q is: (shares, q, t, τ,
−→Is),

where
−→Is = ⟨ Us, Es(xs,1), . . ., Es(xs,k+1), Eus,1(xs,1), . . ., Eus,k(xs,k), setMembershipZKP(βs, F ),

plaintextEqualityZKP(Es(xs,1), Eus,1(xs,1)), . . ., plaintextEqualityZKP(Es(xs,k), Eus,k(xs,k)) ⟩.
The correctness of the first four elements of the tuple and the set Us can be trivially verified by

agent q. The remaining information pertains to the shares prepared by agent s. The shares have
been prepared correctly if the following conditions hold true: (1) the shares add up to a value in
[(h×M), (h×M) + F ]; (2) Eus,1(xs,1), . . ., Eus,k(xs,k) encrypt the same shares as Es(xs,1), . . .,
Es(xs,k) respectively; (3) Eus,1(xs,1), . . ., Eus,k(xs,k) are encrypted with the public keys of agents
us,1 . . . us,k respectively.

The first condition holds true for an agent s if the verification of setMembershipZKP(βs, [(hs×
M), (hs×M)+F ]) by agent q is successful. Agent q can verify the proof since it can independently
compute βs (due to the additive homomorphic property of the cryptosystem), F andM are publicly
known, and hs is provided by agent s. An incorrect value of hs will result in failure of the verification
of the zero-knowledge proof. A zero-knowledge proof that shows membership in an interval with
an incorrect hs has no effect on the final output of the protocol since it is computed as mod M .

The second and third conditions hold true for an agent s if the verification of each plaintextEqualityZKP(Es(xs,i),
Eus,i(xs,i)) by agent q is successful, where i ∈ {1 . . . k}. Agent q can verify these proofs since it
can independently retrieve the public keys of agents s and us,1 . . . us,k from a certificate authority.

If the verification of the one set-membership zero-knowledge proof and the k plaintext-equality
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zero-knowledge proofs provided by an agent s succeeds, it implies that agent s has provided correct
information pertaining to the shares that it prepared. Otherwise, agent s can be considered as
malicious.

The second tuple of information that an agent s ∈ St provides agent q is: (aggregate, q, t, τ ,
Eq(σs), pezkp(γs, Eq(σs)).

The correctness of the first four elements of the tuple can be trivially verified by agent q.
The remaining information pertains to the sum σs. The sum has been computed correctly if the
following condition holds true: γs and Eq(σs) encrypt the same plaintext.

The condition holds true for an agent s if the verification of pezkp(γs, Eq(σs)) by agent q is
successful. Agent q can verify the proof since it can independently compute γs (due to the additive
homomorphic property of the cryptosystem) and it can independently retrieve the public key of
agent s from a certificate authority.

4.4.5 Security Analysis – Privacy

The probability that the protocol will not preserve agent s’s privacy can be stated as: P (¬perform(s, us,1, ρ))×
. . . × P (¬perform(s, us,k, ρ)). We assume that the agents us,1 . . . us,k are selected such that this
probability is low. Therefore, with high probability, the adversary learns no more information
about fst than it can learn in the ideal protocol with what it knows before the execution of the
protocol and the outcome.

The protocol Malicious-k-shares is a real privacy preserving reputation protocol (Definition
7) under the malicious model, because: (1) Malicious-k-shares has the same parameters as the
ideal protocol (except the TTP ), and (2) the adversary does not learn any more information
under the malicious adversarial model about the private input of any agent s in Malicious-k-shares
than it can learn in the ideal protocol, with high probability: 1− (P (¬perform(s, us,1, ρ))× . . .×
P (¬perform(s, us,k, ρ))).

In this section we analyze privacy only in the context of attack 6 in which an agent provides
illegal information (Section 4.2.2) under the malicious adversarial model. Privacy under the semi-
honest model and under the other attacks of the malicious model is analyzed in detail in the
extended technical report [137].

If a source agent u ∈ St provides illegal information, it has no effect on the condition that
all first k shares of agent s must be known to breach agent s’s privacy. Agent u provides no
information to agent s or agent q that would result in agent s divulging any extra information.

Agent t may provide an illegal St, however, that has no effect on the protocol since q also
retrieves and verifies St from agent t’s source managers.

Agent q sends two types of messages to source agents: prep, and verified shares.
prep: Agent q may create St itself in order to attack an agent s ∈ St. The set may be created

such that it contains all dishonest agents except agent s who is under attack. However, we assume
that P (¬perform(s, us,1, ρ))× . . .×P (¬perform(s, us,k, ρ)) is low. That is, there exist trustworthy
agents in the protocol such that agent s receives a high enough privacy guarantee.

verified shares: Agent q may substitute the shares sent by other agents to an agent s with
shares that it has created itself. Agent q may also not relay a share at all. In both these cases, the
best outcome for q would be to learn agent s’s (k + 1)’th share. This has no effect on the privacy
of agent s since agent q is still unable to learn its first k shares. Each of those shares is encrypted
and can only be decrypted by its destination agent.

The protocol may be extended such that an agent s is allowed to abstain if the privacy guarantee
is not sufficient. The extension would be as follows: The agent who wishes to abstain would generate
the shares such that their sum equals zero. The abstaining agent would inform the querying agent
that it has abstained, and would prove that the sum of the shares equals zero.

An Attack on the Ideal Protocol

We describe an attack in which the adversary attempts to determine the private feedback of a
source agent over the course of two reputation queries. Consider the scenario when a new agent s
is added to the set of source agents St. Let S

′

t = St ∪ {s}. Let the reputation of the target agent t
be rt and r

′

t for the set of source agents St and S′

t respectively. A querying agent q that queries the
reputation of the target agent t with both sets of source agents can compute the private feedback
of agent s as fst = (r

′

t × (n + 1)) − (rt × n), where n = |St|. A similar attack can also determine
the private feedback of an existing source agent that drops out from the set of source agents.

The ideal protocol (Definition 6) is vulnerable to this attack. Consequently, the Malicious-k-
shares protocol is also vulnerable as it emulates the ideal protocol. We note that this is a general
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issue for all protocols (including Pavlov et al. [235] and Gudes et al. [128]) that can produce the
sum of the feedback values of the following sets of source agents: St, and St ∪ {s} or St − {u},
where s ̸∈ St and u ∈ St.

We have previously described this attack in our paper [134] on the non-cryptographic k-shares
decentralized privacy preserving reputation protocol for the semi-honest model. Additionally, we
have discussed three possible defenses to counter this attack in our previous work. These solutions
can also be applied to the protocol described in the current work. We briefly describe the three
solutions below and refer the reader to our previous work for further details.

1. Each source agent retrieves a random number from a trusted random number generator and
adds it to its feedback. The sum of the random numbers perturbs the reputation score with
a different value each time the reputation is calculated.

2. Two or more source agents who trust each other in the context of preserving privacy form
a trusted subset. The agents in a trusted subset submit feedback in tandem, that is, they
either all submit their feedback or none of them does. Thus, at best, an attacker can only
learn the cumulative sum of multiple feedback values instead of an individual feedback value.

3. A source agent probabilistically decides whether to participate in the protocol or to abstain
from the protocol. The effect achieved is that the attacker can no longer deterministically
create the set of agents who will submit their feedback about a given target agent.

4.4.6 Complexity Analysis

Table 4.1: Protocol Malicious-k-shares – Complexity.

Tuple Occurrences IDs Ciphertexts SMZKPs PEZKPs
REQUEST FOR SOURCES 1
SOURCES 1 n

PREP n n× n = n2

SHARES n kn kn n kn
VERIFIED SHARES n kn
AGGREGATE n n n

Total 4n+ 2 n+ n2 + kn 2kn+ n n kn+ n

Complexity O(n) O(n2) O(kn) O(n) O(kn)

Table 4.1 presents an analysis of the complexity of the Malicious-k-shares protocol. The col-
umn “Occurrences” analyzes the number of messages exchanged. Whereas, the columns “IDs”,
“Ciphertexts”, “SMZKPs”, and “PEZKPs” analyze the bandwidth usage of the protocol.

The protocol requires O(n) messages to be exchanged. The protocol also performs a DHT
lookup in the initiation phase, which requires an additional O(log N) messages (assuming Chord).
Thus, the total number of messages exchanged is O(n) + O(log N) = O(n + log N), where n is
the number of source agents in the protocol and N is the total number of agents in the system
respectively.

In terms of bandwidth usage, the protocol requires transmission of the following amount of
information: O(n2) agent IDs, O(kn) ciphertexts, O(n) non-interactive zero-knowledge proofs
of set membership, O(kn) non-interactive zero-knowledge proofs of plaintext equality, and an
additional O(log N) messages of constant size for the DHT lookup.

The size of the IDs, the ciphertexts, and the PEZKPs is constant. Moreover, the size of the
SMZKPs is also constant, given that p = |F| is constant. Thus, the complexity of the protocol
in terms of bytes of information transferred can be stated as O(n2) + O(kn) + O(n) + O(kn) +
O(log N) = O(n2 + log N). We observe in Section 4.5.2 that k ≪ n.

Moreover, k can be considered as a constant in the protocol. k can be set as a system-wide
constant. Alternatively, in the extended version of the protocol where agents can abstain, the
querying agent can be given the choice to set k. The trade-off between a lower and a higher value
of k is possible lower participation from the source agents and higher bandwidth usage respectively.

4.5 Experimental Evaluation

We conduct experiments to evaluate the following two hypotheses that the Malicious-k-shares
protocol is based on:
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Figure 4.3: Distribution of the potential target agents and the instances of source agents

1. A source agent can preserve its privacy by trusting on only k fellow source agents, where k
is much smaller than n− 1, the size of the set of all fellow source agents.

2. Accurate reputation values can be computed even if the source agents whose privacy can not
be preserved abstain and thus do not provide their feedback values.

The first hypothesis places emphasis on the notion that a source agent can find k sufficiently
trustworthy agents that enable it to preserve its privacy, even if k is much smaller than n− 1. The
fact that a source agent is able to preserve its privacy with k trustworthy agents, where k ≪ n−1,
has already been validated in Section 4.4.5.

4.5.1 Datasets

A trust graph can be defined as a weighted directed graph G = (A,T,F), in which the set of
vertices corresponds to the set of agents A, the set of edges corresponds to the set of binary trust
relationships T, and the set of weights of the edges is given as a set of feedback values F.

We use three real trust graphs as the datasets for our experiments. These three trust graphs
have been independently evolved by the communities of advogato.org, squeak.org, and robots.

net. The members of each of these communities rate each other in the context of being active
and responsible members of the community. A common element between the three sites is that
they use the same reputation system and thus offer the same set of feedback values. The choice
of feedback values are master, journeyer, apprentice, and observer, with master being the highest
level in that order. The trust graphs were obtained from the site trustlet.org on May 30, 2012.

Table 4.2 lists the number of users, the number of ratings, and the distribution of the ratings
in each of the three trust graphs. Figure 4.3 shows the distribution of the potential target agents
in each trust graph according to the minimum size of the set of their source agents. The graphs in
Figure 4.3 also plot the instances of source agents in the trust graphs.

Table 4.2: Trust Graphs.

Advogato Squeak Robots
No. of users 14,020 766 16,620
No. of ratings 56,652 2,928 3,593
Ratings / user 4.04 3.82 0.22
master ratings 31.9% 31.8% 35.4%
journeyer ratings 40.0% 32.0% 26.0%
apprentice ratings 18.7% 33.2% 35.2%
observer ratings 9.4% 3.0% 3.4%

The members of the communities are expected to not post spam, not attack the reputation
system, etc. Thus, we consider that the context “be a responsible member of the community”
comprises of the context “be honest”. Since we quantify trust as probability, we heuristically
substitute the four feedback values of the trust graphs as follows: master = 0.99, journeyer = 0.70,
apprentice = 0.40, and observer = 0.10.

For the experiments, we define the lowest acceptable probability that privacy will be preserved
as 0.90. This implies that a set of two trustworthy agents must include either one master rated
agent or two journeyer rated agents for this threshold to be satisfied.
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Figure 4.4: Effect of increasing κ on the percentage of instances of source agents whose privacy is
preserved
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Figure 4.5: Disparity

4.5.2 Experiment 1

Objective

Observe the effect of increasing the value of k on the percentage of the instances of source agents
whose privacy is preserved.

Setup

The maximum number of fellow source agents that an agent can trust on is n − 1. A fraction of
the size of this set can be stated as κ× (n− 1), where κ ∈ [0, 1]. For our experiments, we equate
k = ⌈κ× (n− 1)⌉. This allows us to use κ (kappa) to vary the value of k as a fraction of n− 1.

We query the reputation of all agents with at least min source agents. We vary κ from 0.01
to 1 with an increment of 0.01 and observe the percentage of the instances of source agents whose
privacy is preserved. The set of experiments is run withmin ∈ {10, 25, 50, 75, 100} for the Advogato
trust graph and with min ∈ {10, 15, 20, 25} for the Squeak and Robots trust graphs. As discussed
in Section 4.4.5, the privacy of a source agent s is preserved if P (¬perform(s, us,1, ρ)) × . . . ×
P (¬perform(s, us,k, ρ)) is low, which is less than or equal to 0.1 in our case. us,1 . . . us,k are the
agents that agent s trusts.

Analysis

In the results of the experiment on the Advogato trust graph (Figure 4.4a), we observe that for
min = 25, the privacy of 71% of the instances of source agents is preserved when κ = 0.01. That is,
71% of the source agents find sufficiently trustworthy agents among only 1% of their fellow source
agents in order to preserve their privacy. The percentage is 82% at κ = 0.04 at which stage the
function nearly converges and there is no significant improvement in the percentage by increasing
κ any further. Convergence is reached at κ = 0.03 for the functions of min = 50 and above. Even
for min = 10, convergence is reached at the fairly low value of κ = 0.12. It is thus evident that
in the Advogato trust graph, a source agent can preserve its privacy by trusting on only k fellow
source agents, where k is much smaller than n − 1, the size of the set of all fellow source agents.
Raising k over a certain threshold offers no advantage. This conclusion is also supported by the
results of the experiments on the Squeak (Figure 4.4b) and Robots (Figure 4.4c) trust graphs. The
Robots trust graph is quite sparse as compared to the other two graphs. It has an average user to
ratings ratio of only 0.22 compared to the Advogato and Squeak trust graphs that have a ratio of
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4.04 and 3.82 respectively. Yet the percentage of the instances of source agents whose privacy is
preserved converge very early in the Robots trust graph as well.

The privacy of a source agent s is preserved if P (¬perform(s, us,1, ρ))×. . .×P (¬perform(s, us,k, ρ))
is low, that is, if the probability that all the k fellow source agents that s considers trustworthy
will turn out to be dishonest is low. Thus, whether the privacy of a source agent s will be pre-
served depends on whether s can find k sufficiently trustworthy agents among fellow source agents.
However, in certain cases, an agent s is unable to find k sufficiently trustworthy agents even if
kappa = 1 (that is, k = n− 1) and even if there are more than 100 source agents in the protocol.
This is because the agent s either does not have trust relationships toward its fellow source agents
or the relationships are not strong enough. The functions in Figure 4.4 do not converge to 100%
due to the existence of such agents whose privacy cannot be preserved no matter how large is k
or how high is min. However, we observe in Section 4.5.3 that such agents are in the minority. A
high percentage of the agents are able to find sufficiently trustworthy agents among their fellow
source agents in order to preserve their privacy in real trust graphs. We note that protocols in the
literature such as Pavlov et al. and Gudes et al. that rely on all n − 1 fellow source agents of an
agent to preserve its privacy will also fail to protect the privacy of the agents who cannot preserve
their privacy in our protocol. This is because all n − 1 fellow source agents are not trustworthy
enough. On the contrary, our protocol can be extended to allow agents to abstain from submitting
feedback thus protecting their privacy.

4.5.3 Experiment 2

Objective

Observe the accuracy of the reputation values computed when source agents whose privacy can
not be preserved abstain and thus do not provide their feedback values.

Setup

Let B be the set of source agents that abstain and thus do not provide their feedback values,
where B ⊂ St and St is the set of all source agents of the target agent t. Let rt be the reputation
computed using feedback from all source agents in St and let r′t be the reputation computed using
feedback from only the agents who do not abstain, that is, the agents in the set St − B.

We define the disparity of a reputation value as |rt−r′t|. That is, the absolute difference between
the reputation computed with all source agents and the reputation computed with only the source
agents in St − B. The disparity ranges from 0 to 1. The lower the disparity, the more accurate is
the reputation. A disparity of 0 means that a reputation value computed with less than all source
agents is exactly the same as it would be if computed with all source agents.

We compute the reputation of all target agents with at least min source agents twice. Firstly,
with all source agents submitting their feedback. Secondly, with only those source agents submit-
ting feedback whose privacy can be preserved. We then compute the disparity between the two
values of reputation for each target agent. We count the number of instances of reputation values
where disparity is less than the values in {0.05, 0.1, 0.15, 0.20, 0.25} respectively.

Analysis

In the results of the experiment on the Advogato trust graph (Figure 4.5a), we observe that for
min = 25, the disparity of over 76% of reputation values is less than or equal to the low value of
0.05. Over 96% of reputation values have a disparity of less than or equal to just 0.1. For min = 75
and above, the disparity of 100% of the instances of reputation values is less than or equal to the
fairly low value of 0.15. Thus, it is evident that even if source agents whose privacy can not be
preserved abstain, the reputation of a high percentage of target agents can still be calculated with
high accuracy as the mean of the feedback values. This inference is supported by the results of the
experiments on the Squeak (Figure 4.5b) and Robots (Figure 4.5c) trust graphs. For min = 25,
100% of all reputation values have a disparity of less than or equal to 0.05 in both the Squeak and
the Robots trust graphs.

4.6 Related Work

Pavlov et al. [235] propose a decentralized privacy preserving reputation protocol for the malicious
adversarial model. The protocol comprises of two steps: (1) The first step is the execution of a
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witness (feedback provider) selection scheme, which guarantees the inclusion of a certain number
of honest witnesses as participants. (2) The second step is the decentralized computation of the
reputation as the sum of the feedback values. According to our analysis, the protocol requires an
exchange of O(n3+N) messages and at least O(n3+N) bytes of information, where n is the number
of witnesses selected and N is the number of all potential witnesses. The witness selection scheme
requires O(N) messages. The decentralized computation of the reputation uses Pederson Verifiable
Secret Sharing. Each witness sends messages to every other n − 1 participating witnesses. The
result is an additional exchange of O(n3) messages. In contrast, our protocol requires an exchange
of only O(n+ log N) messages and O(n2 + log N) bytes of information. In addition to innovative
cryptographic constructions, an important reason for the lower complexity is that each agent in our
protocol selects k fellow agents based on their trustworthiness, where k ≪ n. This eliminates the
need for a costly witness selection scheme as well as the need for each agent to exchange messages
with n − 1 fellow agents. Another key difference is that our protocol allows entities to quantify
and to minimize the risk to their privacy before feedback is submitted. We use three real and
large trust graphs to demonstrate that a high majority of agents can find k sufficiently trustworthy
agents in a set of n− 1 fellow feedback providers even with k as very small compared to n− 1.

Gudes et al. [128] present a protocol for the malicious adversarial model that augments their
Knots reputation system [115] with privacy preserving features. The Knots reputation system is
a personalized reputation system, which implies that feedback is collected only from the entities
whom the querying entity trusts. The protocol by Gudes et al. eliminates the need for a witness
selection scheme but still requires O(n3) messages for the decentralized computation of reputation.

Further related work and comparison is discussed in the full article [139] that this chapter is
based on.

4.7 Conclusion

In this work, we have presented a privacy preserving reputation protocol for the malicious adver-
sarial model. The protocol counters attacks by malicious agents such as submitting illegal feedback
values or making erroneous computations. The characteristics that differentiate the protocol from
other protocols in the literature include: (1) full decentralization, (2) no need for trusted third
parties and specialized platforms, (3) low communication complexity.

Our experiments on three real and large trust graphs demonstrate the validity of the two
hypotheses that the Malicious-k-shares protocol is based on: (1) A source agent can preserve its
privacy by trusting on only k fellow source agents, where k is much smaller than n − 1, the size
of the set of all fellow source agents. (2) Accurate reputation values can be computed even if the
source agents whose privacy can not be preserved abstain and thus do not provide their feedback
values.
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Chapter 5

A Privacy-Preserving and
Reputation-Aware Mobile
Participatory Sensing System

The integration of privacy into reputation systems is a crucial need for building secure and reliable
participatory sensing applications. Participants are given the assurance that their privacy is pre-
served even if they contribute some personal sensitive data. In addition, reputation systems allow
an application server to monitor participants’ behaviors and evict those who provide the system
with corrupted data. However, this integration requires achieving seemingly conflicting objectives.
Reputation systems monitor participants behaviors along subsequent interactions. Whereas, one
of the major objectives of privacy preserving systems is to unlink subsequent interactions. In
this work, we define a new attack (RR attack), which exploits this conflict in order to detect
the succession of contributions provided by the same participant and to subsequently re-identify
their original identity. We show that using this attack, more than 35% of contributions can be
associated to their successive contributions in each campaign. We then propose PrivaSense as a
new privacy-preserving reputation system that integrates both reputation and privacy such that
their objectives are simultaneously achieved. Experiments are conducted using a real data-set.
The results show that PrivaSense decreases the number of contributions linked to their original
providers by up to 80%.

We note that this work addresses a centralized scenario where an application server plays a
central and trusted role. However, our proposed solution attempts to remove the requirement of
trusting a single entity for all tasks. The solution introduces additional entities and distributes
tasks over those entities and the application server such that each of them is only partially trusted.

This chapter is an adapted version of the article: “PrivaSense: Privacy-Preserving and Reputation-
Aware Mobile Participatory Sensing.” H. Mousa, S. B. Mokhtar, O. Hasan, L. Brunie, O. Younes,
and M. Hadhoud. In Proceedings of the 14th International Conference on Mobile and Ubiquitous
Systems. November 2017. Pp. 38-47. This work was carried out in the context of the Ph.D. of H.
Mousa, co-supervised with L. Brunie and S. B. Mokhtar.

5.1 Introduction

The advancement and widespread use of mobile computing smart devices have helped towards the
emergence of a new kind of application called participatory sensing [64]. These applications exploit
both the mobility of participants and the sensing capabilities of their devices to construct mobile
sensor networks [180] with much less cost and effort compared with traditional Wireless Sensor
Networks (WSNs). During the last decade, several participatory sensing applications have been
widely used to serve in different areas including health, commerce, etc [170]. Researchers have
studied numerous challenges that should be addressed to build reliable and secure participatory
sensing systems [78, 164, 219]. These challenges include the assurance of participants’ privacy and
management of data reliability, which we discuss below.

On the one hand, different applications collect different types of sensed data (e.g. spatial,
temporal, images, pollution, sound samples, accelerometer, biometric, barometric, etc) [78]. These
data can be exploited to leak participants’ privacy through accurately re-identifying their identity,
their location at some given time, with whom they were, their movements (e.g. walking, running,
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sitting down, etc.) [164]. Subsequently, participants can be physically traced and hacked or robbed
based on these data [164]. In [59, 91], De Montjoye et al. and Boutet et al. showed that 95% of
original identities are re-identified through sharing four contributions including time and location
data. Different techniques were proposed to assure the privacy of participants [78]. The main
objective of those techniques is to detach the link between each contribution and its provider as
well as among multiple contributions provided by the same provider (i.e participant).

On the other hand, these applications are vulnerable to malicious participants who disrupt
the system by contributing fabricated or corrupted contributions which affect data reliability and
accuracy. To enhance data reliability, application severs adopt reputation systems to trace partici-
pants’ behaviors along subsequent contributions in order to estimate their honesty and to evaluate
the quality of their contributions. In [219], we have extensively studied, analyzed and compared
reputation systems that were proposed in this context. From which, it is evident that existing
reputation systems manage the link between successive contributions of participants and their real
identities to evaluate their behaviors and to evict malicious ones from the campaign. This objective
contradicts with the objective of privacy preserving systems mentioned before. That is, managing
the linkage among successive contributions leads to privacy leakage. This conflict is referred to as
the linkability problem. As a simple example of linkability problem, consider a participant pi who
has a reputation score x in some campaign. When a new campaign starts, this participant shares
his new contribution tagged with his current reputation x. The application server evaluates the
contribution according to a reputation system and assigns a feedback f to pi’s contribution. x is
updated to x + f . Consequently, in an upcoming campaign, it is evident that the contribution
tagged with reputation x + f has been forwarded from the same identity with reputation x in
the previous campaign even if the identity and the data are anonymized. That is, both contri-
butions and their associated pseudonyms are linked according to the reputation account. That is
why, monitoring reputation scores for a sequence of contributions clearly leads to the profiling of
participants’ contributions and subsequently re-identifying their identities.

In the context of participatory sensing, both the challenges of privacy preservation and reputa-
tion management have been individually studied in the literature (e.g. [79] and [219]). However, the
integration of both these systems in this context is still in its infancy. Existing privacy-preserving
reputation systems in participatory sensing do not have the ability to fulfill the objectives of both
privacy and reputation systems simultaneously (e.g. [212] [283]). Indeed, such systems either allow
participants to launch other attacks (e.g Sybil, or report flooding) which affect the data reliability
(e.g. [283]). Other systems allow to profile participants subsequent contributions, which leads to
participant re-identification (e.g. [212]).

5.1.1 Contributions

Our contributions in this work can be summarized as follows:

1. We define a new attack (RR attack) that aims to link multiple contributions from the same
participant, and subsequently re-identify participants’ identities.

2. We present a novel privacy-preserving and reputation-aware mobile participatory sensing sys-
tem PrivaSense. In this system, each participant is assigned a new pseudonym for each
contribution. The application server evaluates a participant’s contribution, assigns it a feed-
back, forwards this feedback to the reputation server who updates the corresponding repu-
tation account and transfers this account to the next pseudonym of the same participant.
Reputation scores are anonymized and transferred in the form of anonymous certificates.
This allows participants to conserve their reputation scores across multiple interactions while
preventing associations between consecutive contributions.

3. We undertake an analysis revealing the robustness of our proposal against the attacks con-
sidered in the threat model described in Section 5.3.2.

4. We then present some experiments based on a real-world data-set [238] to measure both the
resilience of our system against the RR attack (i.e. privacy issues) added to the effect of the
proposed system on the data reliability. The experimental results indicate that our system
introduces higher anonymity (i.e. better privacy) with more accurate data aggregation which
enhances the system reliability compared with the state-of-the-art.
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5.1.2 Outline

The rest of this chapter is organized as follows: Section 5.2 states the previous work and its
limitations. We then define the considered threat model in Section 5.3.2. Next, we present our
proposed system and discuss its details in Section 5.4. In Section 5.5, we present an analysis of
our proposal. Experimental results are presented in Section 5.6. Finally, this chapter is concluded
in Section 5.7.

5.2 Related Work

Significant research effort has been directed toward ensuring privacy preservation in participatory
sensing applications, as discussed by Christin et al. in [79]. However, such works consider how to
anonymize participants’ real identities and/or to anonymize their provided data. Some other works
consider the problem of reputation management such as [148] and our system presented in [220].
We have surveyed and compared these systems in [219]. Those systems essentially manage the link
to participants real identities in order to assess their reputation. However, very few works consider
the problem of privacy-preserving reputation systems in mobile participatory sensing applications.

In [148], each participant is assigned different pseudonyms for each time interval and to exchange
the assigned reputation between those pseudonyms through a trusted server. Christin et al. in [80]
propose a similar scheme which adopts the blind signature scheme to create pseudonyms. Through
this system, a malicious participant can create multiple identities (i.e. Sybil attack) such that he
can disrupt the system by providing multiple sensing contributions for the same task.

Another privacy-preserving reputation system that assures the participants’ anonymity through
the group signature technique is presented by Michalas et al. [212]. Although, the system assures
the anonymity of participants, it allows some entities to record a profile of participants through
subsequent interactions. That is, the participants’ privacy is leaked.

The scheme presented by Wang et al. in [283] utilizes the blind signature technique in order to
ensure participant’s anonymity. In this scheme, malicious participants can create multiple authentic
identifiers based on a single blind identity granted for them (i.e. Sybil attack). In addition, they
can launch a report flooding attack. Subsequently, they can submit numerous contributions for
the same task while the application server can’t detect such behavior.

To sum up, existing works either accurately manage participants’ reputation and allow for
participants’ re-identification and privacy leakage or focus on participants’ anonymity and allow
participants to launch other attacks that disrupt the system and affect data reliability. In this
chapter, we attempt to propose a privacy-preserving and reputation-aware system that allows the
participatory sensing applications to be more reliable and secure.

5.3 System Model

5.3.1 Participants, Contributions, and Reputation

In a sensing campaign we have mainly two roles: a participant pi is a member in the participants
set P , where |P | = nP and i ∈ {1, 2, 3, ..., nP }, and an application server noted as App.Server. The
application server announces some tasks (e.g. Tj) asking for some sensory data. Each participant
selects the task that he wishes to participate in and senses the required observation. Partici-
pants are interested to preserve their privacy therefore they carry out some local processing that
adopts some privacy preserving mechanism on the sensed data. Then, these data are included in
a contribution Cpij (which is the contribution from participant pi of task Tj). This contribution is
forwarded to the application server. The application server aggregates all the received contributions
from all participants. It adopts a reputation system that evaluates participants’ contributions. It
also assigns feedback fpi for each contribution. This feedback represents the trustworthiness of the
contribution from the App.Server’s point of view. This feedback is used to update the reputation
of the contribution provider R̂pi to a new score Rpi . Then, the data are processed and visualized
for the users.

5.3.2 Threat Model

There are a number of attacks that can be launched. These attacks affect both data reliability and
participants’ privacy.

Reliability oriented attacks:
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� Sybil Attack: Malicious participants attempt to generate multiple pseudonyms to increase
their reputation through cross-recommendations or providing multiple reports for the same
tasks which subsequently leads to system disruption.

� Replay Attack: Malicious participants attempt to replay an old pseudonym which has a
good reputation score. Hence, replay attackers artificially increase their own reputation. This
attacker has the ability to inject the system with corrupted data that could be considered
valid since it is submitted in association with a pseudonym that has high reputation score.

� Reporting Falsified Sensor Readings: Adversaries try to report falsified sensor readings
to disrupt the system measurements. They may also provide false data on behalf of others
to degrade their reputation.

Privacy oriented attacks:

� Identity and Data Re-identification (IDR attack): we have used this term to de-
scribe all the attacks that either leverage contribution content or link contributions to attack
participants’ privacy. It is showed, in [91], that 95% of participants’ identities can be re-
identified after submitting 4 spatial and temporal observations. Therefore, participants can
use pseudonyms instead of their original identities to anonymize their contributions. Subse-
quently, attackers cannot link multiple contributions to the same identity. However, adver-
saries try to infer the original identities of the contribution providers based on the content of
their contributions [164]. In [59], Boutet et al. demonstrate that 94% of original identities
are re-identified when participants share a multi-sensor data-set. For example, participant
may share time, location, image, sound, accelerometer data, etc.

� Reputation-based Re-identification (RR attack): We introduce the RR attack as a new
type of attack. Using this attack, contributions provided from a participant are associated
to each other by analyzing the reputation score assigned to their provider.

An RR attacker applies four consecutive phases (i.e. monitoring, calculating the expected
reputation, uniqueness assessment, and profiling). Firstly, through the monitoring phase,
an attacker listens to the network. The attackers can listen to the network since the com-
munication channel is not assumed to be secure. The attacker records the message ex-
change among the different parties in the sensing campaign. For each task Tj , the at-
tacker keeps the following information for each contribution (1) the pseudonyms RIDj

pi
of participant pi (∀i ∈ 1, 2, 3, ..., nP ), (2) the contents of pi’s contribution including lo-
cation, time, and sensed data (xTj , yTj ), tTj , dataTj ), (3) and the reputation scores of the

pseudonym (R̂pi), (4) the feedback calculated based on the evaluation of pi’s contribution.
The feedback is associated to its corresponding pseudonym (RIDj

pi , fRIDjpi
). That is, for

each pseudonym, an attacker keeps a record for each task containing the following informa-
tion (RIDj

pi , (xTj , yTj ), tTj , dataTj ) (R̂pi , fRIDjpi
).

Secondly, through the calculation of the expected reputation, the attacker updates the mon-
itored reputation score R̂pi according to the feedback fRIDjpi

for the same task to get the

expected reputation score noted as ERpi and appends it to its corresponding record. Hence,
the attacker knows in advance the reputation score (Rpi) that is going to accompany the up-
coming contribution of the next task Tj+1. However, he does not know the new pseudonym
that is going to carry this score. That is why a uniqueness assessment step is required.

Thirdly, through uniqueness assessment, unique reputation scores Rpi monitored at task
Tj+1 are identified. Intuitively, a pseudonym (e.g. RIDj

pi) having unique reputation score
Rpi is linked to the pseudonym having the same unique value of expected reputation ERpi
calculated at task Tj . If the reputation Rpi score is not unique, this means the update process
functions such that multiple participants are assigned the same reputation. In this case, all
the pseudonyms carrying the same reputation at Tj+1 are considered as potential successors.

Therefore, the pseudonym carrying reputation Rpi is linked to the pseudonym with the same
expected reputation ERpi , if they are unique and they both have the same value. The RR
attacker not only links pseudonyms but also contributions from both pseudonyms and records
them in a profiling table under the same identity. An example of a profiling table for a set
of subsequent tasks is depicted in Table 5.1.
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Table 5.1: An example of the profiling table

Task p1 p2 ... pn
T1 ((xT1 , yT1), tT1 , dataT1)RID

1
p1 ... ... ((xT1 , yT1), tT1 , dataT1)RID

1
pn

T2 ... ... ... ((xT2
, yT2

), tT2
, dataT2

)RID2
pn

T3 ((xT3
, yT3

), tT3
, dataT3

)RID3
p1 ((xT3

, yT3
), tT3

, dataT3
)RID3

p2 ... ...
T4 ((xT4 , yT4), tT4 , dataT4)RID

4
p1 ... ... ((xT4 , yT4), tT4 , dataT4)RID

4
pn

T5 ... ((xT5
, yT5

), tT5
, dataT5

)RID5
p2 ... ...

.... ... ... ... ...
TN ((xTN , yTN ), tTN , dataTN )RID

N
p1 ((xTN , yTN ), tTN , dataTN )RID

N
p2 ... ((xTN , yTN ), tTN , dataTN )RID

N
pn

5.4 PrivaSense

We propose PrivaSense, a new privacy-preserving reputation system for participatory sensing ap-
plications. PrivaSense takes into account the attacks considered in the threat model. To deal with
this threat model, we are going to integrate several techniques:

1. An anonymous authentication technique to keeping the anonymity of participants’ identities.

2. A reputation system to enforce the data reliability and to defend against reliability oriented
attacks.

3. A technique for anonymizing contributions’ content to defend against privacy oriented at-
tacks.

4. A technique that defends against RR attack through managing the conflict arisen as a result
of integration between reputation and privacy systems.

The framework of the privacy-preserving and reputation-aware mobile participatory sensing sys-
tem, proposed in this work, is depicted in Figure 5.1. The proposed framework involves four main
parties: a participant pi, an application server noted as App.Server, an authentication server noted
as Auth.Server, and a reputation server referred to as Rep.Server. Participants and App.Server
are the standard parties in any participatory sensing campaign. Auth.Server and Rep.Server are
additional entities that are involved in order to manage the threat model described earlier.

App. Server Rep.Server 
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Figure 5.1: PrivaSense Architecture

The assumptions related to each entity are defined as follows:

� Participant A participant (1) authenticates himself with Auth.Server, (2) selects a task from
the tasks announced by the App.Server, (3) constructs a sensing report (i.e. contribution),
(4) forwards it to the App.Server, (5) re-authenticates with Auth.Server for a new task.

� App.Server The App.Server (1) initiates the sensing campaign, (2) receives from partici-
pants and aggregates sensing reports, (3) assigns a feedback to each contribution, (4) and
forwards this feedback to Rep.Server.
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� Auth.Server is the entity that (1) generates pseudonyms for each participant, (2) Forwards
these pseudonyms to Rep.Server, (3) renews these pseudonyms after each campaign, (4) and
sends the new pseudonyms to both the participant and to the Rep.server. Auth.Server keeps
track of the succession of the participants pseudonyms. These functions allow the Auth.Server
to manage the identity issues where it has not got any information about the participant’s
contributions or about his reputation. Auth.Server is assumed to be honest but curious. It
does not collude with other entities.

� Rep.Server is the entity that (1) receives session initiation information from the participant,
(2) verifies participant’s identity and sends anonymous reputation certificates to App.Server,
(2) receives feedback from the App.Server, (3) uses the feedback to update reputation scores,
(4) receives pseudonym updates from Auth.Server, (5) and links the reputation score of
the old pseudonyms to the current one, (6) discards old pseudonyms. Rep.Server manages
reputation issues while it has no information about participants’ original identities nor contri-
butions’ contents. Rep.Server is also assumed to be honest but curious. It is also considered
to not collude with other entities.
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Figure 5.2: PrivaSense: a detailed scenario

5.4.1 Protocol Overview

The complete scenario of PrivaSense is depicted in Figure 5.2. First, participant pi registers
with Auth.Server. The Auth.server creates the first random authentication identifier RID0

pi as
described in [158] (step 1). This RID0

pi is the first pseudonym granted to participant pi and it is
simultaneously sent to the reputation server (Rep.Server) (step 2). Both pi and the App.Server
communicate to create a session key using an algorithm such as Diffie-Hellman (step 3). The
participant pi then sends this generated session key to the Rep.Server to initialize the session (step
4). Rep.Server records this key and acknowledges pi (step 5). The acknowledgment indicates that
the session has been initiated at the Rep.Server. pi forwards his first anonymous identity RID0

pi
to App.Server along with the session key (step 6). App.Server sends a query about RID0

pi to
the Rep.Server (step 7). Rep.Server checks if the received identifier matches a user identity. If
so, a valid acknowledgment is sent back to the App.Server in line with a reputation certificate
of the considered participant. This certificate contains both his current identifier and his current
reputation score (RID0

pi , R̂pi). Otherwise, a non-valid acknowledgment is sent (step 8). pi senses
his environment, constructs his first contribution, applies a privacy preserving mechanism on the
report contents (e.g. [79]) (step 9). Then, this contribution is forwarded to App.Server (step
10). App.Server accepts the contribution, assesses its trust by applying a reputation management
system (e.g. [220]) and calculates a feedback (step 11). This feedback is shared with Rep.Server
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along with the pseudonym RID0
pi (step 12), to update the reputation score of the considered

participant (step 13). pi contacts Auth.Server to get a new pseudonym RID1
pi by submitting his

last pseudonym RID0
pi (step 14). The old and new pseudonyms are simultaneously forwarded for

both the participant and for the Rep.Server as well (step 15). Rep.Server updates the pseudonym
of each participant. In the following section, the proposed PrivaSense system is explained in detail.

5.4.2 Protocol Description

Our privacy preserving reputation system goes through four consecutive phases, (1) Participant
Registration and Authentication, (2) Issuing a Reputation Certificate, (3) Privacy and Reputation
Assessment, and (4) Re-Authentication. The details of these phases are described as follows:

Participant Registration and Authentication

Through this phase, participant pi joins a sensing campaign. First, pi sends his permanent identifier
( e.g. IDpi) to Auth.Server. The first pseudonym RID0

pi is then generated by Auth.Server. We
assume that pseudonyms are calculated as described in [158] using the public key of Auth.Server
(i.e. kAuth.Server.pub) as shown in Equation 5.1. Only Auth.Server is able to decrypt it and to
reveal the real identity of the participant. This pseudonym is forwarded to both the participant
and Rep.Server.

RID0
p = E(IDpi , r

0
pi)kAuth.Server.pub (5.1)

where RID0
pi is the pseudonym generated, E is an encryption function of the identity IDpi and

a random variable r0pi . kAuth.Server.pub is the Auth.Server public key.
A participant then authenticates himself with the App.Server. First, both the participant pi

and App.Server communicate through some key exchange mechanism, (e.g. Diffie-Hellman key ex-
change mechanism), and generate a session key (kpi,App.Server). The participant sends this key to
Rep.Server along with his pseudonym RID0

pi . Rep.Server records the received data and acknowl-
edges the participant. The participant sends his RID0

pi and the session key previously generated
(kpi,App.Server) to App.Server. App.Server sends these data to Rep.Server asking for the validity
of RID0

pi to make sure that the identity is valid and it has already initiated a session through the
key exchange mechanism. Rep.Server checks the validity of the received anonymous identity and
if the session key matches the one received earlier from this identity. If so, Rep.Server sends a
valid acknowledgment and the reputation score of RID0

pi embedded in a reputation certificate to
App.Server as shown in the upcoming phase. Otherwise, a non-valid acknowledgment is sent.

Registration and authentication prevent malicious participants from launching identity related
attacks such as a report flooding attack. Participants are asked to authenticate themselves before
submitting their contributions. Thus, they can not fabricate multiple authentic identities and
subsequently submit multiple contributions for the same task (i.e. report flooding). In addition,
they could not report false data on behalf of the others since authentication is required before
submitting.

Issuing a Reputation Certificate

RR attackers link participant’s contributions to each other based on the relation inherent in the
reputation accounts. Therefore, we tend to release the relation between consecutive reputation
score of each participant. We adopt a double fold anonymization mechanism. First, we adopt
a cloaking mechanism on the reputation scores before their transfer to the App.Server. Then,
cloaked reputation scores are embedded within anonymous reputation certificates.

Firstly, to anonymize reputation scores, we cloak them by adding a small random noise. Repu-
tation scores are randomly incremented or decremented by a value noted as increment/decrement
amount referred to as ida. This change prevents the App.Server to link two consecutive reputation
scores assigned to the same participant. For this, a random increment/decrement variable noted
as rid is generated such that rid ∈ {0, 1}. 0 is used to increment, and 1 is to decrement. Then, ida
is generated such that it belongs to a specified cloaking interval noted as clkintr, ida ∈ [0, clkintr].
Reputation scores are incremented such that they do not surpass 1 or decremented such that they
are not less than 0. The maximum change imposed on the reputation score is ±clkintr. The cloaked
reputation is referred to as ÂRpi . The cloaking process is formulated according to Equation 5.2.

ÂRpi =

min
{
R̂pi + ida, 1

}
if rid == 0

max
{
R̂pi − ida, 0

}
if rid == 1

(5.2)
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Where R̂pi is the reputation score of pi and ÂRpi is the output cloaked reputation score.
Using large values for clkintr adds more noise to the reputation scores. Intuitively, larger values

of the cloaking interval have a better performance from the anonymization point of view. However,
this has a negative impact on the reputation and, then on the accuracy of the aggregated data.
That is clkintr is a system parameter that manages the trade-off between anonymity and accuracy.
Subsequently, we test this parameter to see its effect on the system performance (e.g. anonymity
and reliability) in Section 5.6.2.

Through this obfuscation process, the obfuscated reputation score of a participant ÂRpi reduces

the linkability to the original score R̂pi . Since, ÂRpi does not perfectly equal to R̂pi . An RR
attacker is unable to directly observe which participant had which score and which pseudonym
previously. This ensures better anonymity and better robustness against the RR attack.

Secondly, the cloaked reputation of a participant is transferred to the App.Server in the form
of an anonymous reputation certificate noted as RCpi . This certificate is generated such that,
it contains both the current pseudonym of the participant, RID0

pi , and its corresponding cloaked

reputation score ÂRpi (See Equation 5.3). Anonymous reputation certificate RCpi is signed by
the Rep.Server’s private key. Therefore, reputation certificate cannot be fabricated and a Replay
attack mentioned before cannot be launched. Furthermore, adversaries have to access the private
key of Rep.Server in order to fabricate a reputation certificate and to have the ability to deceive
the App.Server.

RCpi =
[
RID0

p|ÂRpi
]
kRep.Server.priv

(5.3)

Privacy and Reputation Assessment

Participant pi senses the required observation and constructs a contribution Cpij . We propose that
participants apply one of the existing privacy preserving mechanisms summarized by Christin et.al.
in [79]. Subsequently, the data provided by a participant are anonymized. These data resist the
inference of the original identity of the contribution provider. This ensures the non-associativity
property. Therefore, the effect of data based re-identification attack is mitigated [78, 164]. The
anonymous contribution is subsequently forwarded to App.Server.

In PrivaSense, App.Sever adopts one of the existing reputation systems such as our system
presented in [220]. According to this system, each contribution is evaluated and assigned a feedback
which reflects the participant’s honesty. Feedback is noted as fRID0

pi
. This feedback is forwarded

to the Rep.Server in the following form.

fpi =
[
RID0

pi |R̂Cpi |fRID0
p

]
kApp.Server.priv

(5.4)

Rep.Server depends on this feedback to update the reputation score of the considered par-
ticipant such that participant’s reputation is increased if the feedback exceeds some threshold ϵ.
Otherwise, participant’s reputation is decreased as follows:

Rpi =

min
{
R̂pi + fRID0

p
, 1
}

if fRID0
pi

≥ ϵ

max
{
R̂pi − fRID0

p
, 0
}

if fRID0
pi
< ϵ

(5.5)

Re-Authentication

A participant asks for a new pseudonym to join an upcoming campaign with a different identifier.
Thus, he sends his current identifier RID0

pi to the Auth.Server. Now, Auth.Server knew earlier that
this identity is valid. Thus, this time and in each subsequent renewal, the Auth.Server generates a
new identifier (e.g. RID1

pi) using a new random value r1pi as described in the following equation.

RID1
pi = E(IDpi , r

1
pi)kAut.Server.pub (5.6)

The new identifier is forwarded to both the participant and the Rep.Server in the form of a
new identifier as follows.

NewID =
[
RID0

pi |RID1
pi

]
kAut.Server.priv

(5.7)

There are several reasons for sending both the old and the new identifiers simultaneously to the
Rep.Server. First, the Rep.Server links the reputation score of RID0

pi to RID
1
pi . Secondly, record-

ing this new identity allows the participant to use this new identifier to contact the App.Server
for a new task such that he is correctly validated by the Rep.Server. In addition, the Rep.Server
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discards the old pseudonym RID0
pi such that it cannot be used again by an adversary. Malicious

participants who try to use some old pseudonym (another form of the replay attack) are detected
through the authentication phase since old pseudonyms are discarded.

5.5 Security Analysis

The goal of our evaluations is threefold: (1) analyze the robustness of our proposal against the
threats identified in Section 5.3.2, (2) empirically evaluate the performance of PrivaSense, (3)
compare PrivaSense with the existing systems. The first goal is discussed in this section whereas
the second and the third goals are discussed in Section 5.6.

5.5.1 Objectives

A comprehensive privacy preserving reputation system in participatory sensing campaign has to
guarantee some objectives for the participants. In this section, these objectives are recalled and
PrivaSense is analyzed according to them.

1. Anonymous demonstration : In PrivaSense, reputation scores are transferred from Rep.Server
to the App.Server in a form of reputation certificate. Reputation certificates do not include
original identities of participants, they include the pseudonym of the considered participant.
Thus, reputation scores are anonymously demonstrated. The App.Server can verify that this
demonstrated score is correct while keeping the anonymity of the original identity.

2. Anonymous assignment : A participant is allowed to be anonymously assigned an initial
reputation score. At the beginning of the campaign, Auth.Server sends the first pseudonym
granted for a specific participant. There are not any old pseudonyms assigned to this partic-
ipant. Thus, the pseudonym message just includes this first pseudonym. Rep.Server detects
that this participant has just logged in the sensing campaign. Since then, an initial reputation
score is assigned to this participant. In addition, the feedback calculated according to the
trust of the most recent contributions should be assigned to the correct identity anonymously.
For this, App.Server evaluates the contribution of each participant and assigns a feedback for
the pseudonym of its provider. This feedback is transferred to the Rep.Server, which links
the feedback to the same pseudonym stored at his databases. Therefore, participants are
assigned both initial scores and feedback anonymously.

3. Anonymous reputation update : An old reputation score R̂pi of a specific participant
pi is updated to a new reputation score Rpi according to the considered feedback at the
Rep.Server using the pseudonym of the participant. In addition, participants change their
pseudonyms by asking Auth.Server for a new pseudonym. Auth.Server sends both the old and
new pseudonym in one message to the Rep.Server. Thus, Rep.Server updates the pseudonym
while preserving the same reputation account. Consequently, PrivaSense has the ability
to anonymously update the reputation of participants according to their assigned feedback.
Moreover, it anonymously preserves the reputation accounts even if participants change their
pseudonyms.

The previous objectives concern the process of reputation management and tracking partici-
pants’ behaviors in the absence of participants permanent identifiers. We have argued how Pri-
vaSense could achieve these objectives. Our second concern is to show that these objectives are
ensured such that they do not conflict with the privacy preserving objectives. Thus, looking at the
privacy preserving objectives, we can observe the following:

1. Non-associativity : To avoid the privacy oriented attacks, contributions should not be
associated to a specific identity even if this identity is anonymous. First, contributions are
submitted anonymously (i.e. using pseudonyms), therefore it is difficult to link them to a
specific original identifier. Contributions are associated to the pseudonyms which change for
every interaction. Second, a participant pi applies a privacy preserving transformation to the
contributed content. That is why, it is expected that attackers could not link a contribution
to a specific identity.

2. Un-linkability : Linking multiple contributions to the same identity leads to re-identifying
original identities. We have considered the parameters that are used to link different con-
tributions to a specific identity. First, pseudonyms change after each contribution. This
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unlinks different contributions from the identity. Second, anonymizing reputation scores and
transferring them in an anonymous reputation certificate prevent linking consecutive contri-
butions to a specific identity. Adopting a privacy preserving mechanism on the contribution
content makes it difficult for the attacker to observe the similarity inherited in every two
consecutive contributions.

5.5.2 Attack Resilience

We observe below the resilience of PrivaSense against the reliability oriented attacks:

� Sybil Attack : Through Sybil attack, adversaries try to generate multiple authentic identi-
fiers for the same identity. PrivaSense system is protected against this attack. If the attacker
tries to generate a new RID based on the previous one using a new random number ac-
cording to Equations 5.6 and 5.1, the resulting pseudonym RID will not match any valid
authentication RID stored at the Rep.Server. This is because the attacker does not know
the randomization seed used by the Auth.Server, and hence the attacker will not be able to
generate the same series of randomized RIDs that match the real ones.

� Replay Attack : The attacker cannot directly use the pseudonym RID twice since each RID
is allowed to be used only once and is discarded after the use by the Rep.Server. Replaying
the same pseudonym for the second time will result in failure in the authentication phase.
The Rep.Server by looking up the history of this pseudonym can find that it has joined a
session before. Then, it sends a non-valid acknowledgment to the App.Server. This allows
the App.Server to know that this pseudonym is not valid.

A replay attacker can also attempt to demonstrate a recent pseudonym and an old reputation
score to the App.Server. Attackers are prevented from launching such a replay attack as both
reputation scores are updated and demonstrated by the Rep.Server. Thus, reply attackers can
not access their reputation certificates such that they can replay them. Moreover, attackers
may have the ability to access reputation certificates through sniffing the network. However,
even then they are not be able to replay them since the certificates include pseudonyms which
become invalid after their first usage.

� Reporting falsified sensor readings: Malicious participants may themselves provide the
system with corrupted data or they may provide these data on behalf of the others. Thus,
they cannot only disrupt the system but also degrade the reputation of the others. First,
PrivaSense adopts a reputation system that is responsible for detecting bad contributions
and their providers. Second, if malicious participants try to report falsified sensor readings
on behalf of other participants to degrade their reputation, PrivaSense protects honest par-
ticipants against this attack by requesting participants to authenticate with Auth.Server and
Rep.Server. These entities verify the validity of the pseudonyms before considering their con-
tributions. Such an attack would only be successful if attackers access the original identities
of the targeted participants and those of their respective pseudonyms.

Resilience against privacy oriented attacks:

� Identity and Data Re-identification (IDR): Participants authenticate themselves using
their anonymous identities RID. RID is encrypted by Auth.Server. Thus, it does not reveal
information concerning the participant’s real identity. Therefore, an adversary cannot reveal
the real identity of the sensing report provider unless he has access to the private key of the
Auth.Server. In addition, participants adopt one of the existing privacy preserving cloaking
mechanisms to anonymize their sensed data. Therefore, our system ensures participants
anonymity from both the identity and data point of views.

� Reputation based Re-identification (RR attack): Given that the anonymity of iden-
tity and the sensed data are ensured, the supplementary objective of designing a privacy
preserving reputation protocol is to simultaneously ensure the un-linkability based on the
reputation scores assigned to participants. PrivaSense adopts a double fold anonymization
for reputation accounts. First, Rep.Server forwards an anonymous reputation certificate to
App.Server as described in Equation 5.4. Consequently, the App.Server cannot link the as-
signed reputation score to the original identity. In addition to that, reputation scores are
cloaked based on Equation 5.2. So, App.Server knows only the cloaked reputation related
to pseudonym RID. That is, adversaries (e.g. any entity sniffing the network or even the
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Table 5.2: Default Parameter Settings

Parameter Value
Number of participants for each task, nP 150
Number of adversaries for each task, A 40
The mean value of correct data, µ 60
The standard deviation of correct data 5
The mean value of adversary data, µ+ µ/3 80
The standard deviation of adversary data 0

App.Server) cannot link two consecutive reputation scores assigned to the same participant
based on neither the identity nor the value of the reputation. Rep.Server is the entity that
knows the sequence of randomized identifiers RIDs assigned to each participant. However,
this is not an issue since Rep.Server does not know any more data concerning the participant
(e.g. sensed data).

5.6 Experimental Results

5.6.1 Evaluation Setup

Simulation Model

Let us now describe the simulation model of a noise monitoring participatory sensing application
similar to [242]. Each simulation involves running the example application in the sequence de-
scribed in Section 5.4. Each participant is assigned GPS timestamps and coordinates taken from
a taxi mobile traces real dataset [238]. The dataset contains the GPS timestamps and coordinates
of approximately 500 taxis collected in the San Francisco Bay Area. For the first interaction, the
Rep.Server simply assigns participants with some initial reputations while subsequent reputation
values are calculated as described in Section 5.4.2.

We synthesize the noise distribution in an urban environment by assuming the data agree with
the real noise levels described in [86]. We consider a quiet sensing area where the mean µ and
standard deviation of the correct noise data is 60 db and 5 db respectively. An honest participant
sends correct sensing data. We also include malicious participants in the simulation to reflect a
more realistic usage scenario. A malicious participant sends false sensing data. We set the false
data to contradict with the correct data. Therefore, the mean of false data is µ + µ/3 (i.e. 80
db). This means that malicious participants contribute data which correspond to a completely
different level of noise. Thus, even one false report has a significant impact on the measurements.
In addition, all false reports support each other. Thus, the standard deviation of false data is set
to 0. Hence, we look for the worst case when all malicious participants collude to cause the biggest
possible disturbance to the system. Table 5.2 lists our default parameter settings.

Evaluation Metrics

We evaluate our proposal according to three metrics to measure the levels of anonymity and
reliability as follows:

Links First, RR Links metric measures the number of contributions linked to their successors in
each campaign based on the RR attack defined in Section 5.3.2, whereas, PrivaSense Links are the
number of links detected based on RR attack even after the adoption of PrivaSense.

Linkability PrivaSense makes the Links metric irrelevant, because not only the participant’s
identity and data are anonymized but also the reputation scores. Thus, the links that can be
detected due to the reputation scores are mostly removed. To measure the effect of PrivaSense
on the participants’ anonymity, we use another metric called linkability. For this metric, a set of
potential successors of each pseudonym is defined such that it contains a list of pseudonyms that
can be the successor of the target participant. A larger potential successors set ensures a better
anonymity. Note that the following description is applied to one reputation update. First, the
Euclidean distances between the location of RID0

pi and the location of all the pseudonyms used for
providing subsequent contributions are calculated. Then, the pseudonyms which ensure a distance
less than λ are considered as the potential successors for RID0

pi . Next, an adversary selects a
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subset of the potential successors whose reputation scores are closer to the reputation of RID0
pi

noted as (βs). The linkability metric is defined as 1
βs
. Smaller values of this metric indicate better

anonymity and vice versa. We have considered linkability according to location and reputation
scores. Whereas, both time and sensed data can also be incorporated. Intuitively, this would result
in higher levels of linkability.

Accuracy App.Server calculates a weighted sum of the aggregated data using reputation scores
as weights. To measure the disruption incurred due to the anonymization of reputation scores,
we compare the RMSE of the average noise levels calculated based on the anonymized reputation
scores against the RMSE calculated using the original reputation scores without anoymization.
RMSE measures how much error there is between two data sets. In other words, it compares a
predicted value and an observed or known value. The RMSE between two vectors of values is
defined as follows:

RMSE =

√∑nc
i=1 (υ1,i − υ2,i)2

nc
(5.8)

Where nc is the number of contributions, υ1,i, υ2,i is the ground truth and the collected data
respectively.

5.6.2 Results

Privacy

Links In this experiment, we measure the effect of RR attack. We compute the number of con-
tributions that can be linked to their successive contributions in each two consecutive campaigns.
clkintr is set to 0.5. This value imposes a slight effect on cloaking reputation scores beside assuring
an acceptable level of anonymity. The results are depicted in Figure 5.3. It is evident that a
large number of participants are linked to their contributions. In sub-figure (a), where P=100, RR
attack detects around 40 up to 60 RR links out of 100 contributions received from 100 participants.
Which means, on average, that half of the contributions are linked to their successors. Whereas
in sub-figure (b), where P=300, the number of RR links detected vary from 30 to 80 out of 300
contributions (i.e. on average approximately 20% of RR links detected ). However, in sub-figure
(c), the links detected almost exceed in range 60 to 90 links with each interaction. In sub-figure
(d), the number of participants becomes 500, where the number of the links detected decreases.
This is because the number of participants increases leading to more repetitions in the reputation
score assigned and subsequently less uniquenesses and less links detected. That is, the number of
RR links detected depends on the number of participants P involved in the campaign. In our ex-
periments, we observe between 20% and 50% links detected. We may estimate that approximately
35% of RR links are detected on average.

In the same figure, we can notice the links detected when PrivaSense is adopted. In both sub-
figures (a) and (b), the PrivaSense links detected are very small. This is because the anonymization
of the reputation scores added to using anonymous certificates as described in Section 5.4.2 are
effective. The few PrivaSense links detected refer to the ones for which the noise added is zero (i.e.
ida = 0), since ida ∈ [0, clkintr]. That is, the links detected can be removed if we do not include 0
as a member of the cloaking interval. That is ida ∈ (0, clkintr] since zero as a noise conserves the
original values and subsequently keeps the links.

Linkability In this experiment, we measure the linkability metric as depicted in Figure 5.4. We
show the linkability for a subset of participants selected randomly from the dataset, as well as
the average values of this metric over all participants. We set clkintr to 0.5 and 0.3 and show the
results in Figure 5.4 (a) and (b) respectively.

From the results of RR attack, we concluded that adversaries can construct a profile for each
participant. Then, we attempt to measure the effect of PrivaSense to defend against this attack. In
the results of our system depicted in Figure 5.4 (a), the average probability of a successful linkage is
reduced to around 30% at the beginning of the sensing campaign with the first reputation update.
As time progresses, the average probability continues to decrease and it reaches 6% at the end of
the campaign. This is equivalent to a 94% average improvement. To explain the declining trend
in Figure 5.4, we recall that the linkability technique works on location coordinates in successive
time intervals. That is, if the adversary made a false link between contributions in Task t and
t+ 1, the error in the spatial information would propagate and compound to that at t+ 2, which
makes it increasingly difficult to track participants.
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Figure 5.3: Number of links detected using RR attack with and without the protection provided
by PrivaSense

In Figure 5.4 (b), we have used a much lower value of cloaking range clkintr. We can see
that the average linkability starts at 50% at the beginning of the sensing campaign and decreases
to around 20% at the end of the campaign. This is equivalent to 80% average improvement.
Comparing the results in sub-figure (b) with the one in (a), we can conclude that using higher
values for clkintr in Sub-figure (a) allows for much lower values of the average linkability. This
leads to better anonymity.
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Figure 5.4: The linkability for randomly selected participants

According to this experiment, it is clear that our reputation cloaking mechanism introduces
better anonymity and un-linkability for the participants engaged in the sensing campaign. However,
we should now evaluate the effect of using such cloaked reputation scores on the aggregation of the
collected data to define how much it deviates from the aggregation based on the original reputation
scores.

Accuracy In this second experiment, we have used different values of clkintr to cloak the rep-
utation scores. Although, using large values for this parameter allows for better anonymity and
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un-linkability, as demonstrated in the previous experiment, it also affects the accuracy of the ag-
gregated data. We consider a real world participatory sensing application as discussed above.
Figure 5.5 (a) depicts the average of the weighted sum of the aggregated contributions. R − avg
denotes the weighted sum average of the contributions using the original reputation scores as
weights. clk − 0.1, clk − 0.3, clk − 0.5, and clk − 0.7 are the average weighted sum of the contri-
butions based on the cloaked reputation scores using different values for the cloaking interval (i.e..
clkintr ∈ {0.1, 0.3, 0.5, 0.7}). The figure also includes the average of the aggregated data calculated
without incorporating any weights noted as N − avg.

It is clear from figure 5.5 (a) that, the normal average N − avg calculated without adding any
weights is far from the ground truth while the reputation based average R − avg is much closer
to the ground truth. It is obvious that incorporating reputation scores in data aggregation gives
better insights about the ground truth. In addition, it is clear from the figure that each of the
averages calculated based on the cloaking intervals of clk − 0.1, clk − 0.3, clk − 0.5, and clk − 0.7
do not deviate significantly from the average calculated based on the original reputation values
R− avg. That is, our cloaking does not disrupt the aggregated data significantly.

To better quantify the distortion occurred due to the incorporation of our reputation cloaking
mechanism, we measure the RMSE for the same experiment and depict it in Figure 5.5 (b). It
appears that the RMSE calculated according to the actual values of the reputation scores, R−avg,
has usually a lower RMSE value compared to those calculated based on cloaked reputations. In
addition, using lower values of cloaking intervals clkintr ensures RMSE values which are closer to
those calculated according to the actual reputation scores (i.e. RMSE(R− avg) < RMSE(clk −
0.1) < RMSE(clk − 0.3) < RMSE(clk − 0.5) < RMSE(clk − 0.7)). That is, cloaking based on
lower values of cloaking interval clkintr allows for aggregating data closer to the ground truth and
a lower RMSE.
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Figure 5.5: The effect of cloaking interval’s size on the aggregated data and RMSE

Comparisons

Table 5.3 provides us with a general overview of the objectives considered of our work compared
with the previous work. It is clear that the work presented in [148] is the one that tries to ensure
the same privacy objectives.

We compare our proposal against a state of the art previous work [148]. This work specifically
intended to ensure the same objectives and to defend against the same attacks as PrivaSense. That
is, we compare the RMSE of the aggregated data based on [148] with the RMSE of PrivaSense. In
Figure 5.6, the RMSE of PrivaSense has lower values compared with the previous work by Huang
et al. This shows that the aggregated data according to our proposal can be more accurate.

To summarize, PrivaSense introduces better anonymity through better un-linkability. In addi-
tion, the aggregated data are more accurate compared with the previous work [148]. In PrivaSense,
the overhead for generating pseudonyms has been transferred to the Auth.Server and Rep.Server.
In contrast, in the literature, participants are usually engaged with other entities in order to
generate their pseudonyms. This ensures that in PrivaSense, participants’ devices are much less
overloaded with cryptographic and computational tasks which may lead to battery drain. We
consider implementing a real world application and measuring the battery drain as a future work.
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Table 5.3: Comparison of the systems
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Dua et al. [105] Hybrid TPM N-anon
√

- - - - - - - - - -
Dua et al. [104] Hybrid TPM N-anon

√ √
- - - - - - - - -

Gilbert et al. [118] Hybrid TPM Anon
√ √ √

- - - - - - - -
Saroiu et al. [254] Hybrid TPM Anon

√
- - - - - -

√
- - -

Gilbert et al. [119] Hybrid TPM N-anon
√

- - - - - - - - - -
Reddy et al. [245] Hybrid Rep N-anon - - -

√ √
-
√

- - - -
Reddy et al. [244] Hybrid Rep N-anon - - -

√ √
-
√

- - - -
Huang et al. [147, 149] Hybrid Rep N-anon - - -

√ √
-
√
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Figure 5.6: The effect of cloaked reputation scores in different systems

5.7 Conclusion

In this work, we proposed a privacy-preserving reputation system, PrivaSense, for participatory
sensing applications. Our system adopts registration and authentication phases that ensure par-
ticipants’ anonymity and improve the system resilience against the Sybil and replay attacks. In
addition, a privacy preserving mechanism is adopted for the contents of the participants’ con-
tributions, which prevents adversaries from using the data to infer the identity of participants.
Moreover, data reliability is ensured due to the incorporation of a reputation system. Finally,
PrivaSense adopts a mechanism to cloak the reputation scores of participants. That is, the par-
ticipants can not be linked to their contributions according to their assigned reputation scores.
The discussion and the results obtained based on a real dataset demonstrate that the PrivaSense
system ensures better anonymity and un-linkability with a ratio that reaches about 80%, with a
much low mean square error introduced into the aggregated data. For future work, we would like
to consider ensuring the same objectives within a system model that avoids relying on trusted
entities such as Rep.Server and Auth.Server.
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Chapter 6

Anonymous Voting using
Distributed Ledger-assisted Secure
Multi-Party Computation

High voter turnout in elections and referendums is desirable in order to ensure a robust democ-
racy. Secure electronic voting is a vision for the future of elections and referendums. Such a
system can counteract factors that hinder strong voter turnout such as the requirement of phys-
ical presence during limited hours at polling stations. However, this vision brings transparency
and confidentiality requirements that render the design of such solutions challenging. Specifically,
the counting must be implemented in a reproducible way and the ballots of individual voters must
remain concealed. In this work, we propose and evaluate a referendum protocol that ensures trans-
parency, confidentiality, and integrity, in trustless networks. The protocol is built by combining
Secure Multi-Party Computation (SMPC) and Distributed Ledger or Blockchain technology. The
persistence and immutability of the protocol communication allows verifiability of the referendum
outcome on the client side. Voters therefore do not need to trust in third parties.

This chapter is an adapted version of the paper: “A Transparent Referendum Protocol with
Immutable Proceedings and Verifiable Outcome for Trustless Networks.” M. Schiedermeier, O.
Hasan, L. Brunie, T. Mayer, and H. Kosch. In Proceedings of the 8th International Conference on
Complex Networks and their Applications. December 2019. Pp. 647-658.

6.1 Introduction

In recent years, a sharp decline in voter turnout has been observed in major elections [208]. For
example, in the 2022 French legislative elections, the turnout was only 46.2% in the critical second
round of the elections [90]. The voter turnout for the 2018 US midterm election was at 53.4%
[63]. Though, compared to previous elections this is a high value, almost half of the population at
voting age did not make use of their right to vote. In the US midterm elections in 2014 and 2010,
the turnout was as low 36.7% and 41.8% respectively [44].

It is a longstanding goal to render the voters’ active participation as effortless and convenient
as possible in order to discourage low voter turnout. A secure voting system based on remote
clients could greatly improve the flexibility of potential voters. It would significantly reduce the
administrative overhead of postal voting and eliminate voters’ obligations to be physically present
at a voting station during limited hours.

In this work, we focus on referendums, which can be seen as a special instance of elections,
with only two options offered for vote. Even though referendums are a simpler case of elections,
implementing them correctly is still challenging [84] [266]. Many parties may have an interest in
manipulation of the outcome. Furthermore, we consider the context of trustless networks, where
we assume that participants place little to no trust in one another and there does not exist a central
trusted authority, or such an entity is not desirable. A breach of the ballot-secrecy may result in
harmful consequences for voters. Given this sensitive context, voters naturally seek solutions they
can trust.

The classic analog way of conducting a secret referendum is having voters cast their ballots into
boxes. This way they remain unlinkable to their votes. However, the logistic effort that is required
for such an approach is tremendous. Ballot boxes must be set up, ballots with voting options must
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be printed and afterwards the counting must be realized by fair participants. The complex chain
of implicit actions makes it hard to provide a proof of compliance for every single step. In this
work, we try to address this problem with an electronic-referendum scheme that puts emphasis on
transparency that is to say, full client-side verification of correctness.

6.1.1 Contribution

We propose a transparent referendum protocol with immutable proceedings and verifiable outcome.
We define this immutability as the impossibility to tamper with the log of participant actions.
Although there already exist protocols with similar ambitions, they usually require trusting third
parties. We suggest a protocol that is based on a creative combination of existing cryptographic
tools. In order to achieve transparency, we also asses the viability of our proposal considering
mobile clients and discuss to which extent the protocol can withstand adversary attacks. Our
evaluation concentrates on confidentiality of votes, transparency and immutability of proceedings
and a verifiable outcome.

The key idea behind our contribution is to use a blockchain as a complete log of all communi-
cation between participants. While the secrecy of individual votes is ensured by an SMPC scheme,
the log allows anyone with access to the ledger, to autonomously compare the actual proceedings
to the expected protocol. This verification can occur locally. Participants therefore gain proof of
correctness by themselves and not via third parties.

6.1.2 Outline

In this chapter, we first give an overview of related work (Section 6.2). Some of them follow
strategies that are very different to our approach. We point out the issues that they pose and how
we intend to address them. Next comes a presentation of our model (Section 6.3), followed by an
enumeration of the cryptographic tools we apply within our protocol (Section 6.4). Afterwards,
we delve into the exact phases and actions that describe our protocol (Section 6.5), followed by
an evaluation in two parts. The first part (Section 6.6) discusses how well our initial objectives
are met by the proposal. The second (Section 6.7) provides a security analysis where we evaluate
different adversary strategies and their potential impact. Finally we present our conclusions and
delineate the potential topics of further investigations (Section 6.8).

6.2 Related Work

In this section, we present articles that discuss how to design a protocol for electronic referendums.
For each one, we outline the key idea and highlight associated disadvantages.

In [47] the authors describe how secret sharing schemes can be used as SMPC for Secret-
Ballot elections. This work unarguably is the cryptographic foundation to our proposal. However
Benaloh’s formal model by itself provides no practical transparency for the participants. In his
approach, security lies entirely in the applied threshold system, that is to say, participants have
no dynamic feedback on the effectiveness of the applied security mechanisms. Our proposal not
only protects the privacy of voters, it also transparently monitors if ballots have been potentially
compromised.

In [94], an architecture for a privacy-aware electronic petition system is suggested and evaluated.
As petitions typically express only two opinions (non-participation meaning approval, participation
meaning disapproval to a topic), it can be considered a referendum system. The core element in
this approach is involving anonymous certificates to elegantly restrict the referendum to eligible
participants and eliminate double-spending in a privacy aware manner. However the suggested
protocol does not provide enough transparency for an anonymous voter’s participation: The act
of participation by signing is not publicly transparent, therefore a dishonest petition server could
discard signatures. The outcome would be indistinguishable from a case where the voter has never
even contacted the server. Notably the voter has no way to prove the misbehavior of the signature-
server. While our approach also involves anonymous credentials, we make sure that the semantic of
issued tokens is independent of effectuated voting decisions. This allows us to ensure transparency,
which ultimately renders dishonest server behavior detectable.

[300] and [301] provide a description of the distributed ledger-enabled privacy-preserving compu-
tation platform, ENIGMA. Our contribution differs in two aspects: 1) ENIGMA was not explicitly
designed for referendums. Though the authors mention a general compatibility for such scenarios,
its applicability for this context is not assessed in much detail. 2) In their platform, the ledger is
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neither an exclusive data-store, nor is it used as the exclusive channel for inter-participant com-
munication. Therefore participants do not obtain the same level of communicative transparency
as in our solution.

[87] rely on a threshold system that can defend the secrecy of ballots up to a fixed number of
colluding adversaries. However, their protocol provides no control mechanism to monitor whether
such collusion was attempted or has already occurred. As such voters can not obtain certainty
that their votes have actually remained undisclosed.

[65] identified similar objectives. They introduce a metric to measure voter privacy and examine
how compromised systems perform under that metric. In reaction to this evaluation, they then
suggest a protocol that performs well, given the metric. However, their protocol does not provide
mechanisms for some other important goals, such as the prevention of ballot dropping.

The proposal by [189] discusses an IoT enabled protocol. The presented approach gains security
by persisting encrypted votes in a blockchain. However there are two fundamental differences to
our approach: 1) It does not include a client side analysis of communication meta-data, excluding
an additional verification of protocol proceedings. 2) In the described model, there is a clear
and intentional separation between the blockchain infrastructure and the voting devices. For
registration and notably casting of ballots, the voters access the blockchain via a gateway. This
separation of blockchain and clients also eliminates the possibility to perform integrity checks on
client’s side. Clients thus have to rely on external entities for full integrity checks of the blockchain.

[182] describe a blockchain based voting protocol. In contrast to our proposal, their solution
involves a trusted third party for vote filtering. [37] also suggest a blockchain based voting system.
However, in their system the blockchain arranges persisted votes in an immutable order. Therefore,
voters can not update their vote, once it has been submitted. Our system does not rely on such
a mechanism and therefore does not come with this restriction. In [249], the authors introduce a
taxonomy of further notions for distributed voting protocols.

Song et al. [265] tackle the problem of scalability in anonymous voting implementations on the
Ethereum platform. They identify several bottlenecks that impede scalability of prior solutions
on Ethereum. One of the issues they resolve is the tallying failure due to the “no vote” from
registered voters. The scheme demonstrates substantioal reduction in “gas” (the unit of resource
consumption on Ethereum). For example, with 60 voters, the scheme consumes 1/53 of the gas
compared to another state-of-the-art solution.

Zaghloul et al. [290] introduce the d-BAME electronic voting scheme that emphasizes mobility
in addition to anonymity. The scheme relies on the participation of two opposing parties to ensure
election integrity and accountability. The proposed scheme preserves voter privacy by using secure
multiparty computations, which must be performed by parties that have conflicting allegiances.
Their simulations show that the scheme can be deployed on smartphones in large-scale elections.
Similar to our work, Zaghloul et al.’s scheme leverages blockchain as a public tamper-resistant
bulletin board. However, they use a blockchain platform that implements smart contracts, whereas
we do not impose this requirement in our work. Moreover, we note that in contrast to Zaghloul et
al.’s proposal, our scheme does not have the requirement of the participation of opposing parties
in the voting process.

Onur and Yurdakul [228] propose ElectAnon, a ranked-choice election protocol that focuses on
anonymity, robustness, and scalability. ElectAnon uses zero-knowledge proofs to enable voters to
cast their votes anonymously. Experiment results show that ElectAnon reduces “gas” consumption
on Ethereum by up to 89% as compared to the state-of-the-art. The work also discusses how to
reduce the requirement of trust in the election authorities.

Uribe et al. [278] describe anonymous voting solutions specifically for Decentralized Au-
tonomous Organizations (DAOs). They observe that current DAOs use voting schemes that are
not anonymous. According to the authors, the lack of anonymity in DAO voting results in numer-
ous issues when it comes to confidentiality, voter influence, and voter turnout. Uribe et al. present
a voting scheme for DAOs that enables confidentiality, in addition to maintaining ballot integrity.

6.3 Our Model

6.3.1 Participants

We distinguish between physical entities, identifiers and roles. Each physical entity possesses a
unique and anonymous identifier. Furthermore, there are three roles that the physical entities can
personify. A single entity can personify multiple roles, but not all combinations are allowed. The
restrictions are explained in section 6.3.1.
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Roles

Our protocol involves the following roles:

� Initiator: The initiator ensures all participants obtain the information required for the
protocol execution. This role I is represented by a single physical entity init. The initiator
provides a referendum context that comprises all information required by other participants
to follow the referendum procedure. It is the only action init ever performs. He notably
does not participate in the subsequent voting or counting. The physical entity behind init
must not personify another role. This restriction hinders collusion, as it isolates referendum
preparations from the entities executing the protocol.

� Voters: Voters are the devices of natural persons eligible to provide their opinion on the ref-
erendum context. We define the eligible set of k physical voter entities to a given referendum
as: V = {v1, ..., vk}.

� Workers: Workers contribute to the execution of the protocol’s underlying SMPC and
provide intermediate results required to compute the referendum outcome and verification
checksum. The set of n physical worker entities is a subset of the voter entities: W =
{w1, ..., wn}, W ⊂ V . Workers are an example for physical entities personifying multiple
roles. The physical entity behind each worker also, at some point acts as a voter. One
advantage of this decision is that the total amount of entities, required to run our protocol
decreases by | W |. In general, allowing a single entity to act on behalf of multiple roles is
critical, as this gathers additional information at an entity. However, in this case the applied
security mechanisms ensure that knowledge about a single ballot does not enable the worker
to infer further information.

Identities

When we talk of participants P , we implicitly mean the physical entities behind voters and workers.
Although with the definition P = V ∪ W , P is equal to V , we intentionally introduce P for
participants. Participants do not know one another directly, but only by an anonymous pseudo-
identifier p̄. Likewise we introduce the set of all pseudo-identifiers as P̄ . Only for illustration
purposes, we denote a mapping function id : P → P̄ that translates a specific entity p ∈ P to its
associated identifier p̄ ∈ P̄ . It is important to state that in practice no entity must ever possess
such a function. Participant anonymity is an essential element in our protocol. From this point
on when we talk of identifiers, we implicitly mean pseudo-identifiers. Each participant holds a
keypair. The private key is used for signatures and decryption. It never leaves the participant.
The public key is used for encryption and also serves as a participant’s identifier. We assume,
that the initiator holds a complete list of all eligible voters’ identifiers V̄ = {id(v) | v ∈ V }. We
consider this to be a fair assumption, since Diaz et al. demonstrated how anonymous credentials
can be issued among eligible voters, using an external credential server [94].

6.3.2 Ledger

A key component of our model is an immutable and integrity-protected data-store that is directly
accessible by all participants. This is the ledger L. Access to the ledger enables the retrieval of
persisted records and submission of new records. Persisted records however can be neither modified
nor erased.

Ledger-Restricted Communication

Every participant locally operates a ledger-access node that allows him to retrieve records, sub-
mit new records and notably fully verify the ledger’s integrity locally. We use the ledger as the
exclusive communication medium among participants. As participants only know one another
by their identifiers, they exchange messages by adding and polling ledger records whenever they
communicate.

Message Notation

Every record added by communicating participants represents a message of format mαβ . The
index α specifies the sender’s identifier, β the recipient’s identifier. In case of broadcast messages
no recipient β is provided. We distinguish between the following message types:
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� bα with α = id(init)
The Initiator’s broadcast message, specifying the referendum parameters.

� sαβ with α = id(vi), vi ∈ V , β = id(wj), wj ∈W
A voter sending a voting-related message to a worker.

� rα with α = id(wj), wj ∈W
A worker’s broadcast message that contributes to the referendum outcome.

� cα with α = id(wj), wj ∈W
A worker’s broadcast message that contributes to the referendum validation.

The authenticity of message origins is ensured by the author’s signature. As the registration of
voters’ public keys, described in 6.3.1, can be realized over the ledger, it is fair to assume a trusted
key-exchange among participants, prior to the referendum execution.

6.3.3 Adversary Model

We consider all voters and workers as potential adversaries. In section 6.5.2, we outline the exact
expected behavior of referendum participants. Our adversary model covers that any Voter or
Worker may deviate from this expected behavior at any time.

Malicious communication

In terms of message exchange, we consider:

� submission of syntactically incorrect messages, for instance messages that lack mandatory
meta-information such as the signature.

� submission of semantically incorrect messages. This notably covers the submission of values
out of a legal range, as well as incorrect result-values for delegated computations. This may
also arise for header information, such as the sender field.

� submission of messages that by format or content are not covered by the phase in progress.

� inactivity where interaction is requested, that is deliberate non-communication.

Adversaries may deviate from the expected behavior individually or in groups.

Assumptions

We assume that all information in bid(init), verifiable by each individual participant, is correct.
This is a fair assumption, as the referendum will not take place unless the participants agree to
the published parameters. Furthermore, we assume that it is infeasible for adversaries to fake RSA
signatures or break encrypted messages. Adversaries are not able to resolve the physical identity of
other participants by inspecting network traffic. This is realistic if participants use TOR. Finally,
we assume that adversaries do not have the resources to break the ledger’s integrity. We assume
that the ledger is based on a blockchain thus this property is ensured. One of the characteristics of
blockchains is that it requires a practically infeasible computational effort to break their integrity
protection [113]. We assume that the protocol either results in a provably correct result, or the
participants can detect anomalies. However, we do not expect the participants to correct detected
issues.

6.3.4 Objectives

We set the following four objectives for our proposed protocol:

1. Confidentiality : The referendum must be conducted in such a way that it is impossible
to infer the choices made by individual voters (other than what can be inferred from the
outcome).

2. Transparency : The referendum must be transparent. This means that every participant
must obtain a complete trace of the operations performed, by whom and when. This notably
covers the communication among participants throughout the referendum.
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3. Verifiability of the outcome : The referendum result must be verifiable to every partici-
pant. That means he must be able to autonomously evaluate the correctness of the result.

4. Immutability of Proceedings: Proceedings are the logs of all actions performed by par-
ticipants from the moment of referendum initialization until the determination of the result.
Proceedings must arise directly upon execution of the described actions. Once persisted,
proceedings must be immutable. That is to say it must be impossible to modify or even
delete persisted proceedings.

6.4 Building Blocks

6.4.1 Secret Sharing Scheme

We chose the SEPIA [202] specification of Shamir’s Secret Sharing, due to its good documentation
and ease of integration. Shamir’s Secret Sharing is an instance of SMPC schemes. As such, it
allows to perform computations without having to reveal the original inputs to individual parties.

(t, n) Threshold Systems

A (t, n) threshold system allows splitting a secret into n shares in such a way that any t of
them suffice to reconstruct the original secret. Subsets with less than t shares do not reveal any
information about the secret. If the shares are distributed to multiple parties, we can create an
effective mechanism against collusion. If shares of a secret are distributed among n parties, t of
them must cooperate, to reconstruct the secret. With a greater value of t, the protection against
collusive reconstruction rises. However, in case of a desired reconstruction, increasing the offset
between t and n leads to enhanced robustness, as it makes the reconstruction redundant to the
unavailability of single parties. The ratio of t to n can thus be adjusted, to meet a distributed
protocol’s security and robustness requirements.

Homomorphic Operations

We make use of a secret sharing scheme that supports additive and multiplicative homomorphic
operations. This means the secret sharing scheme provides a way to perform operations on the
shares of different secrets, so that the fusion of the resulting shares provides values that are equiv-
alent to calculations done on the original secrets. Shamir’s secret sharing supports both additive
and multiplicative homomorphic operations. However the multiplicative component has side effects
that limit its practical application. Specifically, it increases the amount of shares required for a
later reconstruction of the result value. This problem is was first mentioned in [47]. The practical
consequences for our protocol are discussed in section 6.7.

6.4.2 Distributed Ledger Technology

Our protocol relies on a precise log of communication that cannot be tampered with. We therefore
use Distributed Ledger Technology as the communication channel among participants. Specifically,
using a blockchain ensures that manipulation of persisted data is computationally infeasible. To
do so an adversary would have to outperform the honest majority of mining participants.

6.4.3 Asymmetric Encryption

Although our protocol requires a complete listing of communication meta-data, there are good
reasons to delimit the content of messages to the recipient. We therefore use asymmetric encryption
to generate public-private keypairs which allow encryption and decryption of directed messages.
Furthermore, these keys are used for message signing and authorship validation.

6.4.4 Anonymous Credentials

Anonymous credentials allow a restricton of services to specific users, without a need to verify
identities at the moment of access. The key idea is to introduce an external entity that hands
out cryptographic tokens to eligible users [74]. Those users can later use their credentials to
gain admission to an access controlled service. Though modern implementations [199] respond to
advanced requirements such as detection of double spending or a privacy aware verification of user
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Figure 6.1: Illustration of referendum participants connected as blockchain nodes. Every refer-
endum participant replicates the ledger. Although the nodes constantly synchronize, referendum
related messages are exchanged exclusively via ledger-records. Therefore all clients hold a trans-
parent copy of the proceedings. As pictured above, the protocol does not bind specific roles to
particular hardware.

specific attributes, we only make use of the key feature, as it allows the anonymous registration of
eligible voters.

6.5 The Protocol

The key idea behind our contribution is to use the ledger as a complete log of all communication
between participants. This allows anyone, with access to the ledger, to autonomously compare
the actual proceedings to the expected protocol. This verification can occur locally. Participants
therefore gain proof of correctness by themselves and not via third parties. Furthermore, the
anonymity of individual participants poses a hurdle for communication via side channels. This is
discussed in more detail in section 6.7.

As our protocol is based on a secret sharing system, the introduction of a public ledger is
counter-intuitive. Secret sharing systems usually gain security by dividing information into separate
shares. Yet we suggest to store such shares side by side in a public ledger. We make this design
feasible, by additionally protecting persisted shares with asymmetric encryption. This ensures that
only an intended target entity has access to a specific set of sensitive information. At the same
time, the ledger as an exclusive communication channel allows us to monitor the message meta-data
of all participants. This allows clients to autonomously verify the absence of adversary collusion,
targeted on the underlying (t, n) threshold system. Secret communication via side-channels is
difficult as participants only know one another by their anonymous identity.

6.5.1 Protocol Overview

Our referendum protocol is based on a secure multi-party computation scheme, with the restriction
added that all inter-participant communication occurs exclusively over a public ledger. That is to
say, parties can only communicate by placing public messages in the ledger. Messages clearly state
the recipient and are furthermore signed by the author. This provides a transparent and clear
trace of all arising inter-participant communication.

The SMPC by itself allows a privacy aware computation of the referendum outcome. The
SMPC’s homomorphism ensures that computing entities do not learn about sensitive input data,
since they work on an encrypted transformation of the data.

Proof of conformity to the designated protocol is supported by the ledger’s immutability. Voters
can analyze communication meta-data of the executed SMPC. This way every participant can assess
whether the actual communication followed the protocol. As all information required to perform
this validation is stored in the ledger, referendum participants can implement all compliance checks
locally, without the need to trust third parties. This allows the protocol to function in a trustless
network environment.

Ultimately, after a successful validation of the proceedings, each voter holds the certainty that
the outcome was determined correctly and no vote has been compromised.

6.5.2 Protocol Outline

Figure 6.2 illustrates how individual roles chronologically submit and retrieve messages to the
ledger. For each action, it also indicates the corresponding protocol phase.
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Figure 6.2: Illustration of protocol phases. Downward arrows indicate the persistence of messages
types into the ledger, upward arrows indicate the lookup of messages (indicated by type). Time
advances from left to right.

1. Initiation : In this step, the referendum conditions are written to the ledger: Referendum
context, voting options, identities of registered voters, etc.

2. Vote submission : Voters look up the referendum conditions and deposit their ballots,
secured by the secret sharing scheme and asymmetric encryption.

3. Intermediate result computation : Workers perform homomorphic operations on the se-
cured ballots, then write intermediate results and checksums back to the ledger.

4. Determination and validation of the outcome : Voters pick up the intermediate results
and checksums to determine the final outcome and run verifications.

The next section provides more details regarding the individual phases.

Initiation

The goal of the first phase is to ensure that all participants operate on identical referendum
parameters. The referendum initiator init ensures this with a single broadcast message:

1. init places an initial broadcast message bid(init) in the ledger. The content of this message,

b̃id(init) accumulates all static referendum parameters. It includes:

� The identities (public keys) of all eligible voters: V̄ = {id(vi) | vi ∈ V }.
� A subset of identities that names the designated workers: W̄ = {id(wj) | wj ∈ W} as
well as the individual share affiliation. The latter is required by the voters in the next
phase, so they know which share belongs to which worker.

� The referendum context and semantics of numeric voting options. This can be for
instance:
Are cats cooler than dogs? Yes = +1, No = −1.

� A set of time-stamps (or block numbers) that define the transitions between subsequent
phases Q = {q1−2, q2−3, q3−4}. The fixed time stamps (or block numbers) are required
to ensure that at the start of each phase all required input data is present in the ledger.
As q1−2 marks the transition to phase 2, this timestamp matches the moment of placing
bid(init) in the ledger.

By communicating these conditions through a ledger, all participants obtain the exact same
understanding of the expected referendum proceedings. This initial message contains all
information required to outline further communication among participants.

Vote Submission

In the second phase, voters cast their votes. Each voter vi ∈ V does the following:

1. vi retrieves the initiator’s broadcast message from the ledger.

2. vi secretly chooses his personally preferred voting option and determines the corresponding
numeric value ψi. The mapping is specified in bid(init).

3. Based on ψi, voter vi then generates a set of n shares {σi1, ..., σin}. He does so following a
(t, n) threshold secret sharing scheme. The exact parameters for this step are provided in
bid(init).
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Figure 6.3: Illustration of vote submission by a voter vi and intermediate result computation by a
worker wj . Note that all messages arising throughout these steps are persisted in the ledger.

4. Each generated share is intended for a specific worker wj . Voter vi encrypts each generated
share σij with the corresponding worker wj ’s public key w̃j . The exact mapping of shares to
workers is once more described in bid(init). The target worker’s id is also the public key to
use for encryption.

5. vi packs all n cypher-shares s̃ij = pubj(σij), j ∈ {1, ..., n} individually into n messages sij
and initiates their persistence in the ledger. The horizontal arrows in Figure 6.3 illustrate
this step.

Voters can perform the above steps until timestamp (or block number) q2−3 is reached. Repeated
submissions before the deadline are allowed. Those are considered an update to one’s own ballot.
Messages sij submitted after q2−3 are considered non-compliant to the protocol and will be ignored.

Intermediate result computation

In the third phase, each worker wj performs the following actions to contribute intermediate result
values for the referendum outcome and checksum computations:

1. wj retrieves the set of k encrypted share-messages destined to him: {s1j , ..., skj}.

2. wj retrieves the payload of received messages and this way holds k shares, each encrypted
with his public key: s̃1j , ..., s̃kj .

3. wj decrypts every single share using his private key and obtains a set of k unencrypted shares:
{σ1j , ..., σkj}. These are the k shares, the voters V = {v1, ..., vk} securely communicated to
him via ledger.

4. Based on {σ1j , ..., σkj}, wj participates in the homomorphic calculation of intermediate result
shares:

� He contributes to obtaining the sum of all votes, with an intermediate result share r̃j .

� He contributes to obtaining the sum of all squared votes, with an intermediate result
share c̃j .

The sum of squared votes will later serve to detect illegal inputs. Note that intermediate
result shares r̃j , j ∈ W̄ , respectively c̃j , j ∈ W̄ must be combined to obtain the actual results.

5. wj converts r̃j and c̃j to broadcast messages rj , cj and makes those get persisted in the
ledger.

The execution of the above steps by a worker wj , leading to persistence of rj and cj , is illustrated
in Figure 6.3 by a downward arrow. q3−4 marks the moment by which workers must have their
intermediate results persisted.
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Determination and validation of the outcome

In the final phase, voters individually reconstruct the referendum outcome and evaluate public
proceedings’ conformity. To achieve this, every voter vi performs the following actions on the
intermediate result shares {r̃j | j ∈ W̄} and {c̃j | j ∈ W̄}:

1. vi picks up the corresponding result and checksum messages: {rj | j ∈ W̄} and {cj | j ∈ W̄}.

2. vi obtains two sets of shares, by combining the message payloads: {r̃j | j ∈ W̄} and {c̃j | j ∈
W̄}

3. He removes the protection of the threshold system for two specific values. Precisely, he
combines the intermediate result shares {r̃j | j ∈ W̄}, respectively {c̃j | j ∈ W̄}. These sets
of shares express the homomorphic equivalent of:

� The referendum outcome, r =
∑
i∈V ψi

� A referendum checksum, c =
∑
i∈V ψ

2
i

Consequently by combining the corresponding shares, vi obtains r and c. The checksum c
allows the detection of illegal votes. As all votes are expected to be either of ±1, it must hold
that c = k. If that is not given, the participant directly knows that at least one illegal input
value was submitted. Still, it is possible to generate a valid checksum with cleverly arranged
illegal input values. We discuss this threat in section 6.7.

6.6 Analysis of Objective Fulfillment

In this section we evaluate how well the individual objectives are met by the suggested protocol.

6.6.1 Immutability of the Referendum Proceedings

Proceedings are immutable whenever they are preserved in a way that renders retroactive tamper-
ing infeasible. Given the presented protocol, proceedings can be expressed by a complete log of
participant-exchanged messages. As those messages are exchanged publicly through the ledger, the
ledger content itself serves as complete transcript of referendum proceedings. Since the blockchain
ensures the immutability of persisted records, we obtain an immutable log of the referendum pro-
ceedings.

6.6.2 Confidentiality of Votes

A ballot is secret if no entity other than the voter himself knows the submitted value. Our
protocol applies a strong protection of votes, by first splitting them according a secret sharing
scheme and then encrypting the obtained shares asymmetrically. Unless an adversary manages
to break asymmetric encryption or secretly gather the private keys of t workers for a collusive
ballot reconstruction, the confidentiality of submitted votes remains ensured. Though asymmetric
encryption mechanisms are theoretically breakable, it is commonly assumed a computationally
infeasible task. That is to say with current hardware it is infeasible for an adversary to reconstruct
a secret without the required key material. As workers only know one another by their pseudo-
identifiers, it would be difficult for them to secretly establish a communication side channel for
collusion. Even if they are able to communicate via a side channel, they would still need at least
t corrupted workers to compromise confidentiality.

6.6.3 Referendum Validation

To verify the correctness of the referendum outcome, each participant must be able to validate
that two conditions are met:

1. The inputs that the outcome evaluation occurred on, are valid. This means all votes must
be valid numeric options. As we will see in section 6.7, this condition restricts the range of
valid parameters for the (t, n) threshold system.

2. The evaluation itself was conducted correctly. This means that the intermediate results
computed by the workers must be correct for the provided inputs.
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The second condition can be ensured by redundancy. The polynomial based secret sharing scheme
allows to detect and ignore outliers. Imagine 10 sampling points are provided for a polynomial of
degree two. Now, if nine of them match the polynomial but a single point does not, this would
suggest that the 10th support is incorrect. Assuming that intermediate results are verifiable, the
worker-provided checksum allows a privacy aware input validation.

6.6.4 Transparency

A referendum is considered transparent if all participants possess a correct and complete log of all
actions performed throughout the entire referendum. In our model, all actions eventually result in
communication. As we force all communication to run through the ledger, the trace of deposited
messages provides a transparent and verifiable log of actions.

6.7 Security Analysis

In this section, we evaluate whether adversary strategies are detrimental to the suggested protocol:

� Intentional inactivity: Any participant can violate the protocol by intentional inactivity
where interaction is expected. Eligible voters can choose not to distribute shares or only send
them to a subset of workers. A worker can ignore the expected submission of intermediate
result shares. Although the payload of vote-messages is encrypted, all participants can inspect
the ledger content and detect if eligible voters are inactive or do not communicate with all
designated workers. The default strategy by honest workers is to systematically ignore all
vote-shares of voters that do not comply to the expected behavior. Inactive workers are
harder to prevent, but the redundancy of the (t, n) threshold system allows a determination
of the evaluation outcome until up to n − t inactive workers. However, in terms of the
referendum outcome’s checksum, the boost of sampling points required for reconstruction,
lowers the protocol’s robustness to a tolerance of at most of n− t2 inactive workers. [47]

� Syntactically incorrect messages: Participants can violate the protocol by sending syn-
tactically incorrect messages. Syntactic errors can be easily detected with syntax-schemes.
The default strategy is to ignore any syntactically incorrect message. This way, messages
that are in no relation to the protocol also have no impact. If ignoring the message results
in an interpreted participant inactivity, the above inactivity analysis is applicable here too.

� Impersonation: Participants may try to illegally send messages in the name of another
participant. Impersonated messages are easy to detect, since their signature does not match
the expected author. Messages with invalid signature are systematically ignored.

� Invalid voting options: Voters are expected to vote for either ±1. However, as their shares
are submitted in encrypted form, they might try to boost their influence with higher (or lower)
numeric values. For colluding participants, it is possible to arrange invalid votes in a way
that the input validation checksum is still fulfilled.1 However, this attack is not in the interest
of the adversaries, since it can only diminish the overall influence of the outcome. If parties
collusively submit illegal inputs that pass the validation, the impact of those inputs is lower
than the impact they would have achieved with legal input values. This is a consequence

of the Cauchy-Hölder inequality :
∑n
k=1 | xkyk |≤ (

∑n
k=1 | xk |p)1/p(∑n

k=1 | yk |q)1/q, with
n ∈ N, {x1, ..., xn}, {y1, ..., yn} ∈ R, p, q ∈ [1,∞).2

� Incorrect intermediate results: Workers might submit incorrect intermediate results on
purpose. In case of an extreme threshold system configuration with t = n, the existence
of incorrect result shares is neither detectable nor correctable. However, with rising share
redundancy, an honest majority of workers can push incorrect shares into a detectable outlier
position (see section 6.6). However, massively colluding adversaries could also push an honest
minority into an outlier position. Another inconvenience for worker adversaries is that they
cannot predict the effects of their manipulation. Given the SMPC, an altered value can
influence the result in either direction.

1Example: Imagine two votes ψ1 = 2
√

1.5, ψ2 = 2
√

0.5 are submitted, their checksum is ψ2
1 + ψ2

2 = 2, while the
resulting vote impact is ψ1 + ψ2 ̸= 2.

2If we chose p = 2, q = 2, yk = 1, the inequality is reduced to
∑n

k=1 | xk |≤ 2
√∑n

k=1 | xk |2 2
√
n. However, the

client side checksum verification ensures that
∑n

k=1 x
2
k = n, which further reduces the inequality to

∑n
k=1 | xk | ≤ n.

This maximum value is obtained with valid inputs xk ∈ {−1,+1}, rendering a collusive construction of illegal inputs
pointless, since such inputs cannot surpass the impact of valid values, on the referendum.
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� Double voting: Voters can repeat the generation, encryption and distribution of shares. As
the encrypted vote-shares are exchanged via the public ledger and sender and recipient remain
un-encrypted header attributes, double voting is easily detectable. The default strategy is
to discard all but the most recent share that a specific voter submits to a specific worker. A
voter can thus update her choice, but not increase the impact.

� De-anonymization: Participants might be interested to identify the physical entity that
operates behind a participant pseudonym. This would enable outside-ledger undetected
communication. As all network traffic runs over TOR connections, a de-anonymization is
not feasible.

� Communication side channel creation: Adversaries may try to secretly establish an
alternate platform for direct communication, parallel to the ledger. Though secret inter-
participant communication is a severe threat to the protocol’s transparency, a resilient system
can counter this by setting the threshold-value reasonably high. Specifically, this means that
the probability of the random workers to fall into societal cliques must be minimized. If
adversaries do not already know their physical identities, they have to communicate publicly,
as they do not know who to address to. Adversaries publicly declaring their will to collude
could be detected.

� Voter exclusion: In section 6.2, we criticized the usage of an anonymous credential server.
However, in our case anonymous credentials are only used for registration, not for voting.
In [94], a voter cannot expose a dishonest behavior of a petition server. He cannot prove
his previous interaction with the server and it would reveal his voting decision. In our case
both does not apply. The registration itself can be logged in the ledger. Likewise the keys of
registered voters, since they can be logged as part of the public init message, bid(init). Thus
a legitimate voter could easily prove his exclusion by a malicious server.

6.8 Conclusion

By bringing together the potential of blockchain technology and secure multiparty computation,
we constructed a highly transparent referendum protocol that allows participants to autonomously
verify proceedings and outcome. Traditional (t, n) threshold based systems gain security by se-
lection of parameters that render successful collusive attacks unlikely. In this work, we further
enforce security by considering inspection of communication data protected by blockchain tech-
nology. With exception to the anonymous credential issuer, the need for trusted third parties is
eliminated. We provided a realistic adversary model and analyzed how our protocol withstands
corresponding attacks.

In future research we would like to further investigate a meaningful selection of referendum
parameters. We would also like to explore other input validation methods that have less impact on
the voter-worker ratio. Another open question is how to best select the worker subset. Given the
focus of our current work on the security aspects of the protocol, we are interested in performance
evaluations of a practical implementation of the protocol, particularly in a mobile scenario.
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Chapter 7

Collusion-Resistant Worker Set
Selection for Transparent and
Verifiable Voting

Collusion occurs when multiple malicious participants of a distributed protocol work together
to sabotage or spy on honest participants. Decentralized protocols often rely on a subset of
participants (who may be called workers) for critical operations. Collusion between workers can
be particularly harmful to the security of the protocol. We propose two protocols that select a
subset of workers from the set of participants such that the probability of the workers colluding
together is minimized. Our first solution is a decentralized protocol that randomly selects workers
in a verifiable manner without any trusted entities. The second solution is an algorithm that
uses a social graph of participants and community detection to select workers that are socially
distant in order to reduce the probability of collusion. We present our solutions in the context
of a decentralized voting protocol proposed by Schiedermeier et al. [256] (described in Chapter
6) that guarantees transparency and verifiability. Enabling collusion-resistance in order to ensure
democratic voting is clearly of paramount importance thus the voting protocol provides a suitable
use case for our solutions.

This chapter is an adapted version of the article: “Collusion-Resistant Worker Set Selection for
Transparent and Verifiable Voting.” M. Bettinger, L. Barbero, O. Hasan. SN Computer Science
(Springer Nature). 2022. Vol. 3, no. 5, article 334. This work was carried out as part of the
Master’s project of M. Bettinger and its subsequent follow-up.

7.1 Introduction

Voting is an essential element of a robust democracy. However, traditional polling site voting, which
requires the voters to physically visit designated locations, poses several problems. For example,
in a sanitary context such as the COVID-19 pandemic, health concerns of in-person voting are
a major concern. The requirement of in-person voting may also result in low voter turnout [1].
Mail-in ballots pose their own set of challenges. For example, delays and associated controversies
[2, 8] of the 2020 presidential election in the United States demonstrated the limitations of mail-in
ballots. These issues show us that we need a more transparent and verifiable method to ensure
democratic votes, which relies less on a central entity or authority. In response to this problem,
Schiedermeier et al. [256] propose and evaluate a secure electronic referendum protocol for users
that ensures confidentiality, integrity, transparency, and verifiability.

In this work, we use this protocol as an example of a decentralized process that needs to
resist against colluding malicious entities. Collusion attacks involve multiple protocol participants
working together to sabotage that protocol or steal information from it. We propose solutions for
selecting entities in a transparent and decentralized manner that reduce the probability of collusion.
Schiedermeier’s protocol indeed operates in a trustless and decentralized network environment,
which implies that the participants involved in the protocol do not have to trust each other or any
third parties. Some steps of the protocol are carried out by a subset of the participants of the
referendum called workers, chosen by an entity called the initiator. However, we identify that the
initiator may act maliciously and handpick corrupted workers who can collude together in order to
compromise the security of the protocol. This may include discovering the secret votes, corrupting
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the final result, or preventing a result altogether. We note that the challenge of worker collusion
is not specific to the protocol by Schiedermeier et al. [256]. Worker collusion is a general threat
to a range of secure decentralized protocols.

We propose two approaches to the selection of a set of workers that minimize the potential of
collusion. Firstly, we propose a solution where workers are designated randomly among a set of
participants. Secondly, given a social graph of the referendum participants, we use graph analysis
and community detection in order to choose workers among them such that the social distance
between them is maximized and thus the potential for collusion is reduced.

In this work, we use the protocol for transparent and verifiable blockchain-based voting by
Schiedermeier et al. [256] as a context for the problem of selecting workers while minimizing the
risk of collusion. The protocol is described in Chapter 6. Nevertheless, our solutions are not limited
to Schiedermeier et al.’s protocol [256]. They can be applied to other contexts with the need for
collusion-resistant worker set selection.

The outline of the rest of the chapter is as follows. We discuss previous works related to
worker selection, as well as their collusion resistance properties in section 7.2. Next, in section 7.3,
we describe and formalize the problem of collusion-resistant worker set selection. Our solutions
are detailed in section 7.4 for verifiable random worker selection and section 7.5 for verifiable
social graph aware worker selection. In section 7.6, section 7.7, and section 7.8, we focus on the
experimental protocol that we use, the dataset and tools used, and the analysis of the experimental
results, respectively. This is followed by a discussion of the findings in section 7.9 and the conclusion
in section 7.10.

7.2 Related work

The following categories of works are presented in the order of decreasing needed insight about
participants, ending with random selection of workers. The first works are based on monitoring
participant behavior and their interactions, while the next two categories use the network topology
of participants. Finally, work on random selection of workers is presented.

7.2.1 Reputation-Based Witness Selection

Fighting potential colluding workers through decentralized reputation systems as mentioned in
[236] could be an interesting idea. There are however two main limitations to this approach given
our use-case.

First, participants are pseudo-anonymized for a vote, and that pseudo-identity changes between
each voting event. This prevents using past behaviour of participants to choose workers among
them, like it is done by Aral et al. [35]. In their work, in the context of decentralized cloud
computing, they detect patterns of workers that tend to fail together (accidentally or maliciously),
in order to choose a worker set that maximizes the probability of success. Because we cannot
link pseudo-identities between distinct voting events, we cannot use their approach. Even without
pseudo-identities, the rarity of voting events and even rarer selections of a given participant as a
worker mean few events when its reputation could be evaluated. This reduces the meaningfulness
of computing a reputation score.

Second, an important requirement for any reputation system used in the scenario of voting
would be strong privacy preservation. Given a real person, the secrecy of whether that person
voted in a given event, and more importantly the content of the vote should be preserved. These
security concerns regarding the voting phase are discussed by Schiedermeier et al. Our work focuses
on a transparent and verifiable setup before that vote. That setup is designed to tolerate malicious
participants, meaning it does not seek to identify them (e.g. for prosecution purposes). In some
cases, it is indeed difficult to differentiate between accidental and malicious actions, for example
with crashes. Therefore, as did the original protocol, we should adhere to the goal of participant
privacy.

7.2.2 Leader Election

Leader (s)election, for example developed in [281], uses the network topology of participants in
the system to select a subset of them as leaders. However, such schemes are not viable solutions
for collusion resistance in our specific use case. Indeed, the purpose of these works is to choose
some nodes as leaders, so as to minimize the distance between each graph node and its closest
leader. Rather than distributing voters around leaders (in our case workers), we would prefer to
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distance workers from one another, which is not the same goal. Moreover, in order to preserve
the confidentiality of the vote protocol, the heuristic for such leader selection would focus on the
node IDs, which is the only known attribute known about participants. Again, if the initiator is
responsible for the input data (i.e. the social graph needed and IDs), it could easily manipulate
these IDs to make sure malicious agents are elected.

7.2.3 Decentralized Random Number Generation and Worker Selection

Our first proposed solution relies on random selection of a set of workers among participants. We
use a blockchain as an immutable and transparent messaging hub for participants, so they can
generate a random seed number in a decentralized manner in a single phase, which determines the
set of workers.

A work close to our problem is Nguyen-Van et al.’s [224], who propose a decentralized multi-step
protocol based on Homomorphic Encryption, Verifiable Random Functions (VRF) and distributed
ledgers (e.g. blockchains) to generate random numbers. Homomorphic encryption enables adding
(or multiplying) values while they are encrypted. VRFs generate random numbers as well as
proofs that these numbers were obtained by running that VRF. The initiator in Schiedermeier et
al.’s work [256] could request a random number to be generated and would also obtain a proof
of correct execution through the pipeline. However, a limitation is that the initiator must not
share the private key it uses for requesting the number, otherwise voiding tamper-resistance on
the result. As the initiator is not trusted in our case, this method cannot be used.

7.3 Problem Statement

7.3.1 Adversary Model

We will call malicious all potential workers as well as the initiator likely to work together in order
to form a coalition with the intention of disrupting the expected behavior of the referendum. We
can distinguish three malicious behaviors resulting from workers’ collusion:

� Discovery of the secret votes of the honest participants from the intermediate values.

� Manipulation of intermediate values in order to corrupt the final result.

� Prevention of the computation of the final result due to inactivity from the malicious workers.

The initial list of participants in the voting event is trusted. Notably, each pseudo-identity in
the list corresponds to a unique and real participant, for example an officially registered citizen.
This means that a malicious entity cannot create multiple fake pseudo-identities to sway the vote,
namely, Sybil attacks are not possible. Similarly, people expected to participate in the vote are
present in the list. We accept both assumptions for the following reasons:

1. An expected participant whose pseudo-identity is missing in the list can easily detect and
report it, as the list is publicly available;

2. Reason (1) also means that for a list size equal to the expected number of real participants,
malicious entities cannot replace the identities of other participants by theirs;

3. A list containing more pseudo-identities than expected real participants is likewise detectable
and shows the presence of malicious fake participants, given reasons (1) and (2);

Note however that this does not prevent some other actions by malicious entities that increase
their power in the vote, like:

� corrupting a real participant;

� obtaining control over a pseudo-identity (e.g. through phishing). This non-consensual loss
of control by the honest participant may be reported and fixed before the voting event takes
place, canceling the malicious action.

The effect of such actions is an increased number of malicious entities in the protocol. In this
work, we simply count m maliciously controlled pseudo-identities in the participant list during an
execution of the protocol.
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7.3.2 Collusion-Resistant Worker Selection

An arbitrary selection of workers by a single entity (the initiator in the case of Schiedermeier et
al.’s protocol [256]) can lead to collusion if the entity performing the selection is malicious. This
is why we propose to remove this arbitrary choice, replacing it with a more neutral and secure
process.

We will now define which constraints need to be upheld by our solutions to successfully achieve
this task. Let m be the number of malicious workers among all n workers. We place ourselves in
the context of a t − n threshold-based Shamir secret sharing scheme [260], which allows splitting
up a secret into n shares (each held by one of the n workers) in such a way that any t of them
suffice to reconstruct the secret. Malicious agents cannot gain any information about the secret if
they possess strictly less than t shares.

1. To ensure the secrecy through Shamir’s threshold system-based secret sharing scheme [260],
the number of malicious workers m shall not be more than t;

2. If there are less than t honest active workers, then a coalition of malicious workers can prevent
reconstructing the value by being inactive. Therefore, m shall not surpass n−t workers. Like
the first constraint, this rule considers the presence of m malicious agents in a t−n threshold
system;

3. A checksum is computed at the same time as the referendum’s result. Its purpose is to count
the total number of votes. This prevents participants from voting illegal referendum values.
For the referendum’s checksum reconstruction, m must be less than n − t2 workers (again
against inactivity) [85].

Therefore we have:

n ≥ t > m ≥ 0 (7.1a)

n− t > m ≥ 0 (7.1b)

n− t2 > m ≥ 0 (7.1c)

The collusion limit is when m = t− 1, i.e., when the malicious coalition is missing one worker
to be able to discover the secret. Replacing m = t − 1 into (3) gives us: t2 + t − 1 − n < 0 and
t > 0. Given n workers, the maximal t is therefore given by tmax = ⌊(−1+

√
5 + 4n)/2⌋, based on

verifiability constraints presented above.

7.4 Proposal 1: Verifiable Random Worker Selection

Replacing arbitrary worker selection with a verifiable random selection enables quantifying the
probability of collusion. For example, in section 7.8, we show that even with a third of the
participants as workers in the sampled social graph, the probability of collusion is less than 2.5%.
Before, that probability was unknown, because the initiator was a trusted entity. Now, however,
the probability P(X = m) of having sampledm malicious workers amongM malicious participants
knowing n total workers were sampled among P total participants follows a hypergeometric law
H(n, MP , P ). This probability is given by:

P(X = m) =

(
M
m

)(
P−M
n−m

)(
P
n

) (7.2)

For example, let us assume that we want to have a probability of collusion of less than 5% and expect
to have M malicious participants out of the total P participants. Plotting the hypergeometric
law’s Cumulative Distribution Function CDF (n,m), for given values of M and P , and taking the
intersection with the plane of probability 95%, gives us the curve C(n) such that there is 95%
probability that there are less or equal than m malicious workers in a sample of n participants.

Our protocol computes a random number in a decentralized fashion. This number is used as
a seed to randomly select workers among participants. This seed will be known by all. Therefore,
the whole procedure can be verified by any participant. This solution introduces an additional
phase in the voting protocol. This phase harnesses the immutability and ordering properties of
messages committed on the ledger to generate a verifiable seed. Indeed, we can use these properties
to generate a number in a decentralized manner by soliciting the participation of voters, who will
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Figure 7.1: Process diagram of the initial protocol (in the center), with proposed solution protocols
integrated onto it on the sides. qi−j lines represent phase transitions as defined in [256], q0−1 is
a new transition used only in vote-order-based worker selection (right-hand side). Rectangles
represent process phases, “document”-shapes represent messages on the ledger. Document-shapes
contain data items used in the protocol. Bold items are changes compared to the initial protocol.

deposit a message on the ledger. Our number is generated by comparing the order in which a subset
of participants committed a message on the ledger, as well as the composition of that subset, to the
ordered complete list of participants. Given the number generation algorithm and the messages
on the ledger, any participant can verify the outcome of that phase.

The public ledger on the blockchain has the particularity to be immutable. It means that
malicious entities cannot interfere with the ordering of messages on the ledger nor can they interfere
with whether messages are published or not on the ledger. Blocks are appended sequentially to
the blockchain, and each block contains a list of transactions (in our case our messages). We can
use this sequential data structure to define an order of participant IDs.

7.4.1 Context

Underlying blockchain characteristics: Our solution relies on blockchain architectures that
meet the following specifications:

� Consensus algorithm: should be so the malicious coalition lacks the necessary resources to
manipulate or control it. For example, it can be based on hardware resources, like Proof-of-
Work, or cryptocurrency assets, like Proof-of-Stake or its Delegated Proof-of-Stake variant.

� Openness/Access control: the blockchain system may either be public or permissioned. How-
ever, public blockchains are useful to have a large number of nodes maintaining them, which
enables high decentralization of the consensus algorithm. The voting application logic would
run on top of this consensus layer. Indeed, participants in the vote can be registered and
identified in the vote’s participant list by their public blockchain account addresses, or their
corresponding public keys (for example with Ethereum [287], the account address is derived
from a user’s public key). Participants are therefore registered at the application-level (or
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smart contract-level, if present), while the underlying blockchain is open to the general pub-
lic. This mechanism makes it easy to distinguish real from fake vote participants, in the
context where the voting application coexists with other services (and their respective users)
on the same blockchain. Because of the extended blockchain user base, which includes nodes
maintaining the network, it also means participants are only required to be able to send
transactions (containing the protocol messages) to the blockchain using their account.

� Smart contracts: the protocol only needs the blockchain as a messaging hub. As such,
advanced features like smart contracts are not required. Nonetheless, smart contracts are
useful to enable decentralized and easier enforcement of the protocol (e.g. for phase-switches,
for considering only a voter’s latest vote submission).

Inputs: Let P be an ordered list of P participant IDs, obtained through a trusted process (e.g.
voter registration by government entities). Let n be the size of the subset of participants to select
in P. Furthermore, let M ⊂ P be the set of malicious participants. Malicious participants are a
priori indistinguishable from honest participants, i.e. no ID in P can be proven to be in M before
the protocol starts. M = |M| ≥ 0 the number of malicious participants is unknown as well.

Outputs: Let W ⊂ P be the set of selected workers.

Objective: Select n = |W| workers out of P, such that the procedure is verifiable by all par-
ticipants in P and all malicious participants in M cannot increase their chances of being chosen
as workers to more than random chance (i.e. the probability of m malicious participants being
selected as workers follows a hypergeometric law H(n, MP , P )).

Hypotheses:

(h1) Malicious entities cannot interfere with the block-/transaction-ordering on the ledger. Ra-
tionale: Property guaranteed by the Blockchain;

(h2) Malicious entities cannot interfere with whether transactions are published or not on the
ledger. Rationale: It is assumed that the coalition of malicious entities does not have the
resources to take control over the blockchain’s consensus algorithm (as required by blockchain
characteristics defined before);

(h3) If a Cryptographically Secure Pseudo-Random-Number Generator1 (CSPRNG), a high en-
tropy generator, and a numbering method with a large output space are used to generate
the list of workers, malicious participants cannot increase their chances of being chosen as
workers by choosing particular IDs. Rationale: Property guaranteed by CSPRNGs.

7.4.2 Algorithm

A new phase is added between the referendum’s initiation and the referendum vote. Initiation
commits a list of P participants and a number n of workers to select. This new phase will consist
of the participants choosing to deposit a message on the ledger or not. This creates a sublist of
participant IDs on the ledger which will be used to generate a seed number for a CSPRNG. This
CSPRNG will in turn sample n workers among the P participants. It is important to note that
these committed messages are distinct from the participants’ actual votes, which happen in a later
phase.

This protocol proceeds as follows (see Figure 7.1 above for reference):

1. The phase begins when the phase-switching deadline q0−1 after the referendum’s initiation
is reached. This happens when the initiator commits the referendum’s information on the
ledger. These information include:

� IDs of participants able to vote in the referendum;

� Number nworkers of workers to select;

� Unaffected share affiliations between participants and workers used in Shamir’s Secret
Sharing Scheme (i.e. a participant x will divide its secret referendum-vote in the next
phase and respectively give each share to the kth, lth, ... selected workers);

1Cryptographically Secure Pseudo-Random-Number Generator: high entropy generator which resists reverse-
engineering, cryptanalysis and passes statistical randomness tests
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� Context and semantics for the referendum;

� Phase-switching timestamps {q1−2, q2−3, q3−4}.

2. Each participant decides to commit a message on the ledger or not;

3. The phase ends when the phase-switching deadline q1−2 is reached;

4. An ordered list of messages V will then be present on the ledger. A number is computed
from V and the ordered list of all referendum participants P . Three main computations can
be used to generate this number: the permutation, combination and arrangement numbers
of V in regard to P . The first computation uses only the message-list V as randomness
input, while both V and P are used for combination and arrangement number generation.
Mathematical expressions and output spaces are presented in Table 7.1.

� The computed number is used as a seed for a CSPRNG. Then, w workers are sampled
in the list of participants with this generator;

� Shamir’s Secret Sharing Scheme’s shares affiliations between participants and workers
for the referendum-vote are then attributed to each selected worker;

� The protocol can then proceed to the next phase (referendum vote).

Remarks:

� On multiple committed messages: only the first message deposited by each participant (if
they deposited any) is considered. This prevents seed value manipulations from malicious
participants as the phase goes on.

� On merging worker selection with the voting phase: as said earlier, the workers are selected
during a distinct phase preceding the actual vote. For simplicity, and given worker selection
is based on an order of messages, one would intuitively want to perform worker selection
during the vote itself. However, this is impossible due to an incompatibility with the voting
protocol mechanisms as proposed by Schiedermeier et al. [256]. Indeed, participants vote
by committing n distinct shares, encrypted with each worker’s public key (so that only that
worker can decrypt it with its private key). This means that all workers must be identified
prior to the voting phase. Moreover, from a security standpoint, merging the phases reduces
the entropy of the number generation, because its entropy comes from both the number
of messages and their order. Indeed, honest participants are likely to actually vote, which
ultimately reduces the space from which the number is generated.

� In the absence of committed messages: a number is generated however many participants
commit a message, in particular even when the ordered list of committed messages is empty.
In that scenario, using the proposed numbering functions (see Table 7.1), the obtained value
would be zero. The absence of commits is therefore not problematic as long as the hypothesis
(h2) defined above holds. If (h2) is compromised, then the participant list, trusted by the
protocol, could be maliciously designed such that no commits (or only malicious commits)
make it so enough malicious workers are selected. This would be done by giving malicious
participants specific IDs.

� Message list traversal: In the expressions of Table 7.1, the list of committed messages is
traversed in the anti-chronological order (i.e. the latest message corresponds to index i = 0)
for additional security. This prevents malicious participants from progressively computing
the updates of the seed value as messages are committed. Indeed, using that direction for
list traversal, all indices point to a different value each time a new message is committed.

7.4.3 Discussion

Malicious entities cannot interfere with the presence and order of honest message deposits (h1, h2).
Therefore, a favorable condition for them is to wait until all honest participants have most likely
made their choice whether to deposit a message on the ledger. From the malicious perspective, these
honest messages constitute a sort of nonce for the seed number. If the initiator is malicious, it might
also try to give specific IDs to some malicious participants, in order to have them chosen. Note
that in the case of Schiedermeier’s protocol [256], IDs are public keys. This renders it complicated
to generate a key-pair such that it favors malicious participants. Moreover, ID assignment happens
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Table 7.1: Three methods to attribute a number to a list V of comparable non-reoccurring elements
(integers, character strings, etc.) knowing its superlist P.

Numbering Method Expression Output Space

Permutation
PN : V → N

∑|V |−1
i=0 (i!

∑i−1
k=0 1xk<xi) J0; |V |!J

Combination
CN : V, P → N

∑j(0)−1
k=0

(|P |−j(0)+k
|V |−1

)
+
∑|V |−1
i=1

∑j(i)−j(i−1)−2
k=0

(|P |−j(i)+k
|V |−i−1

) J0;
(|P |
|V |

)
J

Arrangement
AN : V, P → N

∑|V |−1
i=0 ( |P |!

(|P |−i)! + CN(V, P ) ∗ |V |! + PN(V )) J0;
∑|P |
v=0A

v
|P |J

With: 1F =

{
0, F is False

1, F is True
, F a boolean expression. P = [x0, .., xp−1] a list of elements in

ascending order, p the number of participants. xk is the ID of the k-th participant in the
referendum. V = [y0, .., yv−1] ordered by the order of messages in the ledger, V a sublist of P , v
the number of messages. j : N→ N a function such that: j(i) = k iff yi = xk, i.e. for an ID in V
of index i, returns its index in P . Akn = n!

(n−k)! is the amount of distinct arrangements of k among

n non-reoccurring elements, also called k-permutations of n.

before this protocol’s execution, therefore it is only possible to try to maximize chances of being
selected given a set of nonces. The greater the numbering function’s output space, the lower
these chances. Enabling participants to cancel their previous message by committing a new one
gives more freedom for malicious entities to adapt to the order of honest participant messages.
The security of the seed generation is given by the size of the output space, meaning the possible
entropy of the number generation, coupled with mechanisms to hinder malicious behavior adapting
as the protocol advances.

Our seed generation method’s output space depends on the number of participants (J0;
∑|P |
v=0A

v
|P |J).

Therefore, for low participant numbers, entropy might be too low to guarantee pseudo-randomness.
A solution to this problem would be to introduce entropy into the system, by considering a value
posted in each participant’s message. However, this approach introduces possibilities for malicious
entities to manipulate the seed value. One must keep in mind that the size of the output space
is a sum of factorials depending on the number of participants: for 10 participants, there are 106

possibilities, but 10158 for 100 participants. To boost the number of possibilities for a low number
of participants, multiple message commits per participant can be handled for number generation.
If n message commits are allowed per participant, then each message (containing a number be-
tween 1 and n) would be considered as that of an artificial participant in a list of P ′ = n ∗ P
participants. Note that the actual proportion of malicious participants (real and artificial) remains
unchanged, but the output space for generating numbers greatly increases with P ′ (see the AN
function’s output space in Table 7.1).

7.5 Proposal 2: Verifiable Social-Graph-Aware Worker Se-
lection

Instead of randomly choosing the workers among the voters, this next solution uses social graph
data in order to select them. This process is done with a community detection algorithm. First, we
compute the communities of the graph. We then decide how many workers will be selected from
each community. Finally, we select the workers from the communities whilst trying to maximize
their distances to other workers.

If we are able to distinguish several communities in a social graph representing interactions
between the candidates of the protocol, we can gather new information to achieve worker selection.
Indeed, two participants close to each other in the same community are likely to know each other
and have social interactions [132], in other words, should they also be malicious, they are likely to
collude. This assertion leads us to a new algorithm: maximizing distances between workers inside
each community and in the whole graph to minimize interactions.

We assume that the participants have access to an anonymized social graph of the participants.
This is a simplification of the context for experimental purposes, where privacy of participants is
not required. Indeed, a main purpose of this solution is to compare our random worker selection
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to a selection taking advantage of the social structure of participants. If this graph is available
and the number of workers to be selected is known, then this protocol is verifiable by all partic-
ipants. If such a graph is not available, we propose to use our first solution (section 7.4), which
is fully decentralized. In section 7.9, we also discuss some potential alternatives to the centralized
availability of the social graph.

In any case, like our first solution, this approach is independent from the voting protocol
that we use to contextualize them. Therefore, it can be useful in other contexts, where such a
graph is available and privacy is not a concern. For example, in the context of a referendum
in a company, the organization chart, which is open and not privacy-sensitive information inside
the company, can be used as an approximation of the interactions between employees, and as
such, as an approximation of the social graph inside the company. In this specific context, an
ability to punish detected malicious activities may be wanted. Otherwise, the organization chart
may be modified to reduce information identifying specific employees. Note that it is possible to
enable linking workers to real identities, while preserving voter secrecy, by maintaining two lists
of participant identities, one for voting and one for (potentially) working. Geographical clustering
of voters, such that a sufficient k-anonymity is guaranteed (for example, in USA: federal, state,
county or municipality levels), could also be used to approximate the overall social graph from
which workers can be selected.

7.5.1 Context

Consider the existence of a “real” social graph representing the relationships between vote partic-
ipants in real life. This abstract structure is to be distinguished with graphs obtained from social
networks like Facebook, which are created based on user interactions on that service. As such, the
latter are an approximated representation of the complete and theoretical “real” graph, with miss-
ing or added nodes and edges. Nonetheless, experimentally, we will tolerate this approximation and
use Facebook social graphs as datasets (see section 7.7). In our context of collusion-resistance, the
proximity between nodes is considered to represent their likeliness of complicity, meaning workers
are more likely to collude together if they are close in the social graph. Therefore, in that context,
selecting workers such that they are distant from each other in the social graph would reduce the
probability of collusion.

Inputs: Let G be an undirected unweighted social graph with G = (V,E). The same reasoning
can be applied to a weighted graph. V a set of vertices representing each referendum participant.
Each vertex v possesses an attribute which is the participant’s ID. Let E be a set of edges, two
vertices are connected with an edge e if the corresponding participants mutually and directly
know each other. Let nworkers be the number of workers which shall be designated among the
participants.

Output: Let W be a set of participant IDs which shall act as workers in subsequent phases.

Objective: Choose W such that workers don’t know each other well enough to form a coalition
capable of invalidating the results of the referendum. This means determining W a subset of V ,
such that W contains less than t mutually cooperating malicious nodes out of nworkers nodes, i.e.
maximize the social distance between all workers.

Hypotheses: Concerning community detection, we consider the following hypotheses:

� Two participants know each other less the longer the shortest path between their respective
vertices is. This hypothesis is based on heuristics used in topology methods for link prediction
problems in (social) graphs, e.g. common neighbors [132];

� Participants from distinct communities know each other less, even more so if those com-
munities don’t communicate directly with each other (paths between members of the two
communities go through other communities).

7.5.2 Algorithm

Our main Algorithm 7.2 can be divided in three steps:

1. Community Detection: From a social graph, we apply a clustering algorithm to find groups
of nodes (see subsection 7.5.3);
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Figure 7.2: Social-graph-aware worker selection

2. Quantifying the number of workers to be selected in each community: Depending on the
number of communities ncommunities and total number of workers nworkers, we will compute
the number of workers ni to be selected in each community ci (see Algorithm 7.3):

→ ncommunities = nworkers: one worker per community;

→ ncommunities > nworkers: one worker per community in distant communities;

→ ncommunities < nworkers: distribute multiple workers amongst communities using a
criterion.

3. Selection of workers: According to the number of worker ni, we will then choose which
participants will become workers for each community and maximize their distances to each
other (see Algorithm 7.4).

7.5.3 Step 1: Community Detection

The choice of the community detection method will greatly impact the worker selection algorithm
and the collusion resistance. Indeed, our main hypotheses for workers selection and assignment
are based on inter- and intra-communities interactions. We distinguished several criteria to choose
our clustering algorithm:

� deterministic outcome (no random operations to generate clusters) required for reproducibil-
ity and verifiability by participants;

� linear or near-linear time-complexity on the number of vertices or edges;

� each vertex is assigned to a unique cluster (i.e. no multi-community detection);

� the number of detected communities depends only on the graph structure (i.e. no need of
parameters to set or vary the number of communities found).

Considering the above criteria as a filter for algorithms already implemented in the graph
library that we use (igraph [4]), we retain the multi-level community detection by Blondel et al.
[54] as our community detection algorithm.

7.5.4 Step 2: Quantifying the Number of Workers to be Selected in
Each Community

This step consists of determining the number of workers which shall be selected in each community
in Step 3 (subsection 7.5.5), considering the total number of workers nworkers, the number of
communities nc, and a distribution criterion.
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Figure 7.3: Quantifying the number of workers to be selected in each community

Hypotheses

We consider the following hypotheses:

1. Given a shortest path length d in the graph, two participants in the same community dis-
tanced by d know each other more than two participants from distinct communities with
that same distance d between them.

2. Sparse graphs are better suited to house more workers than dense one. Rationale: there are
more shortest paths with values of 2 or more, meaning participants of that same cluster know
each other in varying degrees of separation.

3. Placing workers evenly across the graph (i.e. all workers distant by 3 more edges versus creat-
ing small clusters of less than t workers) gives better guarantees for non-collusion. Rationale:
each worker does not know its nearest worker-neighbors that well.

Algorithm

If the ratio nworkers
nc

is less than one, then workers should be placed in communities distant from
each other. Otherwise, all communities shall contain a worker before assigning multiple workers to
a community (to take advantage of hypothesis 1). If there are more workers than communities, the
graph structure should be used to infer how many workers should be contained in each community
(see algorithm 7.3). In this last case, the number of workers in each community is given by the
pro-rata of the number of vertices in a community to the total number of vertices in the graph,
e.g. a community comprising 10% of the vertices will receive 10% of the workers.

7.5.5 Step 3: Worker Selection

Once the number of workers per community has been determined, those numbers must be selected
from each community’s subgraph (see algorithm 7.4). Finding the optimal solution to maximize the
distances between worker nodes is time-exponential in the number of nodes. We approximate this
solution by iteratively adding nodes to the output set, using breadth first searches and maximizing
different selection criteria. Time-complexity achieves O(n2i ∗n+ni ∗ e) this way, with n nodes and
e edges in the community ci’s subgraph, ni the number of workers to place in ci.

Distancing Criteria

The main criterion for worker selection is maximizing the distance with the nearest worker. In
case of multiple choices, a secondary criterion is used to decide: (MSR) Maximizing the Sum of a
Reward function r : d→ reward:

r : d→


0, d ∈ J0; 1K
1, d = 2

2, d ∈ J3;+∞J
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Figure 7.4: Select spread out vertices in a graph

MSR’s heuristic takes into account the fact that the primary criterion (maximizing the distance
to the closest worker) has operated a pre-selection on the candidate nodes. After the primary
criterion, we know that there will be some workers who are close to the candidate. Knowing that,
what we seek is to have the highest number of faraway workers (distances of 3 or more). Which is
why workers distant by 3 or more yield the reward of 2, while those distant by 2 yield half, and
adjacent workers give no reward.

Random choice of the next worker among candidate nodes also gives good results in spreading
workers on the graph. However, we require using deterministic methods for verifiability purposes.

7.6 Experimental Protocol

We will now present the experimental protocol which we will use to evaluate the implementation
of our worker selection methods: verifiable random worker selection (section 7.4) and commu-
nity detection-based worker selection (section 7.5). The objective of this protocol is to build an
environment to quantify and analyze collusion resistance in the protocols that we proposed.

7.6.1 Context

Given an execution of either method placing n workers on a social graph, the probability of collusion
will be quantified by the size of the largest clique of workers, distant from each other by at most
k ≥ 1. This metric is time-exponential on n, which means experiments on high n values will
have to be done with fewer protocol executions. We assume for our experiments that this largest
clique of workers of size m will try to collude. We could have chosen to tag a subset of graph
nodes as malicious, then measure the size of the largest clique of malicious workers. However,
this second technique requires additional assumptions on how malicious workers are distributed on
social graphs, which we have chosen to avoid.

We have defined in section 7.3 the threshold tmax(n) = ⌊(1+
√
5 + 4n)/2⌋ under which a number

of m colluding malicious workers still upholds our protocol’s security properties. Given this metric
m and n workers placed on a graph, we consider that collusion is possible if m ≥ tmax(n). Given a
set of protocol executions selecting a number of n workers, we also compute a confidence interval
[0;mmax] on the distribution of obtained m values. A protocol is defined as collusion-resistant with
a confidence c for a given number of workers n, if the probability that tmax(n) /∈ [0;mmax] is c. Our
experimental protocol aims to answer the following question: does random sampling of workers
among participants give a high enough confidence that no collusion will be possible between those
workers?
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We will fix the confidence level for our experiments to 95%. An alternative would have been
to compute a p-value of each set of executions for n selected workers. In our case, this p-value
would correspond to the probability that we erroneously consider that there is a collusion attack,
meaning the probability that no collusion takes place. A high p-value would mean a low probability
of collusion. However, due to the reduced number of executions for high n values, this p-value
would not be significant, given the low number of considered experiments. Figure 7.5 describes
our experimental protocol’s workflow.

Figure 7.5: Process diagram for the experimental protocol, given a set of problem variables com-
prising social graphs and amounts of workers to place.
Experimentation is divided into a solutions-processing phase followed by metrics computation and
evaluation. On the sides of the solution phase, factors for a given algorithm are presented. Our
main metric is emphasized in bold.
This process is fully automated until ”cross executions analysis” excluded.

The effective parameters which are the number of workers to select were chosen based on 10
points of an exponential growth from 10 workers to 1

5 of the size of the graph (in the case of
facebook combined2: 807 out of 4039 nodes) with the logspace method from the Python NumPy
library3. These parameters will be tested on 100 executions. Due to the time-exponential com-
plexity on the number of workers, experiments for n ∈ {1000 + 200 ∗ k|k ∈ J0; 10K} will be run on
5 executions.

2See section 7.7 for the dataset introduction
3Python NumPy logspace function documentation at https://numpy.org/doc/stable/reference/generated/numpy.logspace.html
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Table 7.2: Problem instances or Experimentation inputs

Problem Variables Values

nworkers {10, 16, 43, 70, 114, 186, 304, 495, 807}⋃{1000 + 200 ∗ k|k ∈ J0; 10K}

7.6.2 Randomly Sampling Nodes on a Graph: Verifiable RandomWorker
Selection Simulation

We substitute the Verifiable Random Worker Selection with a simulation protocol for the experi-
ment’s purpose. This does not have an impact on the results since the simulation keeps the same
concept of randomness and the output remains an ordered list of participant IDs.

In lieu of this specific approach, the more general problem of random sampling of workers in a
given graph will be evaluated. This gives us an expectable behavior and feasibility approximation
for our random number generator protocol. Those solutions being non-deterministic, they will be
considered feasible in practice for a given graph and a number of workers n, if the executions’
largest clique-size 95%-confidence intervals satisfy the problem’s constraints.

In practical terms, this considers a scenario where all P participants are potentially malicious,
but a subset of workers can only successfully collude together if they form a clique larger than the
security threshold t in the graph.

7.6.3 Graph and Worker Selection Metrics

Our main metric is the size of the largest cliques of workers distant of at most k, k in J1; 3K. It
gets computationally too expensive for k > 3, for less added insight, as 93% of communities found
in the graph have diameters of 5 or less for the multilevel algorithm, the facebook combined graph
itself being of diameter 8. The best method should minimize the size of the largest clique given
nworkers. For behavior analysis purposes, additional metrics will be measured: 1) Community
subgraph diameter and radius; 2) Number of nodes in communities; 3) Number of workers in
communities; 4) Distances between workers (intra- and inter-community), mainly on inter-worker
distances less or equal to 2. The best method should minimize the amount of workers directly
adjacent or separated by one other participant.

7.7 Chosen Dataset and Tools

7.7.1 Dataset

We used the facebook combined [5] dataset for the experimental evaluation. Some of the properties
of the facebook combined dataset are as follows: 1) Undirected edges (symmetrical relationships);
2) Comprises 4,039 nodes and 88,234 edges; 3) “Community detection friendly”: most clusters
should be detectable by humans on the graph. Most members of these clusters should be adjacent
to multiple other members of the same cluster. Counter-example: streaming website Twitch’s
network [6], where some individuals have very high degrees, while their adjacent nodes are mostly
not connected to each other.

7.7.2 Tools

We used the following tools for the experimental evaluation. Graphing tools: igraph (data struc-
tures and graph methods) [4]; graph-tool (visualization) [7]. Exploration and experimentation:
Python Jupyter [3]. Workflow and reproducibility management: A framework developed by Matthieu
Bettinger [50] (provided with the rest of the source code [51]); Python Jupyter [3].

7.8 Evaluation and Analysis

This part aims to present and analyze the results from the execution of the workflow presented in
Figure 7.5, i.e. the step “cross-executions analysis” in the process diagram.
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(a) Sizes of largest cliques of adjacent
workers

(b) Size of largest cliques of workers
distant of at most 2

(c) Size of largest cliques of workers dis-
tant of at most 3

Figure 7.6: Lower and upper bounds for t in t-n Shamir Secret Sharing Scheme. tmax(n) is obtained
when removing the problem’s strictest constraint on t (Equation 7.1c, see also section 7.3).

7.8.1 Random Nodes Sampling on a Graph

We plot the lower and upper bounds for t in the t − n Shamir Secret Sharing Scheme in Figure
7.6. The inequalities 7.1a through 7.1c from section 7.3 give the maximum values tmax given n.
Meanwhile, the metric we evaluate empirically, that is the size of the largest clique of workers
distant of at most k (with k increasing from 1 to 3 in Figures 7.6.a, 7.6.b and 7.6.c), gives the lower
bound tmin. This is done for our ArrangementNumbering and SizeProRata/ML (Multi-Level)
worker selection algorithms, presented respectively in sections 7.4 and 7.5. A solution is viable for
a given n if tmax > tmin.

ArrangementNumbering’s curve is given with a 95% confidence interval (error bars). For
n ≤ 807, 100 executions were done for each point on ArrangementNumbering, 5 executions
for n > 807, due to the metric’s exponential complexity on n. No error bars are necessary for
SizeProRata/ML, as the algorithm is deterministic.

Intuitively, a method which has access to the information upon which a metric is computed
will perform better on that metric than a method without that information. In our case, the
metric being the size of the largest clique of workers, our graph-aware proposed solution should
perform better than our random worker selection protocol. This observation can be confirmed by
the graph representing the cliques’ size threshold for the t− n Shamir Secret Sharing Scheme (see
Figure 7.6). Undeniably, the SizeProRata/ML curve (“ML” stands for multi-level community
detection), our graph-aware solution, shows considerably better results than the random selection
with ArrangementNumbering. Until 45% of participants are workers, ArrangementNumbering
is closely under the maximal threshold curve : there is a confidence of 97.5% that the size of largest
cliques is under tmax until 1800 workers. SizeProRata/ML is remarkably more efficient and its
heuristics only begin to lose efficiency at around half of the voters as workers. When the number
of workers reaches the number of voters, the ArrangementNumbering and SizeProRata/ML
curves will intersect in a final point. This intersection corresponds to the largest clique size (in
this case 69 for 4039 nodes) when all the voters are workers. Computations for over 3000 workers
were not executed, because of the largest clique search algorithm’s time-complexity. Only the final
intersection point was computed. Dotted lines show the expected evolution of both curves between
3000 workers and the endpoint.

However, considering a worker threshold of 1
5 of the participants (here 807 among 4039), which

is already a high number of workers, the two workers selection methods stay under the tmax curve
determined by our problem’s constraints.

7.8.2 Results Under Relaxed Constraints

As defined in section 7.3, our main constraint on the upper bound of the security threshold t is
due to the checksum verification which implies n− t2 > m (Inequality 7.1c). Should the constraint
of Inequality 7.1c be removed or be absent (i.e. in another protocol without this checksum mech-
anism), only constraints linked to Shamir’s Secret sharing scheme would remain (Inequalities 7.1a
and 7.1b, namely t > m and n−t > m), which give an upper bound for t: tmax = ⌊n2 ⌋. In practical
terms, as n − t ≥ n − t2 > m for t ∈ N∗, removing Inequality 7.1c enables tolerating a greater
proportion of malicious workers, for a given number n of chosen workers.

If we were to consider this new upper bound, we could compare curve behaviors of both our
selection methods with that new boundary curve, for cliques of workers distant of at most 2
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(see Figure 7.6.b), resp. 3 (see Figure 7.6.c). These methods’ curves greatly surpass the more
constrained version of tmax. In case of a maximal distance of 2 resp. 3, we can see that both
methods representing tmin grow linearly with a slighter slope than the boundary curve representing
tmax (SizeProRata/ML: 0.23 resp. 0.41; ArrangementNumbering: 0.26 resp. 0.43; tmax(n):
0.5). Therefore, should the n − t2 > m constraint be lifted whilst maintaining the protocol’s
properties, better collusion-resistance insights can be obtained. Indeed, we would know that under
these new constraints, it is unlikely that a clique of workers distant of at most 3 would be larger
than tmax.

7.9 Discussion

7.9.1 Clique Sizes in Social Graphs

When a social graph increases in size, how do graph properties like the size and the number of the
largest cliques scale? The denser a given graph, the larger the probable size of the largest clique
and the number of cliques of a given size. If the proportion of nodes in big cliques compared to
the global graph gets higher, random sampling of nodes will more and more likely occur in those
cliques. The same reasoning holds true for big communities, a relaxed concept of cliques of nodes.
Johan Ugander et al. described the structure of Facebook’s social graph in 2011 [277].

For both the U.S. and global friends networks on Facebook, around 90% of users had less than
500 friends and 1% had more than a thousand friends (maximum number at around 5000 friends).
They used the degeneracy metric in their analyses, which corresponds in ”an undirected graph G
[to] the largest k for which G has a non-empty k-core. Meanwhile, the k-core of a graph G is the
maximal subgraph of G in which all vertices have degree at least k”. A k-core corresponds to a
k + 1-clique if its size is k + 1. This also means that k-cores are sets of nodes which may contain
cliques of size less or equal to k + 1. Therefore, degeneracy provides an upper bound for the size
of the largest clique in the graph. Their findings use the degeneracy for nodes of a certain degree,
i.e. for a given person, the maximum k friends which also know k − 1 other friends of that same
person. Degeneracy grew monotonously with the node degree. The maximal degeneracy for the
95th percentile was of around 200 for a degree of 5000. This would mean that 200 friends of that
person knew 199 other friends of that person.

What interests us more is that a clique containing that person would be of size lower than
200. Their analysis was carried out on active Facebook users (users, with at least one friend, who
logged in at least once in the last month prior to the analysis), representing a graph with 721
million nodes. This result on such a large graph gives us reassurance on the evolution of the size
of the largest clique as the graph gets larger. Indeed, for such a graph size, tmax = 26851, which is
two orders of magnitude bigger than the upper bound for the largest clique’s size. In fact, a graph
of size 39,799 (10x the size of the graph we used) would still tolerate a largest clique of 200 nodes
whilst ensuring collusion-resistance.

7.9.2 The Feasibility of Random Worker Selection

A determining factor on whether random selection of workers is feasible with a low collusion
probability in a given graph is the size of the graph’s largest clique (see Figure 7.6 for reference). If
that size is significantly lower than the upper bound for the t− n Shamir Secret Sharing Scheme’s
t value obtained through the problem’s constraints, then there is a low collusion probability, i.e.
high collusion resistance, for any number of workers. However, if the size of the largest clique is
close to or greater than tmax(P ), with P the total number of nodes in the graph, then there exists
an upper bound nmax for n where, for n ≥ nmax, P (|Clqmax| > tmax) > 5%, with Clqmax the
largest clique’s set of nodes for n workers.

If the graph is unknown or unavailable, then this upper bound nmax can be approximated
through other approaches. Insights about the voting population’s social structure, for example
insights on its density, the (expected or known) size of some communities among participants, can
help in estimating nmax. Without such graph knowledge, then one can use system constraints
(Inequalities 7.1a-c) and the hypergeometric distribution followed by this random selection (as
presented in section 7.4). By estimating a certain proportion of M malicious participants among
the total P , one can get all numbers of workers n such that system constraints are verified.
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7.9.3 The Feasibility of Relaxed Graph-Aware Methods

Would less informed knowledge about the graph be sufficient in order to give high collusion-
resistance confidence? For low values of nworkers/nparticipants, the size of the largest clique of
workers seems to increase linearly with the number of workers (see Figure 7.6). That function’s
slope is initially steeper than the one of the linear function passing through the point corresponding
to the largest clique in the graph, then the slope gets slighter in order to end on that same point.
It would be of interest to investigate if that observation still holds on other social graphs. In that
case, because tmax follows a square root-shaped function, there exists a range of low values of n,
where tmax is greater than tmin (size of largest clique with 95% confidence).

Other criteria altogether, not using a graph, could be used to help determine a number of
workers n: 1) Using the curve obtained by intersecting the hypergeometric law’s Cumulative Dis-
tribution Function P (n,m) with a plane of probability p (e.g. 95%) as defined in subsection 7.4.3.
This method requires quantifying an expected total number of malicious participants M ; 2) Op-
timizing n on the criterion of the amount of needed messages. Indeed Shamir’s Secret Sharing
Scheme requires dividing each one of the P participant’s vote in n shares, one per worker. This
means there will be n ∗ P messages placed on the distributed ledger during the referendum-vote.
For scalability purposes, the number of workers should be kept as low as security criteria permit
it.

7.9.4 The Feasibility of Graph-Aware Methods

Should a social graph of participants be available for a given referendum, where should it be stored?
If only the referendum initiator has access to it, should they be malicious, nothing prevents them
from not using it altogether in designating workers. Forcing him to use it could be done by forcing
him to provide a proof that the result was obtained through the algorithm.

Let us now consider a graph annotated with participant IDs on nodes. The initiator can
use it or transmit it to other malicious entities to violate participant anonymity, through graph
inference re-identification. However, knowing only the unannotated graph may provide lower and
upper bounds for n in the same way our experiments did (see Figure 7.6). Anonymity could be
maintained in this case. If the graph is public, then it becomes easier to ascertain whether the
initiator used the algorithm, for example through Smart Contracts (Ethereum)[287]. However,
an annotated graph would again be at risk of participant re-identification. If we were to divide
the graph among participants in order to decentralize tasks, we would need workers and would
therefore have the same problem to select those.

Another variant would be to use a decentralized social graph, with participants knowing only
their “friends” on the now implicit social graph (plus some strangers to avoid re-identification
if some nodes have a low degree). A decentralized algorithm should then be designed to select
workers under those constraints.

7.10 Conclusion

In this work, we proposed two solutions to provide better collusion-resistance in distributed proto-
cols where a subset of workers needs to be selected from the set of participants:a verifiable random
worker selection based on decentralized computation of a random seed, as well as a selection based
on community detection in social graphs. Firstly, we used the blockchain’s immutability and order-
ing to design a collusion-resistant decentralized protocol to randomly select workers. Secondly, we
considered a social graph representing participants and proposed an algorithm to distance workers
from each other in the graph. Based on a social graph and our problem’s constraints, we computed
the size of the largest clique of workers to evaluate the number of workers’ bounds for which our
solutions were resistant to collusion with high confidence.

Both approaches provided ranges of numbers of workers satisfying the constraints. The de-
centralized random worker selection works from low numbers of workers to an upper limit which
depends on the size of the graph’s largest clique. As expected, the method taking advantage of the
graph’s structure provides better results: it distances workers better for a wider range of numbers
of workers.

As discussed, an interesting topic for future work would be to analyze in depth the impact of
the social graph structure on the protocol’s resistance to collusion. An equally important topic
would be to fully decentralize the method based on the graph structure and community detection.
This solution should ensure privacy for participants, be transparent to all and verifiable by all,
whilst preserving the demonstrated collusion-resistance properties.
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Part III

Privacy-Preserving Message
Routing

98



Chapter 8

A Study of the Unwillingness of
Nodes to Participate in Mobile
Delay Tolerant Network Routing

Message routing in mobile delay tolerant networks inherently relies on the cooperation between
nodes. In most existing routing protocols, the participation of nodes in the routing process is taken
as granted. However, in reality, nodes can be unwilling to participate. We first show in this work
the impact of the unwillingness of nodes to participate in existing routing protocols through a set
of experiments. Results show that in the presence of even a small proportion of nodes that do not
forward messages, performance is heavily degraded. We then analyze two major reasons of the
unwillingness of nodes to participate, i.e., their rational behavior (also called selfishness) and their
wariness of disclosing private mobility information.

Our main contribution in this work is to survey the existing related research works that over-
come these two issues. We provide a classification of the existing approaches for protocols that
deal with selfish behavior. We then conduct experiments to compare the performance of these
strategies for preventing different types of selfish behavior. For protocols that preserve the privacy
of users, we classify the existing approaches and provide an analytical comparison of their security
guarantees.

This chapter is an adapted version of the article: “An Investigation on the Unwillingness of
Nodes to Participate in Mobile Delay Tolerant Network Routing.” J. Miao, O. Hasan, S. B.
Mokhtar, L. Brunie, and K. Yim. International Journal of Information Management (Elsevier).
2013. Vol. 33, no. 2, pp. 252-262. This work was carried out in the context of the Ph.D. of J.
Miao, co-supervised with L. Brunie and S. B. Mokhtar.

8.1 Introduction

The heavy utilization of mobile devices with short-range networking interfaces, such as smart
phones and personal digital assistants, has led to the emergence of a new type of opportunis-
tic networks called Mobile Delay Tolerant Networks (MDTNs). MDTNs are constructed by the
(intermittent) connection of co-located mobile devices. Contrary to Mobile Ad-hoc NETworks
(MANETs) [252], in MDTNs, a complete routing path between two nodes that wish to commu-
nicate cannot be guaranteed [109]. The applications developed for these networks are necessarily
geo-localized with no critical time constraints (e.g., advert dissemination, recommendation of points
of interest, asynchronous communication). A number of networking scenarios have been catego-
rized as MDTNs, such as Vehicular Ad-hoc NETworks (VANETs) [176], Pocket Switched Networks
(PSNs) [150], etc.

Due to the frequent and long-term network partitions that characterize MDTNs, message deliv-
ery is considered as one of the major challenges in these networks. In order to deal with the lack of
end-to-end connectivity between nodes (i.e., mobile devices), message routing is often performed in
a “store-carry-and-forward” manner [109], in which a message is stored by intermediary nodes and
forwarded to nodes closer and closer to the destination until it is eventually delivered or it expires.
Therefore, message routing in MDTNs inherently relies on the cooperation between nodes.

In the literature, most of the existing routing protocols in MDTNs explicitly or implicitly
assume that the nodes in a network are willing to relay messages for others. Unfortunately, reality
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is different. Indeed, first, as it has been previously demonstrated in the literature, collaborative
systems are subject to rational behavior (also called selfish behavior). MDTNs are particularly
suited for exacerbating such behavior due to the resource constraints of mobile devices (e.g., battery,
memory and bandwidth) [240]. A second reason that leads to the unwillingness to participate in
MDTN routing is the users’ wariness of disclosing private information (e.g., identity, location,
message content). The main contribution of this work is to survey the existing related research
works that overcome these two issues.

The remainder of this chapter is organized as follows. We first analyze the impact of the unwill-
ingness of nodes to participate through a set of experiments in Section 8.2. We then classify selfish
behavior, and summarize the impact of selfish behavior on routing performance in Section 8.3. We
then investigate different strategies for preventing selfish behavior in Section 8.4. This is followed
by an experiment to compare the performance of different strategies in Section 8.5. In Section 8.6,
we discuss and classify the privacy concerns that users face in MDTNs. We then investigate
different privacy-preserving protocols in Section 8.7. The privacy-preserving protocols are then
compared in Section 8.8. Finally, we conclude this work in Section 8.9.

8.2 Impact of the Unwillingness to Participate in MDTN
routing

In order to evaluate the impact on performance of the unwillingness of a proportion of nodes in
the network to participate in the routing of messages, we performed the following experiment. We
ran one of the most efficient routing protocols in DTNs, i.e., the Binary Spray and Wait [268]
algorithm. In this algorithm, the source node holds a given number of copies of the message it
wants to send. Each time it encounters another node, it hands over half of the remaining copies
it holds, until it does not have enough copies to send. Similarly, if a node has more than one
copy of a given message, it hands over half of the message copies to the encountered nodes, and
so forth until the message reaches the destination. In this experiment we injected a proportion
of nodes that are not willing to participate in the routing process and analyze their impact on
the delivery ratio. We considered two types of behaviors for non-participating nodes, i.e., nodes
that explicitly refuse to participate (referred to as “Non-forwarding” in the experiment results)
and nodes that accept to receive messages but eventually drop them instead of forwarding them
(referred to as “Dropping” in the experiment results). The experimental settings we used for this
experiment are the same as those described in Section 8.5. Results, depicted in Figure 8.1 show
that in presence of non-participating nodes, the delivery ratio is heavily impacted, especially if
nodes do not explicitly declare themselves as non-participating (i.e., the Dropping curve in the
graph). Note that in presence of 100% of non participating nodes, the delivery ratio drops to
40%, which represents the situations where the source node directly delivers the message to the
destination node.
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Figure 8.1: Impact of non participating nodes in MDTN routing

Our aim in this work is to understand the reasons why a node may be unwilling to participate
in an MDTN routing protocol and survey the related research contributions to deal with this issue.
We identify two major reasons, i.e., nodes’ selfishness (presented in sections 8.3, 8.4 and 8.5) and
their wariness of disclosing private information (presented in sections 8.7 and 8.8).
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8.3 Selfishness

In this section, we first develop a unified view of the classification of selfish behavior. We then
discuss the methodologies utilized for investigating the influence of selfish behavior on the perfor-
mance of routing protocols. Finally, we highlight the performance degradation caused by selfish
behavior.

8.3.1 Classification of Selfish Behavior

Recent years have seen considerable research works addressing the issue of selfish behavior in
DTNs [187, 196, 299]. Traditionally, most works consider selfish behavior as the unwillingness of
a single node to relay the messages of all other nodes in order to conserve its limited resources.
Nevertheless, people in real life (i.e., the carriers of mobile devices) generally do not act alone, but
tend to belong to communities [152]. In an alternative type of selfishness, a node that belongs to
a community is willing to relay messages for the nodes within the same community but refuses to
relay messages for the nodes outside its community. For this reason, selfish behavior is classified
into two categories: individual selfishness and social selfishness [184].

Moreover, in the literature investigating the impact of selfish behavior on routing performance
[165, 231], the authors generally consider the following two types of selfish actions: non-forwarding
of messages and dropping of messages. Non-forwarding of messages means that a node refuses to
relay messages for the nodes towards which it is selfish. Dropping of messages means that a node
agrees to relay messages for the nodes towards which it is selfish, but it drops the messages after
receiving them.

From the above description, we can see that there are two classifications of selfish behavior from
different aspects. In this work, we develop a unified view of the classification of selfish behavior.
We term the two aspects of the classification as collusion and non-cooperation. From the viewpoint
of collusion, selfish behavior can be classified into two categories: individual selfishness and social
selfishness. From the viewpoint of non-cooperation, selfish behavior can be classified into two
categories as well: non-forwarding of messages and dropping of messages. The reader is requested
to refer to Figure 8.2 for an illustration of the unified view of the classification. To the best of our
knowledge, this is the first work to develop this unified view of the classification of selfish behavior.

Figure 8.2: Classification of selfish behavior in DTNs

8.3.2 The Methodologies of Investigating the Impact of Selfish Behavior

Since Panagakis et al. [231] first presented their study on the performance degradation caused
by selfish behavior in DTNs, researchers have shown significant interest in this field. To evaluate
the impact of selfish behavior on the performance of existing routing protocols, some works utilize
theoretical analysis models, such as Continuous Time Markov Chains (CTMC), whereas others
utilize simulations.

To the best of our knowledge, CTMC is first exploited by Karaliopoulos et al. [165] to demon-
strate the impact of selfish behavior in DTNs. Later studies [185, 186, 187, 188] explored CTMC
to show the influence of selfish nodes on routing performance in the contexts of social selfishness,
constrained energy and multicast routing. CTMC provides a theoretical approach of analyzing
selfish behavior in DTNs.

However, the routing process modeled by CTMC is built on the assumption that the inter-
contact times between nodes follow exponential distribution, which rarely holds in real-life situ-
ations [72, 150]. Moreover, CTMC can only be utilized to model the routing process of simple
routing protocols, such as Epidemic [279], Spray and Wait [268]. These routing protocols are
generally considered to be inefficient in reality [209]. In addition, the studies based on CTMC
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do not evaluate the performance of routing protocols in terms of delivery ratio, which is tradi-
tionally considered to be the most important performance metric in DTNs. Therefore, authors
in [82, 168, 188] utilize simulation methods to investigate the influence of selfish behavior on the
routing performance.

8.3.3 The Impact of Selfish Behavior

Since Panagakis et al. [231] first presented their study on the performance degradation caused
by selfish behavior in DTNs, researchers have shown significant interest in this field. The existing
research works [82, 168, 187, 188] based on theoretical analysis and experimental simulations re-
veal the following two characteristics of the impact of selfish behavior on the routing performance.
Firstly, the routing performance (i.e., delivery ratio, delivery cost and delivery latency) is seriously
degraded, if a major portion of the nodes in the network is selfish. For instance, the delivery
ratio in the presence of selfish nodes can be as low as 20% compared to what can be achieved
under full cooperation [263]. Secondly, the impact on the routing performance is related to the
non-cooperative action of selfish behavior (i.e., non-forwarding of messages and dropping of mes-
sages). Specifically, the behavior of non-forwarding of messages reduces the delivery cost, while
the behavior of dropping of messages increases the delivery cost. However, both of them decrease
the delivery ratio, and prolong the delivery latency, even if messages are eventually delivered.

8.4 Strategies for Preventing Selfish Behavior

In order to reduce the impact of selfish behavior on routing performance, a number of studies focus
on stimulating selfish nodes to be cooperative. The existing incentive strategies are traditionally
classified into three categories [68, 75]: barter-based [67, 68, 288], credit-based [75, 196, 227, 298,
299] and reputation-based [52, 100, 183, 196, 282, 285]. In the following subsections, we will
introduce the representative strategies in each category and summarize their common problems.

8.4.1 Barter-based Strategies

The simplest strategies are barter-based or pair-wise Tit-For-Tat (TFT) strategies [67, 68, 288].
The mechanism is that two encountering nodes exchange the same amount of messages. In [67, 68],
the authors divide the messages into two categories: primary messages and secondary messages.
For a given node, the messages in which it is interested (e.g., the messages destined for it) are
primary messages. Other messages are secondary messages. When two nodes encounter each
other, they first exchange the description about the messages stored in their buffers. Based on the
analysis of the description, each node determines an initial list of the desired messages from the
other node, and sorts the messages in order of preference (i.e, the priority of primary messages is
higher than that of secondary messages). For the sake of simplicity, let us assume that the size
of messages is the same. Finally, each node refines the list by keeping the top K messages in its
initial list, where K is the minimum size of two initial lists.

From the above depiction of message selection under this strategy, we can see that it is entirely
up to the nodes to determine the desired messages. Thus, a node may adopt selfish behavior
towards the secondary messages, in order to conserve its limited resources. However, exchanging
the secondary messages is also beneficial, since they can be used to exchange the primary messages
in the future. In other words, each message has a potential value, which is employed to prevent
selfish behavior. Moreover, the authors in [68, 288] consider the message selection process as a
two-person game, and utilize the Nash Equilibrium [223] to increase the message delivery ratio.

After the message selection process, two encountered nodes exchange the messages in the lists
one by one (i.e., if a node has sent a message to the other node, it would not send another message,
until it receives a message from the latter). In such a manner, even if the connection is disrupted
during the exchange process, the maximum difference of the number of the exchanged messages
between two nodes is one. Consequently, the fairness of message exchange can be ensured by
exchanging approximately the same amount of messages between two encountering nodes.

However, the requirement of exchanging the same amount of messages is a two-edged sword. It
degrades routing performance dramatically in the case that one of the two encountering nodes has
fewer messages. For instance, let’s consider that there are two encountering nodes, called node A
and B. Node A contains a message whose destination is node B. However, there is no message in
the buffer of node B at the moment. In such a case, the message cannot be delivered to node A.
Furthermore, if node A is the source of the message, the performance in terms of delivery ratio is
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even worse than that achieved by utilizing Direct Delivery [270] which is generally considered to
achieve the lower bound for delivery ratio in DTNs.

8.4.2 Credit-based Strategies

Credit-based strategies are proposed to avoid the disadvantages of barter-based strategies. This
kind of strategy stimulates nodes to be cooperative by utilizing the concept of virtual credit, which
is utilized to pay for message forwarding. The mechanism is that if a node cooperates to forward
a message for others, it receives a certain amount of credit as a reward that it can later utilize for
its own benefit.

Based on which node is charged with the message forwarding, the credit-based strategies can be
further sub-divided into two models [69]: 1) Message Purse Model and 2) Message Trade Model. In
message purse model [75, 196, 299], the source node of a message pays credits to the intermediate
nodes which participate in delivering the message to the destination. In the message trade model
[227], messages are considered as valuable goods. The receiver pays credits to the sender of a
message in each hop-by-hop transmission until the message reaches the destination, which finally
pays for the message forwarding. Since the source nodes do not pay for the message forwarding,
the message trade model is inherently vulnerable to the source nodes flooding the network. For
this reason, most of the credit-based works utilize the message purse model.

In the strategies that belong to the message purse model, the common assumption is the
existence of a Virtual Bank (VB), or Credit Clearance Service (CCS). The VB covers the space that
the mobile nodes can reach, and can be connected by any nodes in the network. The responsibility
of VB is to charge the source node of a message and reward the intermediate nodes which participate
in delivering the message to the destination.

The strategies [75, 196, 299] belonging to the message purse model are suitable for different
routing protocols. In [196], the proposed strategy is designed for the single-copy routing protocols
(e.g., Direct Delivery and First Contact [156]) under which only one message copy exists in the
routing process. Although single-copy routing protocols consume the least resources, the routing
performances in terms of delivery ratio and delivery latency are generally too low to be applicable
in reality [269]. Therefore, more routing protocols (e.g., Epidemic and Spray and Wait) are multi-
copy based. In [75, 299], the proposed strategies are targeted to multi-copy based routing protocols
in DTNs. In [299], Zhu et al. include the solution of cheating actions (i.e., credit forgery attack,
nodular tontine attack and submission refusal attack) which are adopted by the selfish nodes to
maximize their benefits. Detailed information about these cheating actions is given in [299].

From the above discussion, we can see that the process of charging and rewarding is invoked at
the side of the VB, when (1) a message is successfully delivered to the destination and (2) there are
intermediary nodes participating in the routing process. Let’s consider a scenario where a major
portion of the nodes is selfish and each node has enough credits to request the message forwarding
service from an encountering node in a contact. In such a case, a message can only be delivered
when the source node directly encounter the destination node. In addition, before the message
reaches the destination node, the credits of the source node are reusable to request the message
forwarding service. Therefore, a selfish node cannot be aware of the necessity of cooperation with
other nodes. Due to the above two reasons, the credit-based strategies cannot efficiently stimulate
the selfish nodes to be cooperative, when a major portion of the nodes is selfish.

8.4.3 Reputation-based Strategies

We first explain the concept of reputation before discussing the reputation-based strategies: “Rep-
utation of an agent is a perception regarding its behavior norms, which is held by other agents,
based on experiences and observation of its past actions” [193]. In the scope of investigating selfish
behavior, the reputation value of a node indicates other nodes’ perception about the cooperation
of the node. For instance, if the reputation value of a node is low, it means that the node is
considered to be selfish by other nodes. If the reputation value of a node is high, it means that
the node is considered to be cooperative by other nodes.

The mechanism of this kind of strategy is that a message generated by a given node is forwarded
only if the node has forwarded messages originating from others. Therefore, the observation about
the behavior of other nodes plays a significant role in this kind of strategy. Based on the feasibility of
observation by other nodes, we further divide the existing strategies into two models: 1) detection-
based model and 2) non-detection model.

In the detection-based model, each node monitors the behavior of the intermediary nodes. In
[52, 183, 285], the authors utilize different methods to detect selfish behavior in DTNs. In [285],
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each intermediate node receives a receipt after forwarding a message to another node. The receipt
is a proof about the cooperation of the intermediate node. The cooperation of an encountering
node is assessed by Beta distribution, which is parameterized by the number of cooperative and
selfish actions taken by the node. However, the strategy cannot prevent collusion cheating, which
means that some nodes together cheat other nodes in order to increase their reputation. Detailed
information about this cheating action is given in [299]. Similar to [285], the behavior of interme-
diary nodes is proved by the return of a receipt. The difference is that a receiver floods the receipt
instead of sending the receipt to the sender. In [52], selfish behavior is detected in a different way.
In [52], the sender of a message (including the source and intermediate nodes) keeps the records of
the encountered nodes and the forwarding records which contain the identifier of the message, the
destination of the message and the forwarding time. When two nodes encounter each other, they
check the forwarding records and received messages since last encountered time, in order to detect
the cooperative nodes and selfish nodes.

However, due to the unique features of DTNs (e.g., the lack of an end-to-end continuous path
and high variation in network conditions), the detection of selfish behavior is considered to be
difficult by some authors. The alternatives belonging to reputation-based strategies are not based
on the detection of selfish nodes [100, 196]. In [100], Dini et al. decrease the reputation of all
nodes periodically, and only increase the reputation of the intermediate nodes who participate
in the successful message delivery. Similar to [100], the proposed strategy in [196] decreases the
reputation of all nodes periodically. The differences between them are twofold. First, it involves the
credit-based incentive strategy to reward the intermediate nodes which participate in the successful
message delivery. Second, no matter whether the message delivery succeeds or not, all cooperative
nodes can get good reputation values by sending the proofs of collaboration to a Trusted Authority
(TA), which is responsible for credit and reputation clearance.

From the above description, we can see that the reputation-based strategies can work well even
if a major portion of the nodes takes the selfish behavior of dropping messages. However, this
kind of strategy mistakenly considers the collaboration of intermediate nodes as selfish behavior,
if the reason causing the failure of message delivery is the message expiration other than selfish
behavior of intermediate nodes. It is unfair to the cooperative nodes. Furthermore, it results in the
decrement of delivery probability of the message generated by this kind of cooperative node, since
they are mistakenly considered as selfish nodes by other nodes. Moreover, since the reputation-
based strategies only check whether an intermediate node forwards the message to other nodes or
not, it cannot tackle the selfish behavior of non-forwarding messages.

8.5 Analysis of Strategies for Preventing Selfish Behavior

In this section, we first introduce representative strategies in the categories discussed above. We
then present the experiment settings. The routing algorithm and performance metrics are subse-
quently depicted. Finally, we compare the performance of the different strategies for preventing
selfish behavior.

8.5.1 Compared Strategies for Preventing Selfish Behavior

In the experiment, we compare the performance of preventing selfish behavior of the following
strategies against a basic routing protocol (i.e., Binary Spray and Wait), called Non-strategy, which
does not cope with the selfish behavior of nodes. The detailed settings of the selected strategies
are depicted in Table 8.1.

Barter: In [67], when two nodes encounter each other, they exchange the same amount of
messages.

MobiCent: Due to the selected routing algorithm, which will be presented later, is multi-copy
based, we choose the MobiCent as the representative strategy in the category of credit-based. In
[75], the charging and rewarding processes are performed at the side of Virtual Bank (VB), when
a message is firstly delivered to the destination. A constant credit is charged from the account of
the source node in VB. The charged credit is equally divided, and distributed to the intermediate
nodes in the message delivery path as a reward.

IRONMAN: Compared to barter-based and credit-based strategies, IRONMAN [52] includes
the detection of selfish behavior. Therefore, it is selected as the representative strategy in reputation-
based strategy. As depicted in Section 8.4 Part C, when two nodes encounter each other, they
firstly check the forwarding records and the received messages, in order to detect the selfish nodes.
The two encountering nodes then update the opinion about others’ behavior with each other.
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8.5.2 Simulation Setup

In this experiment, there are 50 nodes in each simulation. To simulate the social relationships, we
equally divide the nodes into two groups. Two nodes that belong to the same group are considered
to have a social relationship; otherwise, the nodes are considered to not have a social relationship.
During the simulation, a message with a random source and destination is generated at every 5
seconds. Since the message generation process lasts for 12 hours, there are 8640 messages generated
in each simulation. The detailed settings of the simulation are listed in Table 8.2

Table 8.1: Simulation Parameters for Strategies

Strategy Name Parameter Name Value
MobiCent Initial Credit for Each Node 1

Payment for Each Message 1
IRONMAN Initial Trust for Each Node 0.5

Trust Increment 0.5
Trust Decrement 0.5

Threshold 0.49

Table 8.2: Simulation Parameters

Parameter Name Value
Simulation Area 500 m x 500 m

Simulation Length 13.5 hours
Mobility Model Random WayPoint (RWP)

Number of Mobile Nodes 50
Number of Groups 2

Number of Nodes in Each Group 25
Transmission Range 10 m

Node Speed 1 m/s
Warm-up Period 0.5 hour

Duration of Message Generation 12 hours
Message Generation Rate 1 message per 5 seconds

Time-To-Live (TTL) 1 hour

8.5.3 Routing Algorithm

Based on the above settings, we conducted our experiment with an efficient multi-copy routing
algorithm in MDTNs, called Binary Spray and Wait [268]. The Binary Spray and Wait routing
algorithm provides a platform for the selected strategies. The routing process is elaborated below.

Binary Spray and Wait: In [268], each message is associated with an attribute L, which
indicates the maximum copies of the message that a message carrier can make. For each message,
there are two phases: spray phase and wait phase. In the spray phase (i.e., L > 1), a message
carrier hands over half of its message copies to an encountering node without the message. In the
wait phase, the message can only be forwarded to the destination node. In the experiment, L is
set to 5.

8.5.4 Performance Metrics

We observe the following metrics to assess the impact of selfish behavior in DTNs:
Delivery Ratio: The proportion of messages that have been delivered out of the total unique

messages created.
Delivery Cost: The total number of messages (including duplicates) transmitted in the sim-

ulation. To normalize this, we divide it by the total number of unique messages created.

8.5.5 Simulation Results

In Figure 8.3(a), the performance of the strategies for preventing dropping messages is shown.
When there is no selfish node, the performance of Non-strategy, MobiCent and IRONMAN is the
same, since the cooperative nodes always cooperate with other nodes. However, the performance
of barter is lower than those of other strategies, due to the requirement of exchanging the same
amount of messages. As the percentage of selfish nodes increases, the performance of all strategies
is degraded. The performance of IRONMAN and MobiCent is always better than that of Non-
strategy. The performance of barter exceeds that of Non-strategy, when the percentage of selfish
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nodes is about 60%. The performance of IRONMAN is much better than those of other strategies
even if all nodes are selfish, since it can detect the dropping of messages of a selfish node.

Figure 8.3(b) illustrates the performance of the strategies for preventing non-forwarding mes-
sages. The performance of all strategies decreases, as the percentage of selfish nodes increases.
The performance of MobiCent is always better than other strategies. MobiCent can stimulate
selfish nodes to be cooperative, as the number of the messages generated by selfish nodes increases.
IRONMAN always achieves the same performance as Non-strategy, since it cannot detect the self-
ish behavior of non-forwarding of messages. The performance of Barter only exceeds than that of
Non-strategy, when the percentage of selfish nodes is about 82%.
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Figure 8.3: The routing performance in terms of delivery ratio under individual selfishness. The
selfish actions of dropping and non-forwarding messages are illustrated in (a) and (b) respectively.

In Figure 8.4, the performance of delivery ratio of the four strategies under the social selfishness
is investigated. From the figures, we can see that all the strategies cannot work well under social
selfishness. Specially, the performance of barter is even worse than that of Non-strategy, due to the
requirement of exchanging the same amount of messages. For the selfish behavior of non-forwarding
of messages, the performance of MobiCent is much better than those of other strategies, when the
selfish nodes are 75% percentage.
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Figure 8.4: The routing performance in terms of delivery ratio under social selfishness. The selfish
actions of dropping and non-forwarding messages are illustrated in (a) and (b) respectively.

The performance of delivery cost is demonstrated in Figure 8.5 and 8.6. In Figure 8.5(a), due
to the characteristics of dropping of messages, the delivery cost of all strategies increases, as the
percentage of selfish nodes increases. Meanwhile, the delivery cost of all incentive strategies is
lower than that of Non-strategy, since they stimulate selfish nodes to be cooperative. However,
in Figure 8.6(b), the delivery cost of Non-strategy, IRONMAN, and MobiCent decreases, as the
percentage of selfish nodes increases, since they cannot deal with social selfishness. In Figure 8.5(b)
and Figure 8.6(b), due to the characteristics of non-forwarding of messages, the delivery cost of all
strategies decreases, as the percentage of selfish nodes increases. The delivery cost of MobiCent is
higher than that of Non-strategy when the percentage of selfish nodes is high, due to the stimulation
of selfish nodes to be cooperative.

From the above analysis of the simulation results, we can see that, for individual selfishness, the
reputation-based strategies cannot prevent the selfish behavior of non-forwarding of messages. For
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Figure 8.5: The routing performance in terms of delivery cost under individual selfishness. The
selfish actions of dropping and non-forwarding messages are illustrated in (a) and (b) respectively.
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Figure 8.6: The routing performance in terms of delivery cost under social selfishness. The selfish
actions of dropping and non-forwarding messages are illustrated in (a) and (b) respectively.

social selfishness, there is no strategy that can efficiently prevent the selfish behavior of dropping
of messages, and credit-based strategies can prevent the selfish behavior of non-forwarding of
messages. The performance of barter-based strategies is always worse than that of credit-based
and reputation-based strategies.

8.5.6 Comparison of Strategies

According to the above simulation results, we utilize three types of circles to indicate the per-
formance of the selected strategies compared with that of Non-strategy: (1)  indicates that the
performance of a given strategy is always better than that of Non-strategy; (2) H# indicates that
the performance of a given strategy is better than that of Non-strategy, only when the percentage
of selfish nodes is high; and (3) # indicates that the performance of a given strategy always cannot
exceed that of Non-strategy. The performance of the representative strategy in each category is
listed in Table 8.3.

Table 8.3: Performance comparison of the selected strategies

Strategy Individual selfishness Social selfishness
Dropping Non-forwarding Dropping Non-forwarding

Barter H# H# # #
MobiCent   # H#

IRONMAN  # # #

8.6 Privacy

In this section, we will classify privacy preserving protocols for MDTN routing according to their
specific privacy objectives.
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8.6.1 Classification of Privacy Objectives

As mentioned in the introduction, messages in MDTNs are relayed by intermediary nodes. Apart
from selfishness, mobile device carriers can be unwilling to participate in the routing process due
to the concern of privacy. Recent years have seen considerable research works addressing the is-
sues of privacy in MDTNs. The protocols in the literature are mainly concerned with preserving
the privacy of one or more of the following sensitive user aspects: (1) identity, (2) location, (3)
message content, and (4) relationships. We can thus classify the existing privacy preserving pro-
tocols according to their privacy objectives. Please refer to Figure 8.7 for an illustration of this
classification. We discuss each of these privacy objectives in the following section along with some
solutions proposed in the literature for achieving these objectives.

Figure 8.7: Classification of privacy from the aspect of privacy objective

8.7 Strategies for Preserving Privacy

8.7.1 Identity Privacy

In the category of identity privacy, the identity of nodes participating in message delivery is con-
sidered as private information.

Kate et al. [166] presented an anonymous communication architecture for DTNs using Identity-
Based Cryptography (IBC) [261]. This is one of the first anonymous communication solutions
specifically for DTNs. Kate et al. use a construct called DTN gateways, which are entities assumed
to be trusted and to be aware of user identities. In the routing process, a DTN gateway replaces
the identity of a source node with a pseudonym unlinkable to the identity. The advantage of
the protocol is that there is not much overhead for routing. However, the protocol relies on the
assumption that trusted DTN gateways are present, which is a strong assumption for MDTNs.

Le et al. [181] proposed a privacy preserving infrastructure called Privacy-Enhanced Oppor-
tunistic Networks (PEON) based on onion routing [246]. In PEON, nodes are clustered into groups.
Nodes in the same group share public keys. Before sending a message, a source node determines
the routing path, which contains a certain number of node groups. The message is then encrypted
by the public keys of the destination node and the determined groups in an inverse order. Thus,
each relay node can only be aware of the next hop (i.e., a node group) in the routing path and
remains unaware of the identity of the source node. Compared to classic onion routing, the rout-
ing performance of PEON in terms of delivery ratio and delivery latency is enhanced due to the
utilization of multicasting inside a group. However, node groups are randomly clustered, which
may result in the inefficient dissemination of messages inside a group. In addition, the assumption
of a Public Key Infrastructure (PKI) rarely holds in MDTNs [166].

Lu et al. [195] presented a social-based privacy-preserving packet forwarding protocol (named
SPRING) for Vehicular DTNs. In SPRING, Road Side Units (RSUs) are assumed to be trusted
and uncompromisable. Similar to [297], RSUs are strategically deployed at some highly-social
intersections to temporarily buffer the messages as relays. Due to the utilization of RSUs, an
adversary cannot find out the identity of the source and the destination nodes. However, the
private information of nodes is disclosed, if any RSU in the network is compromised. Additionally,
all RSUs in SPRING are managed by a single management authority, which results in inflexibility.

8.7.2 Location Privacy

In the category of location privacy in MDTNs, the discovery of the user location by the adversary
is considered as the main privacy threat. In an untrusted network, the mobile device owners do
not want others to know their positions for personal security reasons [197].

In [197], Lu et al. proposed the Anti-Localization Anonymous Routing (ALAR) protocol for
MDTNs. In ALAR, each message is divided into k segments and each segment is then encrypted
and sent to n different neighbors. Therefore, an adversary may receive several copies of a segment at
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different times from different relay nodes. Even if the adversary collects these segments, they cannot
localize the source node with high probability. The disadvantage is that the routing performance
is influenced by the setting of the parameters k and n. Specifically, the routing performance in
terms of delivery ratio and delivery latency is degraded as the two parameters increase.

Zakhary and Radenkovic [291] presented a location privacy protocol that is based on the uti-
lization of social information of nodes. In this protocol, each node maintains a social profile, which
includes n profile attributes. The social relationship between nodes are inferred by the matching
of profile attributes. For each message, the forwarding is guided by the obfuscated attributes in
the first k hops. After that, the message can be routed by any routing protocols. Therefore, an ad-
versary cannot distinguish the location of the source node from the other k relay nodes. However,
nodes that have strong social relationships are generally considered to be frequently co-located.
Thus, the adversary can still detect the approximate location of the source node. Moreover, the
routing performance is degraded, due to the extra k forwarding hops.

8.7.3 Message Content Privacy

Since messages are relayed by intermediary nodes in MDTNs, the content of messages can be
unintentionally disclosed to these nodes in the routing process. Thus, in the category of message
content privacy, the content of messages is considered as private information.

Jansen and Beverly [157] proposed a Threshold Pivot Scheme (TPS) based on the technique of
secret sharing [226]. In TPS, a message, considered as the secret, is divided into multiple shares
by the technique of secret sharing. The shares are delivered to the destination node via multiple
independent paths. The content of a message is thus protected from individual intermediary nodes.
At the destination node, the message can be reconstructed by the knowledge of any τ shares. The
disadvantage of this protocol is that if an adversary successes n monitoring a sybil attack, it can
create multiple pseudonymous nodes and then intercept sufficient number of shares.

Shi and Luo [264] proposed an anonymous communication mechanism called ARDEN based on
onion routing [246], multicast dissemination and Attribute-Based Encryption (ABE) [124]. In AR-
DEN, before sending a message, the source node determines a path of disjoint groups, one of which
includes the destination node. The message is then encrypted by the keys of the destination node
and the grouping keys. Compared with the traditional onion routing, the advantage of ARDEN is
that it encrypts messages with the keys of groups rather than the keys of individual intermediate
nodes. The performance in terms of delivery ratio and delivery latency can be improved, since all
nodes in the same group can participate in message forwarding. On the other hand, the arbitrary
group partitioning manner may result in performance degradation in terms of delivery ratio and
delivery latency.

8.7.4 Relationships Privacy

As mentioned in the introduction, the mobility pattern of nodes plays an important role in the
routing process. A number of proposed routing protocols exploit the encounter probability [89, 191]
and social relationship of nodes [89, 151] to guide the message forwarding decision. However, such
information is considered as personal and private [234] thus users may hesitate in participating in
such protocols.

Hasan et al. [140] proposed a Privacy Preserving Prediction-based Routing (3PR) protocol
for MDTNs. A prediction-based routing protocol for MDTNs works by forwarding a message
from one intermediate node to another if the latter has higher probability of encountering the
destination node. However, this process compromises the privacy of the nodes by revealing their
mobility patterns. 3PR forwards messages by comparing information about communities of nodes
instead of individual nodes. Specifically, it compares the maximum probability that a node in the
community of a potential intermediate node will encounter the destination node. Simulations on
a community-based mobility model demonstrate that the protocol has comparable performance to
existing prediction-based protocols.

Parris and Henderson [234] presented the Privacy-enhanced Social-network Routing protocol.
This protocol takes advantage of obfuscated social information rather than accurate social infor-
mation to guide the message forwarding. The original social information of a node is obfuscated
by the following two approaches: (1) modifying the friend list, i.e., adding or removing some items
into or from the friend list, or (2) using a Bloom filter [55] to hash the friend list. The advan-
tage of the protocol is that the presence of a public key infrastructure is not necessary. However,
message routing may be guided erroneously due to the utilization of obfuscated social information.
Moreover, in the case of modifying the friend list of a source node, an adversary can approximately
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determine the source node’s friends by collecting the messages from the source node. In the second
approach, the probability of false positives increases as the Bloom filter becomes more full, due to
the characteristics of Bloom filter.

8.8 Analysis of Strategies for Preserving Privacy

8.8.1 Criteria for Comparison

The criteria for comparison of the above privacy preserving protocols are described in the following
sections.

Adversarial models

We identify two adversarial models, which characterize the behavior of dishonest users. The models
are: Semi-Honest, and Malicious. A privacy preserving protocol is considered secure under one of
these models if it can show correctness and meet its privacy requirements under the given model.

Collusion

A dishonest user may act alone or multiple dishonest users may act in agreement to achieve their
ulterior motives. When multiple dishonest users work together, it is referred to as collusion. Privacy
preserving protocols either consider that collusion can take place between users or consider that
collusion does not take place.

Security Building Blocks

The privacy preserving protocols for MDTN routing are generally built using security building
blocks such as Identity-Based Cryptography (IBC) [261], Public Key Infrastructure (PKI), Onion
routing [246], Secret Sharing, Attribute-Based Encryption (ABE) [124], and Bloom filter [55].

8.8.2 Comparison of Strategies for Preserving Privacy

A comparison of the above privacy preserving strategies is given in Table 8.4 according to the
established criteria.

Table 8.4: Comparison of Strategies for Preserving Privacy

Protocol Privacy Objective Collusion Attack Model Building Blocks
Kate et al. [166] Identity Group Semi-Host IBC

Le et al. [181]
Identity
Content

Group Semi-Host
Onion Routing

PKI
Lu et al. [195] Identity Group Semi-Host
Lu et al. [197] Location Individual Semi-Host Secret Sharing

Zakhary and Radenkovic [291] Location Individual Semi-Host
Jansen and Beverly [157] Content Individual Semi-Host Secret Sharing

Shi and Luo [264]
Identity
Content

Group Semi-Host
Onion Routing

ABE
Hasan et al. [140] Relationships Group Semi-Host Secret Sharing

Parris and Henderson [234] Relationships Individual Semi-Host Bloom Filter

8.9 Conclusion

In this work, we investigated the existing research works that address the unwillingness of nodes
to participate in MDTN routing. We identified the factors of selfishness and privacy as the two
primary reasons why nodes are unwilling to participate. For selfishness, we first developed a clas-
sification of the aspects of selfish behavior. We then classified the existing strategies for preventing
selfish behavior into three categories: barter-based, credit-based and reputation-based. We subse-
quently analyzed the mechanisms of the proposed strategies and pointed out the problems in each
category. We then conducted an experiment to investigate the performance of the representative
strategies for preventing different types of selfish behavior. For privacy, we classified the existing
privacy preserving protocols for MDTNs according to their specific privacy objectives: identity,
location, message content, and relationships. We reviewed the various strategies proposed in the
literature for preserving the privacy of nodes under each of these categories. We also presented an
analytical comparison of the privacy preserving protocols.
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Chapter 9

Privacy-Preserving Routing in
Mobile Delay Tolerant Networks

Message routing is one of the major challenges in Mobile Delay Tolerant Networks (MDTNs) due
to frequent and long-term network partitions. A number of routing protocols for MDTNs belong
to the category of prediction-based routing protocols, which utilize the social encounter probability
of nodes to guide message forwarding. However, these prediction-based routing protocols compro-
mise the privacy of the nodes by revealing their mobility patterns. In this work, we propose the
Privacy Preserving Probabilistic Prediction-based Routing (4PR) protocol that forwards messages
by comparing aggregated information about communities instead of individual nodes. Specifically,
it compares the probability that at least one node in a community will encounter the destination
node. We present theoretical security analyses as well as practical performance evaluations. Our
simulations on a well established community-based mobility model demonstrate that our routing
protocol has comparable performance to existing prediction-based protocols. Additionally, the
community information is computed efficiently and independently of the routing protocol.

This chapter is an adapted version of the article: “4PR: Privacy Preserving Routing in Mobile
Delay Tolerant Networks.” J. Miao, O. Hasan, S. B. Mokhtar, L. Brunie, and A. Hasan. Computer
Networks (Elsevier). 2016. Vol. 111, pp. 17-28.

9.1 Introduction

Mobile Delay Tolerant Networks (MDTNs) (also referred to as Mobile Opportunistic Networks) are
constructed by the intermittent connection of co-located mobile devices. The MDTN architecture
caters to the rapidly expanding cyber-physical space where mobile and socially connected human
users are coupled with smart portable devices forming mobile network nodes. The short range
networking interfaces (e.g., Bluetooth) of these devices enable Mobile Networking in Proximity
(MNP), where neighboring devices interact through short-range communications. However, routing
messages between two nodes that are not within communication range is a challenge in MDTNs
since an end-to-end routing path cannot be guaranteed. The applications developed in these
networks are often geo-localized with no critical time constraint, e.g., advertisement dissemination,
recommendation of points of interest, and asynchronous communication.

In order to deal with the lack of end-to-end connectivity between nodes, message routing in
MDTNs is often performed in a “store-carry-and-forward” manner [109], in which a node may store
and carry a message for some time before opportunistically forwarding it to another node [271].
In order to better choose intermediary nodes, a number of routing protocols [289, 294] forward a
message from one intermediate node to another if the latter has higher probability of encountering
the destination node. Such routing protocols are called prediction-based routing protocols. It has
been shown that these protocols perform better than other protocols when nodes exhibit well-
known mobility patterns [289, 294]. However, prediction-based routing protocols implicitly assume
that nodes accept revealing their mobility patterns to other nodes. In practice, the disclosure of
mobility patterns can result in the unwillingness of nodes to participate in MDTNs due to privacy
concerns [210].

In this work, we present the Privacy Preserving Probabilistic Prediction-based Routing (4PR)
protocol for MDTNs. For routing a message, 4PR distinguishes the routing inside a community
from the routing between communities. A community is defined as a set of nodes that frequently
encounter each other (see Section 9.3). For disseminating a message inside a community, 4PR relies
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on the epidemic protocol [279], which by construction preserves the privacy of nodes and is efficient
as communities are small. The main challenge addressed by 4PR is thus the routing of a message
between communities in a privacy preserving manner. To do so, each node in the network calculates
the probability that at least one of the nodes in its community will encounter the destination. When
two nodes from different communities encounter, instead of comparing their respective probabilities
to encounter the destination node, they compare the aforementioned probabilities to determine the
message forwarding decision. The probability that at least one node in a community will encounter
a given node in the network is computed in a privacy preserving manner within the community
using the MDTN-Private-Probability protocol, presented in Section 9.5.

To the best of our knowledge, only our previous work (the 3PR protocol [141]) has addressed
the privacy issue of prediction-based routing protocols. In 3PR, message routing is guided by the
maximum probability that nodes in a community will encounter a destination node. In contrast,
in the 4PR protocol, message routing is guided by the probability that at least one node in a
community will encounter the destination node. This fundamental difference in how messages are
forwarded provides 4PR some significant advantages over 3PR. As we discuss in further detail in
Section 9.2.1, the advantages of 4PR over 3PR include: 1) better privacy preservation since the
true upper bound of encounter probabilities is not revealed; 2) private computation of probability
is more efficient than private computation of maximum; 3) the probability that at least one node
in a community will encounter the destination node is a more accurate measure for routing path
prediction than the maximum probability in the community.

We evaluate 4PR both theoretically by providing security analyses (Sections 9.4 and 9.5) and
practically through extensive simulations (Section 9.6). We have conducted our simulations based
on a well established community-based mobility model [89, 267]. We compare the performance of
4PR against five state-of-the-art protocols, i.e., epidemic [279], Direct [270], PRoPHET [191], Bub-
ble [151], and the 3PR protocol [141]. Epidemic and Direct are traditionally considered to achieve
the upper and lower bounds of routing performance. PRoPHET and Bubble are representatives
in prediction-based and community-based routing protocols respectively. Results show that 4PR
has comparable performance to existing prediction-based protocols while preserving the privacy of
the nodes.

The remainder of this chapter is structured as follows. Section 9.2 discusses related work on
privacy preserving protocols in MDTNs. The system model is described in Section 9.3. We describe
the 4PR protocol in Section 9.4 followed by the MDTN-Private-Probability protocol presented in
Section 9.5. The performance evaluation is subsequently presented in Section 9.6. We conclude in
Section 9.7.

9.2 Related Work

Recent years have seen considerable research addressing the issues of privacy in delay tolerant
networks. The protocols in the literature are mainly concerned with preserving the privacy of one or
more of the following sensitive user aspects [210]: (1) identity, (2) location, (3) message content, and
(4) relationships. In contrast, our protocol 4PR is a novel type of protocol, which has the specific
goal of hiding the encounter probabilities of nodes. Therefore, 4PR differs fundamentally from
other existing privacy preserving routing protocols for MDTNs due to the difference in objectives.

Hasan et al. [141] proposed the Privacy Preserving Prediction-based Routing (3PR) protocol
for MDTNs, which is the predecessor of the 4PR protocol presented in this work. This is the only
other work that we are aware of that has the same objective as 4PR, i.e., hiding the encounter
probabilities of nodes. In 3PR, when two nodes from different communities encounter, they com-
pare the maximum probability in their community that a given node will encounter the destination.
However, compared with 4PR, the forwarding decision mechanism of 3PR has the following two
shortcomings. Firstly, 3PR consumes much more resources in terms of the number of message
copies to compute the maximum probability in the community (see Section 9.6.1). Secondly, the
maximum probability in the community cannot accurately measure the probability of all nodes in
the community delivering the message to the destination node, due to the message being flooded
inside the community.

We note some protocols that attempt to preserve privacy in the other aforementioned cate-
gories. In the category of identity privacy, the identity of nodes participating in message delivery
is considered as private information. Papapetrou et al. [232] propose the SimBet-BF routing pro-
tocol for MDTNs. This anonymized routing protocol represents all node identities using Bloom
filters. The desired effect is that two nodes can exchange information while maintaining the privacy
of their identity and their past encounters. However, the protocol described by Papapetrou et al.
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is not a prediction-based protocol. In fact, a direction of future work described by the authors is
to use encounter information to enhance the routing protocol.

Kate et al. [166] presented an anonymous communication architecture for MDTNs using Identity-
Based Cryptography (IBC). This is one of the first anonymous communication solutions specifically
for MDTNs. Kate et al. use a construct called MDTN gateways, which are entities assumed to
be trusted and to be aware of user identities. In the routing process, a MDTN gateway replaces
the identity of a source node with a pseudonym unlinkable to the identity. The advantage of
the protocol is that there is not much overhead for routing. However, the protocol relies on the
assumption that trusted MDTN gateways are present, which is a strong assumption for MDTNs.

In the category of location privacy in MDTNs, the discovery of the user location by the adver-
sary is considered as the main privacy threat. Zakhary and Radenkovic [291] presented a location
privacy protocol that is based on the utilization of social information of nodes. In this protocol,
each node maintains a social profile, which includes n profile attributes. The social relationship
between nodes are inferred by the matching of profile attributes. For each message, the forwarding
is guided by the obfuscated attributes in the first k hops. After that, the message can be routed
by any routing protocols. Therefore, an adversary cannot distinguish the location of the source
node from the other k relay nodes. However, nodes that have strong social relationships are gen-
erally considered to be frequently co-located. Thus, the adversary can still detect the approximate
location of the source node. Moreover, the routing performance is degraded, due to the extra k
forwarding hops.

Since messages are relayed by intermediary nodes in MDTNs, the content of messages can be
unintentionally disclosed to these nodes in the routing process. Thus, in the category of message
content privacy, the content of messages is considered as private information. Shi and Luo [264]
proposed an anonymous communication mechanism called ARDEN based on onion routing [246],
multicast dissemination and Attribute-Based Encryption (ABE) [124]. In ARDEN, before send-
ing a message, the source node determines a path of disjoint groups, one of which includes the
destination node. The message is then encrypted by the keys of the destination node and the
grouping keys. Compared with the traditional onion routing, the advantage of ARDEN is that it
encrypts messages with the keys of groups rather than the keys of individual intermediate nodes.
The performance in terms of delivery ratio and delivery latency can be improved, since all nodes
in the same group can participate in message forwarding. On the other hand, the arbitrary group
partitioning manner may result in performance degradation in terms of delivery ratio and delivery
latency.

In the category of relationships privacy in MDTNs, the social relationships of nodes is considered
as personal and private thus users may hesitate in participating in such protocols. Parris and
Henderson [234] presented the Privacy-enhanced Social-network Routing protocol. This protocol
takes advantage of obfuscated social information rather than accurate social information to guide
the message forwarding. The original social information of a node is obfuscated by modifying the
friend list, i.e., adding or removing some items into or from the friend list. The advantage of the
protocol is that the presence of a public key infrastructure is not necessary. However, message
routing may be guided less accurately due to the utilization of obfuscated social information.

9.2.1 4PR vs. 3PR

In [141], we presented our Privacy Preserving Prediction based Routing protocol, abbreviated as
the 3PR protocol. In this work, we propose the Privacy Preserving Probabilistic Prediction based
Routing protocol, which we abbreviate as the 4PR protocol. The original 3PR protocol provided
significant advantages over state of the art routing protocols, notably preservation of user privacy
while maintaining comparable routing performance. Our newer 4PR protocol proposes further
improvements to privacy preserving prediction based routing. In this section we will present an
architectural comparison between 4PR and 3PR, describe the shortcomings of the 3PR protocol,
and an overview of how the 4PR protocol overcomes those shortcomings and implements an even
stronger privacy preserving routing protocol.

4PR and 3PR share some commonalities, which include routing a message inside a community
using the epidemic protocol [279], which by construction preserves the privacy of nodes and is
efficient as communities are assumed to be small. The main difference between 4PR and 3PR is
how the routing of a message between communities in a privacy preserving manner is handled.

In 3PR, when two nodes from different communities encounter, they compare the maximum
probability in their community that a given node will encounter the destination. However, in 4PR,
when two nodes from different communities encounter, instead they compare the probability of at
least one node in their community encountering the destination node.
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There are a number of advantages to comparing the probability of at least one node in the
community as in 4PR over comparing the maximum probability in the community as in 3PR.

Firstly, in 3PR, although the maximum probability in the community is an aggregate value
and does not reveal the precise private probability Pai,d of an individual node ai encountering the
destination node d, it still divulges some undesirable information about the private probability.
Specifically, the maximum value reveals the upper bound on the private value. For example, if the
maximum is given as 0.4, then the adversary learns that the private value Pai,d is no higher than
0.4. On the other hand, the 4PR protocol demonstrates the probability of at least one node in
the community encountering the destination. This aggregate value does not reveal the true upper
bound or any lower bound on the private value of an individual node.

Secondly, the protocol for computing the probability of at least one node in the community
encountering the destination is much more efficient than the protocol for computing maximum
probability in the community. As described in Section 9.5, the protocol for the former requires one
round of multiplication, whereas as described in [141], the protocol for the latter requires several
rounds of summation depending on the number of bits that represent the private number. The
network resources required for multiplication and summation required in the two protocols being
equal, the protocol for 4PR is much more resource efficient.

Thirdly, the probability of at least one node in the community encountering the destination (as
in 4PR) is a more accurate measure for the likelihood of some node in the community encountering
the destination than the maximum probability in the community (as in 3PR). Let’s take an example
to demonstrate this difference. Let’s say that there are two communities C1 and C2. Community
C1 has three nodes each of which has a probability of 0.8 of encountering the destination node,
whereas community C2 has three nodes, one with probability of 0.8, and the remaining two with
probability 0 of encountering the destination node. The maximum probability in both communities
is 0.8 (as in 3PR), whereas the probability of at least one node in the community encountering
the destination is 0.99 and 0.8 in C1 and C2 respectively, according to Equation (9.3) (as in 4PR).
Clearly, 4PR provides a more accurate measure of the likelihood.

The above stated advantages offered by 4PR over 3PR make 4PR a major improvement over
3PR, which was to the best of our knowledge, the first privacy preserving prediction based routing
protocol for mobile delay tolerant networks in the literature.

9.3 System Model

9.3.1 A Mobile Delay Tolerant Network Model

We consider a set A of N nodes with communication facilities that can freely roam in a physical
environment. The communication facilities consist of a short range wireless connection. Two nodes
can communicate only if they are adjacent to each other, i.e, if they are physically within each
other’s transmission range. We assume that the communication is unreliable, i.e., a message sent
from a node to an adjacent node may not arrive. However, we assume that a node knows whether
the transmission of a message has been interrupted by a network failure or whether the message
correctly reached the intended recipient.

To send a message to a destination node that is not within the transmission range of the
source node, the latter uses a routing protocol. The routing strategy that we consider in this work
is prediction-based routing [194]. We generalize prediction-based routing protocols as follows:
Consider a node a that has a message for a destination node d. When the node a encounters
another node b, it forwards a copy of the message to the node b if the probability of b encountering
d (given as Pb,d) is higher than the probability of a encountering d (given as Pa,d). Thus the
probability that a node with a copy of the message will encounter the destination node continues
to rise until the message is delivered or the Time To Live (TTL) of the message expires.

As demonstrated in many studies of real human mobility traces, we assume that nodes belong
to communities [151]. We define a community C as a set of nodes such that C ⊂ A. We assume that
the nodes in a community are frequently physically collocated and thus a high probability exists
of successful message delivery from any source node in a community to any destination node in
the community. A node l ∈ C is designated as the leader of the community. A consensus protocol
may be used for the election of the leader node within a community. The leader node maintains
the list of the nodes in the community. Let the set of nodes in a community C = {a1, a2, . . . , an},
where n = |C|. We consider a community to comprise of at least three nodes, that is, n ≥ 3. The
topic of community management has been discussed in detail in the literature by several authors
including Hui et al. [152], Dang and Wu [89], and Miao et al. [211].
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We consider the probability that a node a will encounter a node d as private information. Nodes
are willing to let this private information be used for routing of messages. However, nodes require
that their private information is not revealed to any other node in the network, which includes
fellow nodes in a community.

In this work, we consider the semi-honest adversarial model [121]. The nodes in this model
always execute the protocol according to the specification. However, the adversary passively at-
tempts to learn the private information of nodes by using intermediate information gleaned during
the execution of the protocols.

9.3.2 Computation of Encounter Probabilities of Nodes

In this work, the encounter probabilities of nodes are computed according to the method proposed
by Lindgren et al. [191]. The computation of the encounter probabilities of nodes is driven by
events. There are two kinds of events: (1) Connect Event, and (2) Update Event.

(1) Connect Event. It happens at the moment when two nodes, e.g., nodes a and b, encounter
each other. When a connect event takes place, two encountering nodes compute their encounter
probabilities for a given time window according to Equation (9.1), where Pinit ∈ [0, 1] is an initial-
ization constant, and P

′

a,b is the previous probability that node a may encounter node b.

Pa,b = P
′

a,b + (1− P
′

a,b)× Pinit (9.1)

(2) Update Event. The update event is periodically invoked by all nodes every δ time units.
When an update event happens, each node in the network utilizes an aging equation to reduce
the probabilities of encountering the other nodes. The intuition behind such a strategy is that a
pair of nodes are less likely to encounter each other in the future if they have not encountered in
a while. The aging equation is expressed in Equation (9.2), where α ∈ [0, 1) is an aging constant.

Pa,b = P
′

a,b × α (9.2)

It is worth pointing out that the computation of the encounter probabilities of nodes are
based on their own histories. This implies that nodes compute the encounter probabilities locally.
Therefore, the computation of these probabilities is carried out in a privacy preserving manner.

9.4 4PR: Privacy Preserving Probabilistic Prediction-based
Routing

9.4.1 Protocol Description

As stated in Section 9.3, C is a community, such that C = {a1, a2, . . . , an}, and n = |C|. Let
PC,d = prob(C, d) be the probability that at least one node ai in community C will encounter the
destination node d, given as Equation (9.3).

PC,d = 1−
n∏
i=1

(1− Pai,d) (9.3)

We now present an overview of 4PR, our Privacy Preserving Probabilistic Prediction-based
Routing protocol. A routing example is depicted in Figure 9.1. This figure shows a number
of nodes belonging to three communities C1, C2 and Cx. A source node s that belongs to the
community C1 wants to send a message to a node d that belongs to the community Cx.

In 4PR, we distinguish the routing inside a community from the routing between communities.
Specifically, when two nodes that belong to the same community encounter each other, they ex-
change all the messages that they each have. On the other hand, if two nodes a11 and a21 that
belong to different communities C1 and C2 respectively encounter each other, node a11 forwards
a message intended for a destination node d to node a21, only if the probability of at least one
node in community C2 encountering d (given as PC2,d) is higher than that in community (given as
PC1,d). In Figure 9.1, when node a11 encounters node a21, node a11 forwards the message intended
for d to node a21 because prob(C2, d) > prob(C1, d).

In other words, to route a messagem from s to d, m is first disseminated in an epidemic manner
inside the community C1. Message m then moves from a community to another such that: (1)
at each forwarding step, the probability of at least one node in the next community to reach the
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Figure 9.1: 4PR Protocol Overview

Protocol: MDTN-4PR
Participants: Node a and node b, where a, b ∈ A.
Input: (1) m, a message. (2) d, the destination node of message m. (3) Ca, the set which denotes the community of node a. (4) Cb. (5)
PCa,d = prob(Ca, d), that is the probability that at least one node in community Ca will encounter the destination node d. (6) PCb,d.
Output: Message m is delivered to the node b if b = d, or b ∈ Ca, or PCb,d > PCa,d.
Setup: Node a has a message m whose destination is node d.
Events and Associated Actions:

node a encounters a node b

1 if b = d
2 then node a sends message m to node b
3 elseif b ∈ Ca
4 then node a sends a copy of the message m to node b
5 elseif PCb,d > PCa,d
6 then node a sends a copy of the message m to node b

Figure 9.2: Protocol: MDTN-4PR

destination is higher than that in the previous community, (2) as soon as it reaches a community,
m is disseminated in an epidemic manner within the community.

A key characteristic of 4PR is that PCa,d = prob(Ca, d), the probability that at least one node in
community Ca will encounter the destination node d, is computed in a privacy preserving manner,
that is without revealing the individual probabilities of the nodes in the community. prob(Ca, d)
is therefore denoted as private prob(Ca, d) in Figure 9.1.

Our protocol 4PR for Privacy Preserving Probabilistic Prediction-based Routing in Mobile
DTNs is specified in Figure 9.2. The computation of private prob(Ca, d) is performed using a
decentralized protocol for privately computing the function over a set of values in a delay tolerant
manner without revealing the individual values, i.e., MDTN-Private-Probability, further described
in Section 9.5.

The probability is computed periodically in the community independently from the routing pro-
tocol. Therefore, the complexity of the MDTN-Private-Probability protocol has no direct impact
on the performance of the routing protocol.

9.4.2 Security Analysis: Correctness

With each forwarding of the message, the conventional prediction-based routing strategy delivers
a copy of the message to a node that has a higher probability of encountering the destination
node. We consider our protocol 4PR to be correct if it achieves the same effect as the conventional
prediction-based routing strategy.

In 4PR, a node a in community Ca sends message m to node b in a community Cb if a and b
encounter and PCb,d > PCa,d, i.e., if the probability of at least one node in Cb encountering the
destination node d is higher than that in Ca (lines 7 and 8). Upon receiving the message m, node b
floods the message to all nodes in Cb (lines 4 and 5). In Section 9.3, we stated the assumption that
a high probability exists of successful message delivery from any source node in a community to
any destination node in the community. Given this assumption, the message m reaches all nodes
in Cb with high probability. As PCb,d > PCa,d, the protocol succeeds (with high probability) in
delivering the message m to a node that has a higher probability of encountering the destination
node than the node a.
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9.4.3 Security Analysis: Privacy

A node a reveals to an outsider node only the probability that at least one node in its community
Ca will encounter the destination node. This probability is a function of the community as a
whole and thus hides the probability of any individual node in the community encountering the
destination. Moreover, the probability is computed within the community in a privacy preserving
manner using the MDTN-Private-Probability protocol, thus individual probabilities also remain
confidential from the nodes inside the community.

The reader may refer to Section 9.5 for the security analyses of the MDTN-Private-Probability
protocol.

9.5 Privacy Preserving Computation of Probability

9.5.1 Protocol Description

We describe a protocol for computing the probability PC,d, that at least one node ai in community C
in a mobile delay tolerant network will encounter the destination node d, as given in Equation (9.3).

Our protocol for private computation of probability is inspired by the protocols by Kreitz et al.
[177], Sheikh and Mishra [262], and Hasan et al. [134, 138, 141]. However, our protocol addresses
specific challenges in MDTNs listed below that the protocols by Kreitz et al. and Sheikh and
Mishra do not. Moreover, unlike the protocol by Sheikh and Mishra, our protocol does not require
Trusted Third Parties (TTPs).

The mobile delay tolerant network environment presents the following challenges: (1) Mobility
implies that the nodes a node will encounter (neighbor nodes in the terminology of graph theory)
are not known beforehand. (2) Connectivity is intermittent, messages arrive after long and variable
delays, and message transmission is asynchronous.

Each node ai in the set C participates in the protocol with a private number pi as an input,
where pi = 1 − Pai,d, that is the complement of the probability that node ai will encounter the
destination node d. The nodes participating in the protocol learn the probability PC,d, that at
least one node ai in community C in a mobile delay tolerant network will encounter the destination
node d, as given in Equation (9.3). The protocol is specified in Figure 9.3.

The protocol is initiated by the leader node of a community given as the set of nodes C. The
leader node floods an init message (Figure 9.3: protocol initiation: line 3) to all nodes. After a
node receives the init message, it sends and receives a random number from each node belonging
to C that it encounters (PROBINIT: lines 5 and 6). A node can send the init message to an
encountered node if it has not received it yet (PROBINIT: lines 3 and 4). After a node has
encountered k nodes (PROBINIT: lines 1 and 2), where k is a constant, the node sends a partial
product to the leader node (PROBINIT: line 8). A node computes the partial product as the
product of its private number and all random numbers received divided by the product of all
random numbers sent (PROBINIT: line 7). The leader node maintains a running product of all
partial products received (PROBPARTIAL: line 2). When the partial products are received from
all nodes in C (PROBPARTIAL: line 3), the leader node computes the final product γC and floods
1 − γC to all nodes (PROBPARTIAL: line 4). 1 − γC = PC,d is the required probability that at
least one node ai in community C will encounter the destination node d, as given in Equation (9.3).

9.5.2 The Value of Constant k

The choice of the value of constant k depends on the value of n, where n = |C| ≥ 3. As stated in
Section 9.3, we consider a community C to comprise of at least three nodes. Since a node in the
protocol can exchange random numbers with at most all other nodes in its community, the interval
of the constant k can be given as [2, n), i.e., 2 ≤ k < n.

Additionally, when k = 2, whatever the value of n, these n nodes can always make a pair.
Therefore, k can always be set as 2. When 2 < k < n, according to the mechanism of our protocol,
each node should exchange random numbers with k distinct nodes in its community. Hence, there
are nk random numbers generated in each execution of our protocol. These nk random numbers
should be divisible by k + 1. That is n(k + 1− 1) = n(k + 1)− n is divisible by k + 1. Therefore,
the value of the constant k should also be compatible with: n%(k + 1) = 0.

Summarizing, the value of the constant k should meet the following two requirements: 1)
2 ≤ k < n, and 2) k = 2 or n%(k + 1) = 0.
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Protocol: MDTN-Private-Probability
Participants: Nodes in a community denoted by the set C. One node in C is the leader node denoted by l.
Input: Each node ai has a private input pi = 1− Pai,d.
Output: The nodes in C learn PC,d = 1−

∏
ai∈C

pi.
Setup: (l, g) uniquely identifies a session of the protocol, where g is an integer. k is a constant such that 2 ≤ k < n, and n%(k+1) = 0,
where n = |C|. Nodes are not ordered, that is, ai denotes any given node in C.
Events and Associated Actions:

leader node l initiates the protocol

1 R← ϕ
2 γC ← 1
3 l floods ⟨PROBINIT, l, g⟩ to all nodes in C

node ai ∈ C receives ⟨PROBINIT, l, g⟩
1 for j ← 1 to k
2 do ai encounters node aj ∈ C
3 if aj has not received ⟨PROBINIT, l, g⟩
4 then ai sends ⟨PROBINIT, l, g⟩ to aj
5 ai sends a random number rij to aj
6 ai receives a random number rji from aj
7 γi ← pi(

∏k
j=1 rji)/(

∏k
j=1 rij)

8 ai sends ⟨PROBPARTIAL, l, g, γi⟩ to l

leader node l receives ⟨PROBPARTIAL, l, g, γi⟩ from ai

1 R← R ∪ {ai}
2 γC ← γC × γi
3 if R = C
4 then PC,d = 1− γC
5 l floods ⟨PROBFINAL, l, g, PC,d⟩ to all nodes in C

Figure 9.3: Protocol: MDTN-Private-Probability

9.5.3 Security Analysis: Correctness

The first challenge for the protocol due to the mobile delay tolerant network environment is that
the nodes a node will encounter (neighbor nodes) are not known beforehand. To address this
challenge, the protocol allows a node ai ∈ C to encounter any other k nodes in C (PROBINIT:
lines 1 and 2). The encountered nodes, given as aj , where j ∈ {1, 2, . . . , k}, are considered as the
neighbors of node ai.

Each node ai ∈ C sends a random number rij to each encountered node aj (PROBINIT: lines
5 and 6). Node ai divides its product γi by rij , whereas node aj multiplies its product γj by rij
(PROBINIT: line 7). Each node ai also multiplies its private value pi to its product γi (PROBINIT:
line 7). When the leader node computes γC =

∏
ai∈C γi, the product γC is the required product∏

ai∈C pi because γi and γj are divided by and multiplied by rij respectively which results in being
multiplied by the multiplicative identity 1 (PROBPARTIAL: lines 1 – 4).

The second set of related challenges of mobile delay tolerant network environments are as
follows: connectivity is intermittent, messages arrive after long and variable delays, and message
transmission is asynchronous. The following two elements of the protocol address this set of
challenges: (1) The init message (PROBINIT) reaches all nodes in C with high probability and
thus they all participate in the protocol. This is due to the assumption that a high probability
exists of successful message delivery from any source node to any destination node in a community.
(2) If a node ai ∈ C that has received the init message encounters a node aj ∈ C that has not yet
received the init message then ai sends a copy of the message to aj to initiate it to the protocol
(PROBINIT: lines 3 and 4). Nodes consider an encounter successful only if they exchange all
messages according to the specification during their period of contact. Otherwise, they ignore any
partial messages sent and received.

9.5.4 Security Analysis: Privacy

Let’s consider a node ai ∈ C. In an ideal protocol [121], the node would submit its private value pi
to a TTP. The TTP is considered trustworthy therefore it would not disclose the private value pi
of node ai to any other party. It would only reveal the output of the protocol, which is the product
of the private values received from all nodes in C, and consequently the probability as defined in
Equation (9.3).

In the MDTN-Private-Probability protocol, node ai discloses the following information: (1)
One random number to each of the k nodes that it encounters after receiving the PROBINIT
message. (2) The value γi to the leader node l as part of the PROBPARTIAL message. The value
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γi is also revealed to the intermediate nodes that participate in the delivery of the message to the
leader node.

The random numbers rij , where j ∈ {1, 2, . . . , k}, are independent of pi therefore they reveal
no information about pi.

γi = piθi, where θi = (
∏k
j=1 rji)/(

∏k
j=1 rij). Let’s assume that the interval of the random

numbers is large compared to the interval of pi and that the random numbers are distributed
uniformly. This implies that the interval of θi is also large and that it is distributed uniformly.
Thus there is high probability that the adversary can learn no information about pi from γi.

The adversary can learn pi if it learns θi in addition to γi. To learn θi, the adversary must
learn all values rij and rji. This is possible only if all k nodes aj that encountered node ai are
dishonest and collude to reveal all of their individual rij and rji values and consequently the value
of θi.

As in the ideal protocol, the output of the protocol is the product of the private values of all
nodes in C, and consequently the probability as defined in Equation (9.3). The MDTN-Private-
Probability protocol thus does not reveal any more information about the private value pi of node
ai than the ideal protocol if the following assumptions hold true: (1) the interval of the random
numbers rij and rji is large compared to the interval of pi and the random numbers are distributed
uniformly, and (2) at least one of the k nodes that encountered node ai is honest.

9.5.5 Security Analysis: Probability of Privacy Breach

As we described in the previous section, the adversary can learn pi if all k nodes aj that encountered
node ai and the leader node l are dishonest. Let PD denote the probability that the private value
of a node ai is disclosed by the collusion of dishonest nodes. Let Pl denote the probability that the
leader node l is dishonest. Let Pk denote the probability that the k encountered nodes of node ai
are dishonest. According to the above analysis, we can see that PD = Pl×Pk. Hence, PD depends
on the number of nodes in community C, the value of k, and the number of dishonest nodes in
community C. Let’s denote the number of dishonest nodes as h, where 0 ≤ h ≤ n− 1.

Hence, if we assume that the leader l is randomly chosen from the community, then Pl can be
expressed as Equation (9.4).

Pl =
h

n− 1
(9.4)

Moreover, due to the random mobility model, we can assume that the encounters are random
and cannot be scripted by the adversary. According to the values of k, h, and n, the analysis of
Pk can be divided into the following two cases: (1) 0 < h < k; (2) k ≤ h ≤ n − 1. In the first
case, the private information of node ai cannot be learned by the adversary node, i.e., Pk = 0. In
the second case, there are Ckh combinations that all the k encountered nodes met by node ai are
dishonest, while there are Ckn−1 combinations that node ai encounters k distinguish nodes inside
community C, i.e., Pk = Ckh/C

k
n−1. Hence,

Pk =

{
0, if 0 ≤ h < k
Ckh
Ckn−1

, if k ≤ h ≤ n− 1
(9.5)

Combining (9.4) and (9.5), the probability PD can then be expressed as Equation (9.6).

PD =

{
0, if 0 ≤ h < k
h
n−1 × Ckh

Ckn−1

, if k ≤ h ≤ n− 1
(9.6)

In addition, one unavoidable side-effect of the protocol is that the adversary learns that node
ai’s probability (i.e., Pai,d) of encountering the destination node d is not higher than PC,d, since
PC,d = P (

⋃n
x=1 Pax,d) ≥ Pai,d, where n = |C|, 1 ≤ i ≤ n. However, in contrast to the previous

protocol (3PR), the 4PR protocol does not reveal the true upper bound of any individual node.

9.5.6 Complexity Analysis

In this section, we discuss the complexity or the overhead of computing PC,d using the MDTN-
Private-Probability protocol. According to the mechanism of MDTN-Private-Probability protocol
(see Figure 9.3), the information, which is utilized to compute PC,d in a given community C,
is transmitted between nodes in the following four sub-processes: (1) the leader node floods the
PROBINIT message to all other nodes in community C; (2) each node in community C exchanges
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Table 9.1: Protocol MDTN-Private-Probability – Complexity

Sub-process (1) (2) (3) (4)
No. of bits 3β(n− 1) kβn 4β(n− 1) 4β(n− 1)
Complexity O(βn) O(kβn) O(βn) O(βn)

k random values (with the first k distinct nodes in community C; (3) each node directly sends the
mixed value (PROBPARTIAL) to the leader node; and (4) the leader node floods the final result
(PROBFINAL) to all other nodes.

Let’s consider that each field (i.e., an integer or a real) of each message occupies β bits (i.e., of
the same size). In the sub-processes (1), all the nodes in community C (except the leader node)
get a copy of the message which contains three fields. That is, n− 1 messages exchanged between
nodes. In the sub-process (2), each of the nodes in community C sends k messages which contains
only one field to the first k community members. Therefore, there are kn messages exchanged in
this sub-process. In sub-process (3), all the nodes in community C (except the leader node) sends
a message with four fields to the leader node. That is, n−1 messages exchanged in the sub-process
(3). Since sub-process (4) utilizes the same method as in sub-process (1) to disseminate messages
which contain four fields, the amount of messages transmitted between nodes in this sub-process
is n − 1. Consequently, the overhead of computing PC,d in community C is β((k + 11)n − −11).
That is, the protocol requires O(kβn) bits to be exchanged, where k and β are constants, and
n = |C|. Table 9.1 represents an analysis of the communication complexity of the MDTN-Private-
Probability protocol.

9.6 Performance Evaluation

In this section, we first present a comparison between private probability and private maximum,
the background protocols employed by 4PR and 3PR, respectively. We then present the simu-
lation settings and the utilized mobility model for our experimental performance evaluation in
Sections 9.6.2 and 9.6.3, respectively. Next, we introduce the routing protocols against which
we compare the performance of 4PR and the performance metrics that we use in Sections 9.6.4
and 9.6.5, respectively. Finally, we present the results of our experiments in Section 9.6.6.

9.6.1 Private Probability vs. Private Maximum

Private probability and private maximum are computed for 4PR and 3PR respectively by the
nodes in a community in the background independently of the routing protocols. In this section,
we compare the efficiency of these background protocols. We observe that computing private prob-
ability, as presented in this work, is significantly more efficient than computing private maximum,
as was proposed previously for the 3PR protocol [141].

In order to compute the value of maximum in a privacy preserving manner in [141], the pro-
tocol needs to run 2 + λ (where λ ≥ 7) rounds of another privacy preserving protocol (named
private sum), which computes the sum of the probability that nodes in a community will encounter
a destination node. In each round of the private sum protocol, kN messages are exchanged among
the nodes in a community, where N is the number of nodes in the community, and k is a constant
with 2 ≤ k < N .

In comparison, the protocol presented in the previous section in this work for computing prob-
ability in a privacy preserving manner requires only one round of kN messages to be exchanged
among the nodes in a community. The order of the size of the messages being similar in the two
protocols, the private probability protocol used for 4PR is at least 9 times more efficient than
the private maximum protocol used for 3PR in terms of messages exchanged and the bandwidth
utilized.

Since the private probability and private maximum protocols are executed in the background,
they do not have a direct impact on the performance of the two routing protocols (as evident in the
subsequent experimental evaluation). However, considering that these background protocols need
to be executed regularly, and that private probability is significantly more efficient than private
maximum, the 4PR approach has the potential to globally conserve substantial network resources.

9.6.2 Simulation Settings

We have implemented 4PR as a module of the Opportunistic Network Environment simulator
(ONE) [167]. We summarize the simulation parameters that we used in Table 9.2.
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Table 9.2: Parameter settings

Parameter Name Value
Simulation area 2000 m × 1500 m
Transmission range 10 m
Simulation duration 13 h + TTL
Warm-up period 1 hour
Message generation rate 1 message per 30 seconds
Number of communities 12
Number of nodes in a community from 10 to 50
Node speed 1.34 m/s
pl 0.8
pr 0.2

L

Pl

R

Pr1− Pl

1− Pr

Figure 9.4: Community-based Mobility Model

We have used a simulation area of 2000 m × 1500 m. This area is equally divided into twelve
regions each measuring 500 m × 500 m. In each region we initially deploy a varying number of
nodes (from ten to fifty). Each node considers the region in which it has been deployed as its
local region. According to the mobility that model we used, further described below, a node is
more likely to visit its local region than other places. Nodes associated to a region constitute a
community. This simulation scenario is very similar to the one used in PRoPHET [191].

The communication between nodes is performed using the Bluetooth protocol since modern
mobile devices are commonly equipped with this technology. According to the specification of
Bluetooth version 2.0 [167], the transmission range and bandwidth are set as 10 m and 2 Mb/s,
respectively. Furthermore, the speed of nodes is set to 1.34 m/s, since this is an average human
walking speed [171]. Each experiment that we run lasts approximately thirteen hours (simulation
time). The first hour is a warm up period during which no message is generated. After this period,
every thirty seconds, a random node sends a message to a random destination node. We have
considered only messages for which the source and the destination belong to different communities.

9.6.3 Mobility Model

In our evaluation, we adopt the community-based mobility model proposed in [267], which has
been widely utilized for the evaluation of community-based routing protocols [89, 269]. In this
mobility model, each community is associated with a geographical area. The movement of node i,
which belongs to the community Ci consists of a sequence of local and roaming epochs. A local
epoch is a random direction movement restricted inside the area associated with the community
Ci. A roaming epoch is a random direction movement inside the entire network. If the previous
epoch of a node i was a local one, the next epoch is a local one with probability pl, or a roaming
epoch with probability 1 − pl. Similarly, if the previous epoch of node i was a roaming one, the
next epoch is a roaming one with probability pr, or a local one with probability 1− pr. The state
transition between local and roaming epochs is shown in Figure 9.4. In our simulations, we adopt
the same values for pl and pr as in [191], i.e., pl=0.8 and pr=0.2.

9.6.4 Routing Protocols

We have compared the performance of 4PR against the following protocols:
Epidemic: in this protocol, a node forwards a copy of each unexpired message it holds to

every node it encounters, which does not already have a copy of the message. Epidemic routing
achieves the upper bounds of delivery ratio and delivery cost, and achieves the lower bound of
delivery latency.

Direct: in this protocol, the source node only forwards the message to the destination node.
Contrary to Epidemic, Direct routing achieves the lower bounds of delivery ratio and delivery cost,
and achieves the upper bound of delivery latency.
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Figure 9.5: (a) delivery ratio, (b) delivery cost, and (c) delivery latency w.r.t. the increasing TTL
of messages.

PRoPHET: in this protocol, a node forwards a copy of a message that it holds to a node that
it encounters, only if the latter has a higher probability of encountering the destination node of
the message. The parameters of the protocol are set as described in [191]. PRoPHET is a well
known prediction-based routing protocol.

Bubble: this is a community-based protocol that utilizes social information about nodes, such
as their centrality and the community to which they belong.

3PR: in this protocol, the message forwarding decision is made by comparing the maximum
probability that a node in the community of a potential intermediate node will encounter the
destination node. The parameters of the protocol are set as described in [141].

9.6.5 Performance Metrics

To evaluate 4PR we used three well known metrics: the delivery ratio, the delivery cost and the
delivery latency defined as follows.

Delivery ratio: is the proportion of messages that have been delivered out of the total unique
messages created.

Delivery cost: is the total number of messages transmitted in the simulation. To normalize
this, we divide it by the total number of unique messages created.

Delivery latency: is the average time needed to finish transmitting messages to their desti-
nations.

9.6.6 Performance Results

We performed two experiments. First, we compared the performance of 4PR against the protocols
introduced above, with respect to the above three performance metrics. We then analyze the
impact of the community size on the performance of 4PR.

Performance Comparison of Routing Protocols

Figure 9.5a shows the delivery ratio of the compared protocols as a function of the Time-To-Live
(TTL) of the generated messages. As expected, Epidemic and Direct achieve the best and worse
delivery ratio, respectively, for all values of TTL. We also observe that 4PR achieves a better
delivery ratio than PRoPHET and 3PR when the TTL is less then 2 hours, and achieves a similar
delivery ratio to that of PRoPHET and 3PR when the TTL is greater than 2 hours. Finally, 4PR
has a much higher delivery ratio than Bubble. The difference between the performance of the two
protocols rises up to 70.29% for a TTL of 2 hours. This is because 4PR floods a message inside
the communities which are on the path from the community of its source node to the community
of its destination node.

Figure 9.5b, shows the delivery cost of the compared routing protocols. As expected, Epidemic
and Direct have the highest and lowest delivery cost, respectively, whatever the value of TTL.
Compared to other protocols, Bubble has a low delivery cost, which remains stable when the TTL
increases. The delivery cost of 4PR is higher than that of Bubble and 3PR, but much lower than
that of PRoPHET.

Figure 9.5c shows the delivery latency of the compared routing protocols. Epidemic has the
lowest delivery latency, whatever the TTL. Further, 4PR follows the same trend as Epidemic with
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Figure 9.6: (a) delivery ratio, (b) delivery cost, and (c) delivery latency w.r.t. the increasing size
of communities.
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Figure 9.7: The impact of the settings of the mobility model on the (a) delivery ratio, (b) delivery
cost, and (c) delivery latency of 4PR

higher latencies (around 0.29 hour). 3PR and PRoPHET achieve a little higher delivery latency
than 4PR. The performance of Bubble and Direct increases linearly with the increase of the TTL.

Influence of the Number of Nodes in a Community

In order to investigate the impact of the number of nodes in each community on the routing
performance of our protocol, we run an experiment in which we vary the number of nodes in each
community from 10 to 50.

Figure 9.6a, 9.6b and 9.6c show the impact of the increasing community size on the delivery
ratio, the delivery cost and the delivery latency, respectively of the 4PR protocol. The results
show that the larger the communities, the higher the delivery ratio and cost and the lower the
delivery latency. Since 4PR floods a message inside the community of the message carriers, the
delivery cost increases as the communities become larger. However, more message copies increase
the delivery probability and reduce the delivery latency.

Impact of the Settings of the Mobility Model

In this section, we investigate the impact of the settings of the adopted mobility model on the
routing performance of 4PR. We run an experiment in which we vary the value of pl from 0.5 to
0.9 and set the value of pr as 1− pl.

First, we look at the impact of the settings of the adopted mobility model on the delivery
ratio. As shown in Figure 9.7a, we can observe that 4PR achieves similar results with different
settings of pl and pr. The performance of delivery ratio increases as the increment of the value
of pl when the TTL is not greater than 3 hours. The performance of delivery ratio with different
settings is the same, when the TTL is greater than 3 hours. Since 4PR floods messages inside
a community, under the pre-condition that messages can be transferred among communities, the
higher the probability that a node stays inside its community, the higher probability that the node
gets a message flooded inside its community.

Next, we compare the delivery cost of 4PR with different settings of the adopted mobility model.
From the results illustrated in Figure 9.7b, we can observe that the performance of delivery cost
increases as the value of pl increases when the TTL is not greater than 3 hours. When the TTL is
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greater than 3 hours, the performance of delivery cost decreases as the increment of the value of
pl. This is because that the higher probability that a node stays inside its community, the higher
probability that the node gets a message flooded inside its community. In our case, for a given
message, most of the nodes on the routing path from the community of its source node to the
community of its destination node can get a copy of the message within 3 hours. Therefore, when
the TTL is greater than 3 hours, the delivery cost increases slowly for the simulations with high
values of pl. This is consistent with the results of the delivery ratio.

Lastly, we investigate the results of delivery latency of 4PR with different settings of the adopted
mobility model. As shown in Figure 9.7c, we can see that the delivery latency decreases as the
increment of pl. For each setting, the delivery latency increases as the TTL increases, when the
TTL is less than 3 hours; the delivery latency stays the same as the TTL increase, when the TTL
is greater than 3 hours. For the case that the TTL is less than 3 hours, the messages that need
more time can be delivered as the TTL increases. As for the case where the TTL is greater than 3
hours, the latency stays the same, since the messages are delivered within 3 hours. Note that this
is consistent with the results of the delivery ratio.

9.7 Conclusion

This work describes the 4PR protocol, which provides privacy preserving probabilistic prediction-
based routing in mobile delay tolerant networks. 4PR is similar to prior prediction-based protocols
(e.g., PRoPHET and Bubble), which take advantage of the mobility patterns of nodes to route
messages. Our experimental evaluation using a well established community-based mobility model
demonstrates that 4PR is comparable to the above noted protocols in terms of performance. Yet,
4PR preserves the privacy of nodes by hiding their individual mobility patterns, whereas the prior
protocols do not.

The 4PR protocol is the successor of our 3PR protocol, which to the best of our knowledge,
was the first protocol to hide the encounter probabilities of nodes in MDTNs. However, 4PR
differs fundamentally from 3PR in how messages are exchanged and the protocols that execute in
the background. 4PR’s approach gains multiple advantages over 3PR, which include 1) the upper
bound of encounter probabilities is not divulged, thus better privacy preservation; 2) private com-
putation of probability requires a single round of computation, whereas private maximum in 3PR
required multiple rounds; 3) the probability of at least one node in the community encountering the
destination (as in 4PR) is a more accurate measure for routing path prediction than the maximum
probability in the community (as in 3PR).

We foresee three opportunities for future work. First, we would like to reinforce the protocol
for preservation of privacy in the malicious adversarial model, where nodes may take disruptive
actions such as dropping messages, modifying the protocol, etc. Second, we would like to study the
effect of conditions such as network churn and overlapping communities on the protocol. Third, we
would like to analyze the energy consumption of privacy preserving routing protocols in MDTNs.
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Part IV

Privacy Preservation in Financial
Networks
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Chapter 10

Privacy Considerations for a
Decentralized Lending Platform

There are many Decentralized Finance (DeFi) Peer-to-Peer (P2P) lending platforms that offer users
to obtain a loan by committing a collateral or by calculating a “credit score”, which is based on
factors such as the users’ credit history. However, the requirements of collateral and credit history
are quite burdensome for some users. Nowadays, with more than 55% of the global population
using social media, there is a lot of publicly available personal data [15]. This data could be
used as an alternative risk mitigator for lending. There are many inferences that can be drawn
from the users’ social media accounts about their professional behavior and reliability, allowing
us to derive the users’ social trustworthiness. We propose to calculate a “social score” based on
the social media data of a user. Our contribution is to develop an Ethereum blockchain-enabled
fully decentralized lending platform that relies on this score. This platform could give users a
chance for a loan even if they do not have a collateral or a sufficient credit score. Furthermore, we
discuss privacy considerations for our platform and present an enhanced version that protects the
borrower’s privacy.

This chapter is an adapted version of the article: “Privacy Considerations for a Decentralized
Finance (DeFi) Loans Platform.” J. Hartmann and O. Hasan. Cluster Computing (Springer).
2022. https://doi.org/10.1007/s10586-022-03772-3. This work was carried out as part of the
Master’s research project of J. Hartmann and its subsequent follow-up.

The Ph.D. work of W. Uriawan was co-supervised with L. Brunie and Y. Badr on the related
topic of “Trustworthiness-based Personal Lending on Blockchain”. The work by J. Hartmann took
place independently and particularly addressed the issue of privacy.

10.1 Introduction

The concept of Decentralized Finance (DeFi) promotes an open financial system where financial
services can be provided and accessed without dependence on intermediaries or central authorities.
Peer-to-Peer (P2P) lending is one of the main financial services that can be enabled by DeFi
technologies. In this work, we look at how social network data can be used to support peer-to-peer
lending while taking privacy considerations into account [15, 19].

Peer-to-peer lending allows a borrower to receive a loan directly from a single or multiple
individual lenders. The first peer-to-peer lending platform Zopa [20] went online in 2005. The
peer-to-peer lending market has been continuously growing since then and is predicted to keep
growing in the future [9]. Some other well known P2P lending platforms are CoinLoan [11],
Inlock [16], Prosper [18], and Lending Club [17]. Peer-to-peer lending has several advantages in
contrast to traditional lending. It dispenses with middlemen such as financial institutions. The
lending platform itself sets the conditions and enables the transactions. Not having middlemen
saves time and money, which often allows the platform to offer better rates.

An additional development in recent years is that peer-to-peer lending platforms are based on
blockchain and are using smart contracts. This development brings more transparency. This type
of lending is fully in line with the concept of decentralized finance. However, since there are no
middlemen verifying a potential borrowers’ financial situation, they need to prove to the lenders
that they are credit worthy. Loans can be secured or unsecured. They are received by either
depositing a collateral or by calculating a credit score to prove one’s creditworthiness.
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10.1.1 Secured Lending

The term “secured lending” describes a way of lending, where the loan is secured with a collateral.
A collateral is a valuable asset (for example, a mortgage on the borrower’s house, investments in
cryptocurrencies, etc.) which the borrower has to give as insurance for the loan. After receiving
the loan, the borrower has to pay back the money within a certain time. If the borrower is unable
to pay, the debt is deducted from his collateral. Secured lending carries an element of risk for the
borrower: If he cannot pay back the money, he loses his asset. Moreover, the borrower needs to
be in possession of a suitable asset in order to qualify for a loan. The lender on the other hand is
promised to get his money back. He is therefore often willing to offer better interest rates, which
can be an advantage for the borrower in this kind of lending.

10.1.2 Unsecured Lending

Unsecured loans or personal loans work without a collateral. Collateral has two main problems:
Firstly, people may not trust in the lending platform enough to deposit their asset. Secondly,
people do not always have the money or property required for a collateral. They can have a
good income and be a reliable person but without a collateral they might still not be qualified for a
secured loan. Instead of taking a collateral as insurance, unsecured loans rely on a creditworthiness
system, which is mostly based on a “credit score”. A well-known credit score is the FICO (Fair
Isaac Corporation) score [14]. It determines the creditworthiness of a potential borrower by using
a fixed formula, which takes into account aspects such as the borrower’s payment history, available
credit and age. A penalty has to be paid if the monthly payment is not balanced on time. When
the borrower defaults paying back his loan, he loses points of his credit score, but not a collateral.
Therefore, from the borrower’s point of view, unsecured loans are less risky, but can be linked to
higher interest rates. A common example for unsecured loans are student loans.

10.1.3 Peer-to-Peer Lending

In peer-to-peer lending, there exist secured loans as well as unsecured loans. However, while in
traditional lending there is mostly some kind of financial institution participating in the process,
peer-to-peer lending offers borrowers and lenders to connect directly without such an intermediary.
This can translate into lower or no fees and there is no longer a single point of failure. However,
since there is no borrower creditworthiness evaluation carried out by a third party, the individual
lender himself is responsible for determining whether a person can be trusted to pay back their
debts. Peer-to-peer lending platforms are online platforms that offer to match people that want
to lend money as a form of investment with people who want to borrow money. A “peer” can also
be a company or a group that is in need of a loan. An example of a loan to an individual could be
a payday loan, whereas companies might need a loan for commercial reasons or to expand their
business.

10.1.4 Our Approach

The goal of this work is to develop a new approach to calculate the borrowers’ trustworthiness
based on their social capital, which does not depend on a collateral or the credit history of the
user. This approach can stand on its own or it can be used in addition to traditional concepts
such as collateral and credit score. The objective is to minimize the risk that the borrower defaults
on the loan. It would give those users a chance for a loan who do not have a high enough credit
score or the resources to deposit a sufficiently valuable collateral. This approach is based on the
“social capital” theory. In this work, we develop a prototype of a decentralized finance peer-to-
peer lending platform built on the Ethereum blockchain. The creditworthiness of the users on this
platform is represented by a social score, which is calculated by analyzing the users’ social media
accounts.

There is a large amount of personal data that is available on social network accounts of many
people. In the subsequent sections, we discuss how this data can be used to compute the social
score of a user. The available data includes biographical information such as name, email address,
date of birth, etc., as well as social information such as the number of followers or friends, shared
posts, etc. Moreover, in case a user has multiple social network accounts, the information available
on different accounts can be compared and co-related to derive inferences about the user as well.
In view of “social capital” theory, this multitude of information could portray the trustworthiness
of a user, which we could use as an indicator of the user’s disposition to repay loans.
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We note that using personal information leads to privacy concerns. Therefore, in this work, one
of our main objectives is to develop a privacy-preserving loans platform. This privacy-preserving
platform aims to prevent disclosure of personal information such as the user’s name, email address,
date of birth, precise number of friends, etc. In order to achieve privacy, we develop mechanisms
using cryptographic building blocks such as homomorphic cryptosystems, zero-knowledge proofs,
and cryptographic hash functions.

10.1.5 Contributions

This work makes the following contributions:

� A new approach to calculate the users’ trustworthiness on peer-to-peer lending platforms
using the information that can be retrieved from the users’ social network accounts instead
of relying on collateral and credit scores that can be problematic for the users.

� A brief analysis of the various types of lending and a look at their advantages and disadvan-
tages.

� A description of some of the popular existing online peer-to-peer lending platforms and
discussions on how they operate with or without collateral.

� The proposal of an enhanced version of the lending platform that takes privacy considera-
tions into account by using cryptographic building blocks such as zero-knowledge proofs and
cryptographic hash functions.

� The development of a prototype of an Ethereum decentralized application that implements
the proposed social score formula in a smart contract.

� Quantification of the amount of Ethereum gas that is consumed by the deployment of the
smart contract.

� Experiments on a real social network dataset that demonstrate how we can use analysis of
social network data to determine optimal thresholds for a platform in production.

10.1.6 Outline

In Section 10.2, an introduction to three successful peer-to-peer lending platforms and their meth-
ods to ensure the borrowers’ creditworthiness is given. In Section 10.3, we present the fundamentals
of the social capital theory. In Section 10.4, the idea developed in this work based on the calculation
of a social score is presented. The implementation details of a prototype are discussed in Section
10.5. In Section 10.6, we discuss privacy considerations for our lending platform and propose a
solution for preserving the privacy of borrowers. Section 10.7 comprises of the evaluation details.
This is followed by the conclusion.

10.2 Related Work

In this section, we describe three existing online peer-to-peer lending platforms. CoinLoan [11] and
Inlock [16] both offer secured loans whereas Prosper [18] offers personal loans. The fundamental
principle is that one peer lends a loan and another peer borrows a loan. All three platforms include
interest fees, which the borrower has to pay to the lender and an origination fee, which the borrower
pays to the platform for using the service.

10.2.1 CoinLoan

CoinLoan [11] is a peer-to-peer platform founded in 2017. The advantage of borrowing money with
CoinLoan is to get a loan right away without having to provide anything except for a collateral in
cryptocurrency. The collateral amount, the interest rate and the origination fee are calculated from
the user’s inputs. The borrowing money function on CoinLoan is only useful for people owning
cryptomoney. Moreover, once a user receives a loan, his collateral is blocked until he has paid off
his debts. During this time, the user is not able to sell the deposited cryptocurrency, which they
might want to do in case the cryptocurrency is facing heavy depreciation. If the user does not pay
back on time, the owed amount will be taken from his deposit of cryptomoney.
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10.2.2 Inlock

Inlock [16] is another peer-to-peer lending platform that was founded in 2017. Again, there are
no options to prove one’s trustworthiness other than to give a collateral. The collateral has to be
paid in the form of cryptomoney. Inlock currently supports only four cryptocurrencies: Bitcoin,
Ether, Litecoin and Binance Coin. There is a 110% over-collateralization rate along with a uni-
versal collateral termination level. Once the collateral decreases below that level, the debts will
automatically be paid off by Inlock using the deposited collateral. Thus, the user has to be careful
and keep an eye on falling market values of the cryptocurrency.

10.2.3 Prosper

Prosper [18] is a peer-to-peer lending platform that was founded in 2005. Unlike Inlock and
CoinLoan, it does not offer secured, but only personal and hence unsecured loans. Although the
user has to give personal data, applying for a loan is a simple and quick process. Since there is
no collateral, users do not need to deposit anything and therefore they do not risk to lose their
collateral. On the other hand, penalty fees can rise quickly. For not paying back on time, the
borrower has to pay USD 15 or 5% of the outstanding debts. They also lose credit score points.
The origination fee is significantly higher than it is on other lending platforms such as CoinLoan.
Prosper is also restricted in the kinds of loan they offer. As an example, they exclude student loans
and other educational loans.

10.3 Social Capital

We now introduce a concept on which our proposed score is based. According to Rene Dubos in
his book “Social Capital: Theory and Research” the “premise behind the notion of social capital
is rather simple and straightforward: investment in social relations with expected returns” [106].
He gives four reasons for why “embedded resources in social networks will enhance the outcome
of actions” [106]. Firstly, connections can help to get information and information can translate
into opportunities. A good example where social connections are often useful is job hunting.
Secondly, Dubos claims that having social connections may also have a positive impact on decisions
involving the individual, such as discussions about promotions. The decision making process can
be strongly influenced by a person putting in a good word for the individual. Thirdly, he claims
that companies might value a person’s social capital on top of his personal capital. “The individual
can provide “added” resources beyond his / her personal capital, some of which may be useful to
the organization” [106]. The fourth reason Dubos states is that being well connected provides both
“emotional support” [106] and “public acknowledgment of one’s claim to certain resources” [106].

Robert Putnam claimed that “economic performance as a whole is better in well-connected
societies than in poorly connected ones” [111]. This claim triggered many studies on the topic. A
Swedish study on unemployed Swedes resulted in the conclusion that “network size had a consid-
erable positive impact on the likelihood of finding work, far outweighing the official employment
agency” [111]. Another study, performed in Germany, revealed “that engagement in a range of
social activities is positively linked with job-finding among the unemployed” [111].

In this work, we aim to use social media network information of a person to determine their
social capital and to draw conclusions about possible connections in other areas like financial
behavior. “The central idea of social capital is that social networks are a valuable asset” [111].
Being well-connected on social media brings advantages similar to real world connections. It helps
the user to stay informed and to find possible opportunities. Further, a social media entry, such as
a picture about the individual participating in a certain event, could help the individual to receive
recognition. It could be a conversation opener and enable them to establish new contacts. The
contacts might be useful and might put in a good word for the individual at some point.

Another widely investigated and supported claim of Putnam is that “higher levels of social
capital . . . translate into lower levels of crime” [111]. Further studies have demonstrated that there
is higher criminality in neighborhoods where people live rather anonymously and do not maintain
contact with their neighbors [111]. Social connections have a large impact on people’s well-being,
but there seem to be more benefits. “There appear to be clear and often strong positive links
between social capital and educational attainment, economic success, health and freedom from
crime.” [111].
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10.4 Our Decentralized Lending Platform

In this section, we propose a new approach for decentralized lending: unsecured loans based on
the users’ social score, instead of their credit score.

10.4.1 Creditworthiness Depending on a Social Score

The social score presented in this work is calculated based on one or several social media accounts
of the user. Our algorithm analyzes the user’s accounts to determine his personal social score. The
algorithm is based on six hypotheses that estimate the trustworthiness of a user.

Hypothesis 1: Users who add their social media account have less to hide Our social
media account says a lot about us: who are our friends, what are our likes and dislikes, what are
our ambitions, etc. The social media account may also provide some personal data, such as our
age, current location, and our profession. Most people are aware of the fact that their social media
account can reveal a lot of information. Therefore, if they have something to hide, for example a
bad habit like gambling, they will hesitate to connect their social media to a peer-to-peer lending
platform, that calculates a score derived from their social media information. As we saw in the
neighborhood example [111] given in the subsection about social capital: Criminality is lower when
anonymity is absent and people are part of a community. Based on this theory, the risk to default
may be lower for users who add their social media accounts and therefore lose their anonymity. As
a result, one may assume that users who disclose their social media account have less to hide and
may therefore be considered trustworthy.

Hypothesis 2: The more the user is willing to disclose about himself, the more trust-
worthy he is There are a lot of social media platforms these days. Currently, three important
platforms are Facebook, Instagram and LinkedIn. All three platforms together cover a wide range
of information about a user, which include both private and professional information. The more
accounts from different platforms a user is willing to disclose, the more information about himself
he is ready to provide. By giving this information about himself, the user proves once again his
willingness to give up his anonymity. As already mentioned in hypothesis 1, we assume that users
who give up their anonymity have less to hide and may therefore be considered trustworthy.

Hypothesis 3: Trustworthy users have authentic social media profiles To avoid that
users simply disclose some accounts they just created or some fake account for the pure purpose of
improving their social score, the authenticity needs to be checked. There are many indicators when
it comes to identifying fake accounts. These include posting original pictures, having a significant
number of mutual friends and followers, and having a non-recent date of creation of the account.
For example, on Instagram, fake accounts do not have a lot of mutual friends and typically follow
more people than they are followed by. According to [130], fake profiles have around 30 times as
many friends as followers.

Hypothesis 4: The bigger the social network and activity, the more credit worthy is
the person The Swedish study concluded that “network size had a considerable positive impact
on the likelihood of finding work” [111]. Therefore, users with more social contacts and thus more
followers and friends on social media, are less likely to get stuck in unemployment. Also, the
well-being of people strongly depends on their social network and on how connected they are. The
more social activity a user has, the higher is his social capital. “There appear to be clear and often
strong positive links between social capital and educational attainment, economic success, health
and freedom from crime.” [111]. Therefore, more friends and connections as well as posts lead to
a higher social score.

Hypothesis 5: People who make truthful statements are trustworthy “Interpersonal
trust is fundamental for the effective functioning of social interactions as well as of society as
a whole. It has been found to be related to many societal outcomes such as lower corruption
perception” [259]. Trust is fundamental in peer-to-peer lending as well. A lender needs to trust
in the borrower’s good will to pay back the loan. To be trusted to get a loan, a user’s honesty is
tested. Therefore, before connecting with the social media accounts, the user will be asked to give
three personal information: the full name, date of birth, and email address. When connecting the
social media accounts, this information will be compared. If the information are corroborated by
multiple social media accounts, this is taken as an indication of the user’s honesty and openness.
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Hypothesis 6: Consistency is a sign for stability If a user agrees to connect multiple social
media accounts, the data of these accounts can be checked for consistency. Being friends with the
same people and showing a similar profile on different social media platforms indicates that these
accounts represent one and the same person.

10.4.2 Social Scoring in Peer-to-Peer Lending

The mentioned hypotheses need to be converted into variables and formulas that we can calculate
our social score with. Each of those variables will have an impact on the final social score. The
final social score will be received by calculating the average of the individual social media platforms
accounts plus a bonus for disclosing more social media accounts.

DISCx = OPENx ∗AUTHx (10.1)

The first variable is DISCx, which stands for disclosure of the user’s account from the platform x.
Here, x could be for Facebook, Instagram, or LinkedIn. The variable can vary between zero and
one, depending on the user’s openness to disclose his social media account x and that account’s
authenticity. The OPENx variable can only take the value one or zero. If the account x is disclosed
by the user, OPENx equals 1, whereas if the user doesn’t disclose his account x, the OPENx
variable is zero and therefore DISCx equals 0. The AUTHx variable describes the authenticity of
the disclosed account x. It varies between 0 and 1. It is zero, if an account contains no information
at all or if it is classified as fake. It is one when an account is authentic. The variation between 0
and 1 is incremental according to a value pre-defined by the platform operator. For example, one
could assign 0.2 for the first 100 followers / friends, 0.4 for the first 1000, and so on. The maximum
value of DISCx is therefore one if the user discloses his account x (OPENx = 1) and the account
is classified as authentic (AUTHx = 1).

The precise function for computing AUTHx is to be defined by the platform operator. The
value of AUTHx is computed based on the number of friends of a user. In Equation 10.2, we give
an example of the function that could be used, where f = the number of friends of the user.

AUTHx =



0 if f < 100

0.2 if f ≥ 100 and f < 1000

0.4 if f ≥ 1000 and f < 10000

0.6 if f ≥ 10000 and f < 100000

0.8 if f ≥ 100000 and f < 1000000

1 if f ≥ 1000000

(10.2)

We present a function below to calculate the Social Score of a person, which is abbreviated by
SCx.

SCx = DISCx ∗HONx (10.3)

HONx is short for honesty. The entered user data on our peer-to-peer lending platform consists
of the name, the email address and the date of birth. This data is compared to the data available
on the social media platform x. If none of the information match, HONx equals zero. If only
the email address matches, the honesty-value is 20. The same applies if only the name matches.
A matching birth date adds 10 to HONx. The maximum value for HONx is 50 when all three
information match.

bonus = n ∗ 2 ∗ CONS (10.4)

A bonus is given on the final social score depending on the number of disclosed accounts n. The
maximal number of disclosed accounts is 5. The variable CONS stands for consistency. It varies
between 0 and 5 and conveys the concordance between the different disclosed accounts. When the
same username is used among the social media accounts of the different portals, CONS increases
by 2. We increase the bonus by 2 again if the email address matches. For the same birthday
information, the bonus is increased by 1 for consistency. The maximal number of points reached
by the bonus is therefore 50.

SC =
(SC1 + SC2 + ...+ SCn)

n
+ bonus (10.5)

The final equation is composed of the sum of the single social score’s average and the bonus. The
complete formula would look like this:

SC =
(O1 ∗A1 ∗H1 + ...+On ∗An ∗Hn)

n
+ n ∗ 2 ∗ C (10.6)
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In this equation, O is short for open [OPEN], A stands for authenticity [AUTH], H for honesty
[HON] and C for consistency [CONS]. If the user does not disclose any accounts, every OPEN
variable and n is zero. No social media based observation can be made as no data can be accessed.
Since all the partial terms SC1, SC2, ..., SCn contain a multiplication by zero, they all end up
having the value 0. For n = 0, the bonus equals zero, and as a consequence, the final social score
(SC) will add up to zero as well. Table 10.1 summarizes the correspondence of the variables in
the social score formula to the hypotheses listed in Section 10.4.1.

Hypothesis Variable Description
1 OPENx Whether a social media account on the platform x is dis-

closed or not.
2 n The number of accounts disclosed.
3 AUTHx The authenticity of the disclosed account on platform x.
4 AUTHx The value of the authenticity variable reflects the size of

the user’s network on platform x.
5 HONx The honesty of the user, determined by comparing the infor-

mation declared by the user and the information retrieved
from the user’s account on platform x.

6 CONS The consistency of information between the different dis-
closed accounts.

Table 10.1: Correspondence of the variables in the social score formula to the hypotheses listed in
Section 10.4.1.

The highest social score that can be achieved this way is 100 and the lowest is 0. Note that a
low social score in this system does not mean that the user is guaranteed to have bad intentions
or cannot be trusted. It could also mean that the user is not very active on social media. In any
case, it means that the user did not reveal much about himself and that his social media accounts
do not give us sufficient reason to trust him. In this situation, the user may obtain loans through
traditional lending mechanisms such as using a collateral or his credit score.

10.5 Implementation

The information that is entered by the user and the calculated social score are saved on the
blockchain. This information includes the user’s name, email address, date of birth, loan amount,
and the social score. The clear disadvantage of saving this information on a public blockchain
is lack of the user’s privacy. As we discussed in our prior conference paper [131] that described
only the non-privacy-preserving version of our lending plaform, future work should address this
problem of user privacy. In Section 10.6 of this work, we do indeed present an enhanced version of
our platform that takes privacy considerations into account. For the current prototype, we consider
that the data will be publicly accessible. In a future iteration of the prototype, we may store only
the less sensitive information on the blockchain, for example, only the loan amount and the social
score. The changes required in the code would be minimal since setInfos is the only function that
would need to be adapted.

10.5.1 Tools and Technologies

We decided to develop this implementation on an Ethereum test network. As stated in [143], the
Ethereum test network (“testnet”) simulates Ethereum, which gives the developers a chance to
deploy and test Ethereum projects without getting any real assets involved. The testnet allows
developers to easily obtain tokens and Ether for test purposes, which carry no financial value.
This makes it possible to test a project with simulated tokens and Ether instead of using expensive
valuable assets. A guide to using an Ethereum test network is provided by Hayes [143].

We connect to the Ethereum test network using Ganache (www.trufflesuite.com/ganache).
Ganache is a tool that is used for setting up a local Ethereum blockchain. The smart contracts
for this project are written in the programming language Solidity on the Ethereum IDE Remix
(remix.ethereum.org). Solidity is a statically-typed programming language that allows developing
smart contracts for Ethereum. Remix IDE is an open source web-based platform, which has a
plugin architecture that promotes extensibility. Remix IDE provides several tools for all the steps
required for smart contract development with the Solidity language.

132



To connect our smart contract with the Ganache blockchain, we use MetaMask (metamask.io).
MetaMask is an Ethereum wallet. The wallet tries to simplify user experience for accessing de-
centralized applications (dApps) deployed on Ethereum. MetaMask can be installed as a browser
extension. This allows it to provide a user-friendly interface for sending and receiving Ether.

For the frontend of the implementation, we use HTML and JavaScript. The frontend connects to
the backend and therefore we test our blockchain by using the libraryWeb3.js (web3js.readthedocs.io).
Web3.js enables interaction with a local or remote Ethereum node using HTTP as well as some
other protocols.

10.5.2 Smart Contract Implementation and Ethereum Gas Usage

According to [153], a smart contract is a program that is stored on a blockchain and runs when
certain predetermined conditions are met. A smart contract is used to automate and enforce the
execution of an agreement that has been made beforehand between the participants of the smart
contract. The smart contract guarantees that the outcome of the execution will satisfy the agreed
upon conditions. Moreover, the execution of the smart contract does not require the involvement
of any intermediaries or trusted third parties.

On the Ehtereum platform, “gas” is a measure of the computational resources that are needed
for the execution of a function of a smart contract. Executing a function requires payment of the
gas fees determined for that function according to the computational resources that it would use.

Once the smart contract is deployed, one can use the functions within this smart contract while
interacting with the blockchain. By calling a function in the smart contract that writes on the
blockchain, for example the “setInfos” function, a block is mined and therefore gas must be payed.
However, when one of the view-functions is called, no gas needs to be payed and no new block is
mined on the blockchain. The “setInfos” functions is called only once when a person registers for
the first time.

One main advantage of a smart contract is that the calculations performed are transparent
and everybody can have trust in the calculated score. The smart contract calculates the score
and then stores it in the blockchain by itself, without the intervention of any outside code. This
way, everybody can trust in the process, including the user himself, and nobody can manipulate
it. Figure 10.1 shows the listing of the functions in the smart contract implemented in Solidity.

Five of the functions in the smart contract write to the blockchain and therefore cost gas. The
other functions are read- or view-only functions. The smart contract is deployed and written on
the blockchain, which costs ether. The gas cost is 2141686. However, the smart contract only has
to be deployed once. The functions within the smart contract, which cost ether because they write
on the blockchain, are also called only once. This is done during the registration process. Not
all of the functions are necessarily called. If the user does not connect his Facebook account, the
function “calculateFBScore” is not called. The same is true for connecting the Instagram account
and the LinkedIn account. If only one account is connected, there is no bonus added on top of
the social score and as a consequence, the “calculateBonus” function is not called. The only gas
costing function that is always called, is the “setInfos” function.

We also employ a helper function to compare strings. Further, we have one calculation function
for each social media network and one function to calculate the bonus. None of the functions has
a return value. They all work directly on the globally saved “socialScore” variable.

10.6 Privacy Considerations

As we have seen in Section 10.4.2, the initial version of our lending platform does not take the
privacy of the borrower into account. A significant amount of personal information needs to be
disclosed by the borrower in order for the lender to compute his social score. In this section,
we discuss privacy considerations for our lending platform. We begin by looking at the private
details that are divulged on the initial version of the platform. We then state our objectives for an
enhanced privacy-preserving version of the platform. After that, we describe some cryptographic
building blocks that we use. We then introduce our proposed measures based on the cryptographic
building blocks to ensure the privacy of the borrower on the platform. We end this section with
an overview of the security of our proposed privacy-preserving measures.
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Figure 10.1: Overview of the smart contract functions used in our implementation of the proposed
system.

10.6.1 Analysis of the Disclosure of Private Information

We analyze what private information is revealed about the borrower for the computation of the
various variables by the lender.

� DISCx is computed as a function of OPENx and AUTHx. Let’s first look at the information
revealed for OPENx. In order for the lender to equate OPENx = 1, the borrower gives access
to his account on the social network x. This reveals the identity of the account as well as
the content of the account to the lender.

� The AUTHx variable is computed as a function of the number of friends or followers of the
borrower on the social network account x. Therefore, the borrower is expected to divulge
the precise number of his friends or followers to the lender.

� SCx is computed as a function of DISCx and HONx. In order for the lender to compute
HONx, the borrower must provide personal information such as his name, email address,
and date of birth on the lending platform. The lender then also accesses the corresponding
information on the user’s social network account x for the purpose of matching the two sets
of information.

� The variable bonus is computed as a function of the variables n and CONS, where n is
the number of social network accounts disclosed. In order to compute CONS, the lender
accesses the content of n social network accounts of the borrower for checking the consistency
of information among those accounts.

� SC is a function of the variables SC1 . . . SCn, n, and bonus, which have all been discussed
above.

10.6.2 Privacy Objectives

We state the objectives of our proposal for the preservation of the privacy of the borrower.

� Non-disclosure of social network accounts. The lending platform should not require
the borrower to disclose his accounts. This includes his social network accounts as well as
his email accounts. Yet, the borrower should be able to communicate and transact with the
lender. Moreover, the lender should be able to compute the social capital score based on
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the information contained in the social network accounts of the borrower. This information
is required by the lender to compute DISCx and OPENx. However, he will need to make
the computations without learning the information. The borrower should reveal neither the
identity of his social network accounts nor their content. Non-disclosure of social network
accounts also implies non-disclosure of the biographical identity of the borrower. Otherwise,
a simple search on the borrower’s name could lead to the discovery of his social network
accounts.

� Non-disclosure of the number of friends. The borrower will not be required to divulge
the precise number of his friends or followers, which is required for the computation of
AUTHx.

� Non-disclosure of personal information. The borrower will not disclose personal infor-
mation on the public blockchain or to the lender. This information, which is required for the
computation of HONx and subsequently SCx, includes the borrower’s name, email address,
date of birth, and potentially other personal information. Moreover, as mentioned before,
the lender will not have access to the content of the borrower’s social network accounts. The
lender will also have to compute the variables bonus, CONS, and SC, without access to the
personal information.

� Disclosure of a subset of friends. We will tolerate the disclosure of a subset of the
friends of the borrower for a given social network account x. We will assume that the subset
is indistinguishable enough to not allow the discovery of the identity of the borrower.

10.6.3 Building Blocks

We describe the building blocks that we use for the preservation of the privacy of the borrower.

� Homomorphic Cryptosystem. As stated in [139], let Es(.) denote the encryption function
with the public key PKs of agent s in an asymmetric cryptosystem C. The cryptosystem C
is said to be additive homomorphic if we can compute Es(x+y), given only Es(x), Es(y), and
PKs. For detailed information about homomorphic cryptosystems and their applications,
we refer the reader to the thesis [243] of Doerte K. Rappe on this topic.

� Zero-Knowledge Proof of Set Membership. As stated in [139], let F = {m1, . . . ,mp}
be a public set of p messages, and E(mi) be an encryption of mi with a prover’s public key,
where mi is secret. A zero-knowledge proof (ZKP) of set membership allows the prover to
convince a verifier that E(mi) encrypts a message in F .

� Zero-Knowledge Proof of Plaintext Equality. As stated in [139], let Eu(m) and Ev(m)
be the encryptions of a message m with the public key of agents u and v respectively. A
zero-knowledge proof of plaintext equality allows a prover to convince a verifier that Eu(m)
and Ev(m) encrypt the same message.

� Cryptographic Hash Function. As described in [12] and [13], a cryptographic hash
function takes an input of variable size and produces an output of fixed length. For example,
for a 256-bit hash function, the output would always be 256 bits in size, if the input is 1 bit,
100 bits, or even 1 gigabits. A cryptographic hash function is efficient to compute. However,
for H(x) = h, it is computationally infeasible to find x, where H(x) is the function that
takes x as input and h is the resulting hash of x. A hash function may be termed as a
hiding function or a one-way function due to this property. Additionally, a hash function H
is considered to be collision-resistant if it is infeasible to find a pair (x, y), such that x ̸= y,
yet H(x) = H(y). This property allows H(x) = h to be used as a message digest for x.
Examples of cryptographic hash functions include SHA-2, SHA-3, and RIPEMD-160.

10.6.4 Our Proposed Privacy-Preserving Measures

In this section, we discuss our proposed measures that help preserve the privacy of the borrower
on our lending platform.

Table 10.2 summarizes the correspondence between the privacy objectives stated in Section
10.6.2 and the the privacy-preserving measures that are taken to achieve them.
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Privacy Objec-
tive

Privacy-Preserving Measures

Non-disclosure
of social network
accounts

The borrower does not disclose his biographical or his social network
identity at any step during the loan request process. The borrower
interacts with the lender only with a new, unique, pseudonymous,
and unlinked identity that is created by the borrower on the lending
platform.

Non-disclosure of
the number of
friends

The borrower and the certifiers publish the value of the exact number
of friends only in encrypted form. The lender is only able to learn a
general set that the value belongs to.

Non-disclosure of
personal informa-
tion

The borrower never reveals any personal information such as email
addresses, date of birth, etc. to the lender in cleartext form. This
information is published by the borrower and the certifiers only in
encrypted or hashed form.

Disclosure of a sub-
set of friends

The borrower appoints a subset of his friends as certifiers and dis-
closes this information to the lender. However, this disclosure does
not link the borrower to his social network account as long as the
assumption that the subset is indistinguishable enough holds true.

Table 10.2: Correspondence between the privacy objectives stated in Section 10.6.2 and the the
privacy-preserving measures that are taken to achieve them.

� Borrower’s pseudonymous identity. A pseudonym is a fictitious identity of a user that
hides his or her true identity. The borrower creates a new unique pseudonymous identity or
address on the platform specifically for each new loan request. This identity is considered
to have no link to his previous transactions as well as his social network accounts. Creating
this identity may be as simple as generating a new public-private key pair. The borrower
communicates with the lender using this new identity. Let’s denote this pseudonymous
identity of the user as b.

Let’s outline how generating a public-private key pair may be used to create a new unique
pseudonymous identity for the borrower. This method is described in further detail in the
book on Bitcoin and Cryptocurrency Technologies by Narayanan et al. [222]. The method
uses a digital signature scheme that has a generateKeys operation. This operation generates
a public key pk and a corresponding secret key sk. The public key pk is then considered
as the pseudonymous identity of its owner. Any message that originates from the owner of
the public key pk needs to be digitally signed by the corresponding secret key sk. All users
can verify the authenticity of the message as originating from the owner, since only the true
owner knows the corresponding secret key sk and thus only they can emit a correctly signed
message. Due to the fact that in practice the public key pk would be a large random and
unique number, nobody would be able to associate it with the true identity of the owner.
Yet only the owner can use this identity since no other user knows the corresponding secret
key.

� Certifiers. A borrower b appoints some of his friends from his account on the social network
account x as certifiers. These are trusted friends who already have access to the borrower’s
social network content due to their friend status. The certifiers will publish the information
gleaned from the borrower’s social network account in homomorphic encrypted form. The
lender or another verifier will be able to match the information published by the certifiers to
the information published by the borrower in order to verify the latter’s veracity. In case of
inconsistency between the information published by the certifiers, the verifier may choose to
believe the information that is certified by a certain majority. The threshold of the majority
can be defined by the lender himself, for example, 50%, 75%, or even 100%.

As stated earlier, we tolerate the disclosure of the identities of the certifiers to the lender.
However, the lender does not gain any access to the social network content of the certifiers.

Please note that the set of certifiers could alternatively be replaced by a single Trusted Third
Party (TTP) certifier. This TTP could be the social network operator itself, for example,
Facebook, or it could be a certification service provider that has been given access to the
social network account by the borrower. However, this alternative solution would require the
existence of such TTPs. In our proposed measures, we do not assume the existence of this
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third party infrastructure. Moreover, this alternative solution moves the platform towards
centralization of trust, which may not be desirable.

� Verifying the certifiers. We use a challenge-response authentication protocol to verify the
certifiers. In challenge-response authentication protocols, the verifying entity, let’s say Alice,
presents a challenge to the entity to be verified, let’s say Bob. The challenge must be answered
by Bob with a correct response that will be checked and validated by Alice. If the response
is correct, that is, it satisfies the challenge that was presented, Alice is able to authenticate
Bob. The absence of a correct response implies that Bob fails the authentication. The reader
may see [10] for further information on challenge-response authentication mechanisms and
protocols.

The lender challenges the certifiers to demonstrate that they are valid account holders on the
social network x. The lender sends a different challenge to every certifier on the certifier’s
presumed account on the social network x. Each challenge comprises of a nonce (number
used only once) and the identity of the borrower. A certifier must reply with the unique nonce
and a statement such as “I am indeed a certifier for the borrower b” from his presumed social
network account. The ownership is verified if the identity of the replying account, the nonce,
and the statement are correct.

� How to link the borrower’s pseudonymous identity with his social network ac-
count? Let’s denote the identity of the borrower b on the social network x as bx. The bor-
rower publishes the identity bx in hashed form and links it with his borrower identity b. The
information may be published as the tuple< borrower identity,H(social network account) >,
where H() is the cryptographic hash function. For example, < b,H(bx) >. The borrower
then sends the tuple to his certifiers in clear non-hashed form. For example, < b, bx >.
The certifiers already know the social network account of the borrower due to their friend
status. The certifiers hash the social network account identity on their own and publish the
tuple. The hashed data hides the social network account identity of the borrower. However,
the hashed data allows comparison of the information published by the borrower and the
information published by the certifiers.

The lender can now verify the equivalence of the information published by the borrower and
the certifiers. For example, let’s say that a certifier c published < b,H(b′x) >, then the
lender can check whether H(bx) = H(b′x). Please note that the lender does not learn the
social network account identity of the borrower. However, the lender gains confidence through
the certifiers that the borrower indeed owns an account on the social network x. Moreover,
the borrower’s anonymous unique identity b for the loan transaction is permanently linked
to his social network account bx while keeping it anonymous as well.

� How to disclose the number of friends in a privacy-preserving manner (in order
to enable the lender to compute AUTHx and DISCx)? The borrower b publishes
the number of his friends f in homomorphic encrypted form, that is, Eb(f). The borrower
then asks his certifiers to publish the number of his friends in encrypted form as well. The
certifiers can retrieve this information independently since they have access to the borrower’s
social network content. Let’s say that a certifier c observes that the number of friends is f ′.
The certifier then publishes Ec(f

′).

After publication of the number of friends in encrypted form by the certifiers, the borrower b
and each certifier c jointly generate and publish a plaintext equality zero-knowledge proof to
demonstrate the equality of f and f ′. The lender will verify the plaintext equality ZKP to
gain confidence that both borrower b and certifier c published the same number of friends,
that is, f = f ′, even though the lender does not learn the value.

Moreover, the borrower b publishes a set membership zero-knowledge proof to demonstrate
that the number of friends f belongs to a certain set Fi that is known publicly. These
sets can be pre-defined, for example, F0 = {0, 1, . . . , 99}, F1 = {100, 101, . . . , 999}, F2 =
{1000, 1001, . . . , 9999}, F3 = {10000, 10001, . . . , 99999}, F4 = {100000, 100001, . . . , 999999},
F5 = {1000000, . . .}, etc. The lender will verify the set membership ZKP to learn the range.
Please note that the lender will not learn the precise number of friends. The disclosure of
the range places the borrower in a k-anonymous set of other users whose number of friends
belong to the same range. In this example, the value of AUTHx could be calculated as given
in Equation 10.7, where the function smzkp(Eb(f), F0) returns true if f ∈ F0.
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AUTHx =



0 if smzkp(Eb(f), F0) = true

0.2 if smzkp(Eb(f), F1) = true

0.4 if smzkp(Eb(f), F2) = true

0.6 if smzkp(Eb(f), F3) = true

0.8 if smzkp(Eb(f), F4) = true

1 if smzkp(Eb(f), F5) = true

(10.7)

The above steps enable the lender to compute AUTHx and DISCx. The lender does not
learn the value of the number of friends because it is published in encrypted form by both
the borrower and the certifier. However, the lender is still able to verify the validity of
the value and learn a general set that the value belongs to. This is possible due to the
properties of the homomorphic cryptosystem that is used and the zero-knowledge proofs
published by the borrower and the certifier in conjunction with the encrypted values. The
homomorphic cryptosystem enables computation on the encrypted values without the need
for their decryption.

� How to publish name, email address, date of birth, etc. in a privacy-preserving
manner (in order to enable the lender to compute HONx)? The borrower b publishes
information such as his name, email address, and date of birth in hashed form along with
tags that describe the hidden data. For example, the information may be published as tuples
in the format < data tag,H(data value) >, where H() is the cryptographic hash function.
Even further information, such as location, interests, groups, etc., may also be published in
this manner. Some examples of the published information include: < name,H(Alice) >,
< email,H(alice@alice.mail) >, < date of birth,H(01/01/2001) >, < location,H(Lyon) >,
< interest 01, H(Tennis) >, < interest 02, H(Golf) >. An agreed upon nonce may be
concatenated to a value to be hashed by the borrower and a certifier to further protect the
confidentiality of the value.

The borrower then sends the published information in clear non-hashed form to his certifiers.
The certifiers are assumed to already have access to this information due to their friend
status. The certifiers then look up the information on their own on the borrower’s social
network account; compute the hashes of the information that they find; and then publish
the information so that it is visible to the lender in hashed form. The hashed data hides the
data values. However, the hashed data allows comparison of the information published by
the borrower and the information published by the certifiers.

The lender can now verify their equivalence. The lender does not need to learn the data
values. The lender is interested in whether the borrower is truthful about the information of
his social network account. He can achieve this by verifying the equivalence. The lender is
able to compute HONx for each social network account bx for which the borrower and his
certifiers publish the information.

10.6.5 Security Overview

We first discuss whether the lender is able to compute a correct social score for the borrower
on the privacy-preserving platform, despite not being able to learn personal and social network
information about the borrower.

The lender is still able to correctly assign a value between 0 and 1 to AUTHx. Instead of
using the precise number of friends, which is no longer known, the lender uses the range of friends.
For example, AUTHx could be 0 for the range F0, 0.1 for the range F1, and so on. OPENx
can also still be correctly assigned the value 0 or 1 by the lender. This is because the lender can
determine through the certifier verification and the identity linking processes whether the borrower
is providing information in encrypted form from his account on the social network x. DISCx can
be derived from AUTHx and OPENx computed above.

Regarding HONx, as we discussed in the previous section, the lender can correctly assign its
value depending on the extent to which the information published by the borrower and his certifiers
matches. This can be done without the need to learn the information itself. The other variables
such as SCx, bonus, n, CONS, etc. can be either derived from the variables discussed above or
calculated in a similar manner.

An underlying assumption for the correctness of the social score is clearly the honesty of the
certifiers. The score may be manipulated if the borrower and a majority of the certifiers collude
and cheat. However, as we discussed, the lender himself can set the threshold of the majority. For
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example, the lender could require that at least 75% of the certifiers provide consistent information
that validates the information provided by the borrower. Moreover, the lender may also set the
threshold for the minimum number of participating certifiers. If these criteria are not met, the
lender may consider a borrower as untrustworthy and reject the loan request of the borrower.

We now discuss how effectively the privacy of the borrower is protected in the enhanced privacy-
preserving version of our lending platform.

The borrower does not disclose his biographical or his social network identity at any step
during the loan request process. The borrower interacts with the lender only with a new, unique,
pseudonymous, and unlinked identity that is created by the borrower on the lending platform. The
borrower appoints a subset of his friends as certifiers and discloses this information to the lender.
However, this disclosure does not link the borrower to his social network account as long as the
assumption that the subset is indistinguishable enough holds true.

In the privacy-preserving version of our lending platform, the borrower also never reveals any
personal information such as the exact number of friends, email address, date of birth, etc. to
the lender in cleartext form. This information is published by the borrower and the certifiers only
in encrypted or hashed form. The confidentiality of the information is maintained as long as the
security of the cryptosystem and the cryptographic hash function is not breached.

Another obvious assumption for the privacy of the borrower is that none of the certifiers will
collude with the lender to reveal his identity and his private information. However, the probability
of a certifier acting maliciously is considered low by the borrower since the certifiers are trusted
friends who already have access to the borrower’s information. Moreover, in case of ambiguity
regarding the trustworthiness of a certain certifier, the borrower should be able to ascertain the
risk of breach of privacy before appointing them as a certifier.

10.7 Evaluation

In this section, we evaluate the execution of the social score function on the “Social circles: Face-
book” real user dataset. The objective is to determine whether the analysis of real social datasets
can help the operator set the parameters of a platform in production.

10.7.1 Setup of the Test Environment

To evaluate the function itself, we use real user data from the Stanford Network Analysis Project
(SNAP). The dataset is called “Social circles: Facebook” [19]. To interpret the dataset and to
make calculations based on it, we work with the Anaconda Prompt (docs.anaconda.com) and
the python environment Jupyter Notebook (jupyter-notebook.readthedocs.io). Within jupyter
notebook, we imported the libraries pandas (pandas.pydata.org) and networkx (networkx.org) as
well as matplotlib (matplotlib.org).

10.7.2 Results and Observations

We used the 107.edges file from the SNAP dataset [19]. It contains 53498 edges (signifying friend
relationships) and the corresponding nodes. The dataset is anonymized. As discussed earlier, the
number of friends influences the authenticity of a person. Evaluating the data shows that more
than a third of all users have more than 50 friends and therefore have a chance to get the best
social score if we set the threshold to this value. On the other hand, there are also almost 15%
users who do not have more than ten friends and consequently get the worst result in this category.
The results are shown in figure 10.2. In our evaluation, we only differentiate between three steps
concerning the number of friends: 10, 30 and 50. Since more than a third of the users have enough
Facebook friends to get the best result possible in the “amount of friends” category, we evaluate
if a higher limit would be more suitable. For testing reasons we will adapt these limits. We will
start with 200 and then go down to 150, 100 and lastly to 50. The amount of users tested in this
experiment is 1034. When we set the threshold to 200, which means that the user needs more than
200 Facebook friends to get the best result in this category, only 12 of the 1034 users qualify for the
best result. Subsequently, we obtain the result of 50 users qualified for a threshold of 150, 163 users
for a threshold of 100, and finally 389 users for a threshold of 50. The results of this last experiment
are plotted in the figure 10.3. In this experiment, we see that by analyzing real datasets, we can
set the thresholds for the platform in order to correspond to the desired rate of users who should
qualify. The number of friends is only a small part of the final social score. Other factors include
the number of accounts connected, number of pictures posted, account creation date, the bonus
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Figure 10.2: The biggest part has more than 50 Facebook friends and gets the best result in this
category.

Figure 10.3: The x-axis shows the users and the y-axis shows how many Facebook friends each of
these users has. 389 out of 1034 users exceed the threshold of 50.

for connecting 5 accounts, etc. These factors could not be considered in this experiment due to
the absence of this information in the dataset.

10.8 Conclusion

In this work, we have presented a new approach to calculate the users’ trustworthiness on peer-
to-peer lending platforms. This approach is neither collateral nor credit score based. The formula
that we use to calculate a user’s social score relies on the social capital theory and consequently
the information retrieved from the user’s social network accounts. It considers how well connected
a user is, since connections may help the user achieve professional and personal success. The social
score is implemented in a smart contract running on the Ethereum blockchain. The whole lending
process is automated and does not need any input from a middleman.

The presented approach offers a new method to verify users’ trustworthiness regarding lending,
where even users with a non-sufficient credit score and no valuable assets as collateral could get
a chance on a loan. We quantified the amount of gas that is consumed by the deployment of
the smart contract. Moreover, we also evaluated the execution of the function on a real social
network dataset. This experiment demonstrated how we can use analysis of social network data
to determine optimal thresholds for a platform in production.

Furthermore, we presented an enhanced version of our lending platform that takes privacy
considerations into account. The proposed measures, based on cryptographic building blocks such
as zero-knowledge proofs and cryptographic hash functions, enable the platform to preserve the
borrower’s privacy. We observe that the lender is still able to compute the borrower’s social score
despite being unable to learn any personal information or even the identity of the borrower.
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Chapter 11

Analyzing Flow of Payments in a
Business-To-Business Network to
Detect Supplier Impersonation

Supplier Impersonation Fraud (SIF) is an increasingly significant issue for Business-to-Business
(B2B) companies. The use of remote and quick digital transactions has made the task of identifying
fraudsters more difficult. In this work, we propose a data-driven fraud detection system whose
goal is to provide an accurate estimation of financial transaction legitimacy by using the knowledge
contained in the network of transactions created by the interaction of a company with its suppliers.
We consider the real dataset collected by SIS-ID for this work. We propose to use a graph-based
approach to design an Anomaly Detection System (ADS) based on a Self-Organizing Map (SOM)
allowing us to label a suspicious transaction as either legitimate or fraudulent based on its similarity
with frequently occurring transactions for a given company. Experiments demonstrate that our
approach shows high consistency with expert knowledge on a real-life dataset, while performing
faster than the expert system.

We note that this work proposes a solution where data is analyzed in a centralized and trusted
manner. However, this work is still relevant to the topic of privacy preservation and decentralization
for a couple of reasons. Firstly, the main challenge lies in analyzing data that has been heavily
anonymized in order to preserve the privacy of the participating companies. Secondly, the graph
of transactions between companies is decentralized in nature. That is, transactions take place in
a direct B2B manner without intermediaries. The assumption of a trusted central transaction
handling entity (such as a clearinghouse) would essentially eliminate the problem. Reliance on
such a central trusted entity is not assumed for the B2B transactions.

This chapter is an adapted version of the article: “GraphSIF: Analyzing Flow of Payments
in a Business-to-Business Network to Detect Supplier Impersonation.” R. Canillas, O. Hasan, L.
Sarrat, and L. Brunie. Applied Network Science (Springer). 2020. Vol. 5, article 40. This work
was carried out in the context of the Ph.D. of R. Canillas, co-supervised with L. Brunie.

Privacy-preserving fraud detection techniques were surveyed in the following paper (not in-
cluded in this habiliation thesis): “Exploratory Study of Privacy Preserving Fraud Detection.” R.
Canillas, R. Talbi, S. Bouchenak, O. Hasan, L. Brunie, and L. Sarrat. 19th ACM/IFIP Interna-
tional Middleware Conference (Middleware 2018). December 2018. Pp. 25-31.

11.1 Introduction

Fraud is a recurring issue in many domains such as credit card transactions, insurance, telecom-
munication, and finance. Supplier Impersonation Fraud (SIF) is a specific case of identity theft,
targeting a company rather than an individual. This type of financial fraud is widespread, resulting
in the loss of hundreds of thousands Euros in 2018, and ranked 1st most frequent fraud affecting
French companies in the latest survey about cyber-criminality conducted in 2019 by Euler Her-
mes and DFCG [93]. Supplier impersonation consists of a fraudster impersonating a member of
a company providing goods and services to another, in order to trigger a payment on an account
controlled by the fraudster [23].

We can illustrate SIF with a toy example. Let C be a company that produces computers. In
order to acquire the necessary components for the fabrication, C buys electronic chips from S.
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Let F be a fraudster. A SIF takes place when F diverts a payment from C originally destined
to S, usually by impersonating S in C’s eyes. Such an impersonation can take several forms:
the tampering of an invoice from S (similar to phishing attacks), impersonating a high-ranking
employee of S and requesting the next payments to be paid on an account controlled by the
fraudster, or even requesting the payment of imaginary goods and services on behalf of S.

As more and more companies are using digital tools to process transactions due to numerous
advantages provided by digitalization, the risk of supplier impersonation has never been higher.
However, the tools and systems required to detect SIF have not evolved at the same pace, and still
mostly rely on expert-based input and monitoring. This approach might not be the most suitable
to handle the increasing volume of digital transactions. Thus, the need for automated, data-driven
SIF detection system arises.

In this work, we present GraphSIF, a SIF detection system that uses a B2B transactions dataset
to construct a graph modeling the relationships between client and supplier companies in a B2B
ecosystem, and describe how these relationships can be used to derive useful knowledge in order
to assert the legitimacy of transactions.

We use the transaction network to create a time-evolving behavior sequence summing up the
evolution of the graph through time. We then compare the new graph created by adding a suspi-
cious transaction to the behavior sequence and investigate the potential discrepancy it introduces.
If this discrepancy is low then the transaction is considered as legitimate, and if the discrepancy is
high then the transaction is considered as likely fraudulent. In order to quantify this discrepancy,
a Self-Organizing Map (SOM) is trained on the behavior sequence, and a clustering algorithm is
used to quantify the similarity of the tested graph with the ones in the behavior sequence.

Finally, we analyze the results of GraphSIF using a set of transactions labeled by experts from
the SiS-id company, in order to evaluate its performance, and investigate its potential shortcomings.
We found that GraphSIF with the selected parameters shows high consistency with the expert
system when focusing on low-legitimacy transactions.

11.2 Related Work

Due to the sensitivity of the data linked to supplier fraud detection for victim companies, we have
not been able to find any publicly available research work directly related to SIF. However, we can
find several systems designed for fraud detection that also use a network-based approach:

In [253] several network-based fraud detection use-cases are introduced, showing examples of
successful use of graph theory to detect bank fraud, insurance fraud and e-commerce fraud. How-
ever, the authors focus on specific industrial examples without proposing a formalized evaluation
of their solution.

Akoglu, Tong and Koutra [25] propose a survey on anomaly detection using graphs, notably in
the domain of telecommunication fraud detection. An approach closely related to our own is found
in [24] where an egonet (1-step neighborhood graph) is used to derive features describing a node.
However, this approach is applied to a static graph that does not evolve through time, contrary
to our approach. The analysis of dynamic graphs through the use of windows, as it is the case in
our work, is akin to the ideas developed in [239] and [217] where the graphs are analyzed using
a moving window and detecting anomalous connectivity variation [239] or edges p-value variation
[217]. To the best of our knowledge there is no previous attempt at combining a window-based
analysis as seen in [239] with the feature approach used in [25].

Van Vlasselaer et al. [280] proposes an approach somewhat similar to ours, using graphs to
represent interactions between companies in order to detect social security frauds. However, their
work focuses on the application of social network algorithms on large graphs of interconnected
entities, whereas our work considers smaller neighborhood graphs, focused on the behavior of a
single company. In addition, the system proposed in [280] bases itself on a propagation algorithm
and Random Logistic Forests to perform their analysis, and does not make use of Self-Organizing
Maps.

Furthermore, most of the aforementioned research uses supervised algorithms as they rely on
the existence of known legitimate and fraudulent neighboring nodes to conduct their analysis.
Our work proposes an unsupervised approach that does not take into account the legitimacy of
neighboring nodes to propose a label, but instead uses the topology of the ego network.

Finally, as our approach makes use of significant patterns found in the 2-step egonet (the set
of vertices found at most 2 edges away from the considered vertex) of a company, a parallel can
be drawn with the discovery of network motifs, for example, as presented in [214]. However, the
discovery of network motifs relies on the observation of patterns occurring with a statistically
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significant number of occurrences compared with random graphs showing similar topology. Our
approach uses a different technique to create patterns from the egonet, by investigating the re-
maining connected sub-graphs when the ego node is removed. The techniques used in network
motif analysis could however be used to discover the occurrences of payment motifs across for a
number of targeted companies and thus assess if recurring payments behavior are shared in the
payment ecosystem.

To the best of our knowledge, our work is the first to use a graph-based approach paired with
Self-Organizing Maps in order to address the issue of SIF detection.

11.3 SiS-id Fraud Detection Platform

While SIF is a widespread fraud, it is mostly dealt with internally by companies victim of the
fraud. There are three main reasons that motivate the lack of collaboration in SIF detection:
firstly, being public about being victim of a fraud can cause a breach of trust and bad publicity
for the company. Secondly, due to the competitive nature of the Business-to-Business ecosystem,
information about the relationship between a client and its suppliers is a sensitive knowledge that
could lead to economic attacks if divulged. Finally, having a successful in-house fraud detection
system provides an edge for the company that owns it, and thus such a system would not be
willingly shared with competitors. However, the cost of creating and maintaining complex fraud
detection systems is sometimes prohibitive for a large number of companies.

In this context, the company SiS-id 1 proposes to focus on Supplier Impersonation Fraud
detection and mitigation. The company, started in 2016, develops several SIF mitigation tools that
other companies can use “as a service”. SiS-id emphasizes strongly on the privacy and security of
the data shared by their clients that they use to develop detection techniques. Currently, SiS-id
proposes two SIF mitigation systems: firstly a fraud detection system based on the relationship
network created in the data shared by each of its clients, and secondly a secure repository for
trusted bank accounts corresponding to verified suppliers. In this work, we propose a data-driven
system that improves upon SiS-id’s current expert-based system to perform SIF detection.

The remainder of this section describes the dataset available to SiS-id to perform SIF detection,
along with the system they implemented on the platform.

11.3.1 History Dataset

The SiS-id SIF detection system uses a set of historical transactions performed by SiS-id’s clients.
In this section, we describe this dataset in detail.

The set of B2B transactions used by the SiS-id detection system is an aggregation of the pay-
ments performed by SiS-id’s client companies between July 2016 and July 2019. These transactions
consist of a feature vector of 4 features : client identification number, supplier identification num-
ber, target account identification number, and date of the payment. For the sake of storage, all of
the transactions involving the same client, supplier and destination account during a single month
are aggregated, resulting in the creation of a fifth feature representing the number of similar trans-
actions issued during the month. The time granularity of the transaction is thus a month. Table
11.1 shows an overview of the features.

The amount of payment is a feature found in most financial fraud detection systems (as seen
in [58]). However, this data is very critical for companies (as described in 11.3), this feature
was not shared with SiS-id by the companies that agreed to collaborate on the creation of the
History dataset. Indeed, disclosing the amount of the transactions issued to their suppliers might
divulge economic insights regarding their financial well-being, as well as provide a useful baseline
for potential frauds. Thus, GraphSIF relies only on payments without their amounts.

In order to preserve the confidentiality of the data, a secure hash function is applied to the
three distinct identifiers (client, supplier, account) so that no link can be established between the
data in the history and real-life companies. While this mitigates the risks of damage in case of data
leak, it also means that the same company will have a different identifier whether it has issued a
transaction, or received a transaction.

At the time of writing, 950,929 transaction records are available in the History dataset. These
transactions are issued by 6,063 unique companies. This number is more than the number of SiS-
id’s client companies. This is explained by the fact that SiS-id’s client companies can represent
a group of several branches such as a multinational group. In this case, each firm possesses
its own identification number, but only a global entity will be SiS-id’s client. 215,056 unique

1https://www.sis-id.com/
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Feature Type Description
Client Nominal (ID) Identification number of the client issuing

the transaction.
Supplier Nominal (ID) Identification number of the supplier re-

ceiving the transaction.
Account Nominal (ID) Identification number of the bank account

to which the money is transferred.
Date Timestamp (Month) Timestamp indicating the date when the

transaction took place.

Table 11.1: Structure of the History data record. The History dataset is composed of 950,929 records

collected from 6,063 companies over two years.

supplier companies are also found in the dataset, along with 262,157 unique bank accounts to
which a payment was transferred. The fact that more bank accounts than supplier companies
exist indicates that some suppliers use more than one bank account to be paid.

This dataset represents all the transactions performed by all of SiS-id clients for two years. How-
ever, there is no available information about the legitimacy of these data, and thus no knowledge
of which transactions are fraudulent and which are legitimate.

Due to the economic sensitivity of the data for the companies (as discussed in 11.3 , no sample
can be made publicly available at the moment. However, a request for data samples can be
submitted directly to SiS-id through their website 2, or by contacting L. Sarrat, co-author of this
work.

11.3.2 Audit Dataset

A second set of transactions is available thanks to SiS-id. It consists of the list of transactions that
were analyzed using the expert system in the past 2 years (July 2017 - July 2019). The dataset,
called the “Audit” dataset, is composed of 218,325 suspicious transactions submitted by 317 unique
client companies. The transactions underwent the fraud detection process devised by SiS-id, and
were labeled with a legitimacy label : “high” indicating that the transaction has a high chance
of being legitimate, “medium” meaning that the rule engine lacks the necessary information to
assert if the transaction is legitimate or not, and “low” meaning that the transaction’s legitimacy
is low, which can be the case if the transaction is either invalid or fraudulent. This dataset
possesses the following properties: 1) It contains real life queries for transaction validation made
by companies. 2) Each of the transaction of this dataset contains a target variable corresponding
to the classification done by the rule engine. 3) The transactions were cross-validated by the clients
for consistency.

The legitimacy label found in the dataset might tempt us to use this dataset to perform su-
pervised learning. However, this approach has a major drawback: by using data analysis on a
dataset that is the result of the rule-engine system (described in the next section), we will only
manage to “rediscover” the rules. However, this dataset might be used as a validation set for other
fraud detection systems, in order to compare their performance with SiS-id’s expert system and
investigate the potential convergence of their results.

11.3.3 SiS-id Expert System

The fraud detection system SiS-id currently runs on its platform3 is an expert fraud detection
system, where a potentially fraudulent transaction is examined in order to assert its legitimacy,
using knowledge available on the platform. This kind of systems inherits directly from the tradition
of fraud detection teams ([172]), and aims to formalize their knowledge in order to efficiently
process a large number of transactions. The fraud detection system designed by SiS-id consists
of two separate steps: a feature engineering step where the features from the tested transaction
are used to gather additional information, and then the gathered data is matched against a set of
expert-defined rules in order to assert the transaction’s legitimacy. For confidentiality reasons, it is
not possible to discuss the inner workings of the system in detail. However, it has been designed by
a team of SIF detection experts and thus provides a valid approximation of the expert knowledge.

2https://www.sis-id.com/#contact
3https://my.sis-id.com
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11.4 GraphSIF Overview

GraphSIF is a SIF detection system based on anomaly detection that uses the relationships created
between the companies interacting in a B2B environment in order to determine the legitimacy of
a transaction, given the company that issued the payment.

This system is composed of four phases:

1. A pre-processing phase, where historical transactions are sorted by the companies that issued
them, and grouped in time windows in order to describe a time-evolving sequence composed
of several fixed-length windows of transactions, describing the behavior of a specific client.
This phase is described in Section 11.5.

2. A feature engineering phase where each of the windows of transactions is transformed into a
graph. This graph sums up the interactions that occurs between the client and its suppliers
during the specified windows. Section 11.6 describes this phase.

3. An anomaly detection phase where a specific transaction (the “suspicious” transaction) is
added to the most recent graph, creating a “test graph”. This graph’s similarity with the
ones occurring in the historical sequence is computed. Section 11.7 provides more details
about this phase.

4. A label attribution phase where the similarity of the test graph given a set of different sizes of
the windows of transactions are aggregated. A legitimacy label derived from the aggregation
score is computed. Details about this phase are found in Section 11.8.

Figure 11.1: GraphSIF overview.

Figure 11.1 shows an overview of the process. A transaction t involving the client C, the
supplier S and the account A at a date d is given as input to GraphSIF. For a set of window sizes
ws1, ws2, ..., wsk, the following process is repeated:

First, the identifier of C is used to gather all transactions involving C (Hist(C)) from the
History dataset (that contains the list of all the transactions occurring between all the companies
of the B2B ecosystem). Then, this list of transactions is ordered by date of occurrence and split
in N fixed-size windows of size wsi where i ∈ 1, ..., k. The sequence of transactions (dubbed
“behavior sequence”) is then sent to the next phase. At the same time, the oldest transaction
of the most recent window of the sequence (wN ) is removed and t is added as its most recent
transaction, creating the “test window” wt. This step allows us to isolate the transaction relevant
to the specific client and suppliers potentially victims of the supplier impersonation fraud.

In the next step, the transactions found in each window w1, ..., wN and wt are used to create
a graph that represents the relationships between C and all of its suppliers. Each window is
complemented by a set of transactions from the History dataset Hist(Swi), where Swi is the set
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of supplier involved with C during wi found in the History Dataset. Similarly, Hist(Swt) is used
to create the test graph corresponding to wt. The graphs are then transformed into a histogram
that uses relationships between the accounts paid by C and used by its supplier as characterizing
features of the graphs. Each of the graphs is converted into its corresponding histogram Hi, thus
creating the sequence H1, ...,HN and Ht the histogram corresponding to the test graph. This step
allows us to transform a sequence of transaction into a feature vector representing the relationship
between a client and its suppliers, taking into account the historical behavior of the client.

These histograms are then used to assert the similarity of Ht with the histograms of the
behavior sequence H1, ...,HN . First, the histograms are clustered using the clustering algorithm
K-Means ([155]), and then are used to train a Self-Organizing Map (SOM) ([61]). The k centroids
C1, ..., CK are also located on the SOM. Then, Ht is assigned a cluster using the previously trained
K-Means algorithm, and its similarity with the other members of the cluster is computed using
the z-score metric. This anomaly detection step allows the system to distinguish usual relationship
and unusual ones, that are more likely to be fraud attempts.

Once all the z-scores corresponding to the set of window sizes ws1, ..., wsk is computed, a
threshold function is applied and a weighted mean is used to aggregate the results into a label
indicating the legitimacy of the transaction. This step is needed to consider the different granularity
of each windows, and to produce a label that synthesizes all the knowledge provided by the previous
analysis.

In the remainder of the chapter, we first describe the different algorithms used at each phase
of the system, and discuss the underlying motives behind their design. We then provide an exper-
imental evaluation of the system using the labeled transactions found in the Audit dataset that
contains the results of the expert system designed by SiS-id.

11.5 Transactions Pre-Processing

This section details the first phase of the system, where the transactions from the History dataset
are pre-processed in order to create local behavior profiles. The goal of this pre-processing is to
partition the transactions emitted by a client C in order to detect repeatability in its payments.

11.5.1 Company Local Profile

In this phase of the fraud detection system, all the transactions involving the client C involved in
the tested transaction t = [C,A, S, d] are gathered from the History dataset. The History dataset
contains all the NH transactions made by all clients in the studied B2B environment. By isolating
only the transactions issued by C, we create a local profile of C. As shown by [57], the use of local
profile allows to detect anomalous behavior that would have been deemed legitimate when using a
global profile. This local profile is dubbed Hist(C).

11.5.2 Behavior Sequence

As companies evolve and thus interact differently with suppliers or clients, the transactions they
issue or receive change as time passes. In order to quantify this evolution, we first order all
the transactions in Hist(C) temporally. This gives us an overview of C’s interaction with its
supplier through time. Then, in order to characterize this behavior, we partition Hist(C) into
sets of transactions of size ws, that we call “windows”. Using fixed-length windows in order to
describe the behavior of a system is a well-known technique, and has been successfully used in
fraud detection systems such as ([241]) and ([217]).

11.5.3 Window Creation

In order to create the windows, two kinds of partitioning are possible: by transaction date (from
July 1st to August 1st for example), or by transaction rank (10th transaction to 5th transaction,
5th transaction to 1st transaction, etc.). A major issue with partitioning by date is that there is no
guarantee that the transactions will be homogeneously divided into the different windows. In the
most extreme case, all transactions might occur in a single window, and all the other windows are
rendered useless for the system. Thus, creating windows by transaction order allows us to ensure
that an equal number of transactions will be found in each window.

The number of windows N created from Hist(C) is inversely proportional with the size ws of the
windows: N = NH

ws . In the case when NH is not a multiple of ws, the NH%ws oldest transactions
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in Hist(C) are discarded, where % is the modulo operation. Indeed, the oldest transactions are
the least likely to inform us of a fraud in the present.

The size ws of the windows has a major impact on the system. A small window size creates
more data points for the system to analyze, at the cost of a decreased variability in the possible
payment behavior, and thus a less detailed view of C’s behavior. Inversely, a larger window allows
for more detailed view of the system, but less input will be provided to the system. Additionally,
adding more transactions might add too much noise to the window and thus obfuscate meaningful
patterns. Therefore, a careful trade-off has to be found for ws. We propose a way to solve this
issue in Section 11.8.

Figure 11.2: Behavior sequence creation The behavior sequence is created by partitioning the list of

transactions issued bt C in the History dataset into sequential windows of size ws.

11.5.4 Test Window

In order to assert the legitimacy of a singular transaction, we use the previously partitioned se-
quence as a basis. The key hypothesis is that a legitimate transaction will not significantly disturb
the payment behavior of C, while a fraudulent transaction will be different from the previously
recorded behavior. The transaction to be tested is added to the most recent windows of the se-
quence, whose oldest transaction has been removed, thus simulating the occurrence of the new
transaction as the next step in the sequence. Indeed, if only a single transaction was tested against
the partitioned sequence, an anomaly would always be found due to the discrepancy in the number
of transactions.

In the next section we detail how the relational data found in partitioned sequence (called
“behavior sequence”) and the test window is extracted and used to assert the legitimacy of the
tested transaction.

11.6 Graph-based Feature Engineering

In this phase, each of the windows created in the pre-processing phase is transformed into a graph.
This graph, called “transaction graph”, allows the representation of the relationships between com-
panies as a mathematical structure. The graph is composed of companies and accounts represented
as vertices (also called “nodes”), while the flow of money between companies creates the edges of
the graph. However, in order to use the graphs derived from the behavior sequence as a basis for
the anomaly detection system, they need to be converted into a structured data form (commonly
referred to as “feature vector”) in order to be used. This type of transformation is known as
“graph embedding” ([123]). We propose a tailored graph embedding approach in order to express
a transaction graph as a feature vector called “graph histogram”. This approach exploits several
properties of the transaction graph in order to construct the embedding. The graph histograms
corresponding to the behavior sequence are then used to train our anomaly detection system, while
the graph histogram corresponding to the test windows is investigated.

The role of graph theory in GraphSIF is to transform the four attributes found in the History
dataset into a set of graph-theoretic features allowing to perform fraud detection by taking into
account the underlying relationships between companies and bank accounts found in the dataset.
In the original form of the History dataset, the data points cannot be used directly to construct
meaningful models, as their feature are categorical variables. The use of graph theory allows
GraphSIF to express the links between each client and their suppliers through the bank account
that they share, and to transform the list of categorical variables into a set of embedded graphs.
Without this step the model could not be computed and thus fraud detection could only be
performed on the reduced subset of original features from the History dataset.
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11.6.1 Transaction Graph Creation

In this subsection, we describe the process of creating a transaction graph from a set T of trans-
actions (as a reminder, a transaction t has the following structure: t = [Ct, At, St, dt] where Ct is
the client issuing the transaction, At is the account receiving money from Ct, St is the supplier re-
ceiving the transaction, and dt the date when the transaction takes place). A graph G =< V ,E >
is composed of two sets: a set of vertices V that represents the entity of the targeted system, and
a set E of edges that represents the relationship of the entities, and e ∈ E =< n1, n2 > with
n1, n2 ∈ V 2.

Algorithm 11.3 shows the process that creates a transaction graphGC,T from a set of transaction
T . An example of output of Algorithm 11.3 is given in Figure 11.4. The algorithm takes as input
a client C and parses T in order to map all of the accounts and suppliers involved in a transaction
with C as vertices. For each transaction, two edges are created: one that links C and the account
involved in the transaction, and one that links the account with the supplier receiving payment for
the transaction. If a vertex representing an account or a supplier is already in the vertices set, it
is not duplicated. Similarly, since edges already in the edge set are not duplicated, an occurrence
metric is updated in both cases in order to prevent the loss of information.

If the algorithm stops at this point, only the payment information related to C is used. This
means that if an account is used to pay a supplier S by a client different than C, it will not appear
on the graph. In order to add the information provided by other clients, the accounts they use to
pay S are appended to the graph, along with edges that link them to S. This addition allows us
to make use of the collaborative knowledge of the other clients.

If the amount of payment was available, a possible use for the feature would be to assign weight
to the different edges instead of using a simple binary weight. While having no impact on the graph
structure, this might indicate the accounts privileged by a client company.

Figure 11.3: Transaction Graph Creation

11.6.2 Properties of a Transaction Graph

A transaction graphGC,T shows interesting properties. It is a directed graph, as the edges represent
the movement of funds from a client to a supplier through an account. A transaction graph is also
a bipartite graph. A bipartite graph is defined in ([41]) as a graph whose vertices can be divided
into two disjoint and independent sets u and v and such that every edge connects a vertex in u to
one in v. The transaction graph satisfies this property as the created edges are only from company
to account and from account to company (no account-to-account or company-to-company edges
exist in the graph). Table 11.2 shows the representation of the transaction graph T1 (shown in
11.4) as a connectivity matrix: each of the row corresponds to a company vertex, while a column
represents an account vertex. The value in the row indicate the number of times a transaction has
been issued involving the specified company and account.

From the connectivity matrix, it is apparent that the sole vertex representing the client company
(C1 in the example) plays a central role in the transaction graph. Centrality is an important metric
in graph as it informs how a vertex can influence its neighbors. More specifically, the graph theoretic
center is defined in ([41]) as the vertex with the smallest maximum distance to all other vertices in
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Table 11.2: Connectivity Matrix of Transaction Graph T1. Each column represents an account vertex.

Each row represents a company vertex. Numbers are the number of time a transaction created an edge

between the two vertices.

A1 A2 A3 A4 A5 A6 A7
C1 1 1 1 1 1 1 0
S1 1 0 0 0 0 1 1
S2 0 1 0 0 0 0 0
S3 0 0 1 0 0 0 0
S4 0 0 1 1 0 0 0
S5 0 0 0 1 0 0 0
S6 0 0 0 0 1 0 0

the network. This vertex is always the company vertex C in the case of a transaction graph GC,T .
We use this property to create payment patterns in order to characterize transaction graphs.

Figure 11.4: Transaction Graph T1. The transaction graph is created by assigning vertices to every

account and supplier companie found in the set of transactions. Edges are created when an account and

a supplier company are found in the same transaction.

11.6.3 Payment Patterns

In this subsection, we describe how we use the specific properties of a transaction graph in order
to create a set of features capturing the transaction relationship between a client and the accounts
used to pay its suppliers. Our approach is akin to the one developed by [24] where a similar
featuring process is used to characterize ego-network of specific nodes in the graph. In order to
create the features, we first remove the client company’s vertex from the graph (C1 in Figure 11.4),
thus creating a set of D of disconnected sub-graphs composed of account vertices linked to supplier
vertices. Among these D sub-graphs (that we dubbed “payment patterns”), if we only take into
account the type of the node (“Supplier” or “Account”) and not its label (“S1” or “A4”), then
it might occur that some of these sub-graphs are isomorphic, meaning that they share the exact
same structure ([41]). It is the case for example in Figure 11.5 where the sub-graph composed by
(S2,A2) and (S6,A5) are isomorphic.

This set of features can also be translated in the connectivity matrix shown in Table 11.2.
Removing the central node means ignoring the first row of the matrix. A connected sub-graph can
be connected in two ways: when a supplier is connected to a specific number of accounts (which is
the case for S1), or when an account is connected to a specific number of suppliers (such as A3).
The case of Pattern C is a special one where the pattern satisfies both of these conditions.

Functionally speaking, these connected sub-graphs indicate how the client interacts with its
suppliers, and thus shows a “map” of the client’s activity in the set of T transactions used to
create the transaction graph.

We calculate the possible number of unique payment patterns that can be created for a specific
number of transactions based on Algorithm 11.3. This number seems to grow at an exponential
speed, meaning that for x transactions used to build the transaction graph, xx possible unique pay-
ment patterns can be found. This number corresponds to the number of features of an histogram.
This fast growth in the number of features indicates that our data point might be placed in a very
sparse high-dimensional space. Thus our system might fall prey to the curse of dimensionality
[276].
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Table 11.3: Examples of featurized sets of transactions

Transaction
set ID

Pattern A Pattern B Pattern C Pattern D

T1 2 1 1 0
T2 3 3 0 1
T3 1 0 0 0

If the amount of the transactions were available, it could be used as a way to discriminate
identical patterns of transactions by computing the cumulative amount found in a pattern and
adding it as a feature for the anomaly detection model.

Figure 11.5: Subgraphs (‘patterns’) characterizing the transaction graph. Patterns are the connected

subgraphs found when removing the node C from the graph. They represent suppliers and accounts found

together in the set of transactions.

11.6.4 Feature Set Creation

In order to create an overview of a client’s behavior through time, we first use the transactions
found in each N windows created in the feature engineering process to create the N corresponding
graphs centered on the client C. A “test graph” is also created for the test window. We then
transform the graph into a histogram with the technique previously described, thus creating N
histograms where the features are the unique connected sub-graphs (i.e unique payment patterns)
and the values are the number of occurrences of the pattern in the graph. Table 11.3 shows an
example of such a process with T1 representing the graph shown in 11.4 and T2 and T3 representing
other graphs. Similarly, the histogram corresponding to the test graph is also created using the
same process. These histograms are then used as the basic features of our anomaly detection
system.

Figure 11.6 shows an overview of the feature engineering process, proposed as a reminder. First,
the transactions’ windows created in the pre-processing phase are converted into a transaction
graph representing the relationships between a client and the accounts it uses to pay its supplier.
Then the transaction graphs are in turn transformed into a set of feature vectors composed of the
number of sub-graphs found in the transaction graphs.

Figure 11.6: Graph histogram sequence creation. First, each of the windows of the transaction sequence

is transformed into a graph composed of companies and accounts. Then the graphs are transformed into

histograms using their connected subgraphs.

11.7 Anomaly Detection

In this section, we describe the anomaly detection system we use in GraphSIF in order to assert if
the test graph created by the tested transaction and the most recent transactions of C is similar
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to the graphs found in C’s behavior sequence created from C’s historical transactions.
The anomaly detection system relies on two main building blocks: a parametric clustering

algorithm (K-means ([155])) that create clusters of transaction graphs represented as histograms
according to their similarity, and a single-layer neural network called a Self-Organizing Map ([62])
that projects multi-dimensional features such as the histograms into a two-dimensional space, in
order to facilitate the computation of distance between feature vectors and to alleviate the curse
of dimensionality ([276]) that states that the more dimensions, the more difficult it becomes to
compute a meaningful distance between two feature vectors.

11.7.1 Overview

Figure 11.7 shows an overview of the anomaly detection process. First, the N histograms created
at the end of the feature engineering phase are regrouped into clusters thanks to the K-means
algorithm. Each of the histograms are associated with their clusters, and the centroid of each
cluster Ci with i ∈ K is also computed. K is the number of clusters set as the parameter for the
K-means algorithm.

Then, the histograms are used to train a Self-Organizing Map (SOM). In order to do so, each
of the histogram is fed to the SOM, where a unique neuron (also called “node”) is activated. The
weights of this node and the eight neighboring ones are then updated in order to match the values
of the histogram. The operation is repeated for each of the histograms until every one of them is
associated with a node. Several histograms can be associated with the same node. Finally, once
the SOM is trained, the centroid of each cluster is fed to the SOM and the node activated by
it is retrieved. This creates the “SOM model” that is composed of the nodes trained with the
histograms along with the nodes corresponding to the centroids.

Once the SOM model created, when an histogram corresponding to a test graph needs to be
evaluated, it first goes through the clustering phase undergone by the other histograms in order to
be assigned a cluster c. Then, it is fed to the SOM in order to find the node activated by it. The
distance between this node nt and the node activated by the centroid of the cluster c (nc) in the
SOM (Dt) is retrieved, along with all the distance between the nodes activated by the members
of c and nc. All of these distances are then used to compute the z-score ([22]) of Dt. The z-score
is a statistical measure that tells us how many variation away a data point is from the mean. The
higher the z-score, the less similar an histogram is from the others.

In the remainder of this section we detail the different algorithms used to obtain the z-score
from our input data.

Figure 11.7: Overview of the anomaly detection process. First the histograms from the training

dataset are clustered using k-means, and fed to a Self-Organizing Map. The histogram corresponding to

the tested transaction is compared with the model, and its similarity with the other histograms from its

cluster is computed.

11.7.2 Training

In this subsection, we detail the training of the two models (the K-Means algorithm and Self-
Organizing Map)) used in the anomaly detection system. Training the models means that we use
the historical histograms created at the end of the graph-based feature engineering phase to fit the
models so that they accurately represent the past behavior of the considered client. The training
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phase is divided in three parts: the histogram clustering where the histograms are assigned a
cluster, the SOM training where the weights of the nodes of the SOM are adjusted to match the
value of the histograms, and finally the histograms projection where the SOM nodes corresponding
to the histograms and centroids are determined in order to be used in the testing phase.

Histograms Clustering

Figure 11.8: Histograms clustering using K-Means

Clustering the histograms is the first step of the training process. It consists of using the K-
Means ([155]) algorithm on the set of historical transactions in order to assign them a cluster based
on their similarity according to a selected distance metric. K-Means is a well-known clustering
algorithm that assigns clusters to feature vectors according to their proximity to a centroid that is
the mean of the member of the clusters when the algorithm reaches convergence. This proximity is
computed according to a distance metric such as the Manhattan distance or the Euclidian distance.
We use the Euclidian distance in our current implementation. Algorithm 11.8 shows an overview
of the algorithm.

When using K-means, it is very important to carefully choose the number of clusters K so
that it represents accurately the underlying distribution of the data. Due to time constraints
a thorough analysis of the optimal number of parameters could not be performed. However, a
preliminary experimental study conducted on a selected test company showed that K = 3 seems
to yield the best results in terms of stability of the cluster.

The motivation behind the use of a clustering algorithm as a first step in our training process
is to partition the local profile of a user in order to detect re-occurring transactions graphs. As a
graph represents the interaction of a client with its supplier, it is logical to think that more than
one type of transaction graph might occur in the lifetime of the client company. For example,
assuming that the transactions occur homogeneously every month, two suppliers might be paid
every sixth month using a specific account each, while three other suppliers might use only one
account to be paid every two months. These two examples will create different transaction graphs
throughout the behavior sequence, all sharing similar properties. These transaction graphs will be
assigned different clusters by the clustering algorithm, thus identifying two different component
of the client’s behavior. Thus, clustering the graphs into different clusters allows us to further
decompose this behavior.

This research could be furthered by studying the different clusters found and determining if
they relate to a real behavior for the client company (such as the acquisition of materials, taxes
payments, and so on). However, in the context of fraud detection, we solely focus on the fact that
the clusters can be used as a point of comparison for new transactions graphs.

Alternative clustering algorithms such as the k-medoids algorithm ([233]) or x-means algorithm
([154]) might be investigated in order to optimize the clustering process.

Self-Organizing Map Training

One of the issue with using the transaction patterns described in the feature engineering phase
as the dimension for our feature vectors is that we do not have direct control on the dimension
of said feature vectors. Furthermore, the number of possible patterns grows exponentially with
the number of transactions that are found in the set used to create the underlying transaction
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graph. This fact leads to two major issues: firstly, the feature vectors representing the algorithm
might be projected in a high-dimensional but sparse feature space, thus resulting in artificially
high distance due to the curse of dimensionality. Secondly, it is hard for a human to interpret the
notion of proximity in such a high-dimensional space. In order to alleviate these two issues, we use
a Self-Organizing Map, and more particularly a Kohonen network. ([174],[61],[62]). This type of
network aims to organize all of the feature vectors in a two-dimensional plane according to their
similarity.

A SOM is an unsupervised neural network based on competitive learning, in the form of a neural
network where only one neuron (also called node) is activated at any one time. The specificity of
the Kohonen network is that the single computational layer is arranged in rows and columns, and
each node is fully connected to all the source nodes in the input layer. In order to train the SOM,
after an initialization phase, three steps are performed until convergence: sampling, matching and
updating.

In the initialization phase, each of the neurons of the computational layer of the SOM is assigned
random activation weights. The values of the weights need to be reasonably close so that every
neuron has a chance to be activated. The number of activation weights of a neuron is the same as
the dimension of the feature space.

In the sampling phase, a sample x is drawn from the set of feature vectors X. This sample is
randomly chosen so that the ordering of the set does not have any impact on the training process.

In the matching phase, the winning neuron I(x) is found by comparing the weight vectors
of each neuron and finding the one closest to the values of the input vector. More specifically,
the similarity of the vector to a neuron j’s weights is computed using a discriminant function
dj(x) =

∑D
i=1(xi − wji)

2. Closely related input vectors might activate the same winning neuron
I(x).

In the updating phase, the winning neuron and its neighbors are updated using the equation

∆wj,i = η(t)Tj,I(x)(xi − wji). (11.1)

In this equation, Tj,I(x) symbolizes the topological neighborhood of the winning neurons, and

is defined as Tj,I(x) = e
−S2

jI (x)

2σ2 where σ is the size of the neighborhood of the winning neuron. η(t)
is the learning rate that dictates how the weights of the winning neuron and its neighbors gets to
be updated to a value closest to the input vector. This learning rate is defined as

η(t) = η0 e
−t
τ (11.2)

where η0 is the initial learning rate and τ a parameter for the exponential decay function that
decrease the learning rate over time.

The sampling phase, matching phase, and updating phase are repeated until the SOM reaches
convergence, meaning that no significant modification in the weights occurs.

In our setting, the set of feature vectors X corresponds to the set of histograms H created by
the feature engineering process.

Histograms Projection

Once the SOM is training and convergence is reached, an additional step is performed: each
histogram h found in the set of created histograms H is fed to the SOM, and the neurons n(h)
activated by the histogram is associated to it. Similarly, each centroid c of k centroids created
by the clustering phase are also fed to the SOM and the neurons n(c) are associated with the
centroids.

This phase allows us to project the histograms from their high-dimensional feature space to the
2-dimensional space of the SOM nodes, in a way that preserves their similarity. A valuable effect
of this projection is that it enables a human expert to read and interpret the created map, and
thus allows us to use human knowledge to understand the transactions patterns uncovered.

11.7.3 Testing

In the testing phase, a transaction is given to the anomaly detection system in order to assert
its similarity with C’s historical transactions. Before being submitted to the anomaly detection
system, the test transaction is integrated to the most recent transactions of C and turned into a
transaction histogram following the steps of the feature engineering process previously described.
The result of this phase is a legitimacy score summing up how distant the transaction is from the
historical ones. This phase is divided in 3 steps: the test histogram clustering, then the SOM
distance retrieval, and finally the similarity computation.
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Test Histogram Clustering

In this step, the test histogram ht is assigned a cluster based on the centroids found in the training
phase. It is assigned the cluster whose Euclidian distance is the closest, following the equation

cht = min(ci : {∥ht − Ci∥2 ≤ ∥ht − Cj∥2 ∀j, 1 ≤ j ≤ k} (11.3)

Assigning a cluster to ht allows us to compare it to the historical transactions closest to it. Further-
more, as the centroids determined by K-means algorithm represent the mean of all the historical
transactions of the cluster, it represents the representative member of the cluster. Thus, the far-
thest ht is from the centroid, the less similar to the other member of the cluster it is. In other
words, the further away ht is is from the centroid, then the closer from the edge of the cluster it is,
and thus is dissimilar to the other members of the cluster. However, as mentioned previously, the
curse of dimensionality might hinder the computation of a meaningful distance in our case. Thus,
we use the trained SOM in order to compute the similarity of ht with the member of its cluster.

Self-Organizing Map Distance Retrieval

In this phase, we feed ht to the previously trained SOM and thus retrieve nht the neuron activated
by ht, and we compute D(nht , ncht ) the Euclidian distance between the neuron activated by ht

and the neuron activated by cht that is the centroÃ¯d of the cluster assigned to ht.
Once this distance is acquired, it might be tempting to use it directly as a way to determine ht’s

legitimacy score, by for example assigning a threshold distance from which ht would be considered
anomalous. However, assigning a value to the threshold might prove a challenge as the distance
corresponds to a neuron-to-neuron distance and not a vector-to-vector distance. Thus, it is not
clear what the meaning of such a threshold would be. We propose a solution to this issue in Section
11.8.

Similarity Computation

In order to provide a more robust way to assert ht’s similarity, the distances from the other
histogram members of the cluster Cht and its centroid ({D(n(hi), n(cht)) ∀hi ∈ Sht} = D) are
also retrieved. Once retrieved, the z-score of D(n(ht), n(cht)) with respect to D is computed.
The z-score, as described in [22], is a statistical metric that corresponds to how many standard
deviation away a data point is from the mean of an ensemble. In our case, it gives us insight about
how far away ht is from the centroid, with respect to all the other members of the cluster. The
higher the z-score is, the more dissimilar ht is from the other members of the clusters, and thus
the more likely it is to be an anomaly.

11.8 Label Attribution

Figure 11.9: Label attribution process. A weighted mean combining the similarity score computed from

various window size is used to compute the final label of the tested transaction.

The previously described training and testing algorithm uses a set of historical histograms to
assert the similarity of a test histogram, through the computation of a z-score. However, the
computation of these histograms is dependent on the size of the window of transaction ws that is
used in the pre-processing algorithm. Indeed, the window size directly impacts the graph extracted
from the window, and thus the histogram describing the graph.

11.8.1 Impact of Window Size

A small window size will create smaller graphs that encompass the short-time behavior of a client
C. Furthermore, a small window size will also provide more behavior histograms to perform the

154



clustering and SOM training, at the expense of a decrease in the complexity of patterns found
in a graph, as less transactions means less possible relationships between account and supplier.
Lastly, anomaly detection using graphs created from small windows are less stable as adding a
single transaction can create a huge topological difference between two graphs.

On the contrary, a large window size will create larger graphs, that sums up a large number of
transaction and thus the long-term behavior of the client. However, as the number of transactions
needed to create the graphs will be higher, less data points will be created. As a certain amount
of data point (depending on the size of the SOM) is needed for the training algorithm, very high
windows size are thus not suitable for the detection system. However, larger transaction graphs
means that more complex patterns might be formed, which would have been missed if smaller
windows were used. Lastly, using a large window size means that the topological modification
following the introduction of a single transaction might not be enough for the anomaly detection
system to pick up an anomaly.

11.8.2 Optimizing Window Size

A straightforward way to determine which windows size is more suitable for anomaly detection
for a specific client C would be to perform an optimization method such as grid search ([48]) or
random search ([48]). However, these optimization methods rely on the assumption that target
labels are available, which is not the case in our use-case. Thus, an alternate method has to be
found.

Instead of trying to optimize the size of the window, a possible solution would be to perform the
anomaly detection in a range of different windows size, and aggregate the results in a way similar
to bagging [95]. This way, the anomaly detection system would be able to draw its conclusion from
both small size transaction graphs and high size transactions graph when assigning the legitimacy
score of a transaction.

As a way to perform this aggregation, the following algorithm is proposed. For every size ws
in W of length l(W ), the pre-processing phase, feature engineering phase and anomaly detection
phase of the anomaly detection system are performed, effectively creating l(W ) anomaly detection
systems, and a z-score is computed for a transaction t from each of them. Then, the following
process is applied:

1. The z-scores undergo a discretization process when the score is turned into one of the three
legitimacy labels (“high”,“medium”,“low”). In order to do so, two risk thresholds (0 < r1 <
r2 < 1) are used as parameters for the threshold function. These risk thresholds represent
the fraction of the maximal z-score corresponding to each of the legitimacy labels. As a
rule of thumb, a z-score of 3 indicates that a value is an outlier with respect to a give data
set. Thus, a risk score r1 = 0.2 indicates that if the z-score of a given value is smaller than
0.2 ∗ 3 = 0.6 then it is considered legitimate by the anomaly detection system. The risk
thresholds are defined by the investigation team, as it relies on the costs implied by a false
positive (legitimate transaction mislabeled as fraud) or a false negative (fraud mislabeled as
legitimate transaction). These costs depend on factors that reside outside of the scope of the
anomaly detection system, and thus need to be asserted by a team of experts.

2. Each of the label is assigned a weight (wh,wm,wl) that represent a bonus in the overall
legitimacy score. These weights can be parameterized by the investigator in order to control
the sensitivity of the system. Usually, wh > wm > 0 > wl so that “high” legitimacy labels
pull the score up and “low” legitimacy label decrease the overall legitimacy score.

3. The sum of the l(W ) weights is computed and normalized so that an overall legitimacy score
0 < LW < 1 is calculated.

LW can also be discretized using a threshold function if the need to provide labels is found.
This threshold function can use as input a list of threshold risks δ1, δ2, ..., δn corresponding to the
operational needs of the fraud detection team. Alternatively, a voting system might be used in
order to aggregate the value of each of the anomaly detection systems. This label attribution phase
thus alleviates the need to search for an optimal value of ws and allows the anomaly detection to
be performed on both short-term and long-term transaction behavior of the investigated client C.

If the amount of transactions were available, it could be used to create a cost function that
would impact the thresholding parameters so that more attention would be given to high-value
transactions.
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11.9 Experimental Results

For a complete description of the experiment setup and results, we refer the reader to the article
[71] on which this chapter is based.

We evaluate the performance of GraphSIF on the subset of transaction issued by a single client
C. In this evaluation, only the transaction issued by C in the Audit dataset are considered.
This subset contains 1000 test transactions to evaluate the performances and 218,325 historical
transactions for the History Dataset to train the model.

(a) High (b) Medium (c) Low

Figure 11.10: Distribution of legitimacy labels.

High Legitimacy Label First, we consider the results given by both the expert system and
GraphSIF concerning the high legitimacy labels. Figure 11.10 shows a Venn diagram indicating
the distribution of the high legitimacy label. The consistency of the two set is not high, only
19 out of the 167 transactions given a “high” legitimacy label by the expert systems are given
the same label by GraphSIF. However, this inconsistency might be explained by the fact that the
expert system relies on knowledge internal to the platform, in the form of a registration of secured
suppliers, that is not available for the graph-based model.

Table 11.4 shows the confusion matrix indicating the complete distribution of each label. Most
of the high legitimacy labels (128 out of 167) have been labeled as low legitimacy transactions by
GraphSIF. This behavior is consistent with the hypothesis of the expert system using additional
knowledge to perform its classification.

Table 11.4: Confusion Matrix - SiS Rule Engine and GraphSIF

GraphSIF →
Expert system ↓ High Medium Low

High 19 20 128
Medium 74 22 217
Low 11 8 501

Medium Legitimacy Label Then, we consider the results given by both the expert system
and GraphSIF concerning the medium legitimacy labels. Figure 11.10 shows the distribution of
the medium legitimacy label. For the expert system, a medium label indicates a lack of knowledge.
Almost a third (313 out of 1000) of the transactions have been assigned this label by the expert
system. On the contrary, a medium label doesn’t indicate a lack of knowledge for GraphSIF,
but rather informs the user that a specific transaction is slightly unusual. Thus the consistency
between the two sets is not really expected. However, the low number of transactions labeled with
the medium label by GraphSIF (50 out of 1000) seems to indicate a higher assertiveness of the
proposed model. Table 11.4 shows that most (217 out of 291) of the medium labels given by the
expert system where assigned a low legitimacy label by GraphSIF.

Low Legitimacy Label Finally, we consider the results given by both the expert system and
GraphSIF concerning the low legitimacy labels. Figure 11.10 shows the distribution of the low
legitimacy label. There is a high consistency between the expert system and GraphSIF concerning
this set of suspicious transactions, as 501 out of 520 transactions where given the low legitimacy
label by both of the detection systems. The 345 transaction assigned a low legitimacy transaction
by GraphSIF and not the expert system come from the two other sets. Furthermore, the last row
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of Table 11.4 shows that only a handful of transactions labeled as low by the expert system have
been given another label by GraphSIF. It is possible that the 11 transactions given a low legitimacy
label by the rule engine could use knowledge not available for GraphSIF, such as when a supplier
closes an account.

11.9.1 Discussion

While results shows that GraphSIF is able to provide consistent results in terms of consistency with
the expert system, the most pressing issue is the lack of ground truths about actual legitimate and
fraudulent transaction. While SiS-id’s expert system provides an alternative to expert knowledge
regarding the labeled transaction, this system is prone to error, most notably because fraud is
dynamic and often changes faster than the rules of an expert system. Furthermore, comparing
GraphSIF graph-based approach and SiS-id expert system is difficult, as they both rely on different
types of knowledge (expert-based vs data-driven). However, in the absence of a dataset containing
trusted labels, comparing our systems with SiS-id’s expert system is the only way to propose an
evaluation of their performance.

11.10 Conclusion

In this work, we introduce GraphSIF, a novel feature-engineering process that creates a feature
vector based on the relationships between a client company and the accounts it used to pay
its supplier companies, providing a new tool to describe the underlying transaction mechanism
involved in their interaction.

In conclusion, we used the temporal information contained in the transactions of the History
dataset to create a behavior sequence composed of the transactions emitted by a client aggregated
in several bounded time windows. We showed how to use this behavior sequence to create a
data model based on Self-Organizing Maps representing the behavior of a client company through
time. We then used this data model to infer the legitimacy of new transactions using the K-
means clustering algorithm, along with an aggregation algorithm allowing us to combine the results
obtained for different window sizes in a comprehensive score.
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Conclusion and Future Research
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Chapter 12

Conclusion

In this chapter, we summarize the conclusions of the selected contributions that we have included
in this habilitation thesis. We present a general conclusion and some perspectives in Section 12.4.

12.1 Privacy-Preserving Reputation Systems

A Survey of Decentralized Privacy-Preserving Reputation Systems

We conducted a fine-grained analysis and comparison of 44 privacy-preserving reputation systems.
We established several categories of systems according to their security mechanisms and classified
the privacy-preserving reputation systems according to these categories. Our detailed comparison
of privacy-preserving reputation systems in a normalized manner using our analysis frameworks
reveals the differences between the systems in the literature as well as their chronological evolution.
Our fine-grained analysis, comparison, and discussion (Section 13.1) led to the identification of a
number of insights into this area of research. We noted that one of the future directions is to lever-
age the blockchain technology to its full potential and build truly trustless systems. Moreover, we
identified authorizability as one of the important properties that needs to be addressed by systems
in the future. Lastly, analyzing the systems in terms of their countermeasures against common
attacks, we observed that designing systems that provide comprehensive protection against a broad
range of attacks is an evident direction for future research in the area.

A Decentralized Privacy-Preserving Reputation Protocol for the Malicious Adversar-
ial Model

We presented a privacy-preserving reputation protocol for the malicious adversarial model. The
protocol counters attacks by malicious agents such as submitting illegal feedback values or making
erroneous computations. The characteristics that differentiate the protocol from other protocols in
the literature include: (1) full decentralization, (2) no need for trusted third parties and specialized
platforms, (3) low communication complexity. Our experiments on three real and large trust graphs
demonstrated the validity of the two hypotheses that the Malicious-k-shares protocol is based on:
(1) A source agent can preserve its privacy by trusting on only k fellow source agents, where k is
much smaller than n − 1, the size of the set of all fellow source agents. (2) Accurate reputation
values can be computed even if the source agents whose privacy can not be preserved abstain and
thus do not provide their feedback values.

A Privacy-Preserving and Reputation-Aware Mobile Participatory Sensing System

We proposed a privacy-preserving reputation system, PrivaSense, for participatory sensing appli-
cations. The system employs separate registration and authentication phases that ensure par-
ticipants’ anonymity and improve the system resilience against the Sybil and replay attacks. In
addition, a privacy-preserving mechanism is used for the contents of the participants’ contributions
which prevents adversaries from using the data to infer the identity of participants. Moreover, data
reliability is ensured due to the incorporation of a reputation system. Finally, PrivaSense adopts
a mechanism to prevent the reputation scores of participants from revealing their identity. The
experiments conducted on a real dataset demonstrate that the PrivaSense system ensures good
anonymity and un-linkability with a much lower mean square error introduced into the aggregated
data.
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Anonymous Voting using Distributed Ledger-assisted Secure Multi-Party Computa-
tion

Bringing together the blockchain technology and secure multiparty computation, we constructed a
highly transparent referendum protocol that allows participants to autonomously verify proceedings
and outcome. Traditional (t, n) threshold based systems rely on collusive attacks being unlikely
due to the selected parameters. However, our system goes further and places all communication
on a single public immutable blockchain such that the communication can be inspected at any
stage of the execution of the protocol to validate correctness. Other than an anonymous credential
issuer, the system eliminates the need for any trusted third parties.

Collusion-Resistant Worker Set Selection for Transparent and Verifiable Voting

We proposed two solutions to provide better collusion-resistance in distributed protocols where a
subset of workers needs to be selected from the set of participants. Workers are the nodes who
provide intermediate processing in the protocol. Firstly, we used the blockchain’s immutability and
ordering to design a collusion-resistant decentralized protocol to randomly select workers. Secondly,
we considered a social graph representing participants and proposed an algorithm to distance
workers from each other in the graph. Based on a social graph and our problem’s constraints, we
computed the size of the largest clique of workers to evaluate the number of workers’ bounds for
which our solutions were resistant to collusion with high confidence. The decentralized random
worker selection works from low numbers of workers to an upper limit which depends on the size
of the graph’s largest clique. As expected, the method taking advantage of the graph’s structure
provides better results: it distances workers better for a wider range of numbers of workers.

12.2 Privacy-Preserving Message Routing

A Study of the Unwillingness of Nodes to Participate in MDTN Routing: Selfishness
and Privacy

We studied the reasons for the unwillingness of nodes to participate in MDTN routing. We identi-
fied the factors of selfishness and privacy as the two primary causes. We developed a classification
of the aspects of selfish behavior. We then classified the existing strategies for preventing selfish
behavior into three categories: barter-based, credit-based and reputation-based. We subsequently
analyzed the mechanisms of the proposed strategies and pointed out the problems in each category.
We then conducted an experiment to investigate the performance of the representative strategies
for preventing different types of selfish behavior. For privacy, we classified the existing privacy-
preserving protocols for MDTNs according to their specific privacy objectives: identity, location,
message content, and relationships. We reviewed the various strategies proposed in the literature
for preserving the privacy of nodes under each of these categories. We also presented an analytical
comparison of the privacy-preserving protocols.

Privacy-Preserving Routing in Mobile Delay Tolerant Networks

We described the 4PR protocol, which provides privacy-preserving probabilistic prediction-based
routing in mobile delay tolerant networks. 4PR is similar to prior prediction-based protocols
(e.g., PRoPHET and Bubble), which take advantage of the mobility patterns of nodes to route
messages. However, the 4PR protocol forwards messages by comparing aggregated information
about communities instead of individual nodes, in order to preserve their privacy. Our experimental
evaluation using a well established community-based mobility model demonstrates that 4PR is
comparable to the above noted protocols in terms of performance. Yet, 4PR preserves the privacy
of nodes by hiding their individual mobility patterns, whereas the prior protocols do not.

12.3 Privacy Preservation in Financial Networks

Privacy Considerations for a Decentralized Lending Platform

We presented an approach to calculate the users’ trustworthiness on peer-to-peer lending platforms.
This approach is neither collateral nor credit score based. Instead, we calculate a user’s social score
that relies on the social capital theory and consequently the information retrieved from the user’s
social network accounts. The social scoring formula is implemented in a smart contract. We
quantified the amount of gas that is consumed by the smart contract. Moreover, we also evaluated
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the execution of the functions on a real social network dataset. An experiment demonstrated
how we can use analysis of social network data to determine optimal thresholds for a platform in
production.

Analyzing Flow of Payments in a Business-To-Business Network to Detect Supplier
Impersonation

We introduced GraphSIF, which comprises of a novel feature-engineering process that creates a
feature vector based on the relationships between a client company and the accounts it used to pay
its supplier companies. This provides a new tool to describe the underlying transaction mechanism
involved in their interaction. GraphSIF analyzes data that has been heavily anonymized in order to
preserve the privacy of the participating companies. We used the temporal information contained
in the transactions of the real “History” dataset to create a behavior sequence composed of the
transactions emitted by a client aggregated in several bounded time windows. We showed how to
use this behavior sequence to create a data model based on Self-Organizing Maps representing the
behavior of a client company through time. We then used this data model to infer the legitimacy
of new transactions using the K-means clustering algorithm, along with an aggregation algorithm
allowing us to combine the results obtained for different window sizes in a comprehensive score.
Experiments showed high consistency of GraphSIF’s results with the ones from the SiS-id expert
system.

12.4 General Conclusion and Perspectives

In this habilitation thesis, we have described the research area of privacy preservation in trust-
deficient decentralized systems. We discussed that decentralized systems inherently favor several
desirable properties such as fault tolerance, attack resistance, censorship resistance, openness,
autonomy, etc. Decentralized systems have grown in popularity since the advent of distributed
ledger and blockchain technologies. These technologies enable decentralized systems to securely
function even in environments where nodes are unable to trust each other. A notable application
area of decentralized systems that we discussed is Web3, which envisions a version of the web where
users own the content that they create or generate and determine how they share it. This would
be an alternative to the many centralized web-based platforms these days that own and monetize
user data. We further discussed that user privacy is a major concern when users need to share
personal and sensitive data in order to be able to use services in centralized as well as decentralized
systems. Privacy preservation, that is protecting users’ private data while allowing them to still
use services, is rendered particularly difficult when there is a deficiency of trust between nodes.
The trust deficiency may range from full trust in an entity to no trust in any entity in the network,
or in other words, complete trustlessness.

We have included several works in this habilitation thesis that address the problem of privacy
preservation in trust-deficient decentralized systems. These works are categorized into three cat-
egories: privacy-preserving reputation systems, privacy-preserving message routing, and privacy
preservation in financial networks. In the area of privacy-preserving reputation systems, we pro-
posed several protocols that have advantageous properties, such as security under the difficult
malicious adversarial model, resistance against linkability and re-identification in a participatory
sensing application, and transparency and verifiability in a voting protocol. Moreover, we dis-
cussed approaches for selecting nodes for intermediate tasks in the protocols such that the risk of
collusion of nodes is minimized. In the area of privacy-preserving message routing, we observed
that prediction-based routing protocols in the literature perform well in mobile delay tolerant
networks. Unfortunately, they compromise user privacy due to the use of mobility and social in-
teraction patterns. We proposed two protocols (4PR, and its predecessor 3PR) that route and
deliver messages with comparable efficiency while preserving privacy of the users. They do so by
securely aggregating and comparing information about communities instead of individual users.
In the area of privacy preservation in financial networks, we described a decentralized peer-to-peer
lending platform that computes a social trustworthiness score as an alternative to collateral or
credit history. We suggested privacy-preserving mechanisms that enable a borrower to let the
lender verify their social data without disclosing it. Another application that we addressed was
supplier impersonation fraud detection in the business-to-business context. We proposed an ap-
proach based on the analysis of heavily anonymized data in order to preserve the privacy of the
participating companies.

The need for privacy-preserving solutions for decentralized systems is becoming increasingly
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crucial due to the rising popularity and use of these systems. Awareness is also growing among
users about privacy issues and thus they are increasingly demanding systems that respect their
privacy. Additionally, systems that are trustless or at least do not make strong trustfulness assump-
tions have shown robustness and are becoming more desirable. We thus foresee many opportunities
for continued research work in the area of privacy preservation in trust-deficient decentralized sys-
tems. In the next chapter, we have identified a number of directions for future research. In
the specific area of privacy-preserving reputation systems, these include building fully trustless
systems, achieving essential security properties (such as authorizability), and defending against
attacks on reputation while preserving privacy. In the more broad area of privacy preservation
in blockchains, we identify research directions that include user anonymity, transaction confiden-
tiality and unlinkability, accountability, and smart contract privacy. These objectives need to
be achieved while ensuring the appealing properties of blockchains such as decentralization, im-
mutability, transparency, verifiability, trustlessness, etc. Another important avenue is secure and
privacy-preserving blockchain interoperability, which aims at enabling transfer of user assets across
multiple independent blockchains while ensuring security and privacy.
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Chapter 13

Future Research Directions

In this chapter, we first discuss future research directions in the specific area of privacy-preserving
reputation systems. In the second part of this chapter, we then identify future research directions
in the area of privacy preservation in blockchains, which is a much broader area with many open
problems and opportunities for future research work.

13.1 Privacy-Preserving Reputation Systems

In this section, we discuss in detail the insights that we can draw from our survey in Chapter 3 on
privacy preserving reputation systems. This discussion leads to the identification of several future
research directions in this area. We previously summarized these research directions in Table 3.7.
Each of the research direction is labeled with an ID (Di).

Our first observation relates to the utilization of blockchain by privacy-preserving reputation
systems. We note that the advent of the blockchain technology has provided a fresh impetus to
research on privacy-preserving reputation systems. A majority of the systems published since 2016
utilize blockchain as one of the building blocks. We found 15 privacy-preserving reputation systems
that are blockchain-based. In contrast, we discovered only 6 systems developed since 2016 that do
not utilize blockchain. The reasons for the adoption of blockchain are evident. For example, in the
case of Schaub et al.’s [255] system, using blockchain enables the system to provide the property
of trustlessness, which was not offered by any prior systems. Another example is the system by
Schiedermeier et al. [256], which is able to guarantee transparency and immutability by employing
a blockchain. These properties are mostly absent in pre-blockchain systems.

Despite the successful application of blockchain, we do note that the development of non-
blockchain-based privacy-preserving reputation systems still holds importance (D1). We can cite
a couple of reasons. Firstly, blockchain can be an expensive building block to rely on in terms
of the resources consumed. The computing cycles and the network bandwidth spent, and more
worryingly the carbon footprint of popular blockchain-based systems such as Bitcoin, remain a
significant concern [275]. Secondly, certain applications do not benefit as much as others from
the decentralization and the trustlessness that blockchain offers. One such application is mobile
participatory or crowdsensing. We note that two (Ma et al. [200] and Mousa et al. [218]) of the six
non-blockchain-based privacy-preserving reputation systems since 2016 that have been analyzed
are for this application area. They both employ a centralized architecture due to the nature of
the application, which collects reports from mobile users and centralizes the data for subsequent
analysis. We acknowledge that at least three (Zhang et al. [293], Jo and Choi [159], and Zhao
et al. [296]) of the blockchain-based systems included in the survey also target the participatory
sensing application area. These systems benefit from the smart contract functionality of blockchain
technology to transparently manage the reputation of participants. However, we can observe that
all three systems employ centralized TTPs in their architecture and thus do not take full advantage
of the decentralization and trustlessness properties of blockchain.

Our above observations lead us to another notable and perhaps undesirable trend. Fully de-
centralized systems have existed since before blockchain. A key advantage that blockchain is able
to offer in addition to decentralization is trustlessness. However, we observe that among all the
blockchain-based systems analyzed, only one system (Schaub et al. [255]) benefits from this novel
trust model to propose a fully trustless privacy-preserving reputation system. The system by Dim-
itriou [96] is another one that is primarily trustless, but it relies on a TTP for one of its operations.
Other blockchain-based systems do benefit in part from the trustlessness of blockchain, but end
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up proposing hybrid trust models that include arbitrary k trusted users, chosen k trusted users,
or TTPs. We believe that one of the future directions in this area of research is to leverage the
blockchain technology to its full potential and build truly trustless systems (D2).

Next, we look at the success of the surveyed systems in guaranteeing the security of users. As
discussed earlier in Section 3.3, the objectives of security include privacy and integrity. We first
address user anonymity-oriented systems. In terms of privacy properties, we observe that all the
surveyed systems guarantee user-pseudo unlinkability (26 systems). This is to be expected since
this is a vital goal of user anonymity-oriented systems. Moreover, a high majority of the systems
enable multiple pseudonyms (23 systems), pseudo-pseudo unlinkability (21 systems), and rater
anonymity (22 systems). This is another positive sign indicating success of the systems toward
providing strong privacy to the users. On the other hand, we note that much fewer systems aim for
guaranteeing ratee anonymity (14 systems) and inquirer anonymity (7 systems). These properties
have been ignored by a large number of the systems even though these are important properties for
the privacy of roles other than the raters. We can identify inclusion of these objectives in future
privacy-preserving reputation systems as another direction of research (D3). Reputation transfer
and aggregation is another property that is offered by some systems but not provided by most
others. We believe that this is an important property for long term sustainable privacy in the
system and should thus be given priority as well (D4).

Moving to the properties of integrity, we are pleased to observe that almost all systems (25)
enforce unforgeability, an essential property for the correct functioning of the user anonymity-
oriented systems. Unfortunately, the assessment is not as bright for the rest of the integrity
properties. There are 9 or less systems implementing the properties of either distinctness, ac-
countability, or verifiability. The property of authorizability is offered by only 15 of the systems
that we have analyzed. This is a worrisome figure since we believe that authorizability must be a
critical feature for all privacy-preserving reputation systems. Absence of this property can allow
an adversary to take unfair advantage of anonymity and mount attacks such as ballot stuffing and
slandering. The somewhat encouraging news is that if we consider only the subset of systems since
2016, we can observe that 8 out of the 12 systems offer authorizability. Thus, the trend is moving
favorably toward including authorizability and should continue to do so (D5).

We now discuss the feedback confidentiality-oriented systems and their success in enforcing
the listed security objectives. Considering the privacy objectives, we observe that all surveyed
systems (18 systems) ensure that feedback confidentiality is maintained even if the adversary has
access to intermediate information revealed during the execution of the protocols. This is the
primary privacy objective of feedback confidentiality systems. Therefore, this property is the
minimum expectation from any system. In contrast, we observe that less than half of the systems
can guarantee to some degree that an adversary will be unable to infer the feedback values from
publicly available information, which includes the computed reputation scores. However, this issue
is generally of concern when the number of participants is low. Therefore, even if future systems
do not ensure this property, they should take measures to either warn users when their privacy
is at risk or prevent execution of protocol instances with few participants (D6). The property of
privacy of relationships concerns a subset of the systems that rely on relationships between users
for privacy preservation. We observe that only 3 systems are able to satisfy this property to some
extent. Future systems should protect the privacy of relationships in addition to the confidentiality
of feedback (D7).

Looking at the integrity objectives, we appreciate that almost all systems fully enforce correct
computation as well as guarantee that submitted feedback will respect the correct range. This
is a reassuring trend since these two properties imply that systems are able to produce correct
reputation scores despite the confidentiality of the feedback values. Regrettably, similar to user
anonymity-oriented systems, the feedback confidentiality-oriented systems also largely ignore the
properties of authorizability (6 systems) and verifiability (5 systems). Even if we consider recent
feedback confidentiality-oriented systems since 2016, we observe that only 4 out of the 9 systems
fully satisfy the property of authorizability. As we argued earlier, this is an important property.
Therefore, future work on feedback confidentiality-oriented privacy-preserving reputation systems
should focus on its inclusion (D8).

Lastly, we discuss the systems in terms of their countermeasures against common attacks as
analyzed in Table 3.6. We observe that the number of systems implementing countermeasures
against these attacks is fairly low all across the board. This is particularly true for systems that
propose strong countermeasures. A majority of the systems shows some level of resistance to the
Sybil attack (32 systems, out of 44), ballot stuffing (31 systems), slandering (29 systems), and
whitewashing (25 systems). Defenses against other attacks are mostly overlooked: oscillation (12
systems), random ratings (15 systems), and free riding (7 systems). The figures are starkly lower
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when we consider only systems that offer strong countermeasures. For example, no more than 9
systems implement strong countermeasures against any of the following attacks: ballot stuffing,
slandering, oscillation, random ratings, and free riding.

Moreover, Table 3.6 reveals that only two systems (Mousa et al. [218] and Benthencourt et
al. [49]), out of the 44 systems analyzed, provide somewhat comprehensive resistance to the attacks.
However, both these systems employ TTPs in their architecture. None of the systems with a fully
decentralized architecture or with less intrusive trust models offers resistance to the full range of
attacks. Table 3.6 further shows that there is no noticeable improvement in recent systems toward
offering better resistance to these attacks.

There is clearly more work that needs to be done in the area of privacy-preserving reputa-
tion systems in terms of defenses against attacks other than breach of privacy. Privacy-preserving
reputation systems are fundamentally reputation systems and their overall success thus relies on
countering their basic challenges as well. One possible reason for the non-inclusion of robust pro-
tection against common attacks is that anonymity and privacy add further obstacles to preventing
attacks such as ballot stuffing, slandering, random ratings, free riding, and others. An adversary
may exploit the anonymity and privacy offered by a system to mount these attacks while simulta-
neously foregoing accountability. From these observations, an evident direction for future research
in the area is designing systems that provide comprehensive protection against the broad range
of attacks faced by reputations systems (D9). This is particularly true for decentralized systems,
none of which were found to offer comprehensive countermeasures.

13.2 Privacy Preservation in Blockchains

Permisionless blockchains such as Bitcoin and Ethereum enable users to transact in an open and
transparent manner. This is done in a fully decentralized environment without reliance on third
parties as a source of trust. However, the openness and transparency of permissionless blockchains
implies that the users’ privacy and confidentiality may be negatively impacted. Transactions
published on the blockchain may contain information that is considered sensitive by the users,
for example, transaction amount, date and time, recipient, smart contract functions called, etc.
Moreover, attackers can analyze the transaction graph of a blockchain and discover information
such as the association between a user’s multiple transaction addresses, the transaction patterns,
etc. Even though the users use pseudonymous identities, this analysis can lead to the inference of
their true identities.

In order to address this privacy challenge, privacy preservation in blockchains aims to achieve
the following objectives.

� Transaction confidentiality: The data of the transaction between two users should not be
accessible to unauthorized users.

� Anonymity: A user is not uniquely identifiable in an anonymity set, which is a group of
fellow users on the blockchain in a given context.

� Transaction unlinkability: A transaction cannot be linked to even a pseudonym of a user.

� Smart contract privacy: Maintain the confidentiality of the information associated with a
smart contract such as function calls, variable data, user addresses, etc.

� A parallel goal is to achieve the above properties while preserving the fundamental blockchain
attributes: decentralization, autonomy, openness, immutability, transparency, verifiability,
etc.

Some well known privacy-preserving blockchain systems include Monero, Zcash, and Secret
Network. Privacy-preserving blockchains rely on cryptographic building blocks for security. These
include one time public and private keys, ring signatures, zero-knowledge proofs, zk-SNARKs, zk-
STARKs, homomorphic encryption, and Trusted Execution Environments (TEEs). Since crypto-
graphic building blocks are often computationally very expensive, this results in privacy preserving
blockchains being relatively less efficient and less scalable than their non-privacy preserving coun-
terparts. Moreover, privacy-preserving blockchain systems sometimes end up relying on strong
trust assumptions. This is the case in Zcash, which initially required a trusted setup due to its
reliance on zk-SNARKs. With Network Upgrade 5 (NU5), Zcash has attempted to move away from
the requirement of a trusted setup. However, there is often a tradeoff between trust and efficiency.
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An important avenue of research is to develop blockchain systems that are privacy-preserving as
well as fully trustless, efficient, and scalable.

Another theme in this area is blockchain interoperability. A large number of alternative cryp-
tocurrencies have been proposed since the inception of Bitcoin. At the time of this writing, coin-
marketcap.com lists over nine thousand established cryptocurrencies. Bitcoin and other alterna-
tive cryptocurrencies are focused solely on monetary transactions. Whereas, blockchains such as
Ethereum and Neo offer Turing-complete scripting languages and smart contracts that enable the
development of more general purpose decentralized applications.

The existence of a wide variety of blockchains creates diversity and allows users to select the
most suitable solution. However, the multitude of blockchains also creates the problem of frag-
mentation and suffers from the inability of an application on one blockchain to interact with those
on other blockchains. Blockchain interoperability is a topic of research that seeks to find solutions
for enabling blockchain-to-blockchain interactions.

There are several scenarios where interactions between blockchains are desirable. Three of these
scenarios are discussed below:

� Exchanging tokens between users who may be on different blockchains. For example, Alice,
who has a balance in Bitcoin, being able to send her Bitcoins to Bob, who has an account
on Ethereum. The expected outcome is that Bob would receive the equivalent amount in
Ether, Ethereum’s native cryptocurrency, and Alice’s spent Bitcoins would be simultaneously
removed from the Bitcoin blockchain.

� Invoking smart contract functionality and obtaining returned values across blockchains. A
smart contract on the Ethereum blockchain is currently able to call the functions of other
smart contracts that are deployed only on the Ethereum blockchain. This is an undesirable
constraint since smart contracts on other platforms offer valuable functionality and services
that Etherum applications could benefit from and vice versa.

� Validating the state of a variable or complex data that exists on another blockchain. The
guarantees provided by a blockchain such as integrity and immutability apply only to data
that are stored on the blockchain. Any data that is outside the blockchain, even if it is on
another blockchain, cannot be generally validated for these properties.

The challenge is to address these scenarios in a trustless, secure, and privacy-preserving manner.
Several solutions have been proposed for blockchain interoperability, however, many of them do
not fulfill one or more of these requirements.

The three main current strategies for blockchain inter-operation are [142]: notary schemes,
relays and sidechains, and Hashed Time-Lock Contracts (HTLC). A notary is a trusted third party
that facilitates communication across blockchains. This solution makes strong trust assumptions
and clearly does not qualify as trustless. The next solution, that is, relays and sidechains, enable
a mainchain to maintain a ledger of assets in a sidechain. This allows the mainchain to observe,
verify, and accept inter-chain transfers with the sidechain. However, this approach is limited
to interoperability with sidechains. Moreover, although relays and sidechains do away with the
requirement of trusting a third party, there are a number of attacks that can compromise the
security of this approach. These attacks include collusion, double spending, and timing attacks.
The third solution, that is, Hashed Time-Lock Contracts or HTLCs, are smart contracts that
enable atomic transactions between blockchains by making use of timelocks and hash locks. A
user is required to provide a cryptographic proof of a transfer before a timeout. HTLCs are also
vulnerable to many security attacks, which include the wormhole attack, collusion, denial of service,
double spending, no transaction finality, etc. Additionally, it has been demonstrated [127, 201]
that HTLCs may compromise the privacy of users by leaking their identifiers.

Polkadot and Cosmos are two platforms that are built with blockchain interoperability as a
primary goal. These platforms have attempted to address some of the above challenges. However,
blockchain interoperability has yet to achieve maturity and thus remains an active area of research.

Another important theme of research that we would like to touch on is accountability in privacy-
preserving blockchains. As discussed earlier in this section, the objectives of privacy-preserving
blockchains include user anonymity, transaction confidentiality, and transaction unlinkability. Well
intentioned users can benefit from these guarantees in order to protect their private information
while conducting legitimate activities. However, the anonymity and privacy accorded by such
blockchains could also end up being exploited by dishonest users for unlawful activities. The goal
of accountability in privacy-preserving blockchains is to fully protect the privacy of honest users
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while allowing the possibility of revealing the identity of an anonymous user who is found to engage
in unsanctioned dealings.

One such system is proposed by Damg̊ard et al. [88], which manages user identities on a
blockchain with the aim of balancing privacy and accountability. Their approach is adopted by
the recently launched Concordium blockchain. The system introduces two new types of parties
called identity providers and anonymity revokers. The identity providers are trusted authorities
with whom users need to register by disclosing their true identities. User accounts are granted
based on this identity verification. However, information about their real identity is encrypted
using a threshold encryption scheme. This encryption can be lifted by the anonymity revokers if a
sufficient number of them agree to do so after suspecting the user of wrongdoing. Otherwise, the
system employs cryptographic building blocks such as blind signature schemes and zero-knowledge
proofs to ensure that a user remains anonymous. The anonymity of the user and the privacy of
their transactions is respected as long as the threshold of the anonymity revokers is not met.

Although the system by Damg̊ard et al. [88] offers accountability in addition to privacy, this
property is gained at the expense of placing some centralization and trust in entities such as the
identity providers and the anonymity revokers. Moreover, these entities are considered to be semi-
honest by the adversarial model of the system. Actively malicious or corrupted identity providers
or anonymity revokers could disrupt the system.

A direction for future research is to design blockchains that can provide accountability in
addition to privacy under strong adversarial models (such as the malicious adversarial model).
This should be done while adhering to the goals of achieving decentralization and trustlessness.

167



Bibliography

[1] Global overview of covid-19 impact on elections. https://www.idea.int/news-media/multimedia-reports/

global-overview-covid-19-impact-elections. Accessed: 2021-02-16.

[2] How the much-litigated ballot deadlines affected the us elections. https://www.theguardian.com/us-news/

2020/dec/21/us-election-ballot-deadlines-impact. Accessed: 2021-02-16.

[3] Project jupyter. https://jupyter.org/. Accessed: 2021-02-16.

[4] Python igraph library. https://igraph.org/python/. Accessed: 2021-02-16.

[5] Stanford’s facebook-combined dataset. http://snap.stanford.edu/data/ego-Facebook.html. Accessed: 2021-
02-16.

[6] Twitch social networks. http://snap.stanford.edu/data/twitch-social-networks.html. Accessed: 2021-02-16.

[7] graph-tool python library, February 2021. https://graph-tool.skewed.de/.

[8] Postal mail delivery still facing delays as election nears, senate report
finds, February 2021. https://www.forbes.com/sites/alisondurkee/2020/10/09/

postal-service-mail-delivery-still-facing-delays-as-election-nears-senate-report-finds.

[9] Businesswire: Global peer to peer (p2p) lending market trends, growth, opportunity re-
port 2020-2025, March 2022. https://www.businesswire.com/news/home/20201215005523/en/

Global-Peer-to-Peer-P2P-Lending-Market-Trends-Growth-Opportunity-Report-2020-2025.

[10] Challenge response authentication mechanism (cram), September 2022. https://www.geeksforgeeks.org/

challenge-response-authentication-mechanism-cram/.

[11] Coinloan: Peer-to-peer lending platform, March 2022. https://coinloan.io/.

[12] Cryptographic hash functions, March 2022. https://www.ics.uci.edu/~keldefra/teaching/fall2016/uci_

compsci134/slides/LEC5-KED.pdf.

[13] Cryptography hash functions, March 2022. https://www.tutorialspoint.com/cryptography/cryptography_
hash_functions.htm.

[14] Fico score, March 2022. https://www.fico.com/en/products/fico-score.

[15] Global social media stats, March 2022. https://datareportal.com/social-media-users.

[16] Inlock: Peer-to-peer lending platform, March 2022. https://inlock.io/.

[17] Lendingclub, March 2022. https://www.lendingclub.com/.

[18] Prosper: Peer-to-peer lending platform, March 2022. https://www.prosper.com/.

[19] Snap: Network datasets: Social circles: Facebook, March 2022. https://snap.stanford.edu/data/

ego-Facebook.html.

[20] Zopa: First peer-to-peer lending platform in the uk, March 2022. https://www.zopa.com/.

[21] Coinmarketcap, March 2023. https://coinmarketcap.com/.

[22] H. Abdi. Z-scores. Encyclopedia of measurement and statistics, 3:1055–1058, 2007.

[23] AIG. Impersonation Fraud Claims Scenarios, 2019. https://www.aig.

com/content/dam/aig/america-canada/us/documents/business/management-liability/

impersonation-fraud-claims-scenarios-brochure.pdf.

[24] L. Akoglu, M. McGlohon, and C. Faloutsos. OddBall: Spotting anomalies in weighted graphs. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 6119 LNAI(PART 2):410–421, 2010.

[25] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and description: A survey. Data Mining
and Knowledge Discovery, 29(3):626–688, 2015.

[26] H. Amintoosi and S. S. Kanhere. A trust framework for social participatory sensing systems. In MobiQuitous,
pages 237–249, 2012.

168

https://www.idea.int/news-media/multimedia-reports/global-overview-covid-19-impact-elections
https://www.idea.int/news-media/multimedia-reports/global-overview-covid-19-impact-elections
https://www.theguardian.com/us-news/2020/dec/21/us-election-ballot-deadlines-impact
https://www.theguardian.com/us-news/2020/dec/21/us-election-ballot-deadlines-impact
https://graph-tool.skewed.de/
https://www.forbes.com/sites/alisondurkee /2020/10/09/postal-service-mail-delivery-still-facing-delays-as-election-nears-senate-report-finds
https://www.forbes.com/sites/alisondurkee /2020/10/09/postal-service-mail-delivery-still-facing-delays-as-election-nears-senate-report-finds
https://www.businesswire.com/news/home/20201215005523/en/Global-Peer-to-Peer-P2P-Lending-Market-Trends-Growth-Opportunity-Report-2020-2025
https://www.businesswire.com/news/home/20201215005523/en/Global-Peer-to-Peer-P2P-Lending-Market-Trends-Growth-Opportunity-Report-2020-2025
https://www.geeksforgeeks.org/challenge-response-authentication-mechanism-cram/
https://www.geeksforgeeks.org/challenge-response-authentication-mechanism-cram/
https://coinloan.io/
https://www.ics.uci.edu/~keldefra/teaching/fall2016/uci_compsci134/slides/LEC5-KED.pdf
https://www.ics.uci.edu/~keldefra/teaching/fall2016/uci_compsci134/slides/LEC5-KED.pdf
https://www.tutorialspoint.com/cryptography/cryptography_hash_functions.htm
https://www.tutorialspoint.com/cryptography/cryptography_hash_functions.htm
https://www.fico.com/en/products/fico-score
https://datareportal.com/social-media-users
https://inlock.io/
https://www.lendingclub.com/
https://www.prosper.com/
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://www.zopa.com/
https://coinmarketcap.com/
https://www.aig.com/content/dam/aig/america-canada/us/documents/business/management-liability/impersonation-fraud-claims-scenarios-brochure.pdf
https://www.aig.com/content/dam/aig/america-canada/us/documents/business/management-liability/impersonation-fraud-claims-scenarios-brochure.pdf
https://www.aig.com/content/dam/aig/america-canada/us/documents/business/management-liability/impersonation-fraud-claims-scenarios-brochure.pdf


[27] H. Amintoosi and S. S. Kanhere. Providing trustworthy contributions via a reputation framework in social
participatory sensing systems. CoRR, abs/1311.2349, 2013.

[28] H. Amintoosi and S. S. Kanhere. A trust-based recruitment framework for multi-hop social participatory
sensing. In Proceedings of the 2013 IEEE International Conference on Distributed Computing in Sensor
Systems, DCOSS ’13, pages 266–273, Washington, DC, USA, 2013. IEEE Computer Society.

[29] H. Amintoosi and S. S. Kanhere. A reputation framework for social participatory sensing systems. MONET,
19(1):88–100, 2014.

[30] E. Anceaume, G. Guette, P. Lajoie-Mazenc, N. Prigent, and V. V. T. Tong. A privacy preserving distributed
reputation mechanism. In 2013 IEEE International Conference on Communications (ICC), pages 1951–1956.
IEEE, 2013.

[31] E. Anceaume, G. Guette, P. Lajoie-Mazenc, T. Sirvent, and V. Viet Triem Tong. Extending signatures of
reputation. Privacy and Identity Management for Emerging Services and Technologies, IFIP Advances in
Information and Communication, 421:165–176, 2014.

[32] E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin. Reputation systems for anonymous networks. In
Proceedings of the 8th Privacy Enhancing Technologies Symposium (PETS 2008), 2008.

[33] M. Anwar and J. Greer. Reputation management in privacy-enhanced e-learning. In Proceedings of the 3rd
Annual Scientific Conference of the LORNET Research Network (I2LOR-06), Montreal, Canada, November
2006.

[34] M. Anwar and J. Greer. Enabling reputation-based trust in privacy-enhanced learning systems. In Proceedings
of the 9th International Conference on Intelligent Tutoring Systems, Montreal, Canada, 2008.

[35] A. Aral, R. B. Uriarte, A. Simonet-Boulogne, and I. Brandic. Reliability management for blockchain-based
decentralized multi-cloud. In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), pages 21–30, 2020.

[36] M. Asher and C. Brennan. Zero-knowledge proofs: Starks vs snarks, May 2021. https://consensys.net/

blog/blockchain-explained/zero-knowledge-proofs-starks-vs-snarks/.

[37] A. B. Ayed. A conceptual secure blockchain-based electronic voting system. 9(3):1–9, 2017.

[38] M. A. Azad, S. Bag, and F. Hao. M2m-rep: Reputation of machines in the internet of things. In Proceedings
of the 12th international conference on availability, reliability and security, pages 1–7, 2017.

[39] M. A. Azad, S. Bag, and F. Hao. Privbox: Verifiable decentralized reputation system for online marketplaces.
Future Generation Computer Systems, 89:44–57, 2018.

[40] M. A. Azad, S. Bag, F. Hao, and A. Shalaginov. Decentralized self-enforcing trust management system for
social internet of things. IEEE Internet of Things Journal, 7(4):2690–2703, 2020.

[41] B. Baesens, V. Van Vlasselaer, and W. Verbeke. Fraud analytics using descriptive, predictive, and social
network techniques a guide to data science for fraud detection. John Wiley & Sons, 2015.

[42] S. Bag, M. A. Azad, and F. Hao. A privacy-aware decentralized and personalized reputation system. Com-
puters & Security, 77:514–530, 2018.

[43] A. Bakas, A. Michalas, and A. Ullah. (f) unctional sifting: A privacy-preserving reputation system through
multi-input functional encryption. In Secure IT Systems: 25th Nordic Conference, NordSec 2020, Virtual
Event, November 23–24, 2020, Proceedings 25, pages 111–126. Springer, 2021.

[44] Ballotpedia. Voter turnout in united states elections. https://ballotpedia.org/Voter_turnout_in_United_

States_elections, 2022.

[45] R. Bazin, A. Schaub, O. Hasan, and L. Brunie. Self-reported verifiable reputation with rater privacy. In IFIP
International Conference on Trust Management, pages 180–195. Springer, 2017.

[46] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive, 2018.

[47] J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret (Extended Abstract). Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 263 LNCS:251–260, 1987.

[48] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of machine learning
research, 13(Feb):281–305, 2012.

[49] J. Bethencourt, E. Shi, and D. Song. Signatures of reputation: Towards trust without identity. In Proceedings
of the Fourteenth International Conference on Financial Cryptography and Data Security (FC ’10), pages
400 – 407, 2010.

[50] M. Bettinger. Workflow manager github repository. https://github.com/mbettinger/workflow-manager. Ac-
cessed: 2021-02-16.

[51] M. Bettinger and L. Barbero. Source code repository: Collusion-resistant worker set selection.
https://github.com/mbettinger/collusion-resistant-worker-set-selection. Accessed: 2021-02-16.

169

https://consensys.net/blog/blockchain-explained/zero-knowledge-proofs-starks-vs-snarks/
https://consensys.net/blog/blockchain-explained/zero-knowledge-proofs-starks-vs-snarks/
https://ballotpedia.org/Voter_turnout_in_United_States_elections
https://ballotpedia.org/Voter_turnout_in_United_States_elections


[52] G. Bigwood and T. Henderson. Ironman: Using social networks to add incentives and reputation to oppor-
tunistic networks. 2011.

[53] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 326–349, 2012.

[54] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, Oct 2008.

[55] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[56] Y. Bo, Z. Min, and L. Guohuan. A reputation system with privacy and incentive. In Proceedings of the
Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD’07), 2007.

[57] R. J. Bolton, D. J. Hand, and Others. Unsupervised profiling methods for fraud detection. Credit scoring and
credit control VII, pages 235–255, 2001.

[58] R. J. Bolton, D. J. Hand, F. Provost, L. Breiman, R. J. Bolton, and D. J. Hand. Statistical Fraud Detection:
A Review. Statistical Science, 17(3):235–255, 2002.

[59] A. Boutet, S. Ben Mokhtar, and V. Primault. Uniqueness Assessment of Human Mobility on Multi-Sensor
Datasets. Research report, LIRIS UMR CNRS 5205, Oct. 2016.

[60] D. D. S. Braga, M. Niemann, B. Hellingrath, and F. B. D. L. Neto. Survey on computational trust and
reputation models. ACM Computing Surveys (CSUR), 51(5):1–40, 2018.

[61] P. L. Brockett, X. Xia, and R. A. Derrig. Using Kohonen’s Self-Organizing Feature Map to Uncover Automobile
Bodily Injury Claims Fraud. The Journal of Risk and Insurance, 65(2):245, 2006.

[62] J. A. Bullinaria. Self Organizing Maps: Fundamentals, Introduction to Neural Networks : Lecture 16. pages
1–15, 2004.

[63] U. C. Bureau. US elections voter turnout statistics. https://www.census.gov/library/stories/2019/04/

behind-2018-united-states-midterm-election-turnout.html, 2019.

[64] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivastava. Participa-
tory sensing. In Workshop on World-Sensor-Web (WSW 06): Mobile Device Centric Sensor Networks and
Applications, pages 117–134, 2006.

[65] S. Bursuc, C.-c. Dragan, S. Kremer, S. Bursuc, C.-c. Dragan, S. Kremer, S. Bursuc, I. N.-g. Est, S. Kremer,
and I. N.-g. Est. HAL Id : hal-02099434 Private votes on untrusted platforms : models , attacks and provable
scheme. 2019.
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[167] A. Keränen, T. Kärkkäinen, and J. Ott. Simulating mobility and dtns with the one. Journal of Communica-
tions, 5(2):92–105, 2010.

[168] A. Keranen, M. Pitkanen, M. Vuori, and J. Ott. Effect of non-cooperative nodes in mobile dtns. In World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2011 IEEE International Symposium on a, pages
1–7, 2011.

[169] F. Kerschbaum. A verifiable, centralized, coercion-free reputation system. In Proceedings of the 8th ACM
workshop on Privacy in the electronic society (WPES’09). ACM, New York, NY, USA, 2009.

[170] W. Khan, Y. Xiang, M. Aalsalem, and Q. Arshad. Mobile phone sensing systems: A survey. Communications
Surveys Tutorials, IEEE, 15(1):402–427, First 2013.

[171] M. Kim, D. Kotz, and S. Kim. Extracting a mobility model from real user traces. In Proc. of INFOCOM
2006, pages 1–13, 2006.

[172] Y. Kim and S. Y. Sohn. Stock fraud detection using peer group analysis. Expert Systems with Applications,
39(10):8986–8992, 2012.

[173] M. Kinateder and S. Pearson. A privacy-enhanced peer-to-peer reputation system. In Proceedings of the 4th
International Conference on Electronic Commerce and Web Technologies, 2003.

[174] T. Kohonen. Self-learning musical grammar, or ’associative memory of the second kind’. pages 1–5, 1989.

[175] G. Korpal and D. Scott. Decentralization and web3 technologies. 2022.

174



[176] T. Kosch, C. Adler, S. Eichler, C. Schroth, and M. Strassberger. The scalability problem of vehicular ad hoc
networks and how to solve it. IEEE Wireless Communications, 13(5):22–28, 2006.

[177] G. Kreitz, M. Dam, and D. Wikstrom. Practical private information aggregation in large networks. In
Proceedings of Nordsec, 2010.

[178] P. Lajoie-Mazenc, E. Anceaume, G. Guette, T. Sirvent, and V. V. T. Tong. Efficient distributed privacy-
preserving reputation mechanism handling non-monotonic ratings. hal.archives-ouvertes.fr, 2015.

[179] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, July 1982.

[180] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A survey of mobile phone
sensing. IEEE Communications Magazine, 48(9):140–150, Sept. 2010.

[181] Z. Le, G. Vakde, and M. Wright. Peon: privacy-enhanced opportunistic networks with applications in assistive
environments. In Proceedings of the 2nd International Conference on PErvasive Technologies Related to
Assistive Environments, PETRA ’09, pages 76:1–76:8, New York, NY, USA, 2009. ACM.

[182] K. Lee, J. James, and H. Kim. Electronic Voting Service Using Block-Chain. 11(2), 2016.

[183] N. Li and S. K. Das. Radon: reputation-assisted data forwarding in opportunistic networks. In Proceedings
of the Second International Workshop on Mobile Opportunistic Networking, MobiOpp ’10, pages 8–14, New
York, NY, USA, 2010. ACM.

[184] Q. Li, W. Gao, S. Zhu, and G. Cao. A routing protocol for socially selfish delay tolerant networks. Ad Hoc
Networks, 10(8):1619–1632, 2012.

[185] Y. Li, P. Hui, D. Jin, L. Su, and L. Zeng. Evaluating the impact of social selfishness on the epidemic routing
in delay tolerant networks. IEEE Communications Letters, 14(11):1026–1028, 2010.

[186] Y. Li, P. Hui, D. Jin, L. Su, and L. Zeng. Performance evaluation of routing schemes for energy-constrained
delay tolerant networks. In Communications (ICC), 2011 IEEE International Conference on, pages 1–5,
2011.

[187] Y. Li, G. Su, and Z. Wang. Evaluating the effects of node cooperation on dtn routing. AEU - International
Journal of Electronics and Communications, 66(1):62–67, 2012.

[188] Y. Li, G. Su, D. Wu, D. Jin, L. Su, and L. Zeng. The impact of node selfishness on multicasting in delay
tolerant networks. IEEE Transactions on Vehicular Technology, 60(5):2224–2238, 2011.

[189] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, and M. Guizani. A Blockchain-based Self-tallying Voting Scheme
in Decentralized IoT. 2019.

[190] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining. The Journal of
Privacy and Confidentiality, 1(1):59–98, 2009.

[191] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in intermittently connected networks. ACM
SIGMOBILE Mobile Computing and Communications Review, 7(3):19–20, 2003.

[192] D. Liu, A. Alahmadi, J. Ni, X. Lin, and X. Shen. Anonymous reputation system for iiot-enabled retail
marketing atop pos blockchain. IEEE Transactions on Industrial Informatics, 15(6):3527–3537, 2019.

[193] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad hoc networks. In C. Jensen, S. Poslad,
and T. Dimitrakos, editors, Trust Management, volume 2995 of Lecture Notes in Computer Science, pages
48–62. Springer Berlin / Heidelberg, 2004.

[194] M. Liu, Y. Yang, and Z. Qin. A survey of routing protocols and simulations in dtns. In Proc. of WASA, pages
243–253, 2011.

[195] R. Lu, X. Lin, and X. Shen. Spring: A social-based privacy-preserving packet forwarding protocol for vehicular
delay tolerant networks. In Proc. INFOCOM 2010, pages 1–9, 2010.

[196] R. Lu, X. Lin, H. Zhu, X. Shen, and B. Preiss. Pi: A practical incentive protocol for delay tolerant networks.
9(4):1483–1493, 2010.

[197] X. Lu, P. Hui, D. Towsley, J. Pu, and Z. Xiong. Anti-localization anonymous routing for delay tolerant
network. Computer Networks, 54(11):1899 – 1910, 2010.

[198] Z. Lu, W. Liu, Q. Wang, G. Qu, and Z. Liu. A privacy-preserving trust model based on blockchain for vanets.
IEEE Access, 6:45655–45664, 2018.

[199] A. Lysyanskaya and J. Camenish. An Efficient System for Non-transferable Anonymous Credentials with
Optional Anonymity Revocation. EUROCRYPT 2001, 2001.

[200] L. Ma, X. Liu, Q. Pei, and Y. Xiang. Privacy-preserving reputation management for edge computing enhanced
mobile crowdsensing. IEEE Transactions on Services Computing, 12(5):786–799, 2018.

[201] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. Concurrency and privacy with payment-
channel networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 455–471, 2017.

175



[202] D. Many, M. Burkhart, and X. Dimitropoulos. Fast Private Set Operations with SEPIA. Technical report,
Department of Computer Science, ETH Zurich, 2012.

[203] A. Manzoor, M. Asplund, M. Bouroche, S. Clarke, and V. Cahill. Trust evaluation for participatory sensing.
In MobiQuitous, pages 176–187, 2012.
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