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Abstract—Delay tolerant networks (DTNs) are wireless mobile
networks in which the existence of an end-to-end path from th

which is a type of centrality, measures the number of times a
node falls on the shortest path between two other nodes [7].

source to the destination of a message cannot be guaranteed.z) Regularity, expresses the probability of a given event (e.g.,

This makes message delivery as one of the major challenges
in DTNs. Recent studies based on real world traces show

that nodes in DTNs exhibit mobility properties such as their
centrality in the network or regularity patterns. To the best of
our knowledge, existing routing algorithms exploit only sane
of the nodes mobility properties (e.g., only nodes centrdly, or
only nodes regularity) while excluding the others. We presst
in this paper the first dynamic routing algorithm in DTNs that
exploits the most appropriate mobility property (among which
node centrality and regularity) at the specific time and locion.
Our algorithm dynamically learns nodes mobility properties in
order to appropriately select the best route to the destindbn
on a per-node and per-situation basis. Simulations perforrad on
real mobility traces show that our algorithm has a better delvery
ratio and a lower overhead than existing state-of-the-art outing
algorithms that rely on a single mobility property.

Index Terms—delay tolerant networks, mobility, routing, cen-
trality, regularity.

|I. INTRODUCTION

an encounter between two nodes at a given time slot) to be
repeated over time. 3Jommunity, is traditionally defined as a
group of interacting people co-existing in a common logatio
People in a community are believed to have a high probability
to meet each other [8].

Building on these observations a number of routing algo-
rithms have been proposed in the literature. Among these
algorithms, RANK [9] relies on node centrality, Habit [10]
builds on regularity, SimBet [11] utilizes node similafitgnd
betweenness and BubbleRap [8] utilizes nodes communities
and betweenness.

A major drawback of these approaches is that they assume
that a given node in the network has the same social propertie
all over time. Reality is different. Indeed, a node can beut/

a community during specific periods of time, it may have a
central position in the network or be completely isolated at
given times and may exhibit a regular or a completely irragul

Delay Tolerant Networks (DTNs) are wireless mobile netnobility pattern during specific times of the day/specifigsla

works in which an end-to-end routing path cannot be assumefdthe week. In order to leverage this dynamics, we present
to exist between the source and the destination of a mess#uefirst routing algorithm that dynamically adapts to theriss
[1]. This makes message delivery as one of the major chabcial properties at the very specific time and locationhia t
lenges in these networks. In order to deal with the lack of engaper, we focus on two social properties: node centrality an
to-end connectivity between nodes, routing is often penfsdt regularity. Our algorithm firstly exploits the contact loist
in a “store and forward” way, where a message is stored bgtween nodes to estimate the delivery latency and ovedfead
intermediary nodes and forwarded to nodes closer and cloaetentrality-based and a regularity-based routing algoritt
to the destination until the latter is eventually reached. then selects the route that has the lowest estimated lagerty

In order to maximize the chances of reaching the destinaverhead among the routes provided by the two algorithms.
tion, the first routing algorithms in DTNs relied on flooding Summarizing, the contributions of this paper are three:fold

the network with copies of the same message [2]. Followed1) we demonstrate the drawbacks of algorithms that are

algorithms that try to limit the number of copies of the
same message in the network [3]. Although they have a

high delivery ratio, algorithms based on flooding have a high 2)

overhead, which undesirably exhaust mobile node resources
(e.g., battery, bandwidth) and generate unnecessaryrt@rie

In order to better choose intermediary nodes and thus reduce)

the routing overhead, a number of studies of real mobility
traces have been carried out [4]-[6]. These studies shoiw tha
the mobility of nodes is influenced by their owner’s social
relationships. A number of social properties charactegzi

nodes’ mobility have thus been defined, which can be classi-
fied into three categories: Dentrality, indicates the relative
importance of a node in a network. For instanoatyeenness,

based only on one social property by studying the algo-
rithms based on centrality and regularity (Section II).
We present an abstract model for delay tolerant net-
works. Using this model we generalize centrality-based
and regularity-based routing algorithms (Section III).
We propose an adaptive routing algorithm for delay
tolerant networks, which dynamically exploits nodes
centrality and regularity according to the specific sit-
uation of the user (V).

. The work presented in this paper complements the work in-

1Similarity in the context of SimBet is defined as the numbenades that
a given node and the destination node have both encountered.



troduced earlier in [12]. In this paper, we conduct experitae they are considered as friends and they exchange theiraregul
on the MIT Reality dataset [13] (Section V), whereas in [14}y tables with each other. On the other hand, two nodes who
we conducted experiments on the Cambridge Haggle datadetnot meet each other frequently are considered as stsanger
[14]. The results of experiments on both datasets confirmn the they do not exchange their regularity tables. A node can
our algorithm has a better delivery ratio and a lower ovedhease its regularity table and the regularity tables of iterfds
as compared to state-of-the-art algorithms that rely omglsi to construct a regularity graph. Using these regularitypbsa
mobility property (i.e., RANK and Habit). regularity-based algorithms try to find a path with an optima
delivery probability to forward a message to the destimatio
We give an example to demonstrate this routing process and
In this section, we use two examples to demonstrate the drawbacks. To clearly exhibit the delivery process of a
problems faced by algorithms based only on either centraliyessage, regularity tables of the current node’s (node A)
or regularity. friends are merged into the regularity table of node A (See

A. The Problem of Centrality-based Algorithms Table I and Il). “A +» B” means that nodes A and B meet
each other. The numbers in the cells represent the regularit

The routing mechanism _Of centrghty-based algo_rlthm_s Between two nodes in a time slot. For instance, the regularit
to forward a message to intermediate nodes having h|gq)

trality than th t node in the h that the dei }tween node A and node B in time slot from Mon. 8 AM to
centrality than the current node in the hope that Ine desiima ., , 15 ppm is 0.8. The minimum regularity in a path is used
node will be reached. The issue with this approach is tha

d tf q 1o the destinati de th rtdaexpress the delivery probability. At Mon. 8 AM, node A
node cannot forward a message fo the destination node Mroyd o 4e5 5 message whose destination is node D, and time-

intermediate nodes that have lower centrality than theeatirr, | . (TTL) is 5 hours. When two hours and one week are

n_ode. Thesg !ntermed|ate noc.ies with Iowlcer?trallty may ha¥8lected as the size of the time slot and the time length, the
high probability of encountering the destination node ie th

fut h this ch teristic is i db ittral content of the regularity table in node A is shown in Table
uture, nowever, this charactenstic 1S ighored by ce yra I. Based on this regularity table, node A selects the path A
based algorithms.

— B — D, since the delivery probability of this path is the
B. The Problem of Regularity-based Algorithms best which is 0.6. When the size of the time slot is changed

Before we discuss the drawback of such algorithms, let {f P& 4 hours, the content of the regularity table in node A
explain the concept of regularity in further detail. As dissed S Shown in Table II. Therefore, node A selects the path A
before in the introduction, the regularity of a node is define~ C — D, whose delivery probability is 0.4, to delivery the
as the probability that two nodes meet each other in a givBlfSSage. To summarize this example, the size of the time slot
time slot over a given time length. For example, time slo@d the time length strongly influence the performance i suc
can be considered as 4 hour intervals and the time length &@°rithms. Moreover, if the destination of a message is out
be considered as a week. Assume the duration of the conf@cfne regularity graph of a node, the node cannot construct

history is 10 weeks. In the contact history, node A has m@tPath to deliver the message. Therefore, the delivery aitio
node B for 7 times in the time slot from Mon. 8 AM to Mon."€gularity-based algorithms is affected by the above facto

12 PM. In this case, the regularity between node A and node

B from Mon. 8 AM to Mon. 12 PM is 0.7. Each node contains

a regularity table that describes the regularity betweemd I1l. THE ARO ADAPTIVE ROUTING ALGORITHM
its fellow nodes in given time slots. The regularity table is

rcgnjlt;:ifte?_hzynﬂjrﬁﬁjr \(’)th'scuhchc?gt?;g ::?hgTae'[islg; tire]dtirt:sm this section, firstly, we discuss our hypothesis. Seggndl
9 Y- P We construct the network model used in this paper. Thirdég/, w

length (e.g., a week, a month) divided by the size of the tlm(Jeevelop generalized models of centrality-based algostand

Il. PROBLEM DESCRIPTION

slot. TABLE | regularity-based algorithms. We develop these modelsdaror
TIME SLOT IS 2 HOURS, AND THE TIME LENGTH IS A WEEK to calculate the expected delivery performance (e.g.vesi
_ latency, delivery cost) for any type of algorithm. Finalhgsed
o ;'rzas'fé - AS—;B A(‘)—gc BoHsD C(‘)—>3D on the above two models, we propose our adaptive routing
M(())r?.l[[lo AM. 12 P,v)l) 01 07 06 04 algorithm, which takes a_ldvantag_e of the cha_racteristid:hf
- . above two types of algorithms to improve routing performeanc
TABLE II The idea of our algorithm is to select the algorithm which is
TIME SLOT IS 4 HOURS, AND THE TIME LENGTH IS A WEEK the best-adapted for the actual situation. Firstly, thertigm
Time Siot A BT AGCIBoD T CoD exploits the contact history petween nodes to calc_ulate the
Mon.[8 AM, 12 PM) 0.8 0.6 0.6 04 expected values of the routing performance metrics (e.g.,
Mon.[12 PM,4PM) | 0.1 0.2 01 0.4 delivery latency, delivery cost, etc), based on our geiszal

models of centrality-based and regularity-based algamsth
The routing process of regularity-based algorithms is d&hen, the algorithm compares the expected values of the
scribed as follows. If two nodes meet each other frequentipetrics to select the best algorithm to route a message.




A. Our Hypothesis Let hl(vs, vq) be any pathh! (v,), vq, Wwherel > I. That is,
ny pathi!' (v,) followed by the nodey,. In a pathi! (vs, vg),
centrality ofv; may be lower than its previous node.
However, the condition that each node has higher centrality

The above two types of algorithms exploit only one soci
property to forward a message. However, a node can have m
than one social property (e.g., centrality and regulaatythe . _ .
same time. An algorithm that exploits multiple properties c than its precedmg _nodes ?t'” holds for the p&ff‘(vs).
avoid drawbacks associated with algorithms based on ordy on !n a netwolrk, it is possible that more than one such path
property. Based on this observation, we propose to in\migex'StS'l LetH(v;) be the set of all pgssmle pattts (v, ).
the following hypothesis: “an adaptive routing algorithhat -t (vs,v4) be the set of all possible pattis (vs, va).

can switch between centrality-based and regularity-based The _dissemination of a message in the centrality-based
gorithms can provide better routing performance”. algothms that we consider [9] [8], always follows the dlest
path in terms of edge weights from source nogeto a

B. Delay Tolerant Network Model destination nodey; with time-to-live [. If there is no path

h K h hat th from v, to vy within [, the expected delivery latency can be
Some recent research works [9] [10] show that the contailnsidered as infinite. Otherwise, the expected delivéentsy

between nodes in DTNs is not random but follows patterns . weight of the path. Thus, the expected delivery latenc

\rl]v.h'Ch arfe rep((ajtltlve t%a cerlta_ln gxtent. ;jl'_he_ref?re, thetamin of the message can be expressed as Equation 1. The subscript
istory of a node can be exploited to predict its future coista . qicates the centrality-based algorithms.

Inspired by Jain et al. [15] and Hossmann et al. [16], we

integrate the contact history into our model of DTNs. The Late(vs,va,1) = { +<?O, if Hl(ll)sy’Ud) =0 (1)
elements of our model are described as follows: T minwgt(h), h e H'(vs,va)
Nodes and EdgesLet V' = {v1,...,v,} be the set of all  The expected delivery cost of the routing process for the

the nodes of a network. An edgeg; exists between two nodesmessage can be considered as the number of copies of the

v; andv; (where,1 <i <n, 1 <j <n,i#j) ifthey message in the network at the time when the TTL for the
have contacted each other at least once. The inter-comteet tmessage expires. LeY (H'(v,)) be the set of all the nodes

between two nodes is the time interval between two suceessiy all the paths in the sefl!(v,) (see Equation 2). Thus

contacts. The weight of the edge; denoted asw;; is the the expected delivery cost for delivering the messagén

mean of all instances of inter-contact times between the tw@ntrality-based algorithms can be expressed as Equation 3

nodes. A DTN is represented as the undirected weighted graph

G(V, E). N(H'(vs)) = {vlvisanodein h, and h € H'(vy)} (2)
Message. A message can be considered as a tuple

(vs,vq,t,1), Wherev, is the source nodey, is the destination Coste(vs,va,1) = [N(H'(v5)) = {va}| ®)

node,t is the time stamp of creation arids the time-to-live D. A Generalized Model of Regularity-Based Algorithms

(TTL). ) ) _ ) ) Regularity-based algorithms [10] [17] always forward a
Routing Algorithm. A routing algorithm for the DTN iS nessage along the path which can achieve the best deliv-

responsible for routing a message from its source node to 81 probability. We develop a generalized model of these

destination node via intermediate nodes within the giveh TTcentraIity-based algorithms. This model will allow us tdoza

in the absence of an end-to-end path between the source gpd ihe expected delivery performance metrics (e.g.velsi

the destination. latency, delivery cost) of these centrality-based albani for
. . . a given message.

C. A Generalized Model of Centrality-based Algorithms Let p"(v;,v;) be the regularity between two nodesand

As mentioned in the introduction, centrality is a metricttha; in a given time slotu. If the maximum regularity between
calculates the relative importance of a node in a networnkvo nodes is greater than a threshéldhey can be considered
Centrality-based algorithms [9] [8] always forward a messa as friends; otherwise, they are strangers and remove the edg
from a node with lower centrality to a node with highebetween them. Each node contains a regularity table which
centrality in the hope that the destination will be reachedescribes the regularity between it and its friends.
We develop a generalized model of these centrality-basedne utilize a vector to denote a path @\(V, E). The time
algorithms. This model will allow us to calculate the exett slot of two adjacent nodes in a path increases along with the
delivery performance metrics (e.g., delivery latencyjM@ely index of the node in the path. Since the regularity between tw
cost) of these centrality-based algorithms for a given agss nodes is different in different time slots, the paths carstd

We utilize a vector of nodes to denote a pathG(V, E). to deliver a message are different. Let(v,,vq,u) be any
The weight of a path is the sum of the weights of the edgeath fromv, to vg4, which starts in the time slot: of the
that form the pathwgt(h) denotes the weight of path creation time of the message. In a network, it is possible

Let h!(vs) be any path which originates with, such that that more than one such path exists, Et(v,,v4,u) be the
the weight of the path is no greater thanEvery node in set of all possible path&!(v,,vq,u). The expected delivery
h'(vs) has a higher centrality than the preceding nodes in tpeobability of a path is expressed as the minimum regularity
path. in the path. Letk! (vs,v4,u) be the path which can achieve



the best expected delivery probability. If the pafffv,, vq, u) Algorithm 1 SelectAlgorithm(vs, va, u,l,€)
does not exist, the expected delivery latency can be comside 1: a + ac

as infinite. Otherwise, the expected delivery latency is thé if Latr(vs,va, u,l) < Latc(vs,va, 1) — e then
weight of the path. Thus, the expected delivery latency of & & %"

. -4 else if Lat,(vs,va,u,l) > Lat.(vs,vq,l) + € then
the message can be expressed as Equation 4. The subscrigt , ;‘c (vs, vy 1) > Late(vs, va, 1) + €
indicates the regularity-based algorithms. 6: else

7. if Costy(vs,v4,u,l) < Costc(vs,vaq,l) then
+00 |f KI(US Vd u) = @ 8: a— Qp
Lat?‘(vsvvdvual)_{ ’ i (4) o else
wgt(k), k= k;(vs,vq,u) 10 o o

. . 11: dif
The expected delivery cost of the routing process for the. ensnif I

message can be considered as the number of copies of thereturn o
message in the network at the time when the TTL for the
message expires. Thus the expected delivery cost for dieliye
the message: can be expressed as Equation 5. 2) EzecuteAlgorithm(m,vs,vq,): Once the algorithm

« is selected by the previous step, the source nQdexecutes

the selected algorithm to route the message to the desiinati
nodev,. Each intermediate node only extracts the name of the
algorithm from the message header and executes the selected
algorithm to route the message.

Cost,(vs,vq,u,l) = |kll,(vs,vd,u)| -1 (5)

IV. THE WORK FLOW OFOUR ADAPTIVE ROUTING
ALGORITHM

In this section, we exploit the expected routing perfornganc V. SIMULATION AND RESULTS
metrics for the models of centrality-based and regulasdged |, this section. a trace from the real world is used to

algorithms to propose our adaptive routing algorithm fdagle oo mpare the routing performance (i.e., delivery ratio and
tolerant networks. We call our algorithm tiRo (Adaptive  gelivery cost) of our routing algorithm and two state of the
Routing) algorithm, pronounced as “arrow”. art routing algorithms which represent the centralityessand

The objective of theARo algorithm is to select the bestreqgyiarity-based algorithms respectively.
routing algorithm (from centrality-based and regulatigsed .
algorithms) for the given message. The ARo algorithm usés Smulation Setup
the generalized models that we have developed to estimatdo evaluate our algorithm, we used real trace-driven simula
the expected routing performance of the centrality-baset ations based on MIT Reality data [13]. This data consists ef th
regularity-based algorithms. When a messagde;, vq4,t,1) is contacts for 97 smart phones which were carried by students
created, the following two steps are executed: and staffs at MIT over nine months. In our simulations,
we used the contacts from Septemhér to Decemberl st
Since it is the time of the first academic semester, human
. relationships are relatively stable.
1) SelectAlgorithm(vs,va, u,l,¢): The goal of this func- |y this experiment, each simulation is repeated 20 times
tion is to select the algorithm which can provide the begjih different random seeds for statistical confidencec8in
delivery performance for a message. It calculates the é&gecy hours are selected as the size of time slot and the contact
delivery performance (e.g., delivery latency, deliverys§o pistory is mapped into a week plan, there are 42 time slots
based on the developed models. By comparing these expegtedach simulation. The threshold is 12 minutes. At the
delivery performance parameters, it selects the algorithfaginning of each time slot, 5% nodes are randomly chosen
which can achieve the best delivery performance. There a(¢ the source nodes, and each source node sends messages to
two intuitions behind this function. Firstly, the messages iher nodes. A message contains the identifiers of the source
hoped to be delivered as soon as possible. Thus, this functig,y the destination nodes, the start time and a given TTL.

selects the algorithm which can achieve the shortest dgliver s, there are 16128 messages created for each simulation.
latency. If the gap between these delivery latencies don't

exceed the threshold they are considered approximately th&. Metrics & Routing Algorithms

same. Secondly, the algorithm which can achieve the lowestFor all the simulations we have conducted for this work, we
cost is preferred. Thus, when two algorithms can achietave measured the following metrics:

approximately same delivery latency, this function selebe Delivery ratio: The proportion of messages that have been
algorithm which assumes the lowest resources in terms of ttelivered out of the total unigue messages created.

copies of messages created. This function returns the name Delivery cost: The total number of messages (incl. dupli-
the selected algorithm, which will be added into a messagates) transmitted in the simulation. To normalize this, we
as the message header. The symbols for centrality-based divitle it by the total number of unique messages created.
regularity-based algorithms are. and «,.. The pseudo code We compare ARo against RANK and Habit which represent
of the function is listed as follows (see Algorithm 1). the centrality-based and regularity-based algorithms.

1) a = SelectAlgorithm(vs, va,u,l, )
2) EzecuteAlgorithm(m,vs, v4, @)



type of algorithms to improve the routing performance. Ehes
studies we have performed support our hypothesis.

e
>

VI. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated the need for an adaptive
routing algorithm in delay tolerant networks. We presertted
‘ ‘ ‘ ARo algorithm which selects the best routing algorithm accord-
Shows  Tday  soms  Tweek Sweeks Ghous  Tday  Sdays  fwesk  dwesks ing to the given situation. The simulation results suppant o
™ ™ hypothesis that an adaptive routing algorithm that cancwit
Fig. 1. Delivery ratio (left) and delivery cost (right) commison of several phetween centrality-based and regularity-based algostham
algorithms on realty data set provide better routing performance.

As future work, we would like to extend our algorithm such

RANK: A node forwards a message to the destination noggyt the best routing algorithm can be selected not onlyet th
or intermediate nodes whose centrality are higher thaifite. oy rce node but at each intermediate node as well. This may
C-Window strategy is used to calculate the centrality of deno fyther improve delivery performance. Another directian f

It cumulates the unique people encountered by a node in }&re work is to add the feature of community-based routing
previous time windows whose sizes are 4 hours. to our adaptive routing algorithm.

Habit: The source of a message uses its regularity table
to calculate the path which can achieve the best delivery ACKNOWLEDGMENTS
probability. The size of the time slot and the time length to This work is partially supported by the China Scholarship
calculate the regularity are 4 hours and 1 week respectiveBouncil (CSC) UT-INSA PhD program, the MDPS German-
The thresholds is 0.3. The minimum regularity in a path isFrench Doctoral College and the French National Research
employed to denote the delivery probability of the path.  Agency (SocEDA, Grant ANR-10-SEGI-013).
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