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Abstract

Participatory sensing is an emerging paradigm in which citizens everywhere voluntarily use their computational devices to capture
and share sensed data from their surrounding environments in order to monitor and analyze some phenomenon (e.g., weather, road
traffic, pollution, etc.). Interest in participatory sensing systems has risen since a large mobile sensor network can now be oppor-
tunistically constructed with much less cost and effort than it was the case a decade ago. However, relying on citizens who share
their contributions raises many challenges. Participants can disrupt the system by contributing corrupted, fabricated, or erroneous
data. Consequently, monitoring the participants’ behavior in order to estimate their honesty is an essential requirement. This en-
ables to evaluate the veracity and accuracy of participants’ contributions and therefore, to build robust and reliable participatory
sensing systems. Recently, several trust and reputation systems have been proposed to trace participants’ behavior in these systems.
This survey presents a study and analysis of existing trust systems in participatory sensing applications. First, we study the nature
of participatory sensing applications by surveying existing systems and outlining their common features. We then analyze the main
vulnerabilities and attacks that can be launched in these systems. Furthermore, we discuss the concept of trust and we introduce
a classification of existing trust systems. The two main classes of trust assessment methods for participatory sensing (i.e. Trusted
Platform Module and reputation) are discussed. In addition, we analyze the merits as well as the limitations of each of them. We
then derive a comparative study of several existing trust systems for participatory sensing. From this study, we identify many trust
problems that have not been solved and many attacks have not been addressed yet in the literature. Finally, we list future research
directions regarding trust management in participatory sensing systems.
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1. Introduction

Everyday, millions of people move around carrying a vari-
ety of handheld devices equipped with sensing, computing, and
networking capabilities (e.g., smartphones, tablets, music play-
ers, GPS watches, in-vehicle sensors, etc.) [1]. The advance-
ment and widespread use of such devices have contributed to-
ward the emergence of a new kind of application called partici-
patory sensing [2]. These applications exploit both the mobility
of participants and the sensing capabilities of their devices to
construct opportunistic mobile sensor networks [3].

In participatory sensing, participants capture sensed data
from their surrounding environment using a variety of sensors
(e.g., GPS, camera, microphone, accelerometer, gyroscope,
digital compass, etc.) embedded in their devices. Then, they
share their collected observations with a backend server, which
processes the received data to monitor, map, or analyze some
incidents or phenomena of common interest.

Participatory sensing systems can be applied to serve many
of our daily life needs, including health monitoring (e.g.,
[4, 5, 6, 7, 8]), traffic monitoring (e.g., [9, 10, 11, 12] ), noise
monitoring (e.g., [6, 13, 14]), weather monitoring (e.g., [15, 6]),
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activities monitoring [16, 17, 18, 19, 20], commerce [21, 22],
sports monitoring [23], as well as other applications [24].

In these applications, no restrictions are usually imposed
about the participants’ experience, concern, trustworthiness,
and interest. In addition, they are not usually paid for their
participation in the sensing campaign. Thus, they usually do
not have strong motivations to comply with the tasks’ require-
ments. That is, they are not concerned about some parameters
which may improve the quality of their contributions (e.g. time,
location and/or the position of the device during the sensing
process). As a consequence, participatory sensing applications
are vulnerable to erroneous and malicious participants. We de-
fine erroneous and malicious participants as those who mislead
and disrupt the system measurements by reporting false, cor-
rupted or fabricated contributions either intentionally or non-
intentionally. Non-intentional (i.e. erroneous) corruption may
originate from a malfunctioning sensor while intended (i.e. ma-
licious) corruption is deliberately committed to alter the system
measurements in a specific location. For instance, an adversary
can put his device in a non-appropriate position. Alternatively,
the participant can modify a contribution before sharing it. Ma-
licious participants may further launch various types of attacks
such as Sybil, collusion, on-off attack, etc. These attacks are
discussed in Section 3. Consequently, the need arises for ap-
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proaches that try to detect erroneous participants and deter or
mitigate malicious ones in order to evaluate the veracity and
accuracy of participants’ contributions and therefore to build
robust and reliable application systems [25, 26].

Among the classical solutions to deal with erroneous and ma-
licious users is the notion of trust [27]. Trust systems aim to es-
timate the trustworthiness of entities’ behavior. Some of these
systems depend on the reputation of entities for assessing their
trust. Reputation is defined as the aggregated opinion of the
community members about how much the behavior of the tar-
get entity is trusted [28]. Assessing the trust and reputation of
entities permits the system to evaluate their expected behavior
for their future interactions.

Indeed, trust and reputation systems have been studied and
applied in different domains such as peer-to-peer networks
(e.g., [29]), ad-hoc networks (e.g., [30, 31, 32]), wireless sensor
networks (e.g., [33, 34, 35]), etc. In the context of participatory
sensing, evaluating participants’ reputation enables for assess-
ing the trust of their provided contributions.

Trust and reputation systems are also vulnerable to malicious
adversaries. Those adversaries try to disrupt and mislead the
decisions of reputation systems. In addition, some reputation
systems adopt incentive mechanisms to motivate participants to
join sensing campaigns. Such systems are vulnerable to selfish
adversaries who try to gain higher reputation scores or more
incentives than they merit [36, 37].

In complement to reputation-based trust systems, researchers
have suggested to equip smartphones with an embedded
Trusted Platform Module (TPM) [38, 39]. Such a module en-
sures the authenticity of participants’ contributions. Further-
more, some TPM-based systems can protect data from unau-
thorized access through applying some authentication and hard-
ware cryptography mechanisms.

Although, TPM solutions have some merits, they also suffer
from a number of limitations. A major limitation of TPM-based
solutions is that they only consider data authenticity and protec-
tion regardless of the participant’s sincerity and honesty [40].
TPM can not detect contributions from malicious participants
who deliberately initiate sensing actions that cause distortion
of their contributions. For example, in a noise monitoring ap-
plication, a participant may intentionally put his device inside
a bag. In a weather monitoring application, a participant can
put his device beside a fireplace or inside a refrigerator. Conse-
quently, the need arises for solutions to take into consideration
additional parameters related to the participants’ behavior and
honesty. These parameters may include participants’ reputa-
tion, knowledge, experience, etc.

In this paper, we survey existing research efforts for trust
assessment in participatory sensing applications belonging the
two major categories above which are reputation-based and
TPM-based trust systems.

1.1. Contribution

The contributions of this paper can be summarized as fol-
lows:

• We present an overview of participatory sensing, a classi-
fication of its applications and a classical architecture for
sensing campaigns [24, 41].

• We analyze the vulnerabilities of these systems and list a
set of attacks that can be launched in these systems. We
further propose a threat model that classifies these attacks.

• We recall the definition of trust in the context of participa-
tory sensing and propose a classification of trust systems
in this context.

• We discuss different methods of trust assessment such as
reputation and TPM systems. We define the goals, com-
ponents, and functions of these methods.

• We survey state-of-the-art trust systems for participatory
sensing and carry out a multi-criteria comparative study of
these systems. We perform this comparison according to
the parameters of the analysis framework.

• Finally, we draw the main directions of research in trust
assessment for participatory sensing applications.

1.2. Organization
The remainder of this paper is organized as follows. First, we

present an overview about participatory sensing systems in Sec-
tion 2. Then, we discuss different attacks and propose a threat
model for these systems in Section 3. In Sections 4, we discuss
the notion of trust and propose a classification of existing trust
systems. In Sections 5 and 6, we present a detailed discus-
sion of the two main classes of trust systems. In addition, the
state-of-the-art of trust systems are surveyed in Section 7. We
then present a comparative study and analysis of the surveyed
systems in Section 8. Finally, we explain open research chal-
lenges in Section 9, present the related work in Section 10, and
conclude the paper in Section 11.

2. Participatory Sensing

In the following subsections, we present the fundamentals of
participatory sensing.

2.1. Participatory Sensing Applications
Participatory sensing applications have a nature similar to

some other types of network based applications such as crowd-
sourcing. Crowdsourcing is defined in [42, 43] as the process of
obtaining needed services, ideas, or content by soliciting con-
tributions from a large group of people, and especially from
an online community, rather than from traditional employees
or suppliers. In crowdsourcing, participants usually have some
motivation for participation (e.g money, altruism, fun, reputa-
tion, and/or learning). Participants may perform any computa-
tional task. In addition, they can join crowdsourcing campaigns
from any fixed or mobile device. Moreover, crowdsourcing sys-
tems usually adopt some incentives and reward mechanisms.

However, participatory sensing has some particularities that
differentiate it from these applications. One difference is that
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participants are usually volunteers; they are not usually paid for
their participation. In addition, they should have handheld com-
putational devices with some sensing capabilities to join the
sensing campaigns. Moreover, incentives and rewards are not
usually available. More details about the differences between
participatory sensing and other applications are described in
detail by Ganti et al. in [44]. Here, we focus on participa-
tory sensing because participants in such environments usually
lack a strong motivation to comply with the tasks’ requirements
(e.g. putting their device in the correct position). Thus, these
systems are much more vulnerable to misbehaved participants.

Khan et. al. in [24] classify participatory sensing applica-
tions into three main categories: public, personal and social
centric participatory sensing. In public sensing applications,
participants use their mobile phones to collect data and observa-
tions about their surrounding environment such as noise, traffic,
pollution, etc. [45, 6, 9, 46, 47]. Personal sensing applications
are those in which the sensing is based on monitoring the par-
ticipants themselves such as their health status, activities, etc.
[48, 49, 50, 51, 52]. In social participatory sensing, participants
share sensed data with their friends [53], which can provide
them higher motivation for contributing their resources to par-
ticipatory sensing.

Participants’ side 

End user  Participant 

Application 
Server 

Administrator 

End Users’ side 

(1)Task 
Announcement 

(2) Sensing Observations 
(3a) Data Processing 
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(4) Reports Processing 

(5b) Query Processing 

End user 

Participant Participant 

(5a) End user’s 
Query 
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output 

Figure 1: Typical architecture of a participatory sensing system

2.2. Architecture of a Participatory Sensing System

Most of participatory sensing systems mentioned above share
the client-server architecture presented earlier in [41] and de-
picted in Figure 1. In this architecture, we can distinguish three
main parties: participants (depicted at the bottom of the figure),
a campaign administrator (depicted in the middle of the figure)
and end users (depicted at the top of the figure). In the follow-
ing steps, we show how different parties interact to accomplish
a sensing campaign according to this architecture:

1. Task announcement: The campaign administrator initi-
ates the participatory sensing campaign, manages the cam-
paign and setups the application server. Tasks are then an-
nounced to the participants through the application server
(step 1).

2. Sensing observation: Each participant selects one or more
tasks and uses his own device to capture his observations
(step 2).

3. Reports preparation: Once the participant finalizes cap-
turing the required samples, local processing is carried out
on the sensed data (step 3a). Local processing summarizes
sensed data, extracts some high-level information from the
data, and/or applies some privacy protection mechanisms.
Next, one or more sensing reports are constructed (step
3b). Finally, the participant’s device uses the available
communications network to send these reports to the ap-
plication server (step 3c).

4. Report processing: The received reports are maintained
by the application server. Reports received from differ-
ent participants for the same task are stored in the related
database. Subsequently, reports are processed and ana-
lyzed in order to extract the required features and mea-
surements (step 4).

5. End user query: The end user sends a query to the server
(step 5a). The server processes the query (step 5b), and
returns the result to the user (step 5c).

3. Vulnerabilities of Participatory Sensing Applications

One of the major limitations of participatory sensing systems
is the uncertainty of participants’ behavior. In addition, there is
a lack of incentives that can encourage participants to comply
with the requirements of the sensing tasks. Therefore, these
systems are vulnerable to erroneous contributions as well as to
contributions from malicious participants. In the following sub-
section, we discuss a framework of different attacks faced by
participatory sensing applications. Then, we propose a threat
model to describe how these vulnerabilities affect the system.

3.1. Attacks on Participatory Sensing Applications
In this section, we present a set of well-known attacks in net-

worked applications (e.g, [29, 54, 55, 56, 57]) and discuss how
they apply to participatory sensing applications [25].

• Corruption attack: This attack may arise as a result of
a malfunctioning sensor of a participant’s device. In addi-
tion, the adversary can deliberately contribute corrupted or
forged data. Furthermore, a local processing module can
also be used by the adversary for modifying the sensed
data before sharing it. Moreover, an adversary can initi-
ate sensing actions which may corrupt the sensed data by
putting his device in non-appropriate positions. The sys-
tem should have strong capabilities to identify correct con-
tributions in order to identify and exclude corrupted ones.

• On-off attack: In this attack, the adversary alternates be-
tween normal and abnormal behaviors. Specifically, the
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adversary provides false data randomly and irregularly
with a probability p. The adversary can keep his trust
above the required threshold by alternating his behavior as
required. This makes it difficult to be detected [58, 59, 60].
To defend against this attack, the system should keep the
history of participants besides a good capability to define
their instantaneous trust. The behavior of an on-off adver-
sary is usually unstable along time.

• Re-entry attack: An adversary who has a low trust level
decides to leave the system and to rejoin it using differ-
ent identification parameters. This attack enables an ad-
versary to contribute low quality or corrupted data and to
avoid the consequences for such misbehavior. This attack
is also referred to as Newcomer or White Washing attack
[57, 61, 62]. The resistance against this attack depends
on the strength of the adopted authentication mechanism.
That is the same participant should not have the ability to
obtain multiple identification parameters concurrently.

• Discrimination: Participants can simultaneously join dif-
ferent sensing campaigns each of which is concerned with
a specific phenomenon (e.g. weather, pollution, noise,
etc.) [63, 64, 65]. An adversary commits a discrimination
attack when he has a selective behavior towards different
campaigns. The adversary provides high-quality contribu-
tions to some campaigns whereas he provides low-quality
ones to other campaigns. To defend against such attack,
trust systems should consider the user who is involved in
different campaigns. However, trust systems are usually
concerned with only one specific campaign. This makes it
difficult for the current trust system to defend against such
an attack.

• Collusion attack: Multiple malicious participants acting
together can cause more damage than each one acting in-
dependently. This attack is referred to as a collusion at-
tack. Malicious colluding participants coordinate their be-
havior in order to provide unified false, corrupted contribu-
tions, and/or false feedback [66]. If the majority of partic-
ipants collude they can mislead the system measurements
and decisions. In order to attain robustness against such
attack, systems should not rely on consensus algorithms to
define good and bad contributions. Otherwise, the system
measurements and decisions will be biased if collusion is
committed.

• Sybil attack: Some participatory sensing systems apply
authentication mechanisms. However, a single participant
may have the ability to generate multiple pseudonymous
identities. For instance, the system, presented by Wang et
al. [37] uses a blind signature for authenticating partici-
pants. However, participants can generate different iden-
tification parameters. Subsequently, an adversary has the
ability to submit multiple sensing reports for the same task
or to submit many feedback reports for the same partici-
pant [67, 68, 37]. This behavior corrupts the system mea-
surements and misleads the trust system decisions. The

Sybil attack is studied earlier in [69, 70, 71, 72]. The
difference between Sybil and re-entry attack is that mul-
tiple pseudonyms are synchronized to login into the sys-
tem. Similarly, systems should adopt strong authentication
mechanisms to defend against Sybil attacks.

• Reputation lag exploitation: There is usually a time lag
between the instant when a sensing report is submitted and
the instant when the evolution of this report is reflected
on the corresponding trust rating of a participant. Con-
sequently, malicious participants have the chance to con-
tribute corrupted data by exploiting this lag. For instance,
an adversary initially provides good quality contributions
for some period of time in order to gain a high trust rate.
The adversary then misuses this trust by injecting the sys-
tem with corrupted reports [56]. To defend against such
attack, systems should have the ability to trace the instan-
taneous behavior of participants. Thus, the evolution of
their behavior should instantaneously reflect in their trust
scores.

• GPS spoofing: Another set of attacks was defined in [36].
These attacks target to tamper with the sensing campaign
through reporting an inaccurate location information. The
adversaries spoof their locations on the phone by using
some applications (e.g. FakeLocate). Then, they report
false information by letting the participatory sensing ap-
plication know that they are in the sensing area, when in
reality they are not [73, 74].

The previous attacks can all be implemented to affect either
the application or the trust and reputation systems. The fol-
lowing attacks target only the reputation system in which users
are permitted to provide a feedback about participants’ contri-
butions. Thus, the following attacks usually have an indirect
effect on the application measurements:

• Unfair ratings: The adversary rater does not report an ac-
curate feedback which reflects his genuine opinion about
the participant [56, 75, 76, 77, 78].

• Bad mouthing attack: This attack arises when the rater
provides a negative feedback rating for a trusted partici-
pant. This attack is also referred to as false accusation
attack [79, 80].

• Ballot stuffing attack: The adversary may assign a pos-
itive feedback to misbehaved participants. This attack is
also referred to as false praise attack [34, 81].

To defend against such attacks, trust systems should incor-
porate a methodology to evaluate the aggregated feedback
in order to mitigate the effect of such attacks.

3.2. Threat Model
In view of the above-described attacks, we propose a threat

model presented in Figure 2 to describe different forms of vul-
nerabilities and attacks in participatory sensing systems. We
propose to analyze attacks along the following dimensions:
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Figure 2: Threat model of the participatory sensing attacks.

Type. A threat can originate from different types of partici-
pants: erroneous, malicious, and selfish participants. Erro-
neous contributions may be a result of a malfunctioning hard-
ware or software held by a participant. Malicious participants
may deliberately report false, corrupted, or forged sensed data
in order to disrupt the application analysis and measurements.
While malicious adversaries offer their contributions without
concern to the task requirements. In addition, selfish adver-
saries arise with the systems which adopt some incentive mech-
anisms [36, 37]. Selfish adversaries attempt to increase their
utility (e.g. coupons, rewards, quotas, receipts). Alternatively,
they try to double spend their quotas. They can also launch
reputation-based attacks in attempt to gain higher reputation
scores and subsequently more incentives.

Source. An attack can be initiated either from a single partici-
pant or from a group of participants. In a single source attack,
a single participant either provides a bad data or reports an in-
accurate feedback. However, in a group source attack, a group
of participants coordinates their behaviors to achieve some ma-
licious goals by providing unified bad data or reporting unified
unfair feedback. Thus, they can significantly disrupt the system
measurements and decisions. It is, of course, more difficult to
detect and treat attacks originated from a group of adversaries.

Aim. An attack may disrupt the system by sharing erroneous,
corrupted, and fabricated data (i.e., data poisoning attack in
the figure). Other attacks try to disrupt the reputation system
by providing unfair ratings about other participants (i.e., rep-
utation system attack in the figure). Reputation-based attacks
make a trust system assigns low trust scores for honest par-
ticipants and high scores for dishonest ones. Thus, contribu-
tions of honest participants are considered less important and
vice versa. Subsequently, data poisoning attacks directly affect
the system, while reputation-based attacks indirectly affect the
measurements of the application system.

In Table 1, we classify the attacks discussed at the begin-
ning of this section according to the dimensions of our proposed
threat model. It is clear that only corruption attack can be er-
roneous (e.g. a result of malfunction sensor). Collusion, Sybil,
unfair, bad mouthing, and ballot stuffing attacks do not result in
a direct benefit to the adversary. However, they can only indi-
rectly bias the system decisions in favor of the adversary. Thus,
they can gain more rewards and incentives. Therefore, these
attacks can be classified under selfish behavior. While a mali-
cious adversary intends to disrupt the system, he can launch any

of the other attacks as well. It is evident also that, all attacks
are single source except collusion which is usually launched
through the coordination between multiple adversaries. We can
deduce also that collusion, Sybil, unfair rating, bad mouthing,
and ballot stuffing attacks can target the disruption of the repu-
tation system decisions. While corruption, on-off, re-entry, dis-
crimination, collusion, Sybil, reputation lag, and GPS spoofing
target to disrupt the collected data (i.e. data poisoning attack).

Recently, trust systems have been adopted to resist or miti-
gate the effect of the existence of such attacks. In this paper, we
survey and analyze these trust systems.

4. Classification of Trust Systems in Participatory Sensing

In participatory sensing, participants can tamper with their
observations before submission in different ways as discussed
in Section 3.1. Subsequently, participants’ honesty and veracity
determine the reliability of their contributions. Thus, assessing
the expected behavior of a participant can help to assess the
reliability of his contributions. That is, the quality of a provided
contribution reflects the behavior of its provider.

In [82], we discussed and compared different definitions of
trust. However, in the context of participatory sensing, trust
relates more to the quality and reliability of participants’ con-
tributions. Thus, trust of a contribution is defined as the prob-
ability of the contribution being correct, as perceived by the
application server [37].

For assessing the trust of participants and their contributions,
different trust systems have been proposed in participatory sens-
ing. These trust systems also seek to resist and/or mitigate the
effect of the attacks discussed in Section 3.1. We have stud-
ied these systems to define their features. Thereafter, in the
following subsection, we introduce a new classification frame-
work and discuss the advantages and disadvantages of each of
the proposed classes.

The framework of our classification of trust systems in partic-
ipatory sensing is based mainly on three dimensions including
the methodology of the trust assessment system, the distribu-
tion employed, and the anonymity assumed for the participants
involved in the sensing campaign, as depicted in Figure 3.

Trust Management 
System 

Methodology 

Distribution 

Anonymity 

TPM 

Reputation 

Centralized 

Collaborative 

Hybrid 

Anonymous 

Non Anonymous 

Figure 3: Classification of trust systems in participatory sensing.
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Table 1: Attacks classification according to the proposed threat model.

Attacks
Dimensions Type Source Aim

Erroneous Selfish Malicious Single Group Reputation System Data Poisoning

Corruption
√

-
√ √

- -
√

On/Of - -
√ √

- -
√

Re-Entry - -
√ √

- -
√

Discrimination - -
√ √

-
√ √

Collusion -
√ √

-
√ √ √

Sybil -
√ √ √

-
√ √

Reputation Lag - -
√ √

- -
√

GPS Spoofing - -
√ √

- -
√

Unfair rating -
√ √ √

-
√

-
Bad Mouthing -

√ √ √
-

√
-

Ballot stuffing -
√ √ √

-
√

-

4.1. Methodology
Trust systems can be classified according to the methodology

used for trust assessment. Some systems depend on the exis-
tence of a Trusted Platform Module (TPM) while other systems
try to assess the trust based on the reputation of participants.
TPM is a hardware chip that ensures the authenticity of a par-
ticipant’s contribution by signing it (e.g. [38]). More details
about how TPMs manage trust are presented in Section 5.

Alternatively, in reputation-based trust systems, participants’
behavior is the primary measure of their trust. Participants who
are witnessed to have a good behavior are assigned higher rep-
utation and trust scores. An example of reputation-based trust
system is presented in [83]. In this system, each participant
is assigned a reputation score which reflects the quality of his
current contribution. Additionally, the reputation score and the
old trust score, which were previously assigned to a participant,
are integrated to compute a new trust score for this participant.
The full process of assessing trust through reputation systems
is discussed in Section 6.

We discuss the strengths and weaknesses of TPM and
reputation-based systems in Sections 5.4 and 6.3 respectively.

4.2. Distribution
A trust system can be constructed as centralized, collabora-

tive, or hybrid. Some trust systems exploit the existence of a
trusted central third party referred to as trust server (trust man-
ager). This type of system is called centralized trust system. In
these systems, trust scores are maintained and stored by a trust
server. The trust server receives both the participants’ contri-
butions and users’ feedback. It then evaluates the contributions
and aggregates the feedback to calculate a trust score for each
participant. It also disseminates these scores to the users. A
detailed discussion of some instances of these systems are pre-
sented in Section 7.1.

In some cases a participatory sensing application allows a
node to act as a source and a sink at the same time. Each node
receives the others’ contributions while sharing its own ones.
In such systems, trust maintenance and storage are equally dis-
tributed over all the nodes in the system. These systems are
referred to as collaborative trust systems. In these systems,
there is no central trusted authority. Each entity receives the
other participants’ contributions, evaluates these contributions,

aggregates the neighbors’ opinion about the target entity, and
calculates a trust score for the target entity. Each node then
disseminates the calculated trust scores to be exploited by the
others. In Section 7.2, we introduce several examples of collab-
orative trust systems.

In some other systems, the application server is responsi-
ble for trust assessment. In these systems, there is no central
trusted third party. The application server itself uses its own
evaluation of participants’ contributions and/or users’ feedback
to assign trust scores to those participants. Each application
server manages the trust scores of the participants involved in
its own campaigns. We refer to these systems as hybrid trust
systems. In hybrid systems, the application server simultane-
ously hybridizes/incorporates the role of both trust and appli-
cation servers. One of these systems is presented in [84]. In
this system, the application server measures the consistency of
a participant’s contribution compared with the other contribu-
tions for the same task. It then assigns a trust score to each
participant. In Section 7.3, we discuss various hybrid trust sys-
tems.

4.2.1. Merits and Limitations of Different Distributions

Concerning centralized trust systems (e.g. [85, 86, 87, 88,
89]), the existence of a central authority confirms that informa-
tion collection, aggregation, and dissemination are maintained
correctly. Additionally, they are resistant to some types of at-
tacks such as Sybil and collusion attacks. Furthermore, a mini-
mal overhead is imposed on the participants’ devices, which of-
ten have computation and energy limitations. However, the cen-
tral authority must be available and correct at all times. Thus,
centralized trust systems are vulnerable to a single point of fail-
ure problem. Moreover, the central server imposes some limi-
tations on the system’s scalability.

The limitations of centralized systems can be avoided by em-
ploying collaborative trust systems (e.g. [90, 91]). Neverthe-
less, collaborative systems impose extra overhead on every en-
tity in the system. Hybrid trust systems seek to find a balance
between scalability and the overhead distribution among the ap-
plication server and the participants (e.g. [92, 37, 36]).
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4.3. Anonymity

In participatory sensing campaign, participants share their
sensitive data such as their location information [41]. As dis-
cussed before, they do not have some strong motivations to en-
courage them join sensing campaigns (e.g. no remuneration
for participation). Thus, participants are inhibited to join these
campaigns if they are asked to contribute their sensitive data
without the assurance of strong privacy guarantees [26]. For
this, trust systems that preserve participants’ anonymity can be
constructed. Preserving the participants’ anonymity encourages
them to share their personal information without being con-
cerned about identity leakage (e.g., [68, 89]). In [68], Wang et
al. adopt a blind signature module for anonymity preservation.
In [89], Huang et al. suggest using multiple pseudonyms for the
same participant such that the participant uses a new unlinkable
pseudonym each time. In this system, the server is responsible
for pseudonym management.

In the following sections, we focus on the methodology di-
mension of the proposed classification since we are interested in
how trust can be assessed within participatory sensing through
different methodologies (i.e. TPM and reputation-based trust
systems).

5. Trusted Platform Module (TPM)

Trusted Platform Modules (TPMs) are hardware chips that
reside on participants’ devices. Among other goals, TPMs en-
sure that the data sensed by a mobile sensor and reported to an
application server are indeed captured by authentic and autho-
rized sensor devices within the system. Thus, TPMs assure data
authenticity as described in [93, 94]. In the following subsec-
tion, we describe some of the components of a TPM module.

Storage 

Secure 
Platform 

Configuration 
Register (PCR) 

Option input 
 (On/Off) 

Non‐Volatile 
Secure Storage 

Execution  Security Enablement 

Secure Program 
Execution  Engine 

Key Generation 

Hash 
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Figure 4: TPM module

5.1. TPM Components

As depicted in Figure 4,1 a TPM comprises of several com-
ponents [93, 94]. These components include:

1http://www.trustedcomputinggroup.org/resources/trusted platform mod-
ule tpm summary

• Non-volatile secure storage: A TPM stores the informa-
tion required for authentication such as passwords, certifi-
cates, and/or encryption keys. This information needs to
be stored securely over long periods of time. Therefore,
such information is stored in a non-volatile secure storage.

• Secure platform configuration registers: Platform Con-
figuration Registers (PCR) is the storage in which the
sensed data are stored.

• Hash: A cryptographic hash module is used to calculate a
hash value for the data that are going to be loaded in the
PCR. The hash value is then appended to the data itself
and loaded altogether in the PCR.

• Platform identity key: The private key of a TPM is stored
in a separate storage. It is referred to as Attestation Identity
Key (AIK).

• Secure program: The execution engine of a TPM which
executes one or more of the TPM required functions.

• Key and random number generator components: A TPM
can include components for generating keys and random
numbers. Both keys and random numbers are exploited by
the TPM to perform different functions carried out through
the secure program.

• Option input (On/Off): The TPM is enabled or disabled
according to an optional input (On/off). The default value
of this input is off.

These components integrate to perform some functions.
Some of these functions are described in the following subsec-
tion.

5.2. TPM Functions

A TPM runs a secure program which performs one or more
of the following functions:

Digital signature. The most important concern of TPM is to
ensure the authenticity of participants’ contributions. A TPM
uses the stored information required for authentication such as
passwords, certificates and/or keys for signing the sensed data.
This enables the data to be verified by the server. Addition-
ally, a TPM can generate anonymous contributions by signing
them with the private key (AIK) besides using some certificates
which are granted by a trusted third party for verification. The
TPM can thus help to preserve the participant’s anonymity (e.g.
[38, 39]).

Hardware based cryptography. A TPM has the ability to en-
crypt the data before storing it into PCR. It uses the keys gen-
erated by the key generator module and/or the AIK for data en-
cryption. This mechanism is used to ensure that the data stored
are protected from unauthorized software access. Therefore,
this function makes it much harder to access the stored infor-
mation without proper authorization (e.g. [95]).
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Recording software run-time configuration. Although a TPM
is a hardware solution for trust, it is not only concerned with
the hardware that capture the sensed data, but also with the
application software which carries out the local data process-
ing on the participants’ mobile devices. However, a TPM does
not have the ability to control which software is launched on
the participant’s device. Nevertheless, it has the ability to store
the run-time configurations of the software. Thus, a TPM can
send these data along with the participant’s contribution to the
server. The server is then able to verify that only the authorized
software configurations are adopted for data processing. If the
reported configurations differ from the required ones, it means
that the software has been attacked. Consequently, the received
contributions will not be trusted by the server(e.g. [96]).

5.3. TPM Goals

Through the functions described above, TPM can assure one
or more from the following objectives:

• Attesting integrity: Integrity attestation is the main goal
of TPMs. This property assures the authenticity of partic-
ipants’ contributions. It confirms that the data received
from a participant are indeed captured by authenticated
sensor that resides on the participant’s mobile device.
Hence, it enables the application server to trust the re-
ported data as authentic. This property is sometimes re-
ferred to as remote attestation. The signature function is
the one which is responsible for the assurance of such goal
(e.g. [38, 39]).

• Data protection, sealed storage: This property assures
that the data are protected from unauthorized access. This
implies that only authorized users and software can access
these data. This goal can be assured through the incorpora-
tion of a hardware based cryptography function (e.g.[95]).

• Secure boot: This property ensures that a mobile device
can boot only the authorized trusted hardware and soft-
ware configuration. This guarantees that the sensed data
are processed only through the trusted hardware and soft-
ware. The function of storing the software run-time con-
figurations satisfies this goal (e.g. [96]).

• Participant privacy: A sensing report usually contains
personal and sensitive information about the participant.
This information can be exploited for participant re-
identification. Although, preserving participants’ privacy
is not a primary goal of TPM trust systems, in general,
some TPM trust systems consider this issue in participa-
tory sensing such as the systems presented in [95, 96].

5.4. TPM Merits and Limitations

Most of existing trust systems (such as [39, 38, 96, 97, 95])
assure integrity attestation. Additionally, other systems can
achieve the secure boot goal (such as [96]). While some TPM-
based approaches are able to assure data protection and user
anonymity (such as [95]).

We can deduce that TPM-based trust is considered as a viable
solution for trust assessment in participatory sensing applica-
tions. However, the goals achieved by these systems do not im-
ply that they can detect the existence of corrupted contributions.
TPM seeks to assure integrity regardless participant’s honesty.
Dishonest participants create some interference to corrupt their
contributions. Consequently, the need arises for trust systems
which can measure the quality of contributions and estimate
the honesty of participants. Therefore, reputation-based trust
systems have been introduced seeking to satisfy these needs.

Furthermore, concerning TPM availability, TPM trust sys-
tems require smartphones or computing devices with special
sensors that are manufactured to support trust systems through
an embedded hardware chip. Thus, this property raises the
prices of these devices that support TPM. Consequently, the
devices with embedded TPM are currently not manufactured
for the mainstream market. Moreover, there is no guarantee
that all participants who join sensing campaigns are equipped
with such devices. In addition, embedded chips consume more
energy, computation, and communications capabilities, which
may inhibit participants to join sensing campaigns.

These limitations obstruct the widespread use of TPM-based
trust systems for the moment. To the best of our knowledge,
TPM is still a mostly theoretical framework that has not been
widely applied to real life participatory sensing. However, it
has been successfully applied in other network domains such as
[40].

6. Reputation Systems

In the previous section, we have discussed TPM-based trust.
It is evident that TPM is not a practical solution for trust as-
sessment till the moment. Thus, researchers direct their efforts
towards reputation-based trust assessment methods. Reputation
is an aggregated opinion of the community members about how
much an individual or an entity can be trusted. A person who
needs to interact with a stranger, often considers his reputation
to determine the amount of trust that he can place in him.

In recent years, reputation systems have gained popularity as
a solution for securing distributed applications from misuse by
dishonest entities. A reputation system computes the reputa-
tion scores of the entities in the system based on the feedback
provided by fellow entities. A reputation system makes an en-
tity accountable for its behavior by creating the possibility of
losing good reputation and eventual exclusion by the commu-
nity. Reputation systems make certain that users are able to
gauge the trustworthiness of an entity based on the history of
its behavior. The expectation that people will consider one an-
other’s pasts in future interactions constrains their behavior in
the present [28, 82].

As described before, in participatory sensing, participants be-
havior affect the quality of their provided contributions. Thus,
reputation here is much more related to the quality of partici-
pant’s contributions. Therefore, in the context of participatory
sensing, Wang et al. [37] define the term reputation, as the
synthesized probability that the past sensing reports sent by the
participant is correct, as perceived by the server. Thus, in the
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context of participatory sensing, reputation-based trust systems
do not consider only participants’ related information such as
the feedback of their followers, but they consider the quality of
their provided contributions as well.

In the following subsection, we present how reputation is
used to assess trust in participatory sensing applications.

6.1. Reputation-based Trust System

Reputation-based trust systems usually have four main
phases [57]: (1) information collection; (2) information map-
ping to trust score; (3) dissemination and (4) decision making.

Based on a comprehensive study of existing trust systems in
participatory sensing, we have deduced a new framework of
reputation-based trust systems. We depict this framework in
Figure 5. In this framework, we describe in details the first
two phases of reputation-based trust system (i.e. (1) informa-
tion collection, (2) information mapping to trust score). The
highlighted parts of the figure define the different sources of in-
formation exploited in the information collection phase. While
the rest of the figure parts describe how the available informa-
tion is used to assess the trust of participants through the second
phase (i.e information mapping to trust score). In the following
subsections, the details of this figure are discussed.

In a participatory sensing campaign, the server publishes a
set of tasks that participants decide to join. When a given par-
ticipant, participant Pi in the figure, captures his observations
for a specific task Task j, he constructs one or more sensing re-
ports RPi for this task, and sends these reports to the application
server. The server then gathers observations from different par-
ticipants to carry out the required analysis. In addition, a trust
system is applied to assess the trust of participants and their
provided contributions as follows:

6.1.1. Information Collection
Different information sources have been used to assess the

trust of a participant. These sources include a Watchdog Mod-
ule (WDM), users’ feedback, community trust, and the history
data of the target participant.

Watchdog Module. WDM evaluates participant’s current con-
tribution (e.g., [92]). Sensing reports that belong to the same
task are grouped together. Some consensus and outlier de-
tection algorithms discussed in [98, 99, 100] are then used to
evaluate the quality of a participant’s contribution. These algo-
rithms measure the similarity and consistency of each contribu-
tion compared with the other contributions provided by other
participants. The higher the similarity of a contribution the
more reliable it is. It is commonly assumed that the system
is free of collusion or Sybil attacks. Otherwise, this measure
can be biased. The result of a WDM is referred to as Report
Evaluation (RE) (steps 1a, 1b, and 1c).

Users’ Feedback. Some reputation systems permit end users
to assign some feedback to the provided contributions [86]. A
user x may assign a feedback to a contribution RPi of participant
Pi referred to as Feedback (Fx) (step 2).

Users should honestly share both positive and negative feed-
back. Indeed, sharing only positive or only negative feedback
exposes trust systems to different types of attacks such as bad
mouthing and ballot stuffing attacks discussed in Section 3.1.
Consequently, a feedback Fx should be evaluated. In Sec-
tion 6.1.2, we explain how Fx is evaluated.

Community Trust. A trust server may query his neighbors
about their trust of the target participant. We refer to this type
of information as the Community Trust CT as shown in the
(step 3) of Figure 5. The trust data provided by the community
members should also be verified against different rating attacks,
Section 6.1.2 discusses this step.

History. Another type of information is the old trust scores
stored at trust databases. Old trust score of a participant Pi is
noted as OldTPi in the (step 4) of Figure 5.

Following the different sources of information described
above, we can deduce that the collected information is created
either manually or automatically. On the one hand, manual in-
formation is usually created as an evaluation of a participant’s
current contribution (e.g., the output of WDM). On the other
hand, automatic information is an available trust data either
stored at trust databases (i.e. direct information) or received
as a feedback and responses to the trust queries (i.e. indirect
information).

Thereafter, the collected information is used to assign a trust
score to the participant through the trust mapping phase as
shown in Figure 5 (steps 5, 6, and 7). In the following section,
we discuss the details of this phase.
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Figure 5: A framework of reputation-based trust system

6.1.2. Information Mapping into Trust Score
The mapping process is carried out either in a centralized or

a distributed way. In centralized mapping, participants’ contri-
butions and end users’ ratings are exploited by a single entity
in the trust system to calculate the new scores. This entity cal-
culates a new reputation ρPi and/or trust score NewTPi for each
participant, and updates the participants’ record in the related
database (e.g. [86]). Instead, in distributed mapping systems,
the mapping process is distributed over more than one entity
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in the system. For example, in [89], both the end user and the
server map a new reputation score for each participant.

Reputation Mapping. In this phase, the first objective is to as-
sign a new reputation score ρPi to the participant. Here, a rep-
utation mapping function is adopted (step 5). According to the
literature [57], such reputation mapping function is either de-
terministic or probabilistic. In deterministic mapping, the out-
put is computed according to a set of well-defined input values.
Oppositely, probabilistic mapping functions have the possibility
of an error (within some known bounds) and an unpredictable
output due to some randomness in their input values. Various
approaches have been applied to compute reputation scores of
participants [101, 27].

Due to the novelty of incorporation of trust management so-
lutions into participatory sensing applications, not all the rep-
utation computation methods that have been used in other do-
mains have been investigated yet. Most of the current trust sys-
tems rely on either Bayesian reputation as a probabilistic ap-
proach [102] or the Gompertz function as a deterministic ap-
proach [103] for reputation mapping. The characteristics of
these functions are very suitable for trust construction within
participatory sensing environments. This is because the output
of these functions dynamically reflects the changes in the par-
ticipant’s behavior along time. Thus, participants’ behavior can
be effectively traced using one of these functions. Additional
characteristics are discussed as part of the definition of these
function hereafter.

Bayesian Model Beta distribution is a statistical distribu-
tion which is defined according to the two parameters α and β.
Its probability density function f for 0 ≤ x ≤ 1 is formulated in
Equation 1 as follows:

f (x/α, β) =
Γ(α + β)
Γ(α)Γ(β)

× x(α−1) × (1 − x)(β−1) (1)

where, Γ is the gamma function, α and β represent the accu-
mulated number of good and bad interactions of the participant
respectively. The distribution domain is [0, 1]. The reputation
is calculated by finding the expectation E(α, β) of the beta dis-
tribution according to Equation 2.

ρPi = E(α, β) = α/(β + α) (2)

An example of the Bayesian reputation plot is depicted in
Figure 6. The plot is generated for three participants with dif-
ferent behaviors. For instance, if the number of a participant’s
good interactions is significantly greater than the number of bad
ones, the calculated reputation score usually exceeds 0.7. In
Figure 6, where α = 20 and β = 5, the reputation score is 0.8.
Oppositely, the calculated reputation score does not exceed 0.3
where the participant has more bad interactions than the good
ones. Figure 6 shows the case where α = 2 and β = 10, the
reputation score in this case is 0.16. Whereas, the participant is
assigned a reputation score around 0.5 if the participant has a
slight difference between his accumulated number of good and
bad interactions. The example of α = 4 and β = 6 reflects this

case. The reputation score is 0.4. Hence, the reputation score
calculated according to the expectation of the beta distribution
reflects the type of behavior of the considered participant. Con-
sequently, this model has the ability to measure the participant’s
deviation rate from the good behavior.

Furthermore, reputation should be calculated based on the
most current information while keeping the effect of some his-
torical data. The Beta aging parameter wage supports the ability
to consider discounting of old information. The new values of
α and β are calculated according to the following equations.

αnew = wage ∗ αold + αcurrent (3)

βnew = wage ∗ βold + βcurrent (4)

In this equation, wage ranges from 1.0 which means keeping the
entire history to 0.0 which means that no history was taken into
consideration.
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Figure 6: The beta output of various types of participants.

Gompertz Function Gompertz output gradually increases
to reach its asymptote during a specific period of time. This
behavior is reflective of trust construction in participatory sens-
ing systems. For example, in such participatory sensing envi-
ronments, trust is built gradually over a period of trustworthy
behavior. It can also resemble some social parameters which
positively affect trust such as friendship duration, the number
of interactions between entities, etc. For example, long last-
ing relations are stronger than recent ones and subsequently are
more trusted. Similarly, it is implied that the stronger the re-
lation between entities, the higher the number of interactions
between them during a given period of time. People are more
interested to interact with persons with whom they are more fa-
miliar. These properties are well resembled by the output of
Gompertz function. Gompertz is defined according to Equa-
tion 5,

ρPi = f (t) = a × e−be−ct
(5)

In this equation, a is the upper asymptote, b controls the dis-
placement of the output along the x axis and c adjusts the
growth rate of the function. The output of Gompertz belongs
to the range [0, 1]. The output of Gompertz function for c =

1.5, 2.5, and 5 where b = 10 is depicted in Figure 7 (a).
As an example, consider t represents the number of interac-

tions per day with the participant. We consider the Gompertz
with a = 1, b = 10, c = 1.5, in Figure 7 (a). A participant who
has 1 interaction per day is assigned a reputation score 0.11.
Whereas, the participant with 3 interactions per day is assigned
a reputation score 0.89.
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Figure 7: The output of Gompertz and Inv. Gompertz functions

Inverse Gompertz Function The output of inverse Gom-
pertz function is used to resemble the parameters which nega-
tively affect trust such as timeliness which represents the delay
of participant responses. It is implied that, the more the delay
of a participant respond to a task, the less concern he pays for
it. Subsequently, late responses are usually assigned less trust
scores and vice versa. Inverse Gompertz is defined in Equation
6. The output of the inverse Gompertz function for different
values of b is depicted in Figure 7 (b).

ρPi = f (t) = 1 − a × e−be−ct
(6)

As an example for the inverse Gompertz, consider t repre-
sents the timeliness of the participant’s response in seconds. We
consider the Gompertz with a = 1, b = 20, c = 0.5, in Figure
7 (b). A participant who has a timeliness of 1 second is as-
signed a reputation score 1. Whereas, the participant who has
10 seconds delay is assigned a reputation score 0.13.

Both Gompertz and inverse Gompertz have the ability to in-
tegrate both some aging and reward/penalty mechanisms. For
this, the input t is adjusted in order to reflect the aging parame-
ter and reward/penalty mechanism as depicted in Equation 7,

t́ =

k∑
ḱ=1

λ(k−ḱ) × t (7)

where k is the total number of tasks which the participant
joined, the summation is used to aggregate historical informa-
tion. The impact of the old data is reduced through λ(k−ḱ) with
0 ≤ λ ≤ 1. λ is used as the aging parameter. It is referred to
as aging weight. In addition, a reward/penalty mechanism can
be adopted through replacing λ with two different values λs and
λp. This implies two different rates for increasing or decreas-
ing the reputation scores. λp is used with participants who have
been witnessed to misbehave, such that λp > λs. This makes the
reputation of a participant with λs increases more rapidly than
the one with λp. Thus, misbehaved participant has to interact
more cooperatively to neutralize the effect of his misbehavior.

Incorporating both aging parameter and reward/penalty
mechanism gives the Gompertz function and its inverse better
capabilities to reflect the features of the instantaneous behavior
of participants. In addition, it deters participants to misbehave
in order not to be penalized.

Information Evaluation. The second objective of this phase
is to verify the received information such as users feedback Fx

and the trust scores received from the community CT against
different rating attacks discussed in Section 3. Most trust sys-
tems in participatory sensing use the reputation ρx stored in the
database of the rater x as a weight for his provided rating. Con-
sequently, low weight is assigned to the rating provided by a
user or entity with a poor reputation, and vice versa. The out-
put of this module is referred to as Evaluated Feedback FxEvl
and Evaluated Community Trust CTEvl (step 6). However, this
action does not solve the problem of different rating attacks; it
only seeks to mitigate the effect of such attacks.

Trust Mapping. The last issue, in this phase, is to assign a new
trust level NewTPi to participant Pi (step 7). Here, not only the
current reputation score ρPi is considered but also other param-
eters. These parameters include the current report evaluation
RE evaluated by the WDM, the old trust level assigned to the
participant OldTPi , the trust provided by the community CTEvl

and/or the users’ feedback about the participant FxEvl. Each
trust system selects one or more of these parameters and aggre-
gates them to calculate a new trust NewTPi score of the partici-
pant. Finally, this new score is used to update the participant’s
record in the related databases (step 8).

6.1.3. Dissemination
This phase is realized either in a centralized or a distributed

manner. In centralized dissemination, the reputation scores are
stored in and propagated from a single entity. Additionally, the
regularity of the dissemination process comes in one of two
forms; proactive and reactive dissemination. In the proactive
mode, the dissemination is performed periodically at a fixed
rate. In the reactive mode, the dissemination is performed ac-
cording to some triggers, events or when some threshold is
reached. In other systems, a query message is required for ob-
taining trust scores [90].

6.1.4. Decision Making
The final phase in reputation-based trust systems is the deci-

sion making. The decision mainly depends on the trust score
assigned to the participant. Trust scores are either discrete or
continuous values. Discrete trust scores use a set of discrete
qualitative values such as (Very Untrustworthy, Untrustworthy,
Trustworthy, Very Trustworthy). Continuous trust scores come
in a range of values such as [0, 1]. If the trust score for a par-
ticipant is greater than a predefined threshold, the participant’s
contribution is accepted. Moreover, the participant is then re-
warded if the trust system applies an incentive/reward mecha-
nism. Oppositely, if the trust score is below the threshold, the
participant’s contribution may be rejected and the participant
may be penalized (if a penalty mechanism is adopted). This
type of decision is referred to as a binary decision. However,
some systems are designed to accept all received contributions.
In these systems, the current trust score of the participant is used
as a weight for his contribution. We called this type of decision
as fusion.

In Figure 8, the reputation-based trust systems’ phases, func-
tions and parameters described in the previous subsections are
summarized.
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In the following subsection, we define the goals that can be
assured through reputation-based trust systems.

6.2. Properties of Reputation-based Trust Systems
According to the previous discussion of reputation-based

trust systems, one can identify the main properties of these sys-
tems as follows:

• Traceability: It is more probable for the participant who
used to be honest to have a good behavior in the fu-
ture. Similarly, a participant who previously behaved ma-
liciously is expected to provide untrusted contributions.
Thus, participant’s past behavior should reflect his current
reputation and trust score.

• Freshness: The reputation score assigned to a participant
should increase or decrease to demonstrate the most recent
trustworthiness qualities of this participant, as a function
of his latest interactions.

• Separability: Participants should not have control on the
update process of their reputation scores. They should not
have the ability either to maliciously interfere to update
their scores or to demonstrate a forged or erroneous repu-
tation score.

• Exposure: Malicious participants should be exposed.
Having committed a malicious behavior, participant
should be identified as malicious and potentially evicted
or at minimum his malicious contributions should be ex-
cluded. This property is referred to as accountability.

Anonymous reputation systems are vital for the success of
participatory sensing as we discussed in Section 4.3. Anony-
mous reputation-based trust systems seek to achieve the previ-
ous goals while maintaining the anonymity of the participants’
identity. The anonymity of a participant can be preserved by
the satisfaction of the following goals as well. Some of these
properties have been previously mentioned in [68].

• Anonymous login: A participant should have the ability to
login and to submit his reports anonymously. Participants’
real identities should not be revealed.

• Non-associative: A sensing report should include neither
the participant’s real identity nor a reference to his real
identity. Hence, the server will not be able to relate the
sensing report to a specific participant by anyway.

• MSR unlinkabelity: The server should not have the abil-
ity to link Multiple Sensing Reports (MSR) from the same
participant.

• Anonymous demonstration: Participants should have the
ability to demonstrate their reputation scores to the server
without revealing their real identities.

Both the satisfaction of these goals and the resistance against
the previously mentioned attacks mainly depend on the strength
of the trust system.

6.3. Merits and Limitations of Reputation-based Trust

Most reputation-based trust systems (such as [68, 89, 87,
88, 85, 86, 92]) assure these goals (e.g. traceability, exposure,
freshness, etc.). However, each trust system assures each one of
these goals with different degrees of satisfaction. For instance,
reputation trust systems have the ability to detect participants’
misbehavior (i.e. exposure property). However, the speed to
detect such misbehavior depends on the strength of the repu-
tation mapping function. A reputation mapping function may
incorporate some aging parameters to assign a higher weight
to participants’ recent interactions. Furthermore, reward and
penalty rules can be applied (Section 6.1.2).

Most of the current trust systems use either Bayesian or
Gompertz function for reputation mapping (Section 6.1.2). It
was clear that the systems which exploit Gompertz mapping
function have stronger capabilities than the other mapping func-
tions exploited in participatory sensing. This is because Gom-
pertz function has the ability to integrate both the aging pa-
rameters and the reward/penalty mechanisms, which enable the
system to rapidly reflect new features of a participant’s behavior
on the assigned trust score. The systems that adopt the Gom-
pertz function include [84, 89, 85, 86]. While Bayesian model
is exploited in [104, 105].

In addition, some reputation-based trust systems are de-
signed such that it can preserve the privacy of participants
through the assurance of the goals of anonymous reputation
system described above such [68, 89, 87, 88]. These systems
encourage participants to log-in sensing campaign without the
fear of the possible privacy breaches.

In the next section, we present the state-of-the-art trust sys-
tems in participatory sensing applications.

7. Examples of Trust Systems from State-of-the-Art

In the following, we describe different examples from the lit-
erature of trust management in participatory sensing. We clas-
sify these systems according to their distribution as described
in Section 4.2.

7.1. Centralized Trust Systems

Centralized trust systems are those systems where trust
scores of participants are maintained and stored by a trusted
central third party. In the following, we discuss examples of
these systems.

Manzoor et al., in [83, 106], seek to compute the trustworthi-
ness of participants’ predictions about bus arrival times in a bus
watch participatory sensing application. The trust server adopts
a WDM to measure the deviation of the participant’s prediction
compared with others’ predictions. This measure is fed into
a Gaussian membership function to define the quality of each
contribution. The output of the Gaussian function is combined
with the old trust of the participant to estimate the instantaneous
trustworthiness of this participant.

A centralized trust framework for social participatory sens-
ing systems is introduced by Amintoosi et al. in [85]. This
framework estimates a score of the Trust of Contribution (ToC).
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Figure 8: Mapping trust in reputation-based trust system

This score assesses both the Quality of Contribution (QoC) and
the Trustworthiness of Participant (ToP). Some methods are
adopted through a WDM to evaluate QoC (e.g. [100, 99]). In
addition, ToP is used to measure both the participants’ capa-
bilities and the strength of their relation with the requester (e.g.
expertise, timeliness, locality, friendship duration, and interac-
tion time gap). The system adopts both Gompertz and Inverse
Gompertz to measure ToP. To calculate a TOC score of the
participant, the system combines both of the QoC and the ToP
via a fuzzy inference system [85].

The authors introduced an improved version of the previ-
ous system in [86, 107]. A reputation and a subjective rating
module are incorporated. The reputation module utilizes the
PageRank algorithm [108] to calculate and update the reputa-
tion scores of participants. This algorithm relies on the dif-
ference between the number of nodes that trust the partici-
pant compared with the total number of his relations, the most
trusted participants are assigned higher reputation scores. In ad-
dition, the subjective evaluation enables the requester to assign
a rate to the participant’s contribution as a user feedback. The
reputation score of the requester is used as a weight for his pro-
vided rating. The new trust score of a participant is calculated
based on the requester rating and ToC calculated according to
the old version of this system [86, 107]. Misbehaved partici-
pants are penalized by decreasing their trust scores. This sys-
tem has the ability to trace and detect the participant’s behavior
through the continuous update of the reputation scores. It also
reflects the change of the participant’s behavior. Additionally,
early detection and penalty of misbehaved participants act as a
deterrent for malicious behavior.

Amintoosi et al. in [109], proposed another improved ver-
sion of the system presented in [86, 107] and discussed above.
The authors propose a methodology to select the most appro-
priate and trustworthy participants among friends and friends of
friends in a social participatory sensing network to attend sens-
ing campaigns. First, the selection process depends on the com-
patibility between both the task requirements’ parameters and
participants’ attributes. Participants who achieve an acceptable
level of homogeneity with the task requirements are selected to
attend the campaign. The most trusted paths to those partici-
pants are defined. In such social sensing network, routes from
a requester to the selected participants can include other inter-
mediate nodes. Thus, a depth first search is applied to define

the most trusted route to those participants. The trust score of a
route is calculated as a combination of the trust scores of each
pair of nodes along the route. Then, the route with the highest
trust score is selected. Moreover, a suggestion component is
incorporated to build the list of participants who achieve a sat-
isfactory behavior during multiple campaigns. Thus, it enables
the requester to recruit the most appropriate participants to join
the sensing campaign.

A privacy preserving reputation system for participatory
sensing is presented by Huang et al. in [89]. The authors try
to compromise between both participants’ anonymity and the
trust of their contributions. Participants share their contribu-
tions anonymously using some changeable pseudonyms. The
system relies on a trusted server referred to as (TTP). The server
maintains a mapping list between participants’ real identities
and their associated pseudonyms. The server then assigns new
reputation scores to the participants relying on Gompertz func-
tion described in Section 6.1.2. Hereafter, the server updates
the corresponding reputation score and attaches it to the real
identity. The server transfers the reputation score from the real
identity to the next chosen pseudonym.

Gisdakis et al introduced SPPEAR as a privacy preserving
framework that assures both privacy of participants and ac-
countability [87]. A group manager (GM) announces a list
of tasks. A participant selects one or more and authenticates
with the GM to obtain a private key and an authorization to-
ken from the GM. The participant shares this token with an
Identity Provider (IdP) entity which provides participants with
pseudonyms from a Pseudonyms Certification Authority (PCA).
SPPEAR adopts a protocol for the revocation of participants
who submit samples that deviate from the rest of the contri-
butions. A resolution authority (RA) provides the pseudonyms
of those participants to PCA, PCA provides RA an authoriza-
tion token including an assertion that used to generate these
pseudonyms. RA forwards this token to the IdP who black-
lists all tokens of those pseudonyms and sends a confirmation
to GM. A similar protocol is adopted for the revocation of par-
ticipants who have malfunctioning devices and thus uninten-
tionally provide some corrupted contributions.

Chang et al., in [67], propose a trust system for detecting
Sybil attacks. Sybil nodes usually use the same radio channel
for communication. Thus, this scheme detects the existence of
Sybil nodes through defining the normal rates of some statisti-
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cal measures of a participatory sensing network of interest (e.g.
the number of participants who join the system campaigns at
specific time). To determine if the node is genuine or Sybil,
a regular check for these measures is performed by a Charac-
teristics Checking Scheme (CCS ). Additionally, a Trust Credit
Assessment (TCA) module is adopted to collect the feedback re-
ported about the nodes in the system. If both CCS and TCA find
the measured rates outbound the normal ranges, the requester is
notified that Sybil nodes may exist. Otherwise, the requester
is notified that the network is free of such nodes. Although
this system mainly depends on the CCS, it is considered as a
reputation-based trust system because it aggregates the feed-
back of the nodes from the requesters which is a reputation
mechanism.

7.2. Collaborative Trust Systems
In collaborative trust systems, each node in the system main-

tains and stores trust scores in its own storage, as defined in
Section 4.2.

LotS is a privacy preserving reputation framework that is pre-
sented by Michalas et al in [88]. In this framework, a partici-
pant joins one of the groups created previously by a Registra-
tion Authority (RA). Participants can anonymously share their
contributions with another entity C by signing them with the
group signature. If the contribution is verified to be correct, the
recipient forward it to the rest of the community. Each com-
munity member can send a voting request to C to evaluate the
contribution received. C should make sure that each entity has
the ability to send no more than one voting request for the same
sensing report. These votes are then aggregated to calculate a
reputation score of the concerned participant.

Yang et al. presented a system in [91] that enables the cam-
paign administrator to filter out untrusted participants. First,
the system exploits participant’s reputation derived from both
the quality of their current contribution and their old reputation
scores. Feedback scores derived from the community members
are aggregated. Moreover, some personal information about
the participant is integrated. Each one of these parameters is
assigned a score. According to the scores of these parameters,
a weighted sum trust score is calculated for each participant.
Participants are then ranked based on these trust scores. Fi-
nally, the most trusted participants are selected to attend the
campaign. Although the authors presented an integrated frame-
work for trust assessment, they only define the system param-
eters that should be considered. They do not go through how
these parameters should be measured.

Kalidindi et al., in [90], exploited both personal and commu-
nity opinions to evaluate the trustworthiness of a specific par-
ticipant. First, each contribution is assigned either positive or
negative feedback by the requester. This feedback is determined
by calculating the numerical scores of some parameters such as
the response time, time gap, familiarity, reciprocity, and the rel-
evance parameters. Gompertz and inverse Gompertz are used
for these scores. Subsequently, the score of each contribution is
calculated as a weighted sum of these parameters’ scores. If the
score of a contribution exceeds a certain threshold, the contribu-
tion is assigned a positive feedback and vice versa. In general,

the responding node is assigned a positive opinion if the num-
ber of its positive contributions exceeds a specific threshold.
The requester then queries the community opinion about the re-
sponding node. Finally, both personal and community opinions
are integrated to evaluate the trust score of each node.

7.3. Hybrid Trust Systems

As previously discussed in Section 4.2, we refer to a trust
system as a hybrid system when the application server man-
ages both the application campaigns and participants’ trust as
well. These systems are constructed as either reputation or
TPM-based systems. Here, hybrid reputation-based trust sys-
tems are presented, followed by hybrid TPM-based trust ones.

7.3.1. Hybrid Reputation-based Trust Systems
In [104], Reddy et al. proposed a set of metrics that enable

for evaluating the participants’ contributions. Participants who
have some experience in the current task are selected to join the
campaign. Additionally, a contribution is defined to be success-
ful if it is captured by the appropriate sensor at the required time
and location. This system adopts Bayesian reputation function
described in Section 6.1.2.

Reddy et al. in [105] proposed a recruitment framework to
define the most trusted participants for a campaign. This sys-
tem depends on the participant’s reputation while the Bayesian
model is used to compute this reputation score as explained in
Section 6.1.2. Non-cooperative participants are defined by mea-
suring the probability that a participant is going to contribute
his observation when it is available, or not. The system seeks to
measure the quality and quantity of samples that are expected
from a participant. In this system, Bayesian model was used for
reputation estimation.

In [84, 92], Huang et al. proposed a system for evaluating the
trustworthiness of participants’ contributions in noise monitor-
ing participatory sensing applications. Each device is assigned
a reputation score, which depends on the quality of the reports
submitted by this device in a specific period of time. Reports
which belong to the same sensing location are grouped and di-
rected to a watchdog module (WDM). WDM produces a set
of ratings in the range [0, 1]. The rating of each contribution is
used as a weighting coefficient to minimize the impact of cor-
rupted ones. It also acts as input to a subsequent reputation
module. The system incorporates some historical information
about the device. Moreover, it adopts the reward/penalty mech-
anism. The reputation module computes a reputation score
based on Gompertz function. The experimental results indicate
that this system quickly adapts the reputation scores, according
to the changes of participants’ behavior.

Wang et al. in [68, 37] proposed a privacy preserving rep-
utation system. In the registration phase, the server grants the
participant two reputation certificates (i.e. the first including
participant ID while the second does not include this ID). The
first certificate is used to construct one or more blinded ID [110]
to submit one or more sensing report anonymously. The second
certificate is involved in the sensing report. The system allows
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participants to cloak their time and location data. It then calcu-
lates sensitivity parameters to define contributions that are cap-
tured outside the required sensing area and time. In addition,
a similarity factor is evaluated to measure the consistency of a
participant’s report with other reports of the same task (WDM).
The server assesses the trust of a participant based on the rep-
utation score contained in the certificate beside the sensitivity
parameters and the similarity measure. The participant is as-
signed a positive feedback if the final trust score exceeds the
current trust score contained in the reputation certificate, and
vice versa.

This system maintains both the data trust and the partici-
pant’s anonymity. Therefore, the participant ID and the sens-
ing report can not be correlated. Additionally, multiple reports
which sent from the same participant can not be linked to each
other. Moreover, both negative and positive reputation updates
are enforced. However, a large number of participants is re-
quired to preserve the participant’s anonymity. Otherwise, the
participant’s identity can be compromised.

Restuccia et al. introduced a framework (FIDES) in [36]
to defend against the GPS spoofing attacks. A mobile secu-
rity agent (MSA) is deployed into the sensing area (e.g. a taxi
driver). The application guarantees the reliability of the reports
provided by the MSA due to some reward or additional credits
which provided to this agent. The application asks both partic-
ipants and MSA to share their sensed data. Participant’s contri-
bution is used to update his reputation score. FIDES adopts the
trust model proposed in [111] to model the uncertainty about
participants reputation. In addition, this score is used to judge
the contribution and to calculate the reward that should be as-
signed to this participant. Depending on MSA, to define the
normal behavior of participants, makes this framework robust
against different types of attacks such as corruption, discrimi-
nation, reputation lag, assuming that MSA will not abuse.

Kazemi et al. try to assure both the trust of participants’ con-
tributions and their privacy preservation in TAPAS [112]. The
system allows multiple participants to collect their observations
at each data collection point (DC-point) redundantly. The con-
tribution that achieves the majority consensus is verified as cor-
rect. Consequently, the larger number of the participant at the
DC-point, the more the chance that the collected data are cor-
rect. The system assigns DC-points to the participants based on
a privacy preserving technique [113]. Therefore, participants
can not be compromised to a location based attack.

7.3.2. Hybrid TPM-based Trust Systems
A trusted platform based framework for participatory sens-

ing is introduced by Dua et al. in [39]. An application running
on a participant’s phone is responsible for taking integrity mea-
surements and passing them to TPM. The application server
sends an attestation request to verify the trustworthiness of a
participant’s contribution. In this case, TPM signs the recorded
integrity measurements and sends them to the server. The con-
tribution is considered trustworthy if it is correctly verified with
the measurements received from the TPM.

In [38], authors try to attest the integrity of sensed data
through supporting each sensor with TPM referred to as angel.

The role of the angel is to execute a code signed by a trusted
third party. This code attests the integrity of the sensed data
through signing it. TPM is supported by a hardware crypto-
graphic module. The private key is burned into the chip. Ad-
ditionally, data are encrypted to achieve data protection. This
system is resistant to both collusion and Sybil attacks. Fur-
thermore, it ensures both content protection and access control
mechanism using a broadcast encryption technique. However,
uploading raw sensed data is highly expensive for mobile de-
vices. Moreover, contributing data in their raw form acts as a
deterrent to participants to contribute their personal informa-
tion.

Both trust of a participant’s contribution and privacy preser-
vation are considered by Gilbert et al. in [96]. First, TPM
launches a trusted software to carry out the required local pro-
cessing on the raw sensed data. The data are recorded into PCR
concatenated with their hash value. PCR content is updated
only using the hash value of the current PCR (extend opera-
tion). Additionally, TPM signs its PCR in order to attest the
software used for report generation. Furthermore, TPM has the
ability to encrypt the data and bind them with a specific soft-
ware. Consequently, only trusted software is able to access the
data storage. On the application server side, the hardware used
is verified using the certificate issued by a certificate authority
provider. The application server compares PCR contained in
the report with the expected values to assess the software vali-
dation. This system shares the same advantage and limitations
of the system presented in [38] and discussed above. Addition-
ally, a trusted software is used for local data processing.

The idea presented by Saroiu et al. in [95] is to integrate
TPM functionality with each individual sensor reading. Each
sensor reading is signed by the sensor from which it was cap-
tured. In addition, a small trusted code in the cloud is used
to verify the raw sensor reading and to combine these readings.
Subsequently, a registration process is used by the service cloud
to link between the sensors and the device in which it resides.

In [97], Gilbert et al. adopted an analyzer for evaluating the
participants’ contributions. This analyzer has the ability to mea-
sure the differences between the data that are shared by a partic-
ipant and the original sensor reading. Thus, this system assures
the data authenticity. However, the authors adopt a TPM emu-
lator as a building block instead of TPM hardware.

8. General Analysis and Comparisons

In this section, we use different frameworks introduced in
Sections 4 - and 6 to make comparisons between the various
trust systems that have been presented in the literature and dis-
cussed in Section 7. We used these comparisons to discuss all
existing trust systems and conclude them in the field of partici-
patory sensing.

8.1. General Comparison

In Table 2, different trust systems are compared according to
the proposed classification framework. For more details, about
the nature of each of the classification’s dimensions, the merits
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and limitations of each of them, please refer to Section 4. The
comparison defines the distribution, the methodology adopted
by each trust system and whether the system is anonymous or
non-anonymous. Table 2, columns of distribution, methodol-
ogy, and anonymity depict this comparison.

8.1.1. Analysis of TPM Trust
According to the TPM goals described in Section 5.3, Table

2 shows the guarantees that can be assured by each one of the
TPM trust systems. Most of these systems (such as [39, 38, 96,
97, 95]) assure integrity attestation. Additionally, other systems
can achieve the secure boot goal (such as [96]). Whereas, some
TPM-based systems are able to assure data protection (such as
[96]), and user anonymity (such as [95]).

TPM has the ability to achieve a high level of security and
integrity through the assurance of the previous goals. However,
these systems suffer from many limitations. One of these lim-
itations is that they can not detect misbehaved participants. In
addition, devices equipped with TPM are not usually available
with participants who join the sensing campaigns. For more de-
tails about the merits and limitations of TPMs refer to Section
5.4. In general, TPM solutions have some merits. However,
they still have some obstacles to be applied to a real life partic-
ipatory sensing system.

8.1.2. Analysis of Reputation-based Trust
The goals of reputation-based trust system have been dis-

cussed in Section 6.2 (e.g. traceability, exposure, freshness,
etc). Most reputation-based trust systems (such as [68, 89,
87, 88, 85, 86, 92]) assure these goals as depicted in Table 2.
However, the strength of the reputation system and its speed
for detecting misbehaved participants depend on the system pa-
rameters and the exploited mapping function (Section 6.1.2).
In general, reputation-based trust systems which adopt Gom-
pertz function as a reputation mapping function offer strong
capabilities for tracing and detecting misbehaved participants
[109, 86, 92]. This is because Gompertz function has the ability
to integrate both the aging parameters and the reward/penalty
mechanisms, which enable the system to rapidly reflect new
features of a participant’s behavior on the assigned trust score.

8.1.3. Privacy Preserving Reputation Systems
The goals of privacy preserving reputation system have been

discussed in Section 6.2. These goals include anonymous login,
non-associative, and anonymous demonstration. The systems
presented in [68, 89, 87, 88] have the ability to preserve par-
ticipant’s anonymity (Table 2). These systems satisfy the goals
of privacy preserving reputation systems. These reputation sys-
tems give more chances for participatory systems to be more
successful. While participants are motivated to log-in sensing
campaigns if they make sure that the systems provide them with
strong privacy guarantees.

The reputation systems which we have presented in [114,
115] do not hide the identity of participants but preserve the
confidentiality of their feedback. Such reputation systems are
suitable for environments where participant anonymity is not
possible or feedback confidentiality is the main privacy goal.

8.1.4. Comparison based on Distribution
As mentioned before, in Section 4.2, in participatory sensing,

trust systems have three different distributions: centralized, col-
laborative, and hybrid. Each one has its own characteristics as
discussed before. Some instances of centralized trust systems
are presented in [85, 86, 87, 89]. While, [88, 90, 91] are collab-
orative systems, and [92, 37, 36] are hybrid trust systems. The
merits, as well as the limitations of each of those distributions,
are discussed in 4.2.1.

To sum up, each one of the possible distributions has some
advantages and disadvantages. Thus, designers of participatory
systems can select the distribution of the trust system which
suits the considered participatory system.

8.2. Analysis of Attack Robustness
Participatory sensing systems are vulnerable to various at-

tacks as described in Section 3.1. Each of the proposed trust
systems shows different degrees of resistance against each of
those attacks. Table 3 summarizes this comparison. In the fol-
lowing, we discuss the resistance of TPM trust systems to dif-
ferent types of attacks followed by that of reputation-based trust
systems.

8.2.1. Robustness of TPM Trust Systems
It is evident that most of TPM-based trust systems are robust

against re-entry, Sybil and on-off attacks [38, 96, 95, 97]. TPM
trust systems assure the authenticity of participants’ contribu-
tions. Thus, the application server can make sure that the par-
ticipant’s contribution has been captured by an authentic sen-
sor. Therefore, participants have to use another device to launch
such attacks, this inhibits attacks of these types.

TPM assures the secure boot property, which implies that the
appropriate hardware configuration is used to capture the ob-
servations. It also ensures that only trusted software is used for
local processing of these observations. Hence, participants have
minimum control on their own observations. Consequently,
they have little opportunity to coordinate their behaviors to
achieve some malicious goals (i.e. collusion attack). Subse-
quently, TPM systems are resistant under collusion attack.

Although, these systems are robust against these previous
attacks, they are considered weak against corruption attacks.
TPM can not detect malicious participants who deliberately ini-
tiate sensing actions to corrupt their observations, as discussed
before in Section 3.1. Additionally, the other attacks are not
considered with TPM trust systems.

8.2.2. Robustness of Reputation-based Trust Systems
Regarding reputation-based trust systems, we can note that

the trust scores usually depend on one or more of the following
parameters:

• The participant’s old trust or reputation score.

• The quality of the current contribution.

• The end users’ feedback about the contribution.

• The neighbors’ rating of the participant.
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Table 2: Comparison of the trust systems in terms of the analysis framework

System Distribution Methodology Anonymity
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Dua et al. [39] Hybrid TPM N-anon
√

- - - - - - - - - -
Dua et al. [38] Hybrid TPM N-anon

√ √
- - - - - - - - -

Gilbert et al. [96] Hybrid TPM Anon
√ √ √

- - - - - - - -
Saroiu et al. [95] Hybrid TPM Anon

√
- - - - - -

√
- - -

Gilbert et al. [97] Hybrid TPM N-anon
√

- - - - - - - - - -
Reddy et al. [104] Hybrid Rep N-anon - - -

√ √
-
√

- - - -
Reddy et al. [105] Hybrid Rep N-anon - - -

√ √
-
√

- - - -
Yang et al. [91] Coll. Rep N-anon - - -

√ √
-
√

- - - -
Huang et al. [84, 92] Hybrid Rep N-anon - - -

√ √
-
√

- - - -
Jkalidindi et al. [90] Coll. Rep N-anon - - -

√ √
-
√

- - - -
Manzoor et al. [83] Cen Rep N-anon - - -

√ √
-
√

- - - -
Amintoosi et al. [85] Cen Rep N-anon - - -

√ √
-
√

- - - -
Amintoosi et al. [86, 107] Cen Rep N-anon - - -

√ √
-
√

- - - -
Amintoosi et al. [109] Cen Rep N-anon - - -

√ √
-
√

- - - -
Chang et al. [67] Cen Rep N-anon - - -

√ √
-
√

- - - -
Wang et al. [68, 37] Hybrid Rep Anon - - -

√ √ √ √ √ √ √ √

Huang et al. [89] Cen Rep Anon - - -
√ √ √ √ √ √

-
√

Restuccia et.al. [36] Cen Rep N-anon - - -
√ √

-
√

- - - -
Michalas et.al. [88] Coll Rep Anon - - -

√ √ √ √ √ √ √ √

Gisdakis et.al. [87] Cen Rep Anon - - -
√ √

-
√ √ √ √

-

Anon Anonymoys Cen Centralized Coll Collaborative
N-anon Non anonymous Rep Reputation

√
, - Goal satisfied or not

Each reputation-based trust system selects one or more of the
previous parameters and adopts a specific reputation mapping
function to calculate a trust score for every participant. There-
fore, each system has a different degree of resistance against
various attacks. From the discussion of the state-of-the-art of
existing trust systems in participatory sensing presented in Sec-
tion 7, we can deduce the following:

Corruption attack. The system presented in [36] is considered
robust against corruption attack. This system depends on a mo-
bile secure agent which provides the system with the most ac-
curate information. Thus, the system can accurately define cor-
rupted contributions.

Other trust systems depend on double checking way to define
the quality of a contribution. First, outlier detection or consen-
sus algorithms [98, 99, 100] are used to measure the deviation
of the contribution from a common consensus. Second, users
are permitted to assign a feedback to a participant based on
their satisfaction with the received contribution. Trust systems
that adopt both the first and the second measures are consid-
ered robust against this attack [86, 109]. Systems that adopt
only one of these measures are semi-robust against this attack
[87, 92, 37, 83]. However, the systems that only depend on the
past interactions of the participant as a measure of trust weakly
defend against this attack (such as [104, 105]), because partici-
pants may instantaneously change their behavior.

Reputation lag exploitation attack. The reputation mapping
function should apply more aggressive penalties concerning
misbehaved participants. This allows a trust system to have an
up to date trust scores which reflect the instantaneous trustwor-
thiness of each participant. Thus, misbehaved participants have

a minimum opportunity to exploit the reputation lag for inject-
ing corrupted or forged contributions into the system. Gom-
pertz function applies more strong penalties compared with the
other mapping functions. Therefore, trust systems that depend
on the Gompertz function are more rapidly adaptive for reflect-
ing changes in the participants’ behavior. Consequently, Gom-
pertz based trust systems are robust against reputation lag ex-
ploitation attack (such as [84, 85, 86, 109]).

Bayesian based reputation trust systems (such as [104, 105,
83, 68]) are considered semi-robust against this attack. The rep-
utation systems presented in [90, 67] are weak against the repu-
tation lag exploitation attack, because both of them only depend
on the community opinions and feedback about the participant
and they have no way to penalize misbehaved participants.

On-off attack. On-off attacker alternates between normal and
abnormal behavior. Thus, the way to defend against this attack
is to have a good capabilities to monitor and trace participants’
behavior. In addition, the system should involve a mechanism
to evaluate the quality of the participants’ contributions to be
more resistant to this attack. Thus, systems which satisfy both
these guarantees are robust against on-off attack. These meth-
ods include [92, 86, 109, 83, 68, 36]. However, semi-robust
trust systems (such as [89, 85]) only assure either the first or
the second guarantee. The reputation trust systems that neglect
the quality of contribution are considered weak against this at-
tack. The systems presented in [104, 105, 67] are considered as
examples of such systems.

Collusion attack. Collusive participants are supposed to coor-
dinate their behaviors to achieve some malicious goals. How-
ever, trust systems adopt different algorithms that rely on con-
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Table 3: Analysis of the trust systems in terms of robustness to attacks

System
Attack Corr Onof Ree Dis Col Syb Lag GPS Unf Bad Ball

Dua et al. [39] ∗ - ∗ ∗ ∗ - ∗ ∗ ∗ ∗ ∗ ∗ - - - - -
Dua et al. [38] ∗ - ∗ ∗ ∗ - ∗ ∗ ∗ ∗ ∗ ∗ - - - - -
Gilbert et al. [96] ∗ - ∗ ∗ ∗ - ∗ ∗ ∗ ∗ ∗ ∗ - - - - -
Saroiu et al. [95] ∗ - ∗ ∗ ∗ - ∗ ∗ ∗ ∗ ∗ ∗ - - - - -
Gilbert et al. [97] ∗ - ∗ ∗ ∗ - ∗ ∗ ∗ ∗ ∗ ∗ - - - - -
Reddy et al. [104] ∗ ∗ - - - - ∗∗ - - - -
Reddy et al. [105] ∗ ∗ - - - - ∗∗ - - - -
Yang et al. [91] - - - - - - ∗ - ∗∗ - -
Huang et al. [84, 92] ∗ ∗∗ - - - - ∗ ∗ ∗ ∗ - - -
Jkalidindi et al. [90] - - - - - - ∗ - ∗∗ - -
Manzoor et al. [83] ∗∗ ∗∗ - - - - ∗∗ ∗ - - -
Amintoosi et al. [85] ∗∗ ∗ - - - - ∗ ∗ ∗ ∗ ∗∗ - -
Amintoosi et al. [86, 107] ∗ ∗ ∗ ∗∗ - - - - ∗ ∗ ∗ ∗ ∗∗ - -
Amintoosi et al. [109] ∗ ∗ ∗ ∗ ∗ ∗ - - - - ∗ ∗ ∗ ∗ ∗∗ - -
Chang et al. [67] - - - - - ∗ ∗ ∗ ∗ - ∗ - -
Wang et al. [68, 37] ∗∗ ∗∗ ∗∗ - - ∗∗ ∗∗ ∗ ∗ ∗ ∗ - -
Huang et al. [89] ∗∗ ∗∗ ∗∗ - - ∗∗ ∗∗ - ∗ ∗ ∗ - -
Restuccia et al. [36] ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ - ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ - -
Michalas et al. [88] ∗ - ∗∗ - - ∗∗ ∗ - ∗ - -
Gisdakis et al. [87] ∗∗ - ∗∗ - - ∗∗ ∗ ∗ ∗ - -

∗Weak ∗∗ Semi Robust ∗ ∗ ∗ Robust - Attack not addressed

Bad Badmouthing Ball Ballot stuffing Col Collusion Cor Corruption GPS GPS spoofing Lag Reputation lag
Onof On-off Ree Re-entry Syb Sybil Unf Unfair rating - - - -

sensus to measure the consistency of the participants’ contri-
butions compared with the contributions of other participants
for the same task. These algorithms comprise of consensus al-
gorithms [84], similarity measures [68], deviation from com-
mon values [83], or outlier detection algorithms [85, 86, 109].
These methods fail to properly evaluate the contributions while
collusion is committed. Trust systems can provide resistance
to collusion given that the number of well-behaved participants
is larger than the number of collusive ones. Therefore, most
trust systems are considered to defend weakly against collu-
sion attack except [36] which is considered robust. This system
compares the contributions with the one which received from a
secure agent. Thus, it is resistant to collusion attack.

Sybil attack. Sybil attack can be launched if a participant has
the ability to obtain different identification parameters. In [67],
the authors address the Sybil attack. They try to analyze the sys-
tem statistically in order to detect the existence of a Sybil nodes.
Thus, this system is considered robust against this attack. Fur-
thermore, the Sybil attack was mentioned by the authors in [68].
The authors suggest that the participants commit some limited
resource while logging into the system. However, this solution
is considered weak for such an attack. In addition, we consider
trust systems which adopt some authentication mechanism as
semi-robust to defend against this attack [87, 88, 89, 36, 37],
since participants still have the ability to obtain different iden-
tities unless a strong authentication technique is applied. The
rest of existing systems do not address this attack.

Re-entry attack. A re-entry attack occurs when a participant
with a low reputation score leaves the system and rejoins using
different identification parameters. Therefore, the attacker has
the ability to avoid the consequences of his misbehavior. The
resistance of different systems to defend against such attack de-
pends on the attacker ability to obtain different authentication

parameters. Thus, systems have the same resistance towards
re-entry attack as their resistance towards Sybil attack. The sys-
tems presented in [87, 88, 89, 36, 37] are semi-robust to defend
against such attack. However, the system presented by Chang
et al. [67] is robust against Sybil attack. It can not defend
against re-entry attack since this system depends on a statistical
analysis of the number of participants joining the system at a
point in time. This can detect the participant who synchronizes
different identities to login the system. While re-entry attacker
completely leave the system and login again using a new iden-
tity.

GPS spoofing attack. The system presented in [36] is consid-
ered robust against this attack. Depending on a trusted mobile
secure agent, enables the system to define the most accurate
sensed data in the sensing area. Thus, the system can easily de-
fine dishonest participants who share inconsistent information
with the sensing area. Existing trust systems that can assess the
quality of participant’s contribution weakly defend against this
type of attack [92, 86, 109, 85]. Additionally, trust systems that
do not consider the quality of participant’s contribution can not
defend against this attack.

Unfair Rating attack. Most of the current reputation-based
trust systems for participatory sensing is considered weak
against the unfair rating attack. Some systems allow partici-
pants to share their contributions anonymously so that a rater
has no motivation to commit unfair rating against an anony-
mous participant. One of the trust systems that defend against
unfair ratings attack through anonymity preservation is pre-
sented in [68]. Some other systems try to overcome unfair rat-
ing attack by trying to mitigate its effect. Since the participants
with high reputation scores are more likely to be honest, these
systems use the reputation score of the rater as a weight for
the rate which he submits. These systems (e.g., [90, 86, 109])
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are thus considered semi robust against the unfair rating attack.
The systems (such as [67]) that adopt the rating methodology
without consideration for the degree of honesty of the rater are
weak against this attack.

Others. Bad mouthing, ballot stuffing, and discrimination at-
tacks are not addressed by any of existing trust systems in par-
ticipatory sensing.

8.3. Comparison of Reputation-based Trust Systems
A comparison of the reputation-based trust systems is shown

in Table 4. This table indicates how each phase in the
reputation-based trust system is implemented according to the
framework illustrated in Section 6.1 and summarized in Figure
8. We focus on the particularities which characterize the imple-
mentation of each of existing trust system individually.

9. Future Research Directions

Trust systems have been a focus of research for a number of
years in various application domains. However, trust manage-
ment in the context of participatory sensing systems is still an
area where research is in its infancy. There are a number of
open issues that need to be resolved. Firstly, the devices of par-
ticipants usually have limited resource capabilities. Secondly,
according to our study, many trust goals have not been satis-
fied yet. Thirdly, many types of attacks have not been treated.
Additionally, each of the current trust systems treats only a few
of the many issues which should be considered in such envi-
ronments. In this section, we highlight the unsolved research
challenges of trust systems for participatory sensing.

1. Attacks:
In Section 3.1, we discussed the possible attacks in partic-
ipatory sensing. The resistance of existing trust systems
under each one of the addressed attack is discussed in Sec-
tion 8.2. From this study, we can conclude that many types
of attacks have not been addressed yet. These include dis-
crimination, re-entry, bad mouthing, and ballot stuffing at-
tacks. Moreover, the defense mechanisms for some other
types of attacks, such as Sybil and unfair rating, are still in
their infancy. We can also observe that most reputation
systems are mainly concerned with detecting malicious
participants who commit corruption attacks that may dis-
rupt the application server. However, much less attention
has been directed toward other types of attacks.

2. Privacy:
Trust systems in participatory sensing applications seek
to identify malicious participants who contribute cor-
rupted, fabricated, or erroneous contribution. Malicious
participants should be discarded during the task assign-
ment phase and their contributions should be excluded
through the campaign. These goals conflict with the ob-
jectives of preserving the privacy and anonymity of the
participants. This issue was considered by privacy pre-
serving reputation-based trust systems as presented in
[89, 37, 116, 112, 88]. Most of these systems depend

on the group signature [117], anonymization [118], and
blind signature [110] to preserve the identity of partici-
pant. However, there are other techniques applied on liter-
ature for privacy preservation within a reputation systems
such as anonymous credential systems [119], Zero knowl-
edge proof [120]. It is clear that the compromise between
the conflicting goals of both trust assessment and privacy
preservation still needs a lot of work to be assured.

3. Reputation Mapping:
As we described in Section 6.1.2, existing reputation-
based systems adopt either Gompertz function [103] or
Bayesian model [102] as a reputation mapping functions.
Although Gompertz function offers better capabilities for
tracing participants’ behavior more than Bayesian model,
both of these functions still do not assure the guarantees
of a robust and reliable trust assessment system. Differ-
ent mapping functions were used in the literature of trust
[121]. However, various other reputation mapping func-
tion can be adopted which may better fit with participa-
tory sensing such as gamma or Weibull distribution model
[122].

4. User and environment centricity:
As mentioned in [24] and explained in Section 2, partici-
patory sensing applications may be either personal centric
or environment centric. In personal centric applications,
sensitive information about a participant is transferred to
the application server, which may then give feedback, ad-
vice, or new sensing commands to the participant. In this
case, the participant needs to ensure the trustworthiness
of the application server in order to share his sensitive in-
formation. However, in environment centric applications,
contributions are captured from the surrounding environ-
ment and forwarded to the application server. The server
uses these contributions for analyzing or mapping some
phenomena. In contrast, this scenario makes it important
for the application server to assess the trustworthiness of
participants. Hence, a trust system should ideally manage
the trust for both these types of applications. To the best of
our knowledge, existing trust systems focus on trust from
the environment centric applications point of view. These
systems target to assess the trust of participants. While
assessing the trustworthiness of application server should
target to confirm that the application server will not grant
access of the participant’s personal information to any un-
trusted third party. This problem has not been addressed
by any of the current systems.

5. Ensuring the trustworthiness of different parties:
As mentioned in [41] and discussed in Section 2, differ-
ent parties need to be considered in participatory sensing
campaign (e.g. participant, campaign administrator, and
users). Each party has his own capabilities and concerns
which differ according to the application. In addition, each
one has the ability to tamper with the sensing campaign.
Accurately assessing the trustworthiness of all parties is
vital for the normal functioning of participatory sensing
campaigns.

6. Measuring the quality of contributions:
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Table 4: Comparison of reputation-based trust systems

System Information Collection Mapping Dissemination Decision
Source Type WDM Attack Structure Approach Structure Approach Value Type Reward/Penalize

Reddy et al. [104] M/D +,- N G Cen Pr - - Cont B N
Reddy et al. [105] D +,- N G Cen Pr - - Cont B N
Yang et al. [91] D/I/M +,- Y G - - - - Disc B N
Huang et al. [84, 92] M/D - Y Corr Cen De - - Cont F Y
Jkalidindi et al. [90] M/D/I +,- N G Cen De Dis Re Cont B N
Manzoor et al. [83] M/D - Y Corr Cen Pr - - Cont F N
Amintoosi et al. [85] M - N G Cen De Cen - Cont B N
Amintoosi et al. [86, 107] M/I +,- N G Cen De Cen - Cont B Y
Amintoosi et al. [109] M/I +,- N G Cen De Cen - Cont B Y
Chang et al. [67] M/I +,- N Sybil Cen - Cen Re Cont B N
Wang et al. [68, 37] M/D - Y G Cen De - - Disc B N
Huang et al. [89] D +,- Y G Cen De - - Cont B N
Restuccia et al. [36] M/D - Y GPS Cen De - - Disc B Y
Michalas et al. [88] I - N G Cen - - - - B N
Gisdakis et al. [87] M - Y G Cen - - - - B N

- Not mentioned B Binary Cen Centralized Cont Continuous
Corr Corruption attack D Automatic direct De Deterministic Dis Distributed
Disc Discrete F Fusion G General misbehavior GPS GPS spoofing
I Automatic indirect M Manual N No Pr Probablistis
Re Reactive Y Yes - - - -

In participatory sensing, trust systems usually adopt some
consensus or outlier detection algorithms such as [99, 98].
These methods have the ability to measure the deviation
of a contribution from a common consensus. However, the
quality estimation is biased if the majority of participants
are malicious or if a collusion is committed. Therefore,
measuring the quality of the participants’ contributions is
one of the challenges that face trust systems in participa-
tory sensing applications.

7. Resource overhead:

Applying trust systems requires loading the system entities
with additional overhead. This overhead may be additional
battery consumption or computational power. This over-
head is often critical for the different parties in the system,
especially the participants who are usually equipped with
smartphones or other computational devices with limited
capabilities. Most trust systems in participatory sensing
domain have not discussed this issue. Therefore, further
research should be directed toward studying and reducing
the resource overhead of trust systems.

8. Scalability:

In participatory sensing systems, a large number of con-
tributions is required to enable the system to carry out a
stable measurement and analysis for the phenomenon un-
der consideration. Thus, a large number of participants is
usually required in sensing campaigns. Moreover, numer-
ous message exchanges are required by each participant
to accomplish a sensing campaign. Therefore, the perfor-
mance of these systems may degrade due to the addition
of more participants to the system. Consequently, man-
agement of trust and reputation for large-scale participa-
tory sensing systems is an issue that should be addressed
by future work.

10. Related Work

Trust management has been studied extensively in various
domains of distributed computing.

In wireless sensor networks, sensor nodes may share cor-
rupted data due to damage or malfunctioning sensor or prob-
lems in the communication between the node and the sink node.
Therefore, monitoring the behavior of nodes is essential in or-
der to detect any deviation from the normal nodes’ behavior.
Researchers investigated this issue [33][34][35]. Both wire-
less sensor networks and participatory sensing share a set of
attacks that can be launched in both these environments. How-
ever, Here, a different framework of trust system is exploited
which fits the nature of participatory sensing. In addition, there
are some special guarantees that should be fulfilled within par-
ticipatory sensing environment.

In peer to peer systems, the network is established from sev-
eral distributed peers with equal privilege. Those peers should
share the available resources as well as the workload. Peers are
allowed to join and leave the system at any time. P2P systems
do not include a central management unit that should assure the
security and trust issues among the peers. Thus, P2P systems
are vulnerable to malicious peer behaviors which addressed in
different surveys such as [29]. These systems face a different
set of attacks. In addition, the reputation framework adopted
in peer to peer network is completely different from the one
adopted in participatory sensing.

Mobile ad-hoc networks are structureless and dynamic net-
works. These networks consist of mobile nodes that have no
fixed link between them. These networks have a dynamic topol-
ogy and no stable structure. Users can join and leave the net-
work within a random period of time affecting the energy, band-
width, and memory computations of the network. Managing
trust in these networks is a crucial task because many activities
such as routing rely heavily on the cooperation and trustwor-
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thiness of the users. Many researchers survey how trust can be
assessed in mobile ad-hoc networks such as [30, 31, 32].

Trust should be maintained also in online applications (e.g.
E-commerce) to encourage the buyers to perform transactions
with the sellers. The trust score assigned to a seller enables the
buyer to estimate the trustworthiness of the provided service.
In [121], Jaøsang studies how to assess trust within online ap-
plications. This work addresses different models for reputation
mapping in trust systems. However, trust systems in participa-
tory sensing mainly adopt different models such as Gompertz
mapping and Bayesian model as we discussed in our survey.

Mobile social networks are a specific type of social networks
that seek to merge the merits of both social networks and op-
portunistic networks. Users, in mobile social network, are able
to share and access user-centric data using their mobile devices.
Najaflou et al. [123] define the trust-related and other attacks
faced by these systems and study the state of the art in this do-
main. It was clear that the attacks faced by participatory sensing
differ from the ones that faced by such mobile social networks.

Trust also has been studied in other different domains such as
in opportunistic networks [124, 125, 126]. Trust management
is a promising area of research which attracts researchers’ in-
terest in different domains. Here, we have just mentioned some
examples of such works. To sum up, studying trust in participa-
tory sensing has its own features and particularities which we
seek to cover in our analysis.

11. Conclusion

Participatory sensing systems are an emerging type of sys-
tems that seek to achieve welfare in different areas of human
life. Applications of participatory sensing systems enable hu-
mans to save time (e.g., by sensing traffic), improve their health
(e.g., by monitoring their health status), and live richer lives
(e.g., by documenting their daily activities), etc. These systems
exploit the mobile devices of regular citizens for capturing and
sharing their sensed data. However, involving regular citizens
in the sensing campaigns exposes these systems to some chal-
lenges. The main challenge is the uncertainty of the participants
behaviors because different attacks can be launched from mis-
behaved participants. Consequently, trust systems have been
proposed to detect the misbehaved participants and/or at least
to mitigate the effect of their misbehavior.

In this paper, trust assurance among stakeholders in partic-
ipatory sensing systems is addressed. We proposed a classi-
fication framework of these systems. It is observed that the
current trust systems can be classified mainly into TPM-based
and reputation-based systems. We provided in-depth analy-
sis of each type of these systems. We conclude that TPM is
not sufficient as a stand-alone solution for trust assessment in
such environment. Nevertheless, reputation systems can pro-
vide more guarantees toward participants’ accountability. Such
reputation-based trust systems incorporate various measures for
assessing the trust of participants. These measures include a
WDM to measure the quality of contribution, the users’ feed-
back, the community opinion, and the historical information

concerning the target participant. However, the decisions of
reputation systems may be biased because of different attacks.

Furthermore, we presented a general analysis and compar-
isons of the existing trust systems and discussed their resis-
tance against the addressed attacks. It is evident that reputa-
tion systems which adopt the Gompertz function as a reputation
mapping function are more robust against the addressed attacks.
In addition, such systems provide more strong capabilities for
tracing the participants’ behavior instantaneously.

Finally, we identified many trust problems that have not been
solved and many attacks have not been addressed yet in the lit-
erature. From these, we list the open challenges that need to
be addressed by future work on trust systems in participatory
sensing. One of the major challenges of reputation systems in
participatory sensing is managing the accountability of partici-
pants while preserving their privacy. Participants are vulnerable
to some security breaches such as identity leakage since repu-
tation systems have to manage the linkability of participants’
contributions with their real identities in order to manage their
trust. Another major challenge is how the trust systems can
evaluate the participant’s contribution. Existing system adopt
some consensus and outlier algorithms that can be biased in the
existence of some attacks. Different limitations and more open
challenges are discussed within this paper. We hope this work
helps to elucidate the current state-of-the-art of this domain for
researchers as well as system designers.
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