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Abstract—Delay tolerant networks (DTNs) are wireless mobile
networks in which the existence of an end-to-end path from the
source to the destination of a message cannot be guaranteed.
This makes message delivery as one of the major challenges
in DTNs. Recent studies based on real world traces show
that nodes in DTNs exhibit mobility properties such as their
centrality in the network or regularity patterns. To the best of
our knowledge, existing routing algorithms exploit only some
of the nodes mobility properties (e.g., only nodes centrality, or
only nodes regularity) while excluding the others. We present
in this paper the first dynamic routing algorithm in DTNs that
exploits the most appropriate mobility property (among which
node centrality and regularity) at the specific time and location.
Our algorithm dynamically learns nodes mobility properties in
order to appropriately select the best route to the destination
on a per-node and per-situation basis. Simulations performed on
real mobility traces show that our algorithm has a better delivery
ratio and a lower overhead than existing state-of-the-art routing
algorithms that rely on a single mobility property.

Index Terms—delay tolerant networks, mobility, routing, cen-
trality, regularity.

I. I NTRODUCTION

Delay Tolerant Networks (DTNs) are wireless mobile net-
works in which an end-to-end routing path cannot be assumed
to exist between the source and the destination of a message
[1]. This makes message delivery as one of the major chal-
lenges in these networks. In order to deal with the lack of end-
to-end connectivity between nodes, routing is often performed
in a “store and forward” way, where a message is stored by
intermediary nodes and forwarded to nodes closer and closer
to the destination until the latter is eventually reached.

In order to maximize the chances of reaching the destina-
tion, the first routing algorithms in DTNs relied on flooding
the network with copies of the same message [2]. Followed
algorithms that try to limit the number of copies of the
same message in the network [3]. Although they have a
high delivery ratio, algorithms based on flooding have a high
overhead, which undesirably exhaust mobile node resources
(e.g., battery, bandwidth) and generate unnecessary contention.

In order to better choose intermediary nodes and thus reduce
the routing overhead, a number of studies of real mobility
traces have been carried out [4]–[6]. These studies show that
the mobility of nodes is influenced by their owner’s social
relationships. A number of social properties characterizing
nodes’ mobility have thus been defined, which can be classi-
fied into three categories: 1)Centrality, indicates the relative
importance of a node in a network. For instance,betweenness,

which is a type of centrality, measures the number of times a
node falls on the shortest path between two other nodes [7].
2) Regularity, expresses the probability of a given event (e.g.,
an encounter between two nodes at a given time slot) to be
repeated over time. 3)Community, is traditionally defined as a
group of interacting people co-existing in a common location.
People in a community are believed to have a high probability
to meet each other [8].

Building on these observations a number of routing algo-
rithms have been proposed in the literature. Among these
algorithms, RANK [9] relies on node centrality, Habit [10]
builds on regularity, SimBet [11] utilizes node similarity1 and
betweenness and BubbleRap [8] utilizes nodes communities
and betweenness.

A major drawback of these approaches is that they assume
that a given node in the network has the same social properties
all over time. Reality is different. Indeed, a node can be in/out
a community during specific periods of time, it may have a
central position in the network or be completely isolated at
given times and may exhibit a regular or a completely irregular
mobility pattern during specific times of the day/specific days
of the week. In order to leverage this dynamics, we present
the first routing algorithm that dynamically adapts to the user’s
social properties at the very specific time and location. In this
paper, we focus on two social properties: node centrality and
regularity. Our algorithm firstly exploits the contact history
between nodes to estimate the delivery latency and overheadof
a centrality-based and a regularity-based routing algorithm. It
then selects the route that has the lowest estimated latencyand
overhead among the routes provided by the two algorithms.

Summarizing, the contributions of this paper are three fold:

1) We demonstrate the drawbacks of algorithms that are
based only on one social property by studying the algo-
rithms based on centrality and regularity (Section II).

2) We present an abstract model for delay tolerant net-
works. Using this model we generalize centrality-based
and regularity-based routing algorithms (Section III).

3) We propose an adaptive routing algorithm for delay
tolerant networks, which dynamically exploits nodes
centrality and regularity according to the specific sit-
uation of the user (IV).

The work presented in this paper complements the work in-

1Similarity in the context of SimBet is defined as the number ofnodes that
a given node and the destination node have both encountered.



troduced earlier in [12]. In this paper, we conduct experiments
on the MIT Reality dataset [13] (Section V), whereas in [12]
we conducted experiments on the Cambridge Haggle dataset
[14]. The results of experiments on both datasets confirm that
our algorithm has a better delivery ratio and a lower overhead
as compared to state-of-the-art algorithms that rely on a single
mobility property (i.e., RANK and Habit).

II. PROBLEM DESCRIPTION

In this section, we use two examples to demonstrate the
problems faced by algorithms based only on either centrality
or regularity.

A. The Problem of Centrality-based Algorithms

The routing mechanism of centrality-based algorithms is
to forward a message to intermediate nodes having higher
centrality than the current node in the hope that the destination
node will be reached. The issue with this approach is that a
node cannot forward a message to the destination node through
intermediate nodes that have lower centrality than the current
node. These intermediate nodes with low centrality may have
high probability of encountering the destination node in the
future, however, this characteristic is ignored by centrality-
based algorithms.

B. The Problem of Regularity-based Algorithms

Before we discuss the drawback of such algorithms, let us
explain the concept of regularity in further detail. As discussed
before in the introduction, the regularity of a node is defined
as the probability that two nodes meet each other in a given
time slot over a given time length. For example, time slots
can be considered as 4 hour intervals and the time length can
be considered as a week. Assume the duration of the contact
history is 10 weeks. In the contact history, node A has met
node B for 7 times in the time slot from Mon. 8 AM to Mon.
12 PM. In this case, the regularity between node A and node
B from Mon. 8 AM to Mon. 12 PM is 0.7. Each node contains
a regularity table that describes the regularity between itand
its fellow nodes in given time slots. The regularity table is
constructed by tuples which contain the time slot and the
regularity. The number of such tuples is the ratio of the time
length (e.g., a week, a month) divided by the size of the time
slot.

TABLE I
TIME SLOT IS 2 HOURS, AND THE TIME LENGTH IS A WEEK

Time slot A ↔ B A ↔ C B ↔ D C ↔ D
Mon.[8 AM, 10 AM) 0.7 0.6 0.5 0.3
Mon.[10 AM, 12 PM) 0.1 0.2 0.6 0.4

. . . . . . . . . . . . . . .

TABLE II
TIME SLOT IS 4 HOURS, AND THE TIME LENGTH IS A WEEK

Time slot A ↔ B A ↔ C B ↔ D C ↔ D
Mon.[8 AM, 12 PM) 0.8 0.6 0.6 0.4
Mon.[12 PM, 4 PM) 0.1 0.2 0.1 0.4

. . . . . . . . . . . . . . .

The routing process of regularity-based algorithms is de-
scribed as follows. If two nodes meet each other frequently,

they are considered as friends and they exchange their regular-
ity tables with each other. On the other hand, two nodes who
do not meet each other frequently are considered as strangers
so they do not exchange their regularity tables. A node can
use its regularity table and the regularity tables of its friends
to construct a regularity graph. Using these regularity graphs,
regularity-based algorithms try to find a path with an optimal
delivery probability to forward a message to the destination.
We give an example to demonstrate this routing process and
its drawbacks. To clearly exhibit the delivery process of a
message, regularity tables of the current node’s (node A)
friends are merged into the regularity table of node A (See
Table I and II). “A ↔ B” means that nodes A and B meet
each other. The numbers in the cells represent the regularity
between two nodes in a time slot. For instance, the regularity
between node A and node B in time slot from Mon. 8 AM to
Mon. 12 PM is 0.8. The minimum regularity in a path is used
to express the delivery probability. At Mon. 8 AM, node A
generates a message whose destination is node D, and time-
to-live (TTL) is 5 hours. When two hours and one week are
selected as the size of the time slot and the time length, the
content of the regularity table in node A is shown in Table
I. Based on this regularity table, node A selects the path A
→ B → D, since the delivery probability of this path is the
best which is 0.6. When the size of the time slot is changed
to be 4 hours, the content of the regularity table in node A
is shown in Table II. Therefore, node A selects the path A
→ C → D, whose delivery probability is 0.4, to delivery the
message. To summarize this example, the size of the time slot
and the time length strongly influence the performance of such
algorithms. Moreover, if the destination of a message is out
of the regularity graph of a node, the node cannot construct
a path to deliver the message. Therefore, the delivery ratioof
regularity-based algorithms is affected by the above factors.

III. T HE ARO ADAPTIVE ROUTING ALGORITHM

In this section, firstly, we discuss our hypothesis. Secondly,
we construct the network model used in this paper. Thirdly, we
develop generalized models of centrality-based algorithms and
regularity-based algorithms. We develop these models in order
to calculate the expected delivery performance (e.g., delivery
latency, delivery cost) for any type of algorithm. Finally,based
on the above two models, we propose our adaptive routing
algorithm, which takes advantage of the characteristics ofthe
above two types of algorithms to improve routing performance.

The idea of our algorithm is to select the algorithm which is
the best-adapted for the actual situation. Firstly, the algorithm
exploits the contact history between nodes to calculate the
expected values of the routing performance metrics (e.g.,
delivery latency, delivery cost, etc), based on our generalized
models of centrality-based and regularity-based algorithms.
Then, the algorithm compares the expected values of the
metrics to select the best algorithm to route a message.



A. Our Hypothesis

The above two types of algorithms exploit only one social
property to forward a message. However, a node can have more
than one social property (e.g., centrality and regularity)at the
same time. An algorithm that exploits multiple properties can
avoid drawbacks associated with algorithms based on only one
property. Based on this observation, we propose to investigate
the following hypothesis: “an adaptive routing algorithm that
can switch between centrality-based and regularity-basedal-
gorithms can provide better routing performance”.

B. Delay Tolerant Network Model

Some recent research works [9] [10] show that the contact
between nodes in DTNs is not random but follows patterns
which are repetitive to a certain extent. Therefore, the contact
history of a node can be exploited to predict its future contacts.
Inspired by Jain et al. [15] and Hossmann et al. [16], we
integrate the contact history into our model of DTNs. The
elements of our model are described as follows:

Nodes and Edges.Let V = {v1, . . . , vn} be the set of all
the nodes of a network. An edgeeij exists between two nodes
vi and vj (where,1 ≤ i ≤ n, 1 ≤ j ≤ n , i 6= j), if they
have contacted each other at least once. The inter-contact time
between two nodes is the time interval between two successive
contacts. The weight of the edgeeij denoted aswij is the
mean of all instances of inter-contact times between the two
nodes. A DTN is represented as the undirected weighted graph
G(V,E).

Message. A message can be considered as a tuple
(vs, vd, t, l), wherevs is the source node,vd is the destination
node,t is the time stamp of creation andl is the time-to-live
(TTL).

Routing Algorithm. A routing algorithm for the DTN is
responsible for routing a message from its source node to its
destination node via intermediate nodes within the given TTL
in the absence of an end-to-end path between the source and
the destination.

C. A Generalized Model of Centrality-based Algorithms

As mentioned in the introduction, centrality is a metric that
calculates the relative importance of a node in a network.
Centrality-based algorithms [9] [8] always forward a message
from a node with lower centrality to a node with higher
centrality in the hope that the destination will be reached.
We develop a generalized model of these centrality-based
algorithms. This model will allow us to calculate the expected
delivery performance metrics (e.g., delivery latency, delivery
cost) of these centrality-based algorithms for a given message.

We utilize a vector of nodes to denote a path inG(V,E).
The weight of a path is the sum of the weights of the edges
that form the path.wgt(h) denotes the weight of pathh.

Let hl(vs) be any path which originates withvs such that
the weight of the path is no greater thanl. Every node in
hl(vs) has a higher centrality than the preceding nodes in the
path.

Let hl(vs, vd) be any pathhl′(vs), vd, wherel > l′. That is,
any pathhl′(vs) followed by the nodevd. In a pathhl(vs, vd),
the centrality ofvd may be lower than its previous node.
However, the condition that each node has higher centrality
than its preceding nodes still holds for the pathhl′(vs).

In a network, it is possible that more than one such path
exists. LetH l(vs) be the set of all possible pathshl(vs).
Let H l(vs, vd) be the set of all possible pathshl(vs, vd).
The dissemination of a messagem in the centrality-based
algorithms that we consider [9] [8], always follows the shortest
path in terms of edge weights from source nodevs to a
destination nodevd with time-to-live l. If there is no path
from vs to vd within l, the expected delivery latency can be
considered as infinite. Otherwise, the expected delivery latency
is the weight of the path. Thus, the expected delivery latency
of the message can be expressed as Equation 1. The subscript
c indicates the centrality-based algorithms.

Latc(vs, vd, l) =

{

+∞, if H l(vs, vd) = ∅
minwgt(h), h ∈ H l(vs, vd)

(1)

The expected delivery cost of the routing process for the
message can be considered as the number of copies of the
message in the network at the time when the TTL for the
message expires. LetN(H l(vs)) be the set of all the nodes
in all the paths in the setH l(vs) (see Equation 2). Thus
the expected delivery cost for delivering the messagem in
centrality-based algorithms can be expressed as Equation 3.

N(H l(vs)) = {v|v is a node in h, and h ∈ H l(vs)} (2)

Costc(vs, vd, l) = |N(H l(vs))− {vd}| (3)

D. A Generalized Model of Regularity-Based Algorithms

Regularity-based algorithms [10] [17] always forward a
message along the path which can achieve the best deliv-
ery probability. We develop a generalized model of these
centrality-based algorithms. This model will allow us to calcu-
late the expected delivery performance metrics (e.g., delivery
latency, delivery cost) of these centrality-based algorithms for
a given message.

Let pu(vi, vj) be the regularity between two nodesvi and
vj in a given time slotu. If the maximum regularity between
two nodes is greater than a thresholdδ, they can be considered
as friends; otherwise, they are strangers and remove the edge
between them. Each node contains a regularity table which
describes the regularity between it and its friends.

We utilize a vector to denote a path inG(V,E). The time
slot of two adjacent nodes in a path increases along with the
index of the node in the path. Since the regularity between two
nodes is different in different time slots, the paths constructed
to deliver a message are different. Letkl(vs, vd, u) be any
path from vs to vd, which starts in the time slotu of the
creation time of the messagem. In a network, it is possible
that more than one such path exists, LetK l(vs, vd, u) be the
set of all possible pathskl(vs, vd, u). The expected delivery
probability of a path is expressed as the minimum regularity
in the path. Letklb(vs, vd, u) be the path which can achieve



the best expected delivery probability. If the pathklb(vs, vd, u)
does not exist, the expected delivery latency can be considered
as infinite. Otherwise, the expected delivery latency is the
weight of the path. Thus, the expected delivery latency of
the message can be expressed as Equation 4. The subscriptr

indicates the regularity-based algorithms.

Latr(vs, vd, u, l) =

{

+∞, if K l(vs, vd, u) = ∅
wgt(k), k = klb(vs, vd, u)

(4)

The expected delivery cost of the routing process for the
message can be considered as the number of copies of the
message in the network at the time when the TTL for the
message expires. Thus the expected delivery cost for delivering
the messagem can be expressed as Equation 5.

Costr(vs, vd, u, l) = |klb(vs, vd, u)| − 1 (5)

IV. T HE WORK FLOW OFOUR ADAPTIVE ROUTING

ALGORITHM

In this section, we exploit the expected routing performance
metrics for the models of centrality-based and regularity-based
algorithms to propose our adaptive routing algorithm for delay
tolerant networks. We call our algorithm theARo (Adaptive
Routing) algorithm, pronounced as “arrow”.

The objective of theARo algorithm is to select the best
routing algorithm (from centrality-based and regularity-based
algorithms) for the given message. The ARo algorithm uses
the generalized models that we have developed to estimate
the expected routing performance of the centrality-based and
regularity-based algorithms. When a messagem(vs, vd, t, l) is
created, the following two steps are executed:

1) α = SelectAlgorithm(vs, vd, u, l, ε)
2) ExecuteAlgorithm(m, vs, vd, α)

1) SelectAlgorithm(vs, vd, u, l, ε): The goal of this func-
tion is to select the algorithm which can provide the best
delivery performance for a message. It calculates the expected
delivery performance (e.g., delivery latency, delivery cost)
based on the developed models. By comparing these expected
delivery performance parameters, it selects the algorithm
which can achieve the best delivery performance. There are
two intuitions behind this function. Firstly, the messagesare
hoped to be delivered as soon as possible. Thus, this function
selects the algorithm which can achieve the shortest delivery
latency. If the gap between these delivery latencies don’t
exceed the thresholdε, they are considered approximately the
same. Secondly, the algorithm which can achieve the lowest
cost is preferred. Thus, when two algorithms can achieve
approximately same delivery latency, this function selects the
algorithm which assumes the lowest resources in terms of the
copies of messages created. This function returns the name of
the selected algorithm, which will be added into a message
as the message header. The symbols for centrality-based and
regularity-based algorithms areαc andαr. The pseudo code
of the function is listed as follows (see Algorithm 1).

Algorithm 1 SelectAlgorithm(vs, vd, u, l, ε)
1: α← αc

2: if Latr(vs, vd, u, l) < Latc(vs, vd, l)− ε then
3: α← αr

4: else ifLatr(vs, vd, u, l) > Latc(vs, vd, l) + ε then
5: α← αc

6: else
7: if Costr(vs, vd, u, l) < Costc(vs, vd, l) then
8: α← αr

9: else
10: α← αc

11: end if
12: end if
13: return α

2) ExecuteAlgorithm(m, vs, vd, α): Once the algorithm
α is selected by the previous step, the source nodevs executes
the selected algorithm to route the message to the destination
nodevd. Each intermediate node only extracts the name of the
algorithm from the message header and executes the selected
algorithm to route the message.

V. SIMULATION AND RESULTS

In this section, a trace from the real world is used to
compare the routing performance (i.e., delivery ratio and
delivery cost) of our routing algorithm and two state of the
art routing algorithms which represent the centrality-based and
regularity-based algorithms respectively.

A. Simulation Setup

To evaluate our algorithm, we used real trace-driven simula-
tions based on MIT Reality data [13]. This data consists of the
contacts for 97 smart phones which were carried by students
and staffs at MIT over nine months. In our simulations,
we used the contacts from September1st to December1st.
Since it is the time of the first academic semester, human
relationships are relatively stable.

In this experiment, each simulation is repeated 20 times
with different random seeds for statistical confidence. Since
4 hours are selected as the size of time slot and the contact
history is mapped into a week plan, there are 42 time slots
in each simulation. The thresholdε is 12 minutes. At the
beginning of each time slot, 5% nodes are randomly chosen
as the source nodes, and each source node sends messages to
other nodes. A message contains the identifiers of the source
and the destination nodes, the start time and a given TTL.
Thus, there are 16128 messages created for each simulation.

B. Metrics & Routing Algorithms

For all the simulations we have conducted for this work, we
have measured the following metrics:

Delivery ratio: The proportion of messages that have been
delivered out of the total unique messages created.

Delivery cost: The total number of messages (incl. dupli-
cates) transmitted in the simulation. To normalize this, we
divide it by the total number of unique messages created.

We compare ARo against RANK and Habit which represent
the centrality-based and regularity-based algorithms.
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Fig. 1. Delivery ratio (left) and delivery cost (right) comparison of several
algorithms on reality data set

RANK: A node forwards a message to the destination node
or intermediate nodes whose centrality are higher than its.The
C-Window strategy is used to calculate the centrality of a node.
It cumulates the unique people encountered by a node in the
previous time windows whose sizes are 4 hours.

Habit: The source of a message uses its regularity table
to calculate the path which can achieve the best delivery
probability. The size of the time slot and the time length to
calculate the regularity are 4 hours and 1 week respectively.
The thresholdδ is 0.3. The minimum regularity in a path is
employed to denote the delivery probability of the path.

C. Simulation Result

The delivery ratios of these algorithms increase, as TTL
becomes longer. With a longer TTL, the messages which need
long latency can be delivered (see Fig.1). When TTL is shorter
than three days, the delivery ratio of Habit is better than that
of RANK. The reason is that with a short TTL there are few
paths, which start with a source node, for RANK, thus the
drawback of centrality-based algorithms is prominent in such
case. However, the regularity-based algorithms can still deliver
messages in such case. When TTL is longer than one week,
the delivery ratio of Habit is not as good as that of RANK. The
reason is that RANK exploits much more paths to deliver a
message than Habit does, and the drawback of centrality-based
algorithms is not prominent in such case. The delivery ratioof
our algorithm is always better than those of other algorithms.
When TTL is three days, our algorithm can achieve about 8%
delivery increment than Habit does. When TTL is three weeks,
our algorithm can achieve about 13% delivery increment than
RANK does.

The delivery cost of ARo is higher than Habit but much
lower than RANK. When TTL is three days, ARo can achieve
about 6.0 delivery cost decrement than RANK does. When
TTL is three weeks, ARo can achieve about 4.85 delivery
cost decrement than RANK does. Since more messages can be
delivered by RANK than by Habit when TTL is longer than
three days, ARo selects RANK to delivery such messages.
Moreover, RANK exploits much more intermediate nodes to
deliver a message than Habit does. These result in that the
delivery cost of ARo increases quickly when TTL is longer
than three days.

These results show that ARo can exploit the advantage of
a type of algorithms to complement the drawback of another

type of algorithms to improve the routing performance. These
studies we have performed support our hypothesis.

VI. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated the need for an adaptive
routing algorithm in delay tolerant networks. We presentedthe
ARo algorithm which selects the best routing algorithm accord-
ing to the given situation. The simulation results support our
hypothesis that an adaptive routing algorithm that can switch
between centrality-based and regularity-based algorithms can
provide better routing performance.

As future work, we would like to extend our algorithm such
that the best routing algorithm can be selected not only at the
source node but at each intermediate node as well. This may
further improve delivery performance. Another direction for
future work is to add the feature of community-based routing
to our adaptive routing algorithm.
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