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Abstract. Solutions for data dissemination in traditional peer-to-peer networks
are not suitable for mobile peer-to-peer networks due to thespecial characteris-
tics of mobile environments, particularly highly variableconnectivity, and dis-
connection. Mobile peer-to-peer data dissemination over Delay Tolerant Net-
works (DTNs) is a promising paradigm since they can toleratefrequent and long
network partitions. DTNs exploit collaborative data storage and node mobility
to bridge disconnected nodes and enable communication between them. Recent
studies based on real world traces reveal that node mobilityexhibits certain pat-
terns influenced by the centrality and the regularity of nodes in the network. Many
existing routing algorithms for DTNs exploit only one of themobility proper-
ties, e.g., only node centrality, or only node regularity toroute messages from a
source node to a destination node. In this paper, we present an adaptive routing
algorithm that exploits either centrality or regularity according to the situation to
achieve the best possible routing performance in delay tolerant networks. Sim-
ulations performed on real mobility traces show that our algorithm outperforms
the existing routing algorithms that utilize only one mobility property.

Keywords: mobile computing, peer-to-peer, delay tolerant networks,routing, central-
ity, regularity.

1 Introduction

A mobile peer-to-peer (P2P) network is composed of a finite set of mobile peers that
communicate with each other via short range wireless protocols, such as IEEE 802.11,
Bluetooth, Zigbee, or Ultra Wide Band (UWB) [1]. The specialcharacteristics of mobile
environments, such as highly variable connectivity, disconnection, location-dependency,
energy and resource sensitivity, and the diversity in wireless networks as well as carrier-
grade performance requirements bring new challenges for research in mobile P2P com-
puting [2]. Routing of information from a source node to a destination node in mobile
P2P networks is particularly challenging due to these characteristics since traditional
routing algorithms assume the existence of an end-to-end path. Using Delay Tolerant
Networks (DTNs) as a foundation for mobile P2P networks has been proposed as one of
the directions for improving the performance of algorithmsin mobile P2P networks [1].
In [3], Fall first proposed delay tolerant networks, which can tolerate frequent and long
network partitions. DTNs exploit collaborative data storage and node mobility to bridge



disconnected nodes and enable communication between them.For example, a message
can be forwarded to intermediate nodes instead of requiringan end-to-end path to the
destination. The intermediate nodes then forward the message closer to the destination.
When the destination is within the transmission range of oneof the intermediate nodes,
the routing process can be achieved.

There are a number of works in the literature on routing in DTNs. In order to max-
imize the chances of reaching the destination, the early routing algorithms in DTNs
relied on flooding the network with copies of the same message[4]. Although they
have a high delivery ratio, algorithms based on flooding havea high overhead, which
undesirably exhausts mobile node resources (e.g., battery, bandwidth) and generates
unnecessary contention [5]. In order to minimize the resources consumed in the routing
process, other algorithms such asDirect Transmission andSeek and Focus [6] only uti-
lize one copy of a message in the entire network. The main shortcomings of this kind
algorithm are low delivery success rate and high delivery delay [7].

In order to make a tradeoff between delivery rate and overhead, a number of studies
focus on the analysis of real mobility traces to rationally choose the intermediary nodes
[8] [9] [10] [11] [12]. These studies show that the mobility of nodes is influenced by
their owner’s social relationships, and exhibits a high degree of repetition. A number
of social properties characterizing nodes’ mobility have thus been defined, which can
be classified into three categories: 1)Centrality, indicates the relative importance of a
node in a network. For instance,betweenness, which is a type of centrality, measures
the number of times a node falls on the shortest path between two other nodes [13].
2) Regularity, expresses the probability of a given event (e.g., an encounter between
two nodes at a given time slot) to be repeated over time. 3)Community, is traditionally
defined as a group of interacting people co-existing in a common location. People in a
community are believed to have a high probability to meet each other [14].

Building on these observations a number of routing algorithms have been pro-
posed in the literature. Among these algorithms, RANK [15] relies on node central-
ity, Habit [16] builds on regularity, and BubbleRap [14] utilizes node community and
centrality.

A major drawback of these approaches is that they assume thata given node in the
network has the same social properties all the time. Realityis different. For example,
a node can be in/out of a community during specific periods of time, it may have a
central position in the network or be completely isolated atgiven times and may ex-
hibit a regular or a completely irregular mobility pattern during specific times of the
day/specific days of the week. Moreover, a node can have more than one social prop-
erty (e.g., centrality and regularity) at the same time. Forinstance, the secretary of a
department can have high centrality and regularity at the same time. She can have high
centrality because of interactions with a large number of coworkers. She may also ex-
hibit high regularity due to frequent inter-departmental meetings. In order to leverage
these dynamics, we present the first routing algorithm that dynamically adapts to the
user’s social properties. In this paper, we focus on two social properties: node central-
ity and regularity. Our algorithm firstly exploits the contact history between nodes to
estimate the delivery latency and overhead of a centrality-based and a regularity-based



routing algorithm. It then selects the route that has the lowest estimated latency and
overhead among the routes provided by the two algorithms.

The remainder of this paper is organized as follows. In section 2, two examples are
given to demonstrate the problems of algorithms based only on one of the properties
of centrality and regularity. In section 3, we firstly present an abstract model for delay
tolerant networks. Using this model we generalize centrality-based and regularity-based
routing algorithms. Based on the above two models, we propose an adaptive routing
algorithm for delay tolerant networks, which dynamically exploits nodes centrality and
regularity according to the specific situation of the user. Acomparison between our
algorithm and other algorithms is conducted in section 4. Finally, section 5 concludes
this paper and describes our future work.

2 Problem Description

In this section, we use two examples to demonstrate the problems faced by routing
algorithms based only on either centrality or regularity.

2.1 The Problem of Centrality-based Algorithms

The routing mechanism of centrality-based algorithms (e.g. [15] [14]) is to forward a
message to intermediate nodes having higher centrality than the current node in the hope
that the destination node will be reached. The issue with this approach is that a node
cannot forward a message to the destination node through intermediate nodes that have
lower centrality than the current node. These intermediatenodes with low centrality
may have high probability of encountering the destination node in the future, however,
this characteristic is ignored by centrality-based algorithms.
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Fig. 1. An example where algorithms based on centrality fail

An example to demonstrate this phenomenon is described as follows (See Fig.1).
The identifier of a node also indicates its centrality. For example, the centrality of node
3 is 3. The grey node means that it has already taken the given message. The white node
means that it has not taken the message. The dotted region indicates the transmission



range. If a node is within the transmission range of another one, it can receive messages
from that one. The arrow indicates the transmission direction of the message. Initially,
node 3 generates the message whose destination is node 1. Node 3 meets node 4 and
node 2 at timet0. Since the centrality of node 3 is lower than that of node 4, itforwards
a copy of the message to node 4 instead of node 2. In this example, node 2 has a higher
probability of meeting node 1 in the future than node 4. At time t1 (which is later than
t0), node 2 meets node 1. The delivery of the message fails, since node 2 does not get
a copy of the message, even though it has a high probability ofmeeting the destination.
The example shows that the delivery ratio of centrality-based algorithms is affected by
the above phenomenon.

2.2 The Problem of Regularity-based Algorithms

As discussed before in the introduction, the regularity of anode is defined as the proba-
bility that two nodes meet each other in a given time slot overa given length of time. For
instance, time slots can be considered as 4 hour intervals and the length of time can be
considered as a week. Let’s assume that the duration of the contact history is 10 weeks.
In the contact history, node A has met node B for 7 times in the time slot from Mon.
8 AM to Mon. 12 PM. In this case, the regularity between node A and node B from
Mon. 8 AM to Mon. 12 PM is 0.7. Each node contains a regularity table that describes
the regularity between it and its fellow nodes in given time slots. The regularity table
is constructed by tuples which contain the time slot and the regularity. The number of
such tuples is the ratio of the time length (e.g., a week, a month) divided by the size of
the time slot.

Table 1. time slot is 2 hours, and the time length is a week

Time slot A↔ B A ↔ C B↔ D C↔ D

Mon.[8 AM, 10 AM) 0.7 0.6 0.5 0.3
Mon.[10 AM, 12 PM) 0.1 0.2 0.6 0.4
. . . . . . . . . . . . . . .

Table 2. time slot is 4 hours, and the time length is a week

Time slot A↔ B A ↔ C B↔ D C↔ D
Mon.[8 AM, 12 PM) 0.8 0.6 0.6 0.4
Mon.[12 PM, 4 PM) 0.1 0.2 0.1 0.4
. . . . . . . . . . . . . . .

The routing process of regularity-based algorithms (e.g. [16] [17] [18]) is described
as follows. If two nodes meet each other frequently, they areconsidered as friends and



they exchange their regularity tables with each other. On the other hand, two nodes who
do not meet each other frequently are considered as strangers so they do not exchange
their regularity tables. A node can use its regularity tableand the regularity tables of its
friends to construct a regularity graph. Using these regularity graphs, regularity-based
algorithms try to find a path with an optimal delivery probability to forward a message
to the destination.

We give an example to demonstrate the routing process based on regularity and its
drawbacks. To clearly exhibit the delivery process of a message, regularity tables of the
current node’s (node A’s) friends are merged into the regularity table of node A (See
Table 1 and Table 2). “A↔ B” means that nodes A and B meet each other. The numbers
in the cells represent the regularity between two nodes in a time slot. For instance, the
regularity between node A and node B in time slot from Mon. 8 AMto Mon. 12 PM
is 0.8. The minimum regularity in a path is used to express thedelivery probability. At
Mon. 8 AM, node A generates a message whose destination is node D, and time-to-
live (TTL) is 5 hours. When two hours and one week are selectedas the size of the
time slot and the time length, the content of the regularity table in node A is shown
in Table 1. Based on this regularity table, node A selects thepath A→ B → D, since
the delivery probability of this path is the best which is 0.6. When the size of the time
slot is changed to be 4 hours, the content of the regularity table in node A is shown in
Table 2. Therefore, node A selects the path A→ C → D, whose delivery probability
is 0.4, to delivery the message. To summarize this example, the size of the time slot
and the time length strongly influence the performance of such algorithms. Moreover,
if the destination of a message is out of the regularity graphof a node, the node cannot
construct a path to deliver the message. Therefore, the delivery ratio of regularity-based
algorithms is affected by the above factors.

3 The ARo Adaptive Routing Algorithm

In this section, firstly, we discuss our hypothesis. Secondly, we construct the network
model used in this paper. Thirdly, we develop generalized models of centrality-based
algorithms and regularity-based algorithms. We develop these models in order to cal-
culate the expected delivery performance (e.g., delivery latency, delivery cost) for these
types of algorithms. Finally, based on the above two models,we propose our adaptive
routing algorithm, which takes advantage of the characteristics of the above two types
of algorithms to improve routing performance.

The idea of our algorithm is to select the algorithm which is the best-adapted for
the actual situation. Firstly, the algorithm exploits the contact history between nodes to
calculate the expected values of the routing performance metrics (e.g., delivery latency,
delivery cost, etc), based on our generalized models of centrality-based and regularity-
based algorithms. Then, the algorithm compares the expected values of the metrics to
select the best algorithm to route a message.

3.1 Our Hypothesis

The above two types of algorithms exploit only one social property to forward a mes-
sage. However, a node can have more than one social property (e.g., centrality and



regularity) at the same time. An algorithm that exploits multiple properties can avoid
drawbacks associated with algorithms based on only one property. Based on this ob-
servation, we propose to investigate the following hypothesis: “an adaptive routing al-
gorithm that can switch between centrality-based and regularity-based algorithms can
provide better routing performance”.

3.2 Delay Tolerant Network Model

Some recent research works [15] [16] show that the contact between nodes in DTNs is
not random but follows patterns which are repetitive to a certain extent. Therefore, the
contact history of a node can be exploited to predict its future contacts. Inspired by Jain
et al. [19] and Hossmann et al. [20], we integrate the contacthistory into our model of
DTNs. The elements of our model are described as follows:

Nodes and Edges.Let V = {v1, . . . , vn} be the set of all the nodes of a network.
An edgeeij exists between two nodesvi andvj (where,1 ≤ i ≤ n, 1 ≤ j ≤ n ,
i 6= j), if they have contacted each other at least once. The inter-contact time between
two nodes is the time interval between two successive contacts. The weight of the edge
eij denoted aswij is the mean of all instances of inter-contact times between the two
nodes. A DTN is represented as the undirected weighted graphG(V,E).

Message.A message can be considered as a tuple(vs, vd, t, l), wherevs is the
source node,vd is the destination node,t is the time stamp of creation andl is the
time-to-live (TTL).

Routing Algorithm. A routing algorithm for the DTN is responsible for routing a
message from its source node to its destination node via intermediate nodes within the
given TTL in the absence of an end-to-end path between the source and the destination.

3.3 A Generalized Model of Centrality-based Algorithms

As mentioned in the introduction, centrality is a metric that calculates the relative im-
portance of a node in a network. Centrality-based algorithms [15] [14] always forward
a message from a node with lower centrality to a node with higher centrality in the
hope that the destination will be reached. We develop a generalized model of these
centrality-based algorithms. This model will allow us to calculate the expected deliv-
ery performance metrics (e.g., delivery latency, deliverycost) of these centrality-based
algorithms for a given message.

We utilize a vector of nodes to denote a path inG(V,E). The weight of a path is
the sum of the weights of the edges that form the path.weight(h) denotes the weight
of pathh.

Let hl(vs) be any path which originates withvs such that the weight of the path is
no greater thanl. Every node inhl(vs) has a higher centrality than the preceding nodes
in the path.

Let hl(vs, vd) be any pathhl′(vs), vd, wherel > l′. That is, any pathhl′(vs) fol-
lowed by the nodevd. In a pathhl(vs, vd), the centrality ofvd may be lower than its
previous node. However, the condition that each node has higher centrality than its pre-
ceding nodes still holds for the pathhl′(vs).



In a network, it is possible that more than one such path exists. LetH l(vs) be the
set of all possible pathshl(vs). LetH l(vs, vd) be the set of all possible pathshl(vs, vd).
The dissemination of a messagem in the centrality-based algorithms that we consider
[15] [14], always follows the shortest path in terms of edge weights from source node
vs to a destination nodevd with time-to-livel. If there is no path fromvs to vd within
l, the expected delivery latency can be considered as infinite. Otherwise, the expected
delivery latency is the weight of the path. Thus, the expected delivery latency of the
message can be expressed as Equation 1. The subscriptc indicates the centrality-based
algorithms.

Latc(vs, vd, l) =

{

+∞, if H l(vs, vd) = ∅
minweight(h), h ∈ H l(vs, vd)

(1)

The expected delivery cost of the routing process for the message can be considered
as the number of copies of the message in the network at the time when the TTL for the
message expires. LetN(H l(vs)) be the set of all the nodes in all the paths in the set
H l(vs) (see Equation 2). Thus the expected delivery cost for delivering the messagem
in centrality-based algorithms can be expressed as Equation 3.

N(H l(vs)) = {v|v is a node in h, and h ∈ H l(vs)} (2)

Costc(vs, vd, l) = |N(H l(vs))− {vd}| (3)

3.4 A Generalized Model of Regularity-Based Algorithms

Regularity-based algorithms [16] [17] [18] always forwarda message along the path
which can achieve the best delivery probability. We developa generalized model of
these centrality-based algorithms. This model will allow us to calculate the expected
delivery performance metrics (e.g., delivery latency, delivery cost) of these centrality-
based algorithms for a given message.

Let pu(vi, vj) be the regularity between two nodesvi andvj in a given time slotu.
If the maximum regularity between two nodes is greater than athresholdδ, they can be
considered as friends; otherwise, they are strangers and remove the edge between them.
Each node contains a regularity table which describes the regularity between it and its
friends.

We utilize a vector to denote a path inG(V,E). The time slot of two adjacent nodes
in a path increases along with the index of the node in the path. Since the regularity
between two nodes is different in different time slots, the paths constructed to deliver
a message are different. Letkl(vs, vd, u) be any path fromvs to vd, which starts in the
time slotu of the creation time of the messagem. In a network, it is possible that more
than one such path exists, LetK l(vs, vd, u) be the set of all possible pathskl(vs, vd, u).
The expected delivery probability of a path is expressed as the minimum regularity in
the path. Letklb(vs, vd, u) be the path which can achieve the best expected delivery
probability. If the pathklb(vs, vd, u) does not exist, the expected delivery latency can
be considered as infinite. Otherwise, the expected deliverylatency is the weight of the



path. Thus, the expected delivery latency of the message canbe expressed as Equation
4. The subscriptr indicates the regularity-based algorithms.

Latr(vs, vd, u, l) =

{

+∞, if K l(vs, vd, u) = ∅
weight(k), k = klb(vs, vd, u)

(4)

The expected delivery cost of the routing process for the message can be considered
as the number of copies of the message in the network at the time when the TTL for the
message expires. Thus the expected delivery cost for delivering the messagem can be
expressed as Equation 5.

Costr(vs, vd, u, l) = |klb(vs, vd, u)| − 1 (5)

3.5 The Workflow of Our Adaptive Routing Algorithm

In this section, we exploit the expected routing performance metrics for the models of
centrality-based and regularity-based algorithms to propose our adaptive routing algo-
rithm for delay tolerant networks. We call our algorithm theARo (Adaptive Routing)
algorithm, pronounced as “arrow”.

The objective of theARo algorithm is to select the best routing algorithm (from
centrality-based and regularity-based algorithms) for the given message. TheARo al-
gorithm uses the generalized models that we have developed to estimate the expected
routing performance of the centrality-based and regularity-based algorithms. When a
messagem(vs, vd, t, l) is created, the following two steps are executed:

1. α = SelectAlgorithm(vs, vd, u, l)
2. ExecuteAlgorithm(m, vs, vd, α)

SelectAlgorithm(vs, vd, u, l) The goal of this function is to select the algorithm
which can provide the best delivery performance for a message. It calculates the ex-
pected delivery performance (e.g., delivery latency, delivery cost) based on the devel-
oped models. By comparing these expected delivery performance parameters, it selects
the algorithm which can achieve the best delivery performance. There are two intu-
itions behind this function. Firstly, the messages are hoped to be delivered as soon as
possible. Thus, this function selects the algorithm which can achieve the shortest de-
livery latency. Secondly, the algorithm which can achieve the lowest cost is preferred.
Thus, when two algorithms can achieve the same delivery latency, this function selects
the algorithm which assumes the lowest resources in terms ofthe copies of messages
created. This function returns the name of the selected algorithm, which will be added
into a message as the message header. The symbols for centrality-based and regularity-
based algorithms areαc andαr. The pseudo code of the function is listed as follows
(see Algorithm 1).

ExecuteAlgorithm(m,vs, vd, α) Once the algorithmα is selected by the previ-
ous step, the source nodevs executes the selected algorithm to route the message to the
destination nodevd. Each intermediate node only extracts the name of the algorithm
from the message header and executes the selected algorithmto route the message.



Algorithm 1 Select(vs, vd, u, l)

1: if Latr(vs, vd, u, l) < Latc(vs, vd, l) then
2: α← αr

3: else ifLatr(vs, vd, u, l) > Latc(vs, vd, l) then
4: α← αc

5: else
6: if Costr(vs, vd, u, l) < Costc(vs, vd, l) then
7: α← αr

8: else
9: α← αc

10: end if
11: end if

4 Simulation and Results

In this section, a trace from the real world is used to comparethe routing performance
(i.e., delivery ratio and delivery cost) of our routing algorithm and two state of the art
routing algorithms which represent the centrality-based and regularity-based algorithms
respectively.

4.1 Simulation Setup

To evaluate our algorithm, we used the Cambridge Haggle dataset [21]. This trace in-
cludes Bluetooth sightings of the small devices (iMotes) bygroups of users from Uni-
versity of Cambridge Computer Laboratory. To evaluate the message dissemination be-
tween the mobile users, we remove the data comes from fixed iMotes. The refined trace
consists of the contacts for 36 iMotes which were carried by users over 11 days.

In this experiment, each simulation is repeated 20 times with different random seeds
for statistical confidence. Since 1 hour is selected as the size of time slot and the contact
history is mapped into a week plan, there are 168 time slots ineach simulation. At the
beginning of each time slot, 5% nodes are randomly chosen as the source nodes, and
each source node sends messages to all other nodes. Consequently, there are 11760 mes-
sages created for each simulation. Each message contains the identifiers of the source
and the destination nodes, the start time and a given TTL.

4.2 Metrics & Routing Algorithms

For all the simulations we have conducted for this work, we have measured the follow-
ing metrics:

Delivery ratio: The proportion of messages that have been delivered out of the total
unique messages created.

Delivery cost: The total number of messages (including duplicates) transmitted in
the simulation. To normalize this, we divide it by the total number of unique messages
created.

We compareARo againstRANK andHabit which represent the centrality-based and
regularity-based algorithms.



RANK: A node forwards a message to the destination node or intermediate nodes
whose centrality are higher than its [15]. The C-Window strategy is used to calculate
the centrality of a node. It cumulates the unique people encountered by a node in the
previous time windows whose sizes are 1 hour.

Habit: The source of a message uses its regularity table to calculate the path which
can achieve the best delivery probability [16]. The size of the time slot and the time
length to calculate the regularity are 1 hour and 1 week respectively. The thresholdδ is
0.2. The minimum regularity in a path is employed to denote the delivery probability of
the path.

4.3 Simulation Result
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Fig. 2. Delivery ratio (left) and Delivery cost (right) comparisonof several algorithms on Cam-
bridge data set

The delivery ratios of these algorithms increase, as TTL becomes longer. With a
longer TTL, the messages which need long latency can be delivered (See Fig.2). When
TTL is shorter than six hours, the delivery ratio ofHabit is better than that ofRANK.
The reason is that with a short TTL there are few paths, which start with a source node,
for RANK, thus the drawback of centrality-based algorithms is prominent in such case.
However, the regularity-based algorithms can still deliver messages in such case. When
TTL is longer than twelve hours, the delivery ratio ofHabit is not as good as that of
RANK. The reason is thatRANK exploits much more paths to deliver a message than
Habit does, and the drawback of centrality-based algorithms is not prominent in such
case. The delivery ratio of our algorithm is always better than those of other algorithms.
When TTL is twelve hours, our algorithm can achieve about 5% delivery increment
thanHabit does. When TTL is two days, our algorithm can achieve about 10% delivery
increment thanRANK does.

The delivery cost ofARo is higher thanHabit but much lower thanRANK. When
TTL is twelve hours,ARo can achieve about 1.5 delivery cost decrement thanRANK



does. When TTL is two days,ARo can achieve about 1.6 delivery cost decrement than
RANK does. Since more messages can be delivered byRANK than byHabit when TTL
is longer than twelve hours,ARo selectsRANK to delivery such messages. Moreover,
RANK exploits much more intermediate nodes to deliver a message thanHabit does.
These result in that the delivery cost ofARo increases quickly when TTL is longer than
twelve hours.

These results show thatARo can exploit the advantages of centrality-based algo-
rithms to overcome the drawbacks of regularity-based algorithms and vice versa to im-
prove the overall routing performance. The results thus validate our hypothesis that
an adaptive routing algorithm that can switch between centrality-based and regularity-
based algorithms can provide better routing performance.

5 Conclusion and Future Work

In this paper, we presented the first dynamic routing algorithm for mobile peer-to-peer
data dissemination. Our algorithm appropriately selects the best routing algorithm ac-
cording to the given situation. The simulation results support our hypothesis that an
adaptive routing algorithm that can switch between centrality-based and regularity-
based algorithms can provide better routing performance.

Our future work spans two directions. First, we would like toextend our algorithm
such that the best routing algorithm can be selected not onlyat the source node but at
each intermediate node as well. This may further improve delivery performance. Sec-
ond, we will focus on exploiting communities and the connectors between communities
to improve the performance of data dissemination in mobile peer-to-peer networks.

Acknowledgments

This work is partially supported by the China Scholarship Council (CSC) UT-INSA
PhD program and the MDPS German-French Doctoral College. Jingwei Miao acknowl-
edges the CSC UT-INSA and the MDPS.

References

[1] Luo, Y., Wolfson, O.: Mobile p2p databases. Encyclopedia of GIS (2008) 671–677
[2] Buford, J., Li, L., Tutschku, K.: Call for papers - 6th ieee international workshop on mobile

peer-to-peer computing (mp2p’09) (2009)
[3] Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of

the 2003 conference on Applications, technologies, architectures, and protocols for com-
puter communications. SIGCOMM ’03, New York, NY, USA, ACM (2003) 27–34

[4] Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Techni-
cal report, Citeseer (2000)

[5] Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobil-
ity on the design of opportunistic forwarding algorithms. In: Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Computer Communications, IEEE (April
2006) 1–13



[6] Spyropoulos, T., Psounis, K., Raghavendra, C.: Single-copy routing in intermittently con-
nected mobile networks. In: Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on,
IEEE (2004) 235–244

[7] Spyropoulos, T., Psounis, K., Raghavendra, C.: Efficient routing in intermittently connected
mobile networks: the multiple-copy case. IEEE/ACM Transactions on Networking (TON)
16(1) (2008) 77–90
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