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Abstract

The increasing pervasiveness of mobile devices with networking capabili-
ties has led to the emergence of Mobile Delay Tolerant Networks (MDTNs).
The characteristics of MDTNs, which include frequent and long-term partitions,
make message routing a major challenge in these networks. Most of the existing
routing protocols either allocate an unlimited number of message copies or use
a fixed number of message copies to route a message towards its destination.
While the first approach unnecessarily floods the network, the rigidity of the
second approach makes it inefficient from the viewpoint of message replication.
Hence, the question that we address in this paper is: “how to dynamically allo-
cate message copies in order to strike a balance between the delay and cost of
message delivery?”. We present a novel adaptive multi-step routing protocol for
MDTNs. In each routing step, our protocol reasons on the remaining time-to-
live of the message in order to allocate the minimum number of copies necessary
to achieve a given delivery probability. Experiment results demonstrate that our
protocol has a higher delivery ratio and a lower delivery cost compared to the
state-of-the-art Spray-and-Wait and Bubble protocols.
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1. Introduction

Mobile Delay Tolerant Networks (MDTNs) are composed of a set of mobile
devices, such as cell phones or sensor units, which can communicate with each
other via short range wireless protocols (e.g. Bluetooth). A number of net-
working scenarios have been categorized as MDTNs, such as Vehicular Ad-hoc
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NETworks (VANETs) [1] and Pocket Switched Networks (PSNs) [2]. The char-
acteristics of MDTNs include frequent and long-term network partitions which
makes message routing one of the major challenges in these networks. In order
to deal with the intermittent connectivity between nodes (i.e., mobile devices),
message routing in MDTNs is often performed in a “store-carry-and-forward”
manner [3], in which a node may store and carry a message for some time before
forwarding it to another node [4].

In the literature, a number of routing protocols have been proposed for
MDTNs. Nevertheless, most of them are inflexible from the viewpoint of mes-
sage replication. For instance, flooding-based routing protocols [5], which refers
to those protocols that always rely on an unlimited number of message copies
to route a message, generate a very large number of redundant message copies.
This approach can put undue stress on the limited resources of mobile devices.
On the other hand, quota-based routing protocols [6, 7] allocate a fixed number
of message copies for routing a message. The rigidity of this latter approach
makes it inefficient, as a fixed number of message copies cannot suit all routing
situations.

To the best of our knowledge, the adaptability of the number of message
copies has been addressed only by a few authors. Bulut et al. in [8]. Routing
in [8] is divided into multiple periods. In each period, the source node of a
message sprays a certain number of message copies into the network. The source
node dynamically chooses the allocation of message copies at the beginning of
each period, until the message is delivered to the destination node or the Time-
To-Live (TTL) expires. The protocol presented by Bulut et al. assumes that all
nodes move under the same mobility pattern in a given network space. However,
the reality is different. Recent studies [9, 10, 11] on the spatial characteristics
of human mobility from real world traces demonstrate that humans in real-life
tend to roam in smaller sub-regions rather than the whole network space. In
addition, the allocation of message copies in [8] relies on the assumption that
the source node is aware of the successful delivery of a message at any given
instant. However, such an assumption rarely holds in reality, due to the frequent
and long-term network partitions faced by MDTNs.

Moreover, Lo and Lu in [12] proposed a routing protocol, named dynamic
congestion control based routing. In [12], message replication is controlled by
the congestion level (i.e., light load, moderate load and heavy load). In the
case of a light network load, the protocol increases the copies of a message by
adding a fixed number of replicas. In the case of a moderate load, the protocol
decreases the copies of a message. In the case of a heavy load, the protocol does
not replicate a message and simply forwards the message to an encountering
node.

Thompson et al., in [13], proposed a protocol to deal with congestion in
DTNs. The protocol adjusts the replication rates at individual nodes according
to the number of message copies in the network and the buffer capability of
individual nodes.

In this paper, we present a novel routing protocol in MDTNs, called the
Community-based Adaptive Spray (CAS) routing protocol. The goal of this
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protocol is to allocate the minimum number of message copies for a message
while still achieving a high delivery ratio. Our protocol exploits the community
structure of human networks. A community is defined as a set of nodes which
frequently co-exist and encounter (see Section 3.1). It has been demonstrated
in the literature that nodes in a MDTN often form such structures [14].

Our protocol is composed of two major parts. First, a sub-protocol respon-
sible for gathering mobility information about nodes upon encountering each
other. This sub-protocol aims at learning/synchronizing the topologies of com-
munities in the network. Second, a sub-protocol responsible for the routing
process. Routing is organized around the notion of gateways between commu-
nities. Specifically, a gateway towards a community C is the node in a given
community that has the highest probability to encounter any node in C. To
route a message towards a given destination node, the source of a message uses
the community topology to pre-compute the multi-hop path that traverses the
minimal number of communities through their gateway nodes and that has the
highest delivery probability. Furthermore, once the routing process is engaged,
our routing protocol allocates a given number of message copies at each hop
depending on the remaining TTL of the message. The urgency of delivering
a message rises as the TTL of the message approaches expiration. The CAS
protocol raises the number of message copies in the network in proportion to the
remaining TTL in order to increase the probability of message delivery before
time runs out. This strategy keeps the number of message copies in the network
low while achieving a high delivery ratio.

The contributions of this paper are twofold:

• We propose a novel routing protocol that dynamically allocates message
copies according to the remaining TTL of each message.

• The analysis of our protocol shows that it is the generalization of many
existing protocols including Direct [15], Epidemic [5], Spray-and-wait [7],
and some community based routing protocols [16]. By generalization, we
mean that our protocol can dynamically decide to behave like one of these
algorithms in order to better suit the current situation.

This paper is a considerably extended version of our previous work [17]. The
major additions to the current paper include the following. First, we demon-
strate that our routing protocol can represent a class of routing protocols. Sec-
ond, we present new experiments to evaluate the performance of our protocol.
Additionally, we have also developed an analytical model to compute the cover
time of the topology of communities. The details of the analytical model are
presented in an extended technical report [18].

The remainder of the paper is organized as follows. Section 2 discusses
related work on routing in MDTNs. In Section 3, we introduce the system
model and the information maintained by each node. In Section 4, we describe
our proposal in detail. The simulations and results are presented in Section 5.
Finally, we conclude the paper in Section 6.
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2. Related work

In the literature, a variety of routing protocols have been proposed for
MDTNs. The protocols can be classified into two broad categories based on
the number of message copies utilized in the routing process [15, 19, 20]: single-
copy and multi-copy.

In single-copy routing protocols, such as Direct Delivery [15] and First Con-
tact [21], a single copy for each message exists in the network at any instant.
Therefore, these routing protocols achieve the minimum transmission overhead
in terms of the number of message copies employed during the routing process.
However, due to the frequent and long-term network partitions that characterize
MDTNs, these protocols often suffer from low delivery ratio and long delivery
latency [22].

In order to guarantee a higher delivery ratio and a lower delivery latency,
multi-copy protocols distribute multiple copies of each message in the network.
Based on whether the number of message copies of a message is limited or not,
multi-copy routing protocols can be further divided into flooding-based [5] and
quota-based protocols [6, 7].

Epidemic [5] is a well known flooding-based protocol. It achieves the optimal
routing performance in terms of delivery ratio and delivery latency at the cost of
huge resource consumption, which makes it unpractical for resource constrained
devices. In addition, the massively redundant messages can cause network con-
gestion, which in turn can severely degrade the routing performance [23, 24].

Quota-based routing protocols [6, 7] achieve more reasonable delivery cost
by restricting the number of message copies that they allocate for each message.
Specifically, at any point in time, a fixed number of copies of each message ex-
ists in the whole network. However, the one-size-fits-all approach for allocating
message copies is insufficient. It is obvious that a message with a shorter re-
maining TTL would need more copies than a message with a longer TTL to
ensure successful delivery. The existing protocols do not take this factor into
account. Additionally, these protocols assume that all nodes have the same
capability of visiting every region covered by the network. However, reality is
different. Recent studies [9, 10, 11] on the spatial characteristics of human mo-
bility from real world traces demonstrate that humans usually roam in some
relatively small sub-regions rather than the whole network space.

Aside from the aforementioned spatial characteristics of human mobility, hu-
man movement is also shown to be driven by social relationships [9, 25]. Hence,
the nodes which frequently coexist in a common location are considered to con-
sist of a community. The utilization of community structure has been proved
to improve routing performance [14]. Therefore, the community structure has
been widely utilized in the design of routing protocols. Such routing protocols
are known as community-based routing protocols, which can belong to the class
of either single-copy or multi-copy protocols.

Hui and Crowcroft in [26] proposed a community-based routing protocol for
MDTNs, called LABEL. In LABEL, it is assumed that each node possesses a la-
bel indicating its community. The label of nodes (i.e., the community structure)
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is then utilized to guide the forwarding of messages. Specifically, each message
is forwarded to the nodes in the same community as the destination node.

Hui et al. in [14] presented a community-based routing protocol, named
Bubble. Bubble combines centrality, which indicates the relative importance of
a node in the network, and community structure to identify relay nodes. In
Bubble, a message is forwarded from a node to the nodes that have a larger
global centrality value (i.e, the total number of encountered nodes) than the
current node until it reaches a node in the same community as the destination
node. The message is then forwarded from a node to the nodes that have a
larger local centrality value (i.e. the number of encountered community member
nodes). Similar to [14], Li et al. in [27] proposed a community-based routing
protocol, called IFR. The difference between IFR and Bubble is that IFR floods
a message inside the community of the destination node.

Nevertheless, the centrality of nodes cannot accurately steer a message to the
destination node [28]. To address this issue, Dang and Wu in [16] presented a
routing protocol, named Clustering routing. Clustering routing utilizes gateway
nodes to deliver the messages whose source node and destination node belong
to different communities. Gateway nodes are the nodes which have the highest
probability of encountering the nodes in other communities. However, messages
in [16] are routed under Direct Delivery protocol, which is generally considered
to be inefficient when the TTL of a message is limited [19].

Our work differs from the aforementioned works in two ways. First, the
CAS routing protocol can dynamically allocate the minimum number of copies
for each message while achieving a predefined delivery ratio, according to the
TTL of a message. Second, our routing protocol is more generic than most
routing protocols, which includes Direct, Epidemic, Spray-and-wait, and Clus-
tering routing [16], as it can behave as one of these algorithms in specific routing
situations.

3. System model

In this section, we first present the network model. We then introduce the
information maintained by each node. Finally, we explain how the information
maintained by nodes is updated.

3.1. A delay tolerant network model

Node. We define a node as a mobile device. We assume that each node
is equipped with a radio interface (e.g., Bluetooth) for short-range communica-
tion, and that the transmission range of all nodes is the same. Two nodes are
considered to meet, if they are in the transmission range of each other. We as-
sume that a node can only communicate with one other node at the same time.
Two meeting nodes can exchange messages with each other. We also assume
that each node has a unique identifier.

Community. We define a community C as a set of nodes which frequently
co-exist and meet. Recent studies [9, 25] have indeed shown that human mobility
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is actually driven by social relationships. Thus, the meeting frequency of nodes
in the same community is considered to be much higher than that of nodes
in different communities. We also assume that each community has a unique
identifier. The set of nodes in a community C will be indicated hereafter by
C = {u1, u2, . . . , un}, where n = |C|.

In practice, a node can belong to more than one community. For instance,
a student can belong to the community of his fellow students or he can belong
to the community of his family members. However, for simplicity, we assume
in this work that a node can only belong to one community at a given time
instance. The assumption prevents a message from being delivered to multiple
communities that the destination node might belong to, which would increase
the message delivery cost in terms of message copies. However, we note that this
simplification does not have an impact on the accuracy of our routing protocol,
i.e., delivery ratio and delivery cost. The same assumption is also made in state-
of-the-art literature, such as Hui et al. [14], and Dang and Wu [16]. In future
work, we would like to consider the scenario where a single node can belong to
multiple communities.

Inter-contact time between two nodes. The inter-contact time (also
known as inter-meeting time) between two nodes is the time interval between
two successive encounters between them.

Mobility Model. Mobility models are generally characterized by the inter-
contact time between two nodes [8, 19]. Karagiannis et al. in [10] demonstrated
that under a large class of mobility scenarios in real life, the inter-contact time
follows a power-law in a finite range, and then exhibits an exponential decay.
It is consistent with the suggestion made by Gonzalez et al. in [29] that a
power law with an exponential decay is a very good approximation of human
mobility patterns. Additionally, Chaintreau et al. in [30] pointed out that
the exponential decay eliminates the issue of infinite message forwarding delay.
Building on these previous studies, the inter-contact time of nodes is assumed
to be exponentially distributed or have an exponential tail characterized by
a contact rate (the inverse of the expected inter-contact time of any pair of
nodes). This is a widely accepted assumption in MDTNs [8, 19, 31, 32].

Inter-contact time between a node and a community. The inter-
contact time between a node u and a community C is the time interval between
any two successive contacts between node u and any node member of the com-
munity C.

Gateway. A node w in a community Ci is defined as the gateway connecting
to another community Cj if node w’s average inter-contact time with the nodes
of the community Cj is the shortest among the other nodes of its community
Ci.

Network. Let the set of all nodes in the environment be given as the set
V. Let the set of all communities in the environment be M = {Ci|1 ≤ i ≤

k, V =
⋃k

i=1
Ci}. Edges ei,j and ej,i exist between two communities Ci and Cj

(where 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j), if some nodes from the two communities
have encountered at least once. The weight of the edge ei,j , denoted as ̟w

i,j ,
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is the average inter-contact time of the gateway w of community Ci with the
nodes of the community Cj . Notice that the gateway from community Ci to
the community Cj is not the same node as the gateway from Cj to Ci, so the
community graph is a directed graph. Let E = {ei,j|1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j}.
We will represent the MDTN formed by all the nodes of the network by their
community graph G(M, E).

Message. A message is represented as a tuple 〈S,D, I, C, L, T 〉, where S

is the source node, D is the destination node, I is the intermediate target
node, which is a gateway node connecting the current community to another
community (or the destination node if the message is yet in the community of
the destination node). C is the identifier of the community connected by the
gateway node (or null if the intermediate target node is the destination node).
L is the number of copies allocated to route the message to the intermediate
target node in the current community, T is the message TTL.

3.2. Information maintained by a node

Each node in the network, e.g., node u, maintains six types of information:
its node ID u, its community ID Cu (the exponent here indicates the fact that
u belongs to this community), a community table, a gateway table, a contact
table, and a community graph.

Community table. The community table of node u holds the node ID
and the community ID of all nodes who have encountered the nodes of u’s
community. Node u also maintains a timestamp which indicates the time when
the table was last updated.

Gateway table. The gateway table of node u contains the following fields
for each known community Ci and for each gateway w linking Ci to another
community Cj : the community ID of Ci, the node ID of the gateway w, the
community ID of Cj , and the average inter-contact time between the gateway
w and the community Cj given as ̟w

i,j . Node u also maintains a timestamp
which records the last updated time of this table.

Contact table. The contact table of node u maintains the following fields
for each encountered node v: the node ID of v, the sum of inter-contact times
between the nodes u and v denoted as τu,v, the number of encounters σu,v (the
latter two quantities are used to compute the average inter-contact time), the
end time of the last encounter teu,v, and the start time of the ongoing encounter

tbu,v (if there is one).
Community graph. In the community graph of node u, each vertex de-

notes a known community e.g., community Ci. Each vertex is labeled by a tuple
〈|Ci|, ̟Ci

〉, where |Ci| is the number of nodes in community Ci, ̟Ci
is the av-

erage inter-contact time between the member nodes of the community Ci. The
weight of the directed edge eij denoted by ̟i,j is the average inter-contact time
between the gateway in community Ci and the community Cj . The community
graph of node u locally reflects the topology of the communities of the network
as it is known by u, which is illustrated in Figure 1.

The accuracy of the community graph maintained locally by nodes depends
on the dynamic nature of the structure of communities. If the communities
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Figure 1: Community Graph

are stable, the community graph of a node remains mostly accurate and up to
date. However, if the communities are highly dynamic, the community graph
maintained by a node may need to be update frequently. Frequent updates may
become a challenge in a large scale dynamic community graph because of the
resources required for propagation of the changes. However, as pointed out by
Hui et al. in [14], the community structure of human nodes is fairly stable.

3.3. Maintenance of information

The maintenance of the above information is driven by events. There are
three kinds of events in the protocol: 1) Connect Event, 2) Disconnect Event,
and 3) Update Event. We assume that nodes in the network honestly synchronize
the maintained information.

Connect Event. It happens at the moment when two nodes enter the
transmission range of each other. When a connect event takes place, two meeting
nodes honestly exchange and update their corresponding values in each field of
their community table, community graph, and gateway table, according to the
value of their timestamps. They also set the timestamps.

Disconnect Event. It happens at the moment when two nodes u and v go
out of the transmission range of each other. Let teu,v be the end time that node

u encounters node v. Let tbu,v be the begin time that node u encounters node
v of the ongoing encounter. Thus, the last inter-contact time between node
u and v is set to ∆τu,v = tbu,v − teu,v. The sum of inter-contact time between

nodes u and v is τu,v = τ
′

u,v +∆τu,v, where τ
′

u,v is the sum of inter-contact time
between node u and v before last encounter. Then, the number of encounters
σu,v increases by 1.

Consequently, the average inter-contact time between two nodes u and v is
expressed as follows:

̟u,v =

{

+∞, σu,v = 1
τu,v

σu,v−1
, σu,v > 1 (1)

The average inter-contact time between two nodes is the major parameter
used by methods of community detection. Specifically, a node joins (or leaves)
a community if it is (or is not) qualified to be in the community. Since the
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Figure 2: Routing Protocol Overview

community detection is out of this paper’s scope, the reader is suggested to
refer to [33] for further information.

Moreover, as in [31, 34], we assume that the nodes in the same community
have the same average inter-contact time. As a consequence ̟Ci

= ̟u,v, for
any nodes u and v are in the same community Ci.

Update Event. The update event is periodically invoked synchronously
by all nodes every γ time units. Let C

′

j be the set of nodes which belong to
a community Cj and have met node u by more than once. Then the average
inter-contact time between node u and community Cj is computed as follows.

̟u
i,j =

∑

v∈C
′

j
τu,v

∑

v∈C
′

j
(σu,v − 1)

(2)

If node u achieves an average inter-contact time with community Cj that is
shorter than the one of the current gateway w (that is ̟u

i,j ≤ ̟w
i,j − ǫ, where

ǫ is a threshold), then the relevant fields are updated i.e., the node ID of the
gateway from Ci to Cj , the inter-contact time and timestamp are updated to
u, ̟u

i,j and the current time respectively.

4. Protocol design

In this section, we first briefly describe the mechanism of CAS. We then
present the design of CAS in detail. We proceed to demonstrate that our proto-
col is the generalization of several existing routing protocols. Finally, we briefly
discuss and provide a reference to our analysis of cover time estimation.

4.1. Overview of CAS

In this section, we give an overview of our routing protocol. A routing ex-
ample is depicted in Figure 2. This figure shows a number of nodes belonging
to three communities C1, C2, and Cx. A source node s that belongs to the com-
munity C1 wants to send a message to a node d that belongs to the community
Cx.
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In CAS, the routing process is composed of multiple sub-processes. In each
sub-process, a message is routed to an intermediate target node, which is the
gateway node bridging two communities or the destination node if the latter
belongs to the same community as the source node. At the beginning of each
sub-process, the shortest path from the current community to the community
of the destination node is computed according to the community graph. For
instance, in Figure 2, when the source node s generates a message, it computes
the shortest path from its community C1 to the destination node’s community
Cx, that is, C1C2Cx. After that, node s looks up its gateway table to find the
gateway node w1, which connects its community with the community C2. The
node w1 is then considered as the first intermediate target node to reach. At the
same time, the minimum number of message copies needed to route the message
to the intermediate target node is computed, based on the message TTL and
a predefined corresponding delivery ratio. These message copies are sprayed
inside the current community in a binary spraying manner in which a message
carrier hands over half of the copies it holds to each node it meets. When the
intermediate target node encounters a node in its connecting community (e.g.,
C2 in the case of w1), it forwards the message to it. The above process is
repeated until the message reaches the destination node or expires.

4.2. Design of CAS

As explained above, the CAS routing process is divided into multiple sub-
processes. Each sub-process consists of the following two phases: 1) optimization
of the number of message copies to be distributed and 2) message routing.

4.2.1. Optimization of the number of message copies

According to the analysis of the routing performance presented in [7], if L
copies of a message are distributed in the network and the TTL of the message
is T , the expected delivery probability of the message can then be calculated as
pd = 1− e−λLT , where λ is the contact rate, that is, the inverse of the average
inter-contact time between nodes [8]. Hence, if the expected delivery probability
pd is assigned, the relationship between the number of message copies and the
TTL can be expressed as Equation 3. Note that the delivery probability is the
delivery ratio from the viewpoint of all generated messages.

L× T = −
ln(1− pd)

λ
(3)

Recall that an MDTN is modeled as a directed graph of communitiesG(M, E)
(Section 3.1). Let h a path in G(M, E). Let n be the number of communities
in path h. The weight (denoted as wgt(h)) of path h is the sum of the weights
of the edges that form the path, which is expressed in Equation 4. It represents
the sum of the average inter-contact time between the communities in path h.
Note: we assume that in the community graph that represents a MDTN every
community is reachable (i.e., a non-reachable community constitutes a distinct
MDTN).
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wgt(h) =

{
∑n−1

i=1
̟w

i,i+1, if n > 1
0, if n = 1

(4)

Further, let us consider two communities C1 and C2. Let h(C1, C2) be any
path which originates within community C1 and ends within community C2. In
a network, it is possible that more than one such path exists. Let H(C1, C2)
be the set of all possible paths h(C1, C2). Let h∗(C1, C2) be the shortest path
from community C1 to community C2.

Assume a node u carries a message denoted by 〈S,D, I, C, L, T 〉. Let h∗

be the shortest path from the community of node u to the community of the
destination node. Let n be the number of communities in the path h∗. Let Li

denote the number of message copies distributed in a community Ci. Let w

be the gateway node connecting community Ci to community Ci+1. Let pd be
the expected delivery probability of the message. Let λi be the contact rate of
nodes in community Ci, which is the inverse of the average inter-contact time
̟Ci

of nodes in community Ci. Then the optimization of delivery cost can be
expressed as in Equation 5-7.

min

n
∑

i=1

Li (5)

s.t.

n−1
∑

i=1

̟w
i,i+1 +

n
∑

i=1

−ln(1− pd)

λiLi

≤ T (6)

Li ≤ |Ci|, where 1 ≤ i ≤ n (7)

The purpose of the objective function Equation 5 is to minimize the number
of message copies utilized to route a message. Equation 6 expresses the fact
that the sum of the time spent to route the message in communities and the
sum of the average inter-contact time between communities should be less than
the TTL of the message. The constraint Equation 7 expresses the fact that
the number of message copies allowed in a community should be less than the
number of nodes in the community.

All Li are positive integers and finite; thus Equation 5-7 defines a classical
integer optimization problem for which a number of heuristics can be applied.
However, in practice, the number of communities in path h∗, n, and the accept-
able values for Li are small, so an exhaustive search, i.e. the enumeration of all
the possible values for Li, is clearly tractable. For instance, there are about 8
communities in the MIT reality mining dataset [14], and most of communities
contain less than 10 nodes. The pseudo-code of the solution is illustrated in
Figure 3.

Without loss of generality, let’s consider that the algorithm is invoked by
a node u. Node u has a message m. The shortest path from the community
of node u to the community of the destination node of message m is h∗. The
algorithm initially gets the community (denoted by C∗) next to the community
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of nodes u on the path h∗ (Line 1); and sets the number of the nodes in node u’
community as the default value for Lu, which indicates the number of message
copies of message m for node u (Line 2). The algorithm then enumerates all
the possible values for the number of copies in each community on the path h∗

(Lines 19 to 31). More specifically, the algorithm uses the elements in a vector π
to express the number of copies of message m allocated for each community on
the path h∗. The algorithm initially sets all the elements in π to be 1. It then
starts with the last element in π (Line 19), and selects all possible values for the
last element (Lines 21 to 23). The algorithm then uses the values of the elements
in π to verify whether (1) the allocated number of message copies can satisfy
Equation 6; (2) the sum of these values is smaller than the previous minimal
sum, which is initially set as the number of nodes on the path h∗ (Line 15). If
so, the algorithm updates the minimal sum (Line 16) and Lu (Line 17). The
algorithm then resets the value of the last element to be 1 (Line 25), and goes
to the element before the last element (Line 26). The above process is repeated
until all possible values are enumerated. Finally, the algorithm returns C∗ and
Lu.

There are two heuristic methods to reduce the computation complexity
of algorithm OptimalCost: (1) using a smaller sample to test the values for
L2, . . . , Ln. (2) terminate the computation of the algorithm when the first com-
bination of values in π is found.

4.2.2. Message Routing

In CAS, we distinguish the routing within a community from the routing
among communities. In the former case, the allocated message copies are
sprayed inside the current community in a binary manner, in order to mini-
mize the time to spray message copies. Specifically, a node hands over half of
the number of a message copies to an encountered node, which is in the same
community and does not have the message. When the node has just one copy
of the message, the message can only be forwarded to the intermediate tar-
get node. As we stated in Section 3, the meeting frequency of nodes in the
same community is much higher than that of nodes in different communities.
Thus, messages can be delivered to the intermediate target node with a higher
probability.

As for the routing among communities, a gateway node forwards a message
to an encountered node if it belongs to the next community along the shortest
path from the gateway node’s community to the community of the destination
node. After it gets the message, the receiving node re-computes the shortest
path from its community to the community of the destination node, and sets
the intermediate target node as the gateway node bridging the next community,
or the destination node if it is in the same community as the destination node.
After that, it calls the Algorithm OptimizeCost to compute the needed num-
ber of message copies utilized to route the message to the intermediate target
node. The complete mechanism of the routing protocol in CAS is summarized
in Figure 4.
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Algorithm: OptimizeCost

Participants: Node u.
Input: (1) Dm, the destination node of message m. (2) T , the TTL of message m.
(3) pd, a predefined delivery probability of message m. (4) h∗, the shortest path from
node u’s community to node Dm’s community.
Output: (1) C∗

u, the community next to node u’s community on the path h∗. (2) Lu,
the number of copies of message m carried by node u.
Setup: (1) n, the number of communities in path h∗. (2) ̟sum, the weight of the
shortest path h∗. (3) Lmin, the minimum number of message copies utilized to route
the message. It is initially set to the sum of the number of nodes in each communities
in the path h∗. (4), π, 1 × n vector, whose elements are 1 (5) λi, the contact rate of
nodes in community Ci, where 1 ≤ i ≤ n.

1: C∗

u ← h∗[2] {The index of the community C∗

u is 2.}
2: Lu ← |h

∗[1]|
3: j ← n {The index for the vector π.}
4: while j ≥ 1 do

5: Tsum ← 0
6: Lsum ← 0

{Compute the needed number of message copies for a combination of values in
π.}

7: for i← 1 to n do

8: if π[i] ≤ |h∗[i]| then
9: L′

i ← π[i]
10: else

11: L′

i ← |h
∗[i]|

12: end if

13: Tsum ← Tsum + −ln(1−pd)
λiL

′

i

14: Lsum ← Lsum + L′

i

15: end for

{Find the minimal number of message copies.}
16: if Tsum +̟sum ≤ T and Lsum < Lmin then

17: Lmin ← Lsum

18: Lu ← π[1]
19: end if

{List all possible combination of values in π}
20: j ← n

21: while j ≥ 1 do

22: if π[j] < |h∗[j]| then
23: π[j]← π[j] + 1
24: break

25: else

26: π[j]← 1
27: j ← j − 1
28: end if

29: end while

30: end while

31: return 〈C∗

u, Lu〉

Figure 3: Algorithm:OptimizeCost
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Protocol: RouteMessage

Participants: Two encountering nodes u and v.
Input: (1) m, a message carried by node u. (2) Dm, the destination node of message
m. (3) Im, the intermediate target node of message m. (4) Lu, the number of copies
of message m for node u. (5) Lv. (6) T , the TTL of message m. (7) pd, a predefined
message delivery probability. (8) C∗

u, the community next to node u’s community on
the shortest path from node u’s community to node Dm’s community. (9) C∗

v .
Output: Message m is forwarded to node v, if one of the following conditions is met:
(1) node v is the destination; (2) node v is the intermediate target node; (3) nodes u

and v are in the same community, and node u has more than one copy of message m;
(4) node u is the gateway node bridging community C∗

u, and node v is in community
C∗

u, and node u has not yet forwarded message m to another node member of the
community C∗

u. Furthermore, the number of copies of message m for node v, Lv, is
computed and the intermediate node on the message route is updated.
Events and Associated Actions:

node u initiates the protocol

1: if Cu = Cv then

2: if v = Im then

3: node u forwards message m to node v.
4: else if Lu > 1 then

5: node u forwards half number of copies of message m to node v, and keeps the
remaining copies.

6: end if

7: else

8: if v = Dm then

9: node u forwards message m to node v

10: else if u is the gateway node connecting C∗

u and C∗

u = Cv and node u has not
yet forwarded message m to another node in the community C∗

u then

11: node u forwards message m to node v

12: end if

13: end if

upon node v receives a message m from node u

1: if Cu 6= Cv and v 6= Dm then

2: 〈C∗

v , Lv〉 ← OptimizeCost(Dm, T, pd)
3: if CDm = Cv then

4: Im ← Dm

5: else

6: node v looks up its gateway table to find the gateway node w to community
C∗

v

7: Im ← w

8: end if

9: end if

Figure 4: Protocol:RouteMessage
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Figure 5: The transformation from CAS to several kinds of routing protocols, where L is the
number of allocated copies for a message, V is the set of all nodes in a network, M is the set
of all communities in a network.

4.3. CAS generalizes classes of routing protocols

Another relevant point about CAS is that it represents the generalization
of many existing routing protocols, including Direct [15], Spray-and-Wait [7],
Epidemic [5], and Clustering routing [16]. Depending on the number of commu-
nities in the network and the number of message copies, CAS can dynamically
transform to these routing protocols. Let V be the set of all nodes in a network.
Let M be the set of all communities in the network. Let L be the number of
allocated copies for a message. The transformation from CAS to these routing
protocols is then illustrated in Figure 5.

- Direct (L = 1, |M| = 1): The source node of a message can only forward
the message to the destination node. Direct is a well known single-copy
routing protocol.

- Spray-and-Wait (1 < L < |V |, |M| = 1): Each message is associated with
some forwarding tokens, which indicates message copies. Each message
has two phases: the spray phase and the wait phase. If there is more than
one forwarding token left, the message is in the spray phase. During the
spray phase, the forwarding tokens of a message can be sprayed to an en-
countered node without the message. If there is only one forwarding token
left, it is in the wait phase. During the wait phase, a message can only
be forwarded to the designation node. Spray-and-Wait is a representative
routing protocol of quota-based routing.

- Epidemic (L = |V |, |M| = 1): Each node stores its messages in its buffer.
When two nodes meet, each of them complements the missing messages
according to the messages in the other’s buffer. It is therefore flooding-
based in nature.
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- Clustering routing (|M| > 1): The encounter information of nodes is syn-
chronized and processed to identify the community structure and the gate-
way nodes. A gateway node connecting its community to another commu-
nity is the node that has the highest probability of meeting any node in the
latter community. In this protocol, Direct routing is employed to route a
message to a gateway node or the destination node if the message is in the
destination node’s community. Clustering routing is a community-based
routing protocol.

It is worth pointing out that Epidemic and Direct achieve the upper and
lower bounds of routing performance in terms of delivery ratio and delivery
cost [19, 15] respectively. CAS realizes a trade-off by minimizing the delivery
cost while maintaining a predefined delivery ratio.

4.4. Analysis of cover time estimation

Since our protocol depends on the local community graph to allocate mes-
sage copies, it is necessary to estimate the cover time of the community graph
when the role of a node is changed. For instance, when a node becomes the
new gateway node, the information about this change is propagated to all the
relevant nodes of the community. The cover time is defined as the difference
from the time of the change at a node to the time when all the relevant nodes
are aware of the change. The cover time of maintained information is analyzed
from the following two aspects: 1) intra-community message exchange and 2)
inter-community message exchange. In the extended version of this paper, pub-
lished as a technical report [18], we develop an analytical model for estimating
the cover time of the community graph. We also evaluate the accuracy of our
analytical model by comparing the theoretical results with the simulation results
by using a standard simulator. The reader may refer to the technical report [18]
for the detailed analysis.

5. Performance evaluation

In this section, we present the performance evaluation of CAS. We first in-
troduce our simulation settings and the mobility model in Sections 5.1 and 5.2
respectively. We then present the routing protocols against which we compare
the performance of CAS in Section 5.3 followed by the description of the per-
formance evaluation metrics in Section 5.4. Finally, we present the simulation
results in Section 5.5.

5.1. Simulation settings

The simulations have been conducted by the ONE simulator [35, 36]. The
simulation scenario considers a rectangular area of 2000 m × 1500 m. This area
is equally divided into 12 regions each measuring 500 m × 500 m. Initially,
twenty nodes are deployed in each region. Each node considers the region in
which it has been deployed as its local region. According to the mobility model
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Table 1: Parameter settings

Parameter Name Value
Simulation area 2000 m × 1500 m
Transmission range 10 m
Simulation duration 13 hours + TTL
Warm-up period 1 hour
Message generation rate 1 message per minute
Number of communities 12
Number of nodes in a community 20
Node speed 1.34 m/s
pl (low mobility nodes) 1
pr (low mobility nodes) 0
pl (high mobility nodes) 0.5
pr (high mobility nodes) 0.5
γ 1 hour
pd 0.8

(see Section 5.2), a node is more likely to visit its local region than other regions.
This leads to the encounter frequency of nodes deployed in the same region being
much higher than that of nodes deployed in different regions. Consequently,
nodes associated to one region constitute a community.

Moreover, each node is equipped with a radio interface for short-range com-
munication. The transmission range and rate are set as 10 m and 2 Mb/s respec-
tively. This is consistent with contemporary protocols, such as Bluetooth [35].
Additionally, the speed of nodes is set to 1.34 m/s, which is an average human
walking speed [35]. Since we find that the routing performance of CAS and
the chosen routing protocols converges after about six hours, we set thirteen
hours for each simulation in order to achieve statistical confidence. Since CAS
depends on the knowledge of the network topology, we specify the first hours
as a warm-up period to allow the nodes to setup the community graph. During
the warm up period, no message is generated. After this period, every minute,
a random node sends a message to a random destination node. The detailed
settings are listed in Table 1.

5.2. Mobility model

In our evaluation, we adopt the community-based mobility model proposed
in [37], which has been widely utilized for the evaluation of community-based
routing protocols [38, 16]. In this mobility model, each community is associated
with a geographical area. The movement of a node, which belongs to a com-
munity, consists of a sequence of local and roaming epochs. A local epoch is a
random movement restricted inside the area associated with the community. A
roaming epoch is a random movement inside the entire network. If the node’s
previous epoch was a local one, the next epoch is a local one with probability
pl, or a roaming epoch with probability 1− pl. Similarly, if the node’s previous
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Figure 6: Community-based mobility model

epoch was a roaming one, the next epoch is a roaming one with probability pr,
or a local one with probability 1 − pr. The state transition between local and
roaming epochs is shown in Figure 6.

In addition, we assign different mobility characteristics to the nodes in a re-
gion in order to produce a scenario closer to reality, where there is heterogeneity
in mobility among nodes. To achieve this, the nodes in a region are divided into
two kinds: low mobility nodes and high mobility nodes. The low mobility nodes
can only roam inside their local regions, while the high mobility nodes may roam
among their local region as well as the entire space. Specifically, 95% nodes in
each region are chosen as the low mobility nodes with pl=1 and pr=0, while
other nodes are chosen as the high mobility nodes with pl=0.5 and pr=0.5.

A number of mobility traces have been collected from human movements in
real-life scenarios. These mobility traces include the Reality Mining trace [14],
which was collected in a campus environment, and Infocom05 [14], which was
collected in a conference environment. As future work, we would like to perform
the evaluation of our routing protocol by using real mobility traces, such as the
ones mentioned above as well as others which are available publicly from sources
such as the crawdad database (crawdad.cs.dartmouth.edu). This would allow
us to evaluate the performance of our protocol in real-life scenarios.

5.3. Routing protocols

Based on the above settings, we have compared the performance of CAS
against the following protocols:

Epidemic: Each node forwards a copy of each unexpired message in its
buffer to the encountered node that does not have a copy of the message.

Direct: The source node of a message can only forward the message to the
destination node.

Binary Spray-and-Wait (BSW): Each message has L copies. A message
carrier forwards half of the message copies to an encountered node, if its L > 1
and the latter does not have the message. The message, which has only one
message copy left, can only be forwarded to the destination.

Bubble: It utilizes social information about nodes, such as their centrality
and the community to which they belong. In this protocol, a message is for-
warded based on the global rankings of two encountering nodes, until it reaches
a node in the community of the destination node. After that, the message is
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Figure 7: Comparison of the routing performance of several algorithms in the single-
community case.

forwarded based on the local rankings of two encountering nodes, until it either
reaches the destination node or expires. In the experiment, the length of time
window is set to 1 hour.

5.4. Metrics

The goal of CAS is to minimize the number of message copies and while
maintaining a predefined delivery ratio. Therefore, we have measured the fol-
lowing metrics for the simulations that we have conducted in this work:

Delivery ratio: The proportion of messages that have been delivered out
of the total unique messages created.

Delivery cost: The total number of message transmissions in the simula-
tion. To normalize this, we divide it by the total number of unique messages
created.

5.5. Simulation results

As mentioned in Section 4.3, CAS includes some basic routing protocols as
special cases according to the number of communities in the network and the
allocated number of message copies. Therefore, in this section, we compare the
routing performance of CAS with the chosen routing protocols in the following
two cases: single-community case and multiple-community case.

5.5.1. Single-community case

We arbitrarily select one of the twelve regions for this study. The nodes
deployed in this region constitute a community. For the Binary Spray-and-Wait
protocol, each message is initially associated with 4 copies. Thus, at most 20%
nodes can participate in message routing in Binary Spray-and-Wait.

Figure 7(a) shows the delivery ratio of the compared routing protocols. We
can observe that Epidemic and Direct always achieve the best and worst delivery
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ratio respectively, for all values of TTL. We also observe that the delivery ratio
of Bubble is very close to that of Binary Spray-and-Wait. Binary Spray-and-
Wait achieves a better delivery ratio than CAS. The maximum and minimum
difference between CAS and Binary Spray-and-Wait is 7.22% and 0.28%. The
delivery ratio of CAS is always higher than the predefined delivery ratio (i.e.,
0.8). It is worth noting that CAS achieves the same delivery ratio as Direct
when the TTL is greater or equal to 5 hours. This is because CAS allocates the
same number of copies for each message as Direct. This indicates that CAS can
dynamically transform to Direct.

Figure 7(b) shows the delivery cost of the compared routing protocols as
a function of the TTL of the generated messages. We observe that Epidemic
and Direct have the highest and lowest delivery cost respectively, whatever the
value of TTL. The delivery cost of Bubble keeps increasing as the TTL increases.
The delivery cost of Binary Spray-and-Wait is lower than that of Bubble and
remains stable as the TTL increases. However, it is very close to the allocated
number (i.e., 4) of copies for each message in Binary Spray-and-Wait. It is worth
noting that unlike other routing protocols, the delivery cost of CAS decreases
as the TTL increases. In particular, CAS achieves the same delivery cost as
Direct when the TTL is greater or equal to 5 hours. This is because CAS can
dynamically allocate copies for a message according to its TTL.

5.5.2. Multiple-community case

In the multiple-community case, we conduct two experiments to investigate
the impact of the density of high mobility nodes and the mobility model settings
on the routing performance of our protocol.

A. Impact of the density of high mobility nodes

In this section, we investigate the impact of the density of high mobility
nodes on the routing performance of CAS and the chosen routing protocols.
The investigation is conducted by two experiments, in which the densities of
high mobility nodes are set as 5% and 50% respectively. In order to avoid the
impact of the settings for roaming nodes on the routing performance, the values
of pl and pr for high mobility nodes are set to 0.5. Moreover, for Binary Spray-
and-Wait, each message is initially associated with 24 copies. Since there are
twenty nodes in each of the twelve regions, at most 10% nodes can participate
in message routing in Binary Spray-and-Wait.

Figs. 8(a) and (b) show the delivery ratio of the compared routing protocols
with different densities of high mobility nodes. As the same as in the single-
community case, we can observe that Epidemic and Direct always achieve the
best and worst delivery ratio respectively. We also observe that CAS always
achieves a much better delivery ratio than Bubble for all values of TTL. In-
deed, the maximum difference between the delivery ratio of CAS and Bubble
is about 69.17% and 49.17% in Figs. 8(a) and (b) respectively. This is because
CAS takes advantage of gateway nodes to steer the forwarding of the messages
whose source and destination nodes belong to different communities in the right
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Figure 8: Comparison of delivery ratio of several algorithms with different densities of high
mobility nodes. 5% and 50% nodes are chosen as the high mobility nodes in (a) and (b)
respectively.

direction. Figure 8(a) shows that CAS achieves a much better delivery ratio
than Binary Spray-and-Wait; while Figure 8(b) shows that Binary Spray-and-
Wait even achieves a little better delivery ratio than CAS. This results from
that the increasing number of roaming nodes raises the opportunity of message
exchange between different communities. This also reflects the shortcoming of
Binary Spray-and-Wait, that is, assuming that nodes have the same capability
of visiting the entire network. Moreover, It is worth noting that delivery ratio
of CAS is a little lower when TTL is 5 hours than that when TTL is 4 hours.
This is because CAS allocates less copies for the messages with longer TTLs.

The performance of delivery cost of the compared routing protocols is illus-
trated in Figs. 9(a) and (b). Since the delivery cost of Epidemic increases much
quickly than that of other protocols, we omit the delivery cost of Epidemic to
illustrate the delivery cost of other protocols in detail. We can observe that Di-
rect always has the lowest delivery cost. Bubble achieves a close delivery cost as
Direct in Figure 9(a) and a little higher delivery cost than Direct in Figure 9(b).
Additionally, Binary Spray-and-Wait always consumes the assigned number of
message copies. Figure 9(a) shows that the delivery cost of CAS raises as the
TTL increases, When the TTL is less than 3 hours. Since the TTL increase,
the gateway nodes can reach more communities, which invokes the allocation of
message copies. When the TTL is greater than 3 hours, the delivery cost of CAS
decreases as the TTL increases. This is because CAS allocates less copies for the
messages with longer TTLs. Figure 9(b) shows that the delivery cost of CAS
decreases as the TTL increases. The increasing number of high mobility nodes
can enhance the successful delivery probability for the messages whose source
and destination nodes belong to different communities, which can terminate the
allocation of message.

B. Impact of the settings of mobility model
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Figure 9: Comparison of delivery cost of several algorithms with different densities of high
mobility nodes. 5% and 50% nodes are chosen as the high mobility nodes in (a) and (b),
respectively.

In this section, we investigate the impact of the settings of the chosen mo-
bility model on the routing performance of CAS. As we stated in Section 5.1,
a high mobility node is more likely to visit its local region than other regions.
Hence, for high mobility nodes, we vary the value of pl from 0.5 to 0.9 with step
by 0.1 and set the value of pr as 1− pl in the simulations. Moreover, 5% nodes
are chosen as high mobility nodes in order to avoid the impact of the density of
high mobility nodes on the routing performance of CAS.

First we look at the delivery ratio. From the results illustrated in Fig-
ure 10(a), we can observe that CAS achieves similar results under different
settings with respect to pl and pr. The settings with pl = 0.5, pr = 0.5 and
pl = 0.9, pr = 0.1 always achieve the best and worst delivery ratio respectively,
when TTL is less than 4 hours. This is because that a higher probability pr
can provide more opportunities to route messages whose source and destination
nodes are in different communities. When TTL is greater than 4 hours, the
setting with pl = 0.8, pr = 0.2 achieves the best delivery ratio while the setting
with pl = 0.6, pr = 0.4 achieves the worst delivery ratio. Since as the TTL
increases, the higher probability pl can make the gateway nodes collect more
messages whose source and destination nodes are in different communities.

Next we compare the delivery cost of CAS with different settings. As shown
in Figure 10(b), we can observe that CAS achieves similar results under dif-
ferent settings with respect to pl and pr. When TTL is greater than 3 hours,
the setting with pl = 0.5, pr = 0.5 has the lowest delivery cost. Since, with
a higher probability pr, the gateway nodes collect fewer messages from their
community. Additionally, the gateway nodes can forward the messages whose
source and destination nodes belong to different communities earlier to the next
communities, which in turn results in fewer message copies are allocated in the
next communities.
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Figure 10: The impact of the settings of the mobility model on the routing performance of
CAS

6. Conclusion

In this paper, we presented CAS, the self-regulating protocol for efficient
routing in mobile delay tolerant networks. CAS controls the message replica-
tion according to the TTLs of messages, and takes advantage of the gateway
nodes to steer the forwarding of the messages whose source nodes and desti-
nation nodes belong to different communities. We presented an algorithm that
can dynamically compute the minimum number of message copies for each mes-
sage while maintaining a predefined delivery ratio in a practical manner. We
demonstrated that CAS includes some basic routing protocols as special cases by
theoretical analysis and practical simulations. Our simulations on a widely uti-
lized community-based mobility model, demonstrate that CAS can improve the
routing performance compared to quota-based Binary Spray-and-Wait protocol
and community-based Bubble protocol.
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