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Abstract. Solutions for data dissemination in traditional peer-eapnetworks
are not suitable for mobile peer-to-peer networks due tesfeeial characteris-
tics of mobile environments, particularly highly varialdennectivity, and dis-
connection. Mobile peer-to-peer data dissemination ovelay) Tolerant Net-
works (DTNSs) is a promising paradigm since they can toleiraguent and long
network partitions. DTNs exploit collaborative data sggeand node mobility
to bridge disconnected nodes and enable communicatiorebatthem. Recent
studies based on real world traces reveal that node mobititjbits certain pat-
terns influenced by the centrality and the regularity of iddehe network. Many
existing routing algorithms for DTNs exploit only one of theobility proper-
ties, e.g., only node centrality, or only node regularitydate messages from a
source node to a destination node. In this paper, we presesdaptive routing
algorithm that exploits either centrality or regularitycacding to the situation to
achieve the best possible routing performance in delayaotenetworks. Sim-
ulations performed on real mobility traces show that oupatm outperforms
the existing routing algorithms that utilize only one mdiproperty.

Keywords: mobile computing, peer-to-peer, delay tolerant netwaristing, central-
ity, regularity.

1 Introduction

A mobile peer-to-peer (P2P) network is composed of a finiteosenobile peers that
communicate with each other via short range wireless potgpsuch as IEEE 802.11,
Bluetooth, Zigbee, or Ultra Wide Band (UWB) [1]. The spedih&racteristics of mobile
environments, such as highly variable connectivity, diswtion, location-dependency,
energy and resource sensitivity, and the diversity in wselnetworks as well as carrier-
grade performance requirements bring new challengesdeareh in mobile P2P com-
puting [2]. Routing of information from a source node to ataegion node in mobile
P2P networks is particularly challenging due to these ahtaristics since traditional
routing algorithms assume the existence of an end-to-etid piging Delay Tolerant
Networks (DTNSs) as a foundation for mobile P2P networks feentproposed as one of
the directions for improving the performance of algoritimsiobile P2P networks [1].
In [3], Fall first proposed delay tolerant networks, whicim ¢alerate frequent and long
network partitions. DTNs exploit collaborative data sgggand node mobility to bridge



disconnected nodes and enable communication between Huermxample, a message
can be forwarded to intermediate nodes instead of requaingnd-to-end path to the
destination. The intermediate nodes then forward the rgesdaser to the destination.
When the destination is within the transmission range ofafrike intermediate nodes,
the routing process can be achieved.

There are a number of works in the literature on routing in BTN order to max-
imize the chances of reaching the destination, the earlting@lgorithms in DTNs
relied on flooding the network with copies of the same mes$dpeAlthough they
have a high delivery ratio, algorithms based on flooding reatégh overhead, which
undesirably exhausts mobile node resources (e.g., battenglwidth) and generates
unnecessary contention [5]. In order to minimize the resesiconsumed in the routing
process, other algorithms suchl@isect Transmission andSeek and Focus [6] only uti-
lize one copy of a message in the entire network. The mainatmings of this kind
algorithm are low delivery success rate and high delivefsydg].

In order to make a tradeoff between delivery rate and overteeaumber of studies
focus on the analysis of real mobility traces to rationalipase the intermediary nodes
[8] [9] [10] [11] [12]. These studies show that the mobilit§ modes is influenced by
their owner’s social relationships, and exhibits a highrdegf repetition. A number
of social properties characterizing nodes’ mobility hawest been defined, which can
be classified into three categories:Qgntrality, indicates the relative importance of a
node in a network. For instanclestweenness, which is a type of centrality, measures
the number of times a node falls on the shortest path betweemther nodes [13].
2) Regularity, expresses the probability of a given event (e.g., an erieolbetween
two nodes at a given time slot) to be repeated over tim€oB)munity, is traditionally
defined as a group of interacting people co-existing in a comlocation. People in a
community are believed to have a high probability to meehedher [14].

Building on these observations a number of routing algor#thave been pro-
posed in the literature. Among these algorithms, RANK [Idjes on node central-
ity, Habit [16] builds on regularity, and BubbleRap [14]li#t&s node community and
centrality.

A major drawback of these approaches is that they assuma thie¢n node in the
network has the same social properties all the time. Realitlfferent. For example,
a node can be infout of a community during specific periodsnoétit may have a
central position in the network or be completely isolate@igen times and may ex-
hibit a regular or a completely irregular mobility patterarshg specific times of the
day/specific days of the week. Moreover, a node can have rharedne social prop-
erty (e.g., centrality and regularity) at the same time. iRstance, the secretary of a
department can have high centrality and regularity at theesame. She can have high
centrality because of interactions with a large number @far&ers. She may also ex-
hibit high regularity due to frequent inter-departmentalatings. In order to leverage
these dynamics, we present the first routing algorithm tlyatichically adapts to the
user’s social properties. In this paper, we focus on twoadqebperties: node central-
ity and regularity. Our algorithm firstly exploits the cootdistory between nodes to
estimate the delivery latency and overhead of a centralised and a regularity-based



routing algorithm. It then selects the route that has theskivestimated latency and
overhead among the routes provided by the two algorithms.

The remainder of this paper is organized as follows. In sa@j two examples are
given to demonstrate the problems of algorithms based amlgre of the properties
of centrality and regularity. In section 3, we firstly presan abstract model for delay
tolerant networks. Using this model we generalize cemyrdlased and regularity-based
routing algorithms. Based on the above two models, we pmposadaptive routing
algorithm for delay tolerant networks, which dynamicatkpits nodes centrality and
regularity according to the specific situation of the usercamparison between our
algorithm and other algorithms is conducted in section daly, section 5 concludes
this paper and describes our future work.

2 Problem Description

In this section, we use two examples to demonstrate the gmbfaced by routing
algorithms based only on either centrality or regularity.

2.1 The Problem of Centrality-based Algorithms

The routing mechanism of centrality-based algorithms. (&.§] [14]) is to forward a
message to intermediate nodes having higher centralitptbieacurrent node in the hope
that the destination node will be reached. The issue withdbproach is that a node
cannot forward a message to the destination node througimietiiate nodes that have
lower centrality than the current node. These intermediatdes with low centrality
may have high probability of encountering the destinatiodenin the future, however,
this characteristic is ignored by centrality-based aljjons.
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Fig. 1. An example where algorithms based on centrality fail

An example to demonstrate this phenomenon is describedlaw$aSee Fig.1).
The identifier of a node also indicates its centrality. Faraple, the centrality of node
3is 3. The grey node means that it has already taken the giesgage. The white node
means that it has not taken the message. The dotted regicates the transmission



range. If a node is within the transmission range of another b can receive messages
from that one. The arrow indicates the transmission divaadf the message. Initially,
node 3 generates the message whose destination is node € 3Nbdets node 4 and
node 2 at time,. Since the centrality of node 3 is lower than that of node fbrivards

a copy of the message to node 4 instead of node 2. In this egangale 2 has a higher
probability of meeting node 1 in the future than node 4. Attim (which is later than
to), node 2 meets node 1. The delivery of the message fails sinde 2 does not get
a copy of the message, even though it has a high probabiliyeetting the destination.
The example shows that the delivery ratio of centralitydobalgorithms is affected by
the above phenomenon.

2.2 The Problem of Regularity-based Algorithms

As discussed before in the introduction, the regularity nbde is defined as the proba-
bility that two nodes meet each other in a given time slot evgiven length of time. For
instance, time slots can be considered as 4 hour intervdltharength of time can be
considered as a week. Let’'s assume that the duration of titaatdistory is 10 weeks.
In the contact history, node A has met node B for 7 times in ithe slot from Mon.
8 AM to Mon. 12 PM. In this case, the regularity between nodendl aode B from
Mon. 8 AM to Mon. 12 PM is 0.7. Each node contains a regulagtyé that describes
the regularity between it and its fellow nodes in given tirt@ss The regularity table
is constructed by tuples which contain the time slot and dgeilarity. The number of
such tuples is the ratio of the time length (e.g., a week, atmativided by the size of
the time slot.

Table 1.time slot is 2 hours, and the time length is a week

Time slot A-+BA+<CB+DC«+D

Mon.[8 AM, 10 AM) 0.7 0.6 0.5 0.3
Mon.[10 AM, 12 PM) 0.1 0.2 0.6 0.4

Table 2.time slot is 4 hours, and the time length is a week

Time slot A<-BA+~CB+<DC«+D
Mon.[8 AM, 12 PM) 0.8 0.6 0.6 0.4
Mon.[12 PM, 4 PM) 0.1 0.2 0.1 0.4

The routing process of regularity-based algorithms (€.6] [17] [18]) is described
as follows. If two nodes meet each other frequently, theycarsidered as friends and



they exchange their regularity tables with each other. @mther hand, two nodes who
do not meet each other frequently are considered as stsasgéhey do not exchange
their regularity tables. A node can use its regularity tald the regularity tables of its
friends to construct a regularity graph. Using these ragulgraphs, regularity-based
algorithms try to find a path with an optimal delivery prodapito forward a message
to the destination.

We give an example to demonstrate the routing process basestjolarity and its
drawbacks. To clearly exhibit the delivery process of a rmgssregularity tables of the
current node’s (node As) friends are merged into the rag@yléable of node A (See
Table 1 and Table 2). “A~» B” means that nodes A and B meet each other. The numbers
in the cells represent the regularity between two nodes iime $lot. For instance, the
regularity between node A and node B in time slot from Mon. 8 &Won. 12 PM
is 0.8. The minimum regularity in a path is used to expressitliwery probability. At
Mon. 8 AM, node A generates a message whose destination s Dpédnd time-to-
live (TTL) is 5 hours. When two hours and one week are seleatethe size of the
time slot and the time length, the content of the reguladtylé in node A is shown
in Table 1. Based on this regularity table, node A selectptith A— B — D, since
the delivery probability of this path is the best which is.0Mhen the size of the time
slot is changed to be 4 hours, the content of the regulatfite tea node A is shown in
Table 2. Therefore, node A selects the path-AC — D, whose delivery probability
is 0.4, to delivery the message. To summarize this exammpesize of the time slot
and the time length strongly influence the performance ol slgorithms. Moreover,
if the destination of a message is out of the regularity giainode, the node cannot
construct a path to deliver the message. Therefore, theetigliatio of regularity-based
algorithms is affected by the above factors.

3 The ARo Adaptive Routing Algorithm

In this section, firstly, we discuss our hypothesis. Secgnaé construct the network
model used in this paper. Thirdly, we develop generalizedet®of centrality-based
algorithms and regularity-based algorithms. We devel@sdéhmodels in order to cal-
culate the expected delivery performance (e.g., delivanicy, delivery cost) for these
types of algorithms. Finally, based on the above two modaedspropose our adaptive
routing algorithm, which takes advantage of the charasties of the above two types
of algorithms to improve routing performance.

The idea of our algorithm is to select the algorithm whichhie best-adapted for
the actual situation. Firstly, the algorithm exploits tloatact history between nodes to
calculate the expected values of the routing performandgacade.g., delivery latency,
delivery cost, etc), based on our generalized models ofa@i@gtbased and regularity-
based algorithms. Then, the algorithm compares the exppgataes of the metrics to
select the best algorithm to route a message.

3.1 Our Hypothesis

The above two types of algorithms exploit only one sociaperty to forward a mes-
sage. However, a node can have more than one social progegty ¢entrality and



regularity) at the same time. An algorithm that exploits tiplé properties can avoid
drawbacks associated with algorithms based on only oneepyofBased on this ob-
servation, we propose to investigate the following hypsitie'an adaptive routing al-
gorithm that can switch between centrality-based and ezgjylbased algorithms can
provide better routing performance”.

3.2 Delay Tolerant Network Model

Some recent research works [15] [16] show that the contdatda® nodes in DTNs is
not random but follows patterns which are repetitive to daterextent. Therefore, the
contact history of a node can be exploited to predict itsritontacts. Inspired by Jain
et al. [19] and Hossmann et al. [20], we integrate the comtestbry into our model of
DTNs. The elements of our model are described as follows:

Nodes and EdgesLet V' = {v4,...,v,} be the set of all the nodes of a network.
An edgee;; exists between two nodes andv; (where,1 < i <n,1 < j <n,

1 # j), if they have contacted each other at least once. The catetact time between
two nodes is the time interval between two successive ctmtébe weight of the edge
e;; denoted asv;; is the mean of all instances of inter-contact times betwhenwo
nodes. A DTN is represented as the undirected weighted graphF).

Message.A message can be considered as a tuplevy,t,1), wherewv, is the
source nodey, is the destination nodé,is the time stamp of creation arids the
time-to-live (TTL).

Routing Algorithm. A routing algorithm for the DTN is responsible for routing a
message from its source node to its destination node vienieiate nodes within the
given TTL in the absence of an end-to-end path between tlresand the destination.

3.3 A Generalized Model of Centrality-based Algorithms

As mentioned in the introduction, centrality is a metricttbalculates the relative im-
portance of a node in a network. Centrality-based algostfib] [14] always forward
a message from a node with lower centrality to a node with drigientrality in the
hope that the destination will be reached. We develop a géned model of these
centrality-based algorithms. This model will allow us tdccdate the expected deliv-
ery performance metrics (e.g., delivery latency, delivaosgt) of these centrality-based
algorithms for a given message.

We utilize a vector of nodes to denote a pattG(V, E). The weight of a path is
the sum of the weights of the edges that form the pattight(h) denotes the weight
of pathh.

Let h!(v,) be any path which originates with such that the weight of the path is
no greater than Every node imh!(v,) has a higher centrality than the preceding nodes
in the path.

Let il (vs, vq) be any patth! (vs), vq, wherel > I’. That is, any patt! (v,) fol-
lowed by the node,. In a pathh! (v, v4), the centrality ofu; may be lower than its
previous node. However, the condition that each node hdmhagentrality than its pre-
ceding nodes still holds for the patth (v,).



In a network, it is possible that more than one such pathsxistt H'(v,) be the
set of all possible pathg (v, ). Let H (v, v4) be the set of all possible path§v,, v4).
The dissemination of a messagein the centrality-based algorithms that we consider
[15] [14], always follows the shortest path in terms of edggghts from source node
v, to a destination node; with time-to-livel. If there is no path from; to v4 within
[, the expected delivery latency can be considered as infiditeerwise, the expected
delivery latency is the weight of the path. Thus, the expkdelivery latency of the
message can be expressed as Equation 1. The sulsieriiitates the centrality-based
algorithms.

R if H!(vs,vq) =0
Late(vs, va, 1) = {min weight(h), h € H' (vs,va) (1)

The expected delivery cost of the routing process for thesaggscan be considered
as the number of copies of the message in the network at tieenttnen the TTL for the
message expires. Lé{(H'(v,)) be the set of all the nodes in all the paths in the set
H'(v,) (see Equation 2). Thus the expected delivery cost for difigehe message:
in centrality-based algorithms can be expressed as Equatio

N(H'(vs)) = {v[visanodein h, and h € H'(vs)} )
Coste(vs,va, 1) = [N(H' (v5)) = {va}| (3)

3.4 A Generalized Model of Regularity-Based Algorithms

Regularity-based algorithms [16] [17] [18] always forwardnessage along the path
which can achieve the best delivery probability. We develogeneralized model of
these centrality-based algorithms. This model will allosvta calculate the expected
delivery performance metrics (e.g., delivery latencyjwiel cost) of these centrality-
based algorithms for a given message.

Letp*(v;,v;) be the regularity between two nodgsandv; in a given time slot.

If the maximum regularity between two nodes is greater thidmeshold’, they can be
considered as friends; otherwise, they are strangers ama/eethe edge between them.
Each node contains a regularity table which describes thdagty between it and its
friends.

We utilize a vector to denote a path@{(V, E). The time slot of two adjacent nodes
in a path increases along with the index of the node in the. [&itice the regularity
between two nodes is different in different time slots, thég constructed to deliver
a message are different. Lét(v,, vq, u) be any path from, to vy, which starts in the
time slotu of the creation time of the message In a network, it is possible that more
than one such path exists, L&t (v, v4, u) be the set of all possible path§v,, v4, u).
The expected delivery probability of a path is expressedhasrtinimum regularity in
the path. Letk! (vs,vq,u) be the path which can achieve the best expected delivery
probability. If the pathk] (vs, vq, u) does not exist, the expected delivery latency can
be considered as infinite. Otherwise, the expected deliagency is the weight of the



path. Thus, the expected delivery latency of the messagbearpressed as Equation
4. The subscript indicates the regularity-based algorithms.

[ oo, if K'(vs,vg,u) =10
Latr(vs, va, u, 1) = {weight(k‘), k = kl(vs,va, u) (4)
The expected delivery cost of the routing process for thesaggscan be considered
as the number of copies of the message in the network at teenttnen the TTL for the
message expires. Thus the expected delivery cost for dielythe message: can be
expressed as Equation 5.

Cost, (v, v, u, 1) = |k (vs, va, u)| — 1 (5)

3.5 The Workflow of Our Adaptive Routing Algorithm

In this section, we exploit the expected routing perforneametrics for the models of
centrality-based and regularity-based algorithms to psepur adaptive routing algo-
rithm for delay tolerant networks. We call our algorithm #Ro (Adaptive Routing)
algorithm, pronounced as “arrow”.

The objective of theARo algorithm is to select the best routing algorithm (from
centrality-based and regularity-based algorithms) ferdlven message. ThsRo al-
gorithm uses the generalized models that we have developestimate the expected
routing performance of the centrality-based and regytdoritsed algorithms. When a
messagen(vs, vq, t, 1) is created, the following two steps are executed:

1. a = SelectAlgorithm(vs, va, u,l)
2. ExecuteAlgorithm(m,vs, vg, @)

SelectAlgorithm(vs,vq,u,l) The goal of this function is to select the algorithm
which can provide the best delivery performance for a messtgalculates the ex-
pected delivery performance (e.g., delivery latencyvaeli cost) based on the devel-
oped models. By comparing these expected delivery perfocenparameters, it selects
the algorithm which can achieve the best delivery perforceaihere are two intu-
itions behind this function. Firstly, the messages are Hdpebe delivered as soon as
possible. Thus, this function selects the algorithm whiah achieve the shortest de-
livery latency. Secondly, the algorithm which can achidwe Ibwest cost is preferred.
Thus, when two algorithms can achieve the same delivergdgtehis function selects
the algorithm which assumes the lowest resources in terrtteeatopies of messages
created. This function returns the name of the selectedidiign which will be added
into a message as the message header. The symbols foritettaaked and regularity-
based algorithms are. and«,.. The pseudo code of the function is listed as follows
(see Algorithm 1).

ExecuteAlgorithm(m,vs, vq, @) Once the algorithmx is selected by the previ-
ous step, the source nodgexecutes the selected algorithm to route the message to the
destination node,;. Each intermediate node only extracts the name of the @hgori
from the message header and executes the selected algtwitbate the message.



Algorithm 1 Select(vs, va,u,1)

1: if Lat,(vs,va,u,l) < Latc(vs,va,l) then
2: a— ap

3: elseifLat,(vs, vq, u,l) > Latc(vs, vq, ) then
4: o Qe

5: else

6 if Cost,(vs, v, u,l) < Coste(vs,vq,l) then
7 o — o

8 else

9: a4 Q.
10:  endif
11: end if

4 Simulation and Results

In this section, a trace from the real world is used to comgaeouting performance
(i.e., delivery ratio and delivery cost) of our routing aljiom and two state of the art
routing algorithms which represent the centrality-basetiregularity-based algorithms
respectively.

4.1 Simulation Setup

To evaluate our algorithm, we used the Cambridge Hagglesdafal]. This trace in-
cludes Bluetooth sightings of the small devices (iMotesytyups of users from Uni-
versity of Cambridge Computer Laboratory. To evaluate teesage dissemination be-
tween the mobile users, we remove the data comes from fixeteBV®he refined trace
consists of the contacts for 36 iMotes which were carrieddsrsiover 11 days.

In this experiment, each simulation is repeated 20 timds aifferent random seeds
for statistical confidence. Since 1 hour is selected as #eedditime slot and the contact
history is mapped into a week plan, there are 168 time slotaah simulation. At the
beginning of each time slot, 5% nodes are randomly choseheasaurce nodes, and
each source node sends messages to all other nodes. Cartbetiuere are 11760 mes-
sages created for each simulation. Each message contaiidetitifiers of the source
and the destination nodes, the start time and a given TTL.

4.2 Metrics & Routing Algorithms

For all the simulations we have conducted for this work, weehaeasured the follow-
ing metrics:

Delivery ratio: The proportion of messages that have been delivered oue tdthl
unique messages created.

Delivery cost: The total number of messages (including duplicates) trétesnin
the simulation. To normalize this, we divide it by the totahmber of unique messages
created.

We comparé\Ro againsRANK andHabit which represent the centrality-based and
regularity-based algorithms.



RANK: A node forwards a message to the destination node or intéateatbdes
whose centrality are higher than its [15]. The C-Windowtsigg is used to calculate
the centrality of a node. It cumulates the unique people emewved by a node in the
previous time windows whose sizes are 1 hour.

Habit: The source of a message uses its regularity table to cadhlatpath which
can achieve the best delivery probability [16]. The sizehaf time slot and the time
length to calculate the regularity are 1 hour and 1 week as@dy. The threshold is
0.2. The minimum regularity in a path is employed to denotedtblivery probability of
the path.

4.3 Simulation Result
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Fig. 2. Delivery ratio (left) and Delivery cost (right) comparisof several algorithms on Cam-
bridge data set

The delivery ratios of these algorithms increase, as TTLlobess longer. With a
longer TTL, the messages which need long latency can beedetiSee Fig.2). When
TTL is shorter than six hours, the delivery ratioldébit is better than that dRANK.
The reason is that with a short TTL there are few paths, whintt with a source node,
for RANK, thus the drawback of centrality-based algorithms is prami in such case.
However, the regularity-based algorithms can still delimessages in such case. When
TTL is longer than twelve hours, the delivery ratiolgébit is not as good as that of
RANK. The reason is thdANK exploits much more paths to deliver a message than
Habit does, and the drawback of centrality-based algorithmstigraminent in such
case. The delivery ratio of our algorithm is always bettantthose of other algorithms.
When TTL is twelve hours, our algorithm can achieve about #very increment
thanHabit does. When TTL is two days, our algorithm can achieve about d€livery
increment tharRANK does.

The delivery cost ofARo is higher tharHabit but much lower thafRANK. When
TTL is twelve hoursARo can achieve about 1.5 delivery cost decrement fRaANK



does. When TTL is two day#Ro can achieve about 1.6 delivery cost decrement than
RANK does. Since more messages can be deliveré&ANK than byHabit when TTL

is longer than twelve hour&Ro selectsRANK to delivery such messages. Moreover,
RANK exploits much more intermediate nodes to deliver a mesdageHabit does.
These result in that the delivery costAfRo increases quickly when TTL is longer than
twelve hours.

These results show th&iRo can exploit the advantages of centrality-based algo-
rithms to overcome the drawbacks of regularity-based élgos and vice versa to im-
prove the overall routing performance. The results thugatd our hypothesis that
an adaptive routing algorithm that can switch between edityttbased and regularity-
based algorithms can provide better routing performance.

5 Conclusion and Future Work

In this paper, we presented the first dynamic routing algorifor mobile peer-to-peer
data dissemination. Our algorithm appropriately seldwsbiest routing algorithm ac-
cording to the given situation. The simulation results suppur hypothesis that an
adaptive routing algorithm that can switch between ceityrblsed and regularity-
based algorithms can provide better routing performance.

Our future work spans two directions. First, we would likeetdend our algorithm
such that the best routing algorithm can be selected notatrtlye source node but at
each intermediate node as well. This may further improvivelgl performance. Sec-
ond, we will focus on exploiting communities and the connesbetween communities
to improve the performance of data dissemination in molalergo-peer networks.
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