
PrivaSense: Privacy-Preserving and Reputation-Aware Mobile
Participatory Sensing

Hayam Mousa
INSA Lyon - LIRIS, FCI Menoufia

University
Menofia, Egypt

hayam910@gmail.com

Sonia Ben Mokhtar, Omar
Hasan, Lionel Brunie

INSA Lyon, LIRIS
Lyon, France

sonia.benmokhtar,omar.hasan,
Lionel.Brunie@insa-lyon.fr

Osama Younes, Mohiy
Hadhoud

FCI, Menoufia University
Menoufia, Egypt 94035

osama youness@hotmail.com,
mmhadhoud@yahoo.com

ABSTRACT

The integration of privacy into reputation systems is a crucial
need for building secure and reliable participatory sensing
applications. Participants are given the assurance that their
privacy is preserved even if they contribute some personal
sensitive data. In addition, reputation systems allow an ap-
plication server to monitor participants’ behaviors and evict
those who provide the system with corrupted data. However,
this integration requires achieving seemingly conflicting ob-
jectives. Reputation systems monitor participants behaviors
along subsequent interactions. Whereas, one of the major
objectives of privacy preserving systems is to unlink subse-
quent interactions. In this paper, we define a new attack
(RR attack), which exploits this conflict in order to detect
the succession of contributions provided by the same partici-
pant and to subsequently re-identify his original identity. We
show that using this attack, more than 35% of contributions
can be associated to their successive contributions in each
campaign. We then propose PrivaSense as a new privacy
preserving reputation system that integrates both reputation
and privacy such that their objectives are simultaneously
achieved. Experimental results are conducted using a real
data-set. These results show that PrivaSense decreases by up
to 80% the number of contributions linked to their original
providers.
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1 INTRODUCTION

The advancement and widespread use of mobile computing
smart devices have helped towards the emergence of a new
kind of application called participatory sensing [2]. These
applications exploit both the mobility of participants and
the sensing capabilities of their devices to construct mobile
sensor networks [12] with much less cost and effort compared
with traditional Wireless Sensor Networks (WSNs). During
the last decade, several participatory sensing applications
have been widely used to serve in different areas including
health, commerce, etc [11]. Researchers have studied numer-
ous challenges that should be addressed to build reliable
and secure participatory sensing system [3, 10, 14]. These
challenges include the assurance of participants’ privacy and
management of data reliability, which we discuss below.

On the one hand, different applications collect different
types of sensed data (e.g. spatial, temporal, images, pollution,
sound samples, accelerometer, biometric, barometric, etc) [3].
These data can be exploited to leak participants’ privacy
through accurately re-identifying their identity, their location
at some given time, with whom they were, their movements
(e.g. walking, running, sitting down, etc.)[10]. Subsequently,
participants can be physically traced and hacked or robbed
based on these data [10]. In [1, 7], Montjoye et al. and Antoine
et al. approved that 95% of original identities are re-identified
through sharing four contributions including time and loca-
tion data. Different techniques were proposed to assure the
privacy of participants [4]. The main objective of those tech-
niques is to detach the link between each contribution and
its provider as well as among multiple contributions provided
by the same provider (i.e participant).

On the other hand, these applications are vulnerable to ma-
licious participants who disrupt the system by contributing
fabricated or corrupted contributions which affect data relia-
bility and accuracy. To enhance data reliability, application
severs adopt reputation systems to trace participants’ behav-
iors along subsequent contributions in order to estimate their
honesty and to evaluate the quality of their contributions.
In [14], we have extensively studied, analyzed and compared
reputation systems that were proposed in this context. From
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which, it is evident that existing reputation systems manage
the link between successive contributions of participants and
their real identities to evaluate their behaviors and to evict
malicious ones form the campaign. This objective contradicts
with the objective of privacy preserving systems mentioned
before. That is, managing the linkage among successive con-
tributions leads to privacy leakage. This conflict is referred
to as the linkability problem. As a simple example of linkabil-
ity problem, consider a participant 𝑝𝑖 who has a reputation
score 𝑥 in some campaign. When a new campaign starts,
this participant shares his new contribution tagged with his
current reputation 𝑥. The application server evaluates the
contribution according to a reputation system (e.g. [14]) and
assigns a feedback 𝑓 to 𝑝𝑖’s contribution. 𝑥 is updated to
𝑥 + 𝑓 . Consequently, in an upcoming campaign, it is evi-
dent that the contribution tagged with reputation 𝑥+ 𝑓 has
been forwarded from the same identity with reputation 𝑥
in the previous campaign even if the identity and the data
are anonymized. That is, both contributions and their asso-
ciated pseudonyms are linked according to the reputation
account. That is why, monitoring reputation scores for a
sequence of contributions clearly leads to profile participants’
contributions and subsequently re-identifying their identities.

In the context of participatory sensing, both the challenges
of privacy preservation and reputation management have been
individually studied in literature (e.g. [4] and [14]). However,
the integration of both these systems in the context still in
its infancy. Existing privacy preserving reputation systems
in participatory sensing do not have the ability to fulfill the
objectives of both privacy and reputation systems simultane-
ously (e.g. [13] [18]). Such systems either allow participants to
launch other attacks (e.g Sybil, and report flooding) which af-
fect data reliability (e.g. [18]). Other systems allow to profile
participants subsequent contributions which leads to partic-
ipant re-identification (e.g. [13]). In this paper, we mainly
define a new attack, Reputation based Re-identification (RR
attack), which exploits the linkability problem to re-identify
participants’ original identities in a privacy preserving repu-
tation aware participatory sensing system. Next, we propose
a Privacy-Preserving and Reputation-Aware Mobile Partici-
patory Sensing System that we call PrivaSense. PrivaSense
system integrates privacy preserving and reputation systems
such that their objectives are simultaneously achieved. It
defends against the RR attack as well.

Our specific contributions can be summarized as follows:

(1) We define a new attack (RR attack) that aims to link
multiple contributions from the same participant, and
subsequently re-identify participants’ identities.

(2) We present a novel privacy-preserving and reputation-
aware mobile participatory sensing system PrivaSense.
In this system, each participant is assigned a new pseu-
donym for each contribution. The application server
evaluates a participant’s contribution, assigns it a feed-
back, forwards this feedback to the reputation server
who updates the corresponding reputation account and
transfers this account to the next pseudonym of the

same participant. Reputation scores are anonymized
and transferred in the form of anonymous certificates.
This allows participants to conserve their reputation
scores across multiple interactions while preventing
associations between consecutive contributions.

(3) We undertake an analysis revealing the robustness
of our proposal against the attacks considered in the
threat model described in Section 3.

(4) We conducted some experiments based on a real-world
data-set [16] to measure both the resilience of our sys-
tem against the RR attack (i.e. privacy issues) added
to the effect of the proposed system on the data reliabil-
ity. The experimental results indicate that our system
introduces higher anonymity (i.e. better privacy) with
more accurate data aggregation which enhances the
system reliability compared with the state-of-the-art.

The rest of this paper is organized as follows: Section 2
states the previous work and its limitations. We then define
the considered threat model in Section 3. Next, we present our
proposed system and discuss its details in Section 4. In Section
5, we present an analysis of our proposal. Experimental results
are presented in Section 6. Finally, this paper is concluded
in Section 7.

2 RELATED WORK

Indeed, significant research effort has been directed toward
ensuring privacy preservation in participatory sensing appli-
cations as described by Christin et al. in [4] . However, such
works consider how to anonymize participants’ real identities
and/or to anonymize their provided data. Some other works
consider the problem of reputation management such as [8]
and our system presented in [15]. We have surveyed and
compared these systems in [14]. Those systems essentially
manage the link to participants real identities in order to
assess their reputation. However, very few works consider the
problem of privacy preserving reputation systems in mobile
participatory sensing applications.

In [8], each participant is assigned different pseudonyms for
each time intervals and to exchange the assigned reputation
between those pseudonyms through a trusted server. Christin
et al. in [5] propose a similar scheme which adopts the blind
signature scheme to create pseudonyms. Through this system,
a malicious participant can create multiple identities (i.e.
Sybil attack) such that he can disrupt the system by providing
multiple sensing contributions for the same task.

Another privacy preserving reputation system which as-
sures the participant’s anonymity through the group signature
technique is presented by Michalas et al. [13]. Although, the
system assures the anonymity of participants, it allows some
entities to record a profile of participants through subsequent
interactions. That is participant’s privacy is leaked.

The scheme presented by Wang et al. in [18] utilizes the
blind signature technique in order to ensure participant’s
anonymity. In this scheme, malicious participants can create
multiple authentic identifiers based on a single blind iden-
tity granted for them (i.e. Sybil attack). In addition, they
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can launch a report flooding attack. Subsequently, they can
submit numerous contributions for the same task while the
application server can’t detect such behavior.

To sum up, existing works either accurately manage partic-
ipants’ reputation and allow for participants’ re-identification
and privacy leakage or focus on participants’ anonymity and
allow participants to launch other attacks that disrupt the
system and affect data reliability. In this paper, we attempt
to propose a privacy-preserving and reputation-aware system
that allows the participatory sensing applications to be more
reliable and secure.

3 THREAT MODEL

Commonly, in a sensing campaign we have mainly two parties:
a participant 𝑝𝑖 is a member in the participants set 𝑃 , where
|𝑃 | = 𝑃 such that 𝑖 ∈ {1, 2, 3, ..., 𝑃}, and an application
server noted as App.Server. We not only consider the attacks
that can be launched by a malicious participant that affect
the system reliability, but we consider the privacy threats
that lead to participants re-identification as well.

Reliability oriented attacks:

∙ Sybil Attack: Malicious participants attempt to gen-
erate multiple pseudonyms to increase their reputation
through cross-recommendations or providing multiple
reports for the same task which subsequently leads to
system disruption.

∙ Replay Attack: Malicious participants attempt to
replay either old pseudonym which has a good reputa-
tion score. Replay attackers artificially increase their
own reputation by replaying old reputation messages
including good scores.

∙ Report Falsified sensor readings: Adversaries try
to report falsified sensor readings on behalf of others
to degrade their reputation.

Privacy oriented attacks:

∙ Identity and Data Re-identification (IDR at-
tack): It is evident, in [7], that 95% of participants’
identities are re-identified after submitting 4 spatial
and temporal observations. Therefore, participants
use pseudonyms instead of their original identities to
anonymize their contributions. Subsequently, attackers
cannot link multiple contributions to the same identity.
However, adversaries try to infer the original identi-
ties of contributions’ providers based on the content
of their contributions [10]. In [1], Vincent et al. clarify
that 94% of original identities are re-identified since
participants share multi sensors data-set.

∙ Reputation based Re-identification (RR attack):
We define this attack here for the first time. The chal-
lenge that faces both identity and data re-identification
(IDR) attacker is it to associate numerous contributions
to the same identity while participants share their con-
tributions anonymously (i.e.using pseudonyms). Here,
a new attack that enables adversaries to link differ-
ent contributions to the same identity is defined. This

attack has arisen as a result of incorporating repu-
tation systems in a privacy preserving enabled par-
ticipatory sensing system. RR attacker applies three
consecutive phases (i.e. monitoring, uniqueness assess-
ment, and profiling). Firstly, through the monitor-
ing phase, an attacker listens to the network and
records the message exchange among the different par-
ties in the sensing campaign. For each task 𝑇𝑗 , the
attacker keeps the following information for each con-
tribution (1) the pseudonyms 𝑅𝐼𝐷𝑗

𝑝𝑖 of participant
𝑝𝑖 (∀𝑖 ∈ 1, 2, 3, ..., 𝑃 ), (2) the contents of 𝑝𝑖’s con-
tribution including location, time, and sensed data
(𝑥𝑇𝑗 , 𝑦𝑇𝑗 ), 𝑡𝑇𝑗 , 𝑑𝑎𝑡𝑎𝑇𝑗 ), (3) and the reputation scores

of the same pseudonym (�̂�𝑝𝑖), (4) the feedback cal-
culated based on the evaluation of 𝑝𝑖’s contribution.
The feedback is associated to its corresponding pseu-
donym (𝑅𝐼𝐷𝑗

𝑝𝑖 , 𝑓𝑅𝐼𝐷
𝑗
𝑝𝑖
). That is for each pseudonym,

an attacker keeps a record for each task containing the
following information (𝑅𝐼𝐷𝑗

𝑝𝑖 , (𝑥𝑇𝑗 , 𝑦𝑇𝑗 ), 𝑡𝑇𝑗 , 𝑑𝑎𝑡𝑎𝑇𝑗 )

(�̂�𝑝𝑖 , 𝑓𝑅𝐼𝐷
𝑗
𝑝𝑖
). The attacker updates the monitored rep-

utation score �̂�𝑝𝑖 according to the feedback 𝑓
𝑅𝐼𝐷

𝑗
𝑝𝑖

for the same task to get the expected reputation score
noted as 𝐸𝑅𝑝𝑖 and appends it to its corresponding
record. Hence, the attacker knows in advance the rep-
utation score (𝑅𝑝𝑖) that is going to accompany the
upcoming contribution of the next task 𝑇𝑗+1. However,
he does not know the new pseudonym that is going to
carry this score. That is why a uniqueness assessment
step is required.
Secondly, through uniqueness assessment, unique repu-
tation score 𝑅𝑝𝑖 monitored at task 𝑇𝑗+1 are identified.
Intuitively, the pseudonym (e.g. 𝑅𝐼𝐷𝑗

𝑝𝑖) having unique
reputation score 𝑅𝑝𝑖 is linked to the pseudonym having
the same unique value of expected reputation 𝐸𝑅𝑝𝑖

calculated at task 𝑇𝑗 . If the reputation 𝑅𝑝𝑖 score is
not unique, this means the update process functions
such that multiple participants are assigned the same
reputation. In this case, all the contributions carrying
the same reputation at 𝑇𝑗+1 are considered as potential
successors.
While, pseudonym carrying reputation 𝑅𝑝𝑖 is linked
to the pseudonym with the same expected reputation
𝐸𝑅𝑝𝑖 , if they are unique and they both have the same
value. The RR attacker not only links pseudonyms but
also contributions from both pseudonyms and records
them in a profiling table under the same identity. An
example of a profiling table for a set of subsequent tasks
is depicted in Table 1. The results of RR attack are
depicted in Section 6.2. It is evident that, large number
of contributions are linked to their successors (e.g. 35%)
which leads to more easier identities re-identification.
In this paper, a new privacy preserving reputation
system (PrivaSense) that incorporates a reputation
system into a privacy preserving participatory sensing
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𝑝1 𝑝2 𝑝3 𝑝4 ... 𝑝𝑛
𝑇1 ((𝑥𝑇1 , 𝑦𝑇1), 𝑡𝑇1 , 𝑑𝑎𝑡𝑎𝑇1)𝑅𝐼𝐷1

𝑝1 ... ... ((𝑥𝑇1 , 𝑦𝑇1), 𝑡𝑇1 , 𝑑𝑎𝑡𝑎𝑇1)𝑅𝐼𝐷1
𝑝4 ... ((𝑥𝑇1 , 𝑦𝑇1), 𝑡𝑇1 , 𝑑𝑎𝑡𝑎𝑇1)𝑅𝐼𝐷1

𝑝𝑛

𝑇2 ... ((𝑥𝑇2 , 𝑦𝑇2), 𝑡𝑇2 , 𝑑𝑎𝑡𝑎𝑇2)𝑅𝐼𝐷2
𝑝2 ((𝑥𝑇2 , 𝑦𝑇2), 𝑡𝑇2 , 𝑑𝑎𝑡𝑎𝑇2)𝑅𝐼𝐷2

𝑝3 ... ... ((𝑥𝑇2 , 𝑦𝑇2), 𝑡𝑇2 , 𝑑𝑎𝑡𝑎𝑇2)𝑅𝐼𝐷2
𝑝𝑛

𝑇3 ((𝑥𝑇3 , 𝑦𝑇3), 𝑡𝑇3 , 𝑑𝑎𝑡𝑎𝑇3)𝑅𝐼𝐷3
𝑝1 ((𝑥𝑇3 , 𝑦𝑇3), 𝑡𝑇3 , 𝑑𝑎𝑡𝑎𝑇3)𝑅𝐼𝐷3

𝑝2 ... ((𝑥𝑇3 , 𝑦𝑇3), 𝑡𝑇3 , 𝑑𝑎𝑡𝑎𝑇3)𝑅𝐼𝐷3
𝑝4 ... ...

𝑇4 ((𝑥𝑇4 , 𝑦𝑇4), 𝑡𝑇4 , 𝑑𝑎𝑡𝑎𝑇4)𝑅𝐼𝐷4
𝑝1 ... ((𝑥𝑇4 , 𝑦𝑇4), 𝑡𝑇4 , 𝑑𝑎𝑡𝑎𝑇4)𝑅𝐼𝐷4

𝑝3 ((𝑥𝑇4 , 𝑦𝑇4), 𝑡𝑇4 , 𝑑𝑎𝑡𝑎𝑇4)𝑅𝐼𝐷4
𝑝4 ... ((𝑥𝑇4 , 𝑦𝑇4), 𝑡𝑇4 , 𝑑𝑎𝑡𝑎𝑇4)𝑅𝐼𝐷4

𝑝𝑛

𝑇5 ... ((𝑥𝑇5 , 𝑦𝑇5), 𝑡𝑇5 , 𝑑𝑎𝑡𝑎𝑇5)𝑅𝐼𝐷5
𝑝2 ((𝑥𝑇5 , 𝑦𝑇5), 𝑡𝑇5 , 𝑑𝑎𝑡𝑎𝑇5)𝑅𝐼𝐷5

𝑝3 ... ... ...
.... ... ... ... ... ... ...
𝑇𝑁 ((𝑥𝑇𝑁 , 𝑦𝑇𝑁 ), 𝑡𝑇𝑁 , 𝑑𝑎𝑡𝑎𝑇𝑁 )𝑅𝐼𝐷𝑁

𝑝1 ((𝑥𝑇𝑁 , 𝑦𝑇𝑁 ), 𝑡𝑇𝑁 , 𝑑𝑎𝑡𝑎𝑇𝑁 )𝑅𝐼𝐷𝑁
𝑝2 ... ((𝑥𝑇𝑁 , 𝑦𝑇𝑁 ), 𝑡𝑇𝑁 , 𝑑𝑎𝑡𝑎𝑇𝑁 )𝑅𝐼𝐷𝑁

𝑝4 ... ((𝑥𝑇𝑁 , 𝑦𝑇𝑁 ), 𝑡𝑇𝑁 , 𝑑𝑎𝑡𝑎𝑇𝑁 )𝑅𝐼𝐷𝑁
𝑝𝑛

Table 1: An example of the profiling table

application is proposed. PrivaSense takes into account
all the attacks considered in the threat model.

4 PRIVASENSE

The framework of privacy-preserving and reputation-aware
mobile participatory sensing system, proposed in this pa-
per, is depicted in Figure 1. It is clear, the proposed frame-
work include four main parties a participant, an application
server noted as App.Server, Authentication server noted as
Auth.Server, and reputation server referred to as Rep.Server.
A participant and App.Server are the common parties in a
participatory sensing campaign. However, both Auth.Server
and Rep.Server are trusted entities that are involved in order
to manage the threat model described earlier. The assump-
tions related to each entity are defined as follows:

App. Server Rep.Server 
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Figure 1: Privasense Architecture

∙ Participant A participant, (1) authenticates himself
with Auth.Server, (2) selects a task from the tasks
announced by the application server, (2) constructs a
sensing report (i.e. Contribution), (3) forwards it to the
application server, (4) re-authenticate with Auth.Server
for a new task.

∙ App.Server The App.Server, (1) initiates sensing cam-
paign, (2) receives and aggregated sensing reports, (3)
adopts a reputation system, (4) assigns a feedback to
each contribution, (5) and forwards this feedback to
Rep.Server.

∙ Auth.Server is the entity that, (1) generates pseudonyms,
(2) Forwards these pseudonyms to Rep.Server, (3) re-
news these pseudonyms after each campaign, (4) and
sends this renew to Rep.server. Auth.Server keeps the
succession of participants pseudonyms.

∙ Rep.Server is the entity that, (1) sends anonymous
reputation certificates to application server, (2) re-
ceives feedback from the application server, (3) uses
the feedback to update reputation scores, (4) receives
pseudonym update from Auth.Server, (5) and links the
reputation score of the old pseudonym to the current
one, (6) discards old pseudonyms. Rep.Server has no
information about original identities or contributions’
contents.
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Figure 2: PrivaSense: a detailed scenario

4.1 Overview

The complete scenario of PrivaSense is depicted in Figure
2. First, participant 𝑝𝑖 registers with an Auth.Server. The
Auth.server creates the first random authentication identi-
fier 𝑅𝐼𝐷0

𝑝𝑖 as described in [9] (step 1). This 𝑅𝐼𝐷0
𝑝𝑖 is the

first pseudonym granted to participant 𝑝𝑖 and it is simul-
taneously sent to the reputation server (Rep.Server) (step
2). Both 𝑝𝑖 and the App.Server communicate to create a
session key (𝑘𝑝𝑖 , 𝑘𝐴𝑝𝑝.𝑆𝑒𝑟𝑣𝑒𝑟) (step 3). The participant sends
this key to the Rep.Server to initialize the session (step 4).
Rep.Server records this key and acknowledges 𝑝𝑖 (step 5),
indicating the session has been initiated at the Rep.Server. 𝑝𝑖
forwards his first anonymous identity 𝑅𝐼𝐷0

𝑝𝑖 to App.Server

(step 6). The App.Server sends a query about 𝑅𝐼𝐷0
𝑝𝑖 to the

Rep.server (step 7). The Rep.server checks if the received
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identifier matches a user identity. So, a valid acknowledgment
is sent back to the App.Server in line with an anonymous
reputation certificate of the considered participant. This cer-
tificate contains both his current identifier and his current
reputation score (𝑅𝐼𝐷0

𝑝𝑖 , �̂�𝑝𝑖). Otherwise, a non valid ac-
knowledgment is sent (step 8). If 𝑝𝑖 is correctly verified by
the Rep.Server, 𝑅𝐼𝐷0

𝑝𝑖 senses his environment, constructs
his first contribution (𝐶𝑝𝑖1), applies a privacy preserving
mechanism on the report contents (e.g. [4]) (step 9). Then,
this contribution is forwarded to App.Server (step 10). The
App.Server accepts the contribution, assesses its trust by
applying a reputation management system (e.g. [15]) and cal-
culates a feedback (step 11). This feedback is shared with the
Rep.Server, (step 12), to update the reputation score of the
considered participant (step 13). 𝑝𝑖 contacts the Auth.Server
to get a new pseudonym 𝑅𝐼𝐷1

𝑝𝑖 by submitting his last pseu-

donym 𝑅𝐼𝐷0
𝑝𝑖 (step 14). The new pseudonym is forwarded

for both the participant and for the Rep.Server as well (step
15).

4.2 Protocol Outline

Our privacy preserving reputation system goes through four
consecutive phases (1) Participant Registration and Authen-
tication, (2) Issuing a Reputation Certificate, (3) Privacy and
Reputation Assessment, (4) Re Authentication. The details
of these phases are described as follows:.

4.2.1 Participant Registration and Authentication. Through
this phase, participant 𝑝𝑖 joins a sensing campaign. First, 𝑝𝑖
sends his permanent identifier ( e.g. 𝐼𝐷𝑝𝑖) to the Auth.Server.
The original identity of the participant is always kept secret
along his lifetime. The first pseudonym 𝑅𝐼𝐷0

𝑝𝑖 is then gener-
ated by the Auth.Server. We assume that pseudonyms are
calculated as described in [9] using the public key of the
Auth.Server (i.e. 𝑘𝐴𝑢𝑡ℎ.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑢𝑏) as shown in Equation 1.
Only the Auth.Server is able to decrypt it and reveal the real
identity of the participant. This pseudonym is forwarded for
both the owner participant and the Rep.Server.

𝑅𝐼𝐷0
𝑝 = 𝐸(𝐼𝐷𝑝𝑖 , 𝑟

0
𝑝𝑖)𝑘𝐴𝑢𝑡ℎ.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑢𝑏 (1)

where 𝑅𝐼𝐷0
𝑝𝑖 is the pseudonym generated, 𝐸 is an encryp-

tion function of the identity 𝐼𝐷𝑝𝑖 and a random variable 𝑟0𝑝𝑖 .
𝑘𝐴𝑢𝑡ℎ.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑢𝑏 is the Auth.Server public key.

A participant then authenticates himself with the App.Server.
First, both the participant 𝑝𝑖 and the App.Server commu-
nicate through some key exchange mechanism, (e.g. Diff
Helman key exchange mechanism), and generate a session
key (𝑘𝑝𝑖 , 𝑘𝐴𝑝𝑝.𝑆𝑒𝑟𝑣𝑒𝑟). The participant sends this key to the
Rep.Server in line with his pseudonym 𝑅𝐼𝐷0

𝑝𝑖 . Rep.Server
records the received data and acknowledges the participant.
The participant sends his 𝑅𝐼𝐷0

𝑝𝑖 and the session key pre-
viously generated (𝑘𝑝𝑖 , 𝑘𝐴𝑝𝑝.𝑆𝑒𝑟𝑣𝑒𝑟) to the App.Server. The
App.Server sends to the Rep.Server asking for the valid-
ity of 𝑅𝐼𝐷0

𝑝𝑖 to make sure that the identity is valid and
it has already initiated a session through the key exchange
mechanism. Rep.Server checks the validity of the received

anonymous identity and if the session key matches the one
received earlier from this identity. If so, Rep.Server sends
a valid acknowledgment and the reputation score of 𝑅𝐼𝐷0

𝑝𝑖

embedded in an anonymous reputation certificate to the
App.Server as shown in the upcoming phase. Otherwise, a
non-valid acknowledgment is sent.

4.2.2 Issuing a Reputation Certificate. In order to manage
the conflict discussed in Section 1, and to defend against
the threat model described in Section 3, specifically RR
attack. We adopt a double fold anonymization mechanism.
First, we adopt a cloaking mechanism on the reputation
scores before their transfer to the App.Server. Then, cloaked
reputation scores are embedded within anonymous reputation
certificates.

Firstly, to anonymize reputation scores, we cloak them by
adding a small random noise. Reputation scores are ran-
domly incremented or decremented by a value noted as
increment/decrement amount referred to as 𝑖𝑑𝑎. This change
prevents the App.Server to link two consecutive reputation
scores assigned to the same participant. For this, a random
increment/decrement variable noted as 𝑟𝑖𝑑 is generated such
that 𝑟𝑖𝑑 ∈ {0, 1}. 0 is used to increment, and 1 is to decrement.
Then, 𝑖𝑑𝑎 is generated such that it belongs to a specified
cloaking interval noted as 𝑐𝑙𝑘𝑖𝑛𝑡𝑟, 𝑖𝑑𝑎 ∈ [0, 𝑐𝑙𝑘𝑖𝑛𝑡𝑟]. That is
𝑖𝑑𝑎 ≤ 𝑐𝑙𝑘𝑖𝑛𝑡𝑟. Reputation scores are incremented such that
they do not surpass 1 or decremented such that they are not
less than 0. The maximum change imposed on the reputation
score is ±𝑐𝑙𝑘𝑖𝑛𝑡𝑟. The anonymous reputation is referred to

as 𝐴𝑅𝑝𝑖 . The anonymization process is formulated according
to Equation 2.

𝐴𝑅𝑝𝑖 =

⎧⎨⎩𝑚𝑖𝑛
{︁
�̂�𝑝𝑖 + 𝑖𝑑𝑎, 1

}︁
if 𝑟𝑖𝑑 == 0

𝑚𝑎𝑥
{︁
�̂�𝑝𝑖 − 𝑖𝑑𝑎, 0

}︁
if 𝑟𝑖𝑑 == 1

(2)

Where �̂�𝑝𝑖 is the reputation score of 𝑝𝑖 and 𝐴𝑅𝑝𝑖 is the
output anonymized reputation score.

Using large values for 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 adds more noise to reputation
scores. Intuitively, large values of cloaking intervals have a
better performance from the anonymization point of view.
However, this leaves a negative impact on the accuracy of
the aggregated data. That is 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 is a system parameter
that manages the trade-off between anonymity and accuracy.
Subsequently, we test this parameter to see its effect on
the system performance (e.g. anonymity and reliability) in
Section 6.2.1.

Secondly, the cloaked reputation score of a participant is
transferred to the App.Server in the form of an anonymous
reputation certificate noted as 𝑅𝐶𝑝𝑖 . This certificate is gener-
ated such that, it contains both the current pseudonym of the
participant, 𝑅𝐼𝐷0

𝑝𝑖 , and its corresponding cloaked reputation

score 𝐴𝑅𝑝𝑖 . That is, RR attacker becomes puzzled to detect
whom participant has which score and which pseudonym
previously. That is, it ensures better anonymity and solves
the problem of linkability described earlier. Subsequently,
PrivaSense defends against RR attack that mainly depends
on the linkability. Anonymous reputation certificate 𝑅𝐶𝑝𝑖 is
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signed by the Rep.Server’s private key. Therefore, it cannot
be fabricated and Replay attack mentioned before cannot
be launched. Adversaries has to access the private key of
Rep.Server in order to fabricate a reputation certificate and
to have the ability to deceive the App.Server.

𝑅𝐶𝑝𝑖 =
[︁
𝑅𝐼𝐷0

𝑝|𝐴𝑅𝑝𝑖

]︁
𝑘𝑅𝑒𝑝.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑟𝑖𝑣

(3)

4.2.3 Privacy and reputation Assessment. Participant senses
the required observation and constructs a contribution 𝐶𝑝𝑖𝑗 .
We propose that participants apply one of the existing pri-
vacy preserving mechanisms summarized by Christin et.al.
in [4]. Subsequently, the data provided by a participant are
anonymized or cloaked such that they mitigate the effect of
re-identification attacks [3, 10]. The anonymous contribution
is subsequently forwarded to App.Server.

In PrivaSense, App.Sever adopts one of the existing repu-
tation system such our system presented in [15]. According
to this system, each contribution is evaluated and assigned a
feedback which reflects the participant’s honesty. Feedback is
noted as 𝑓𝑅𝐼𝐷0

𝑝𝑖
. This feedback is forwarded to the Rep.Server

in the following form.

𝑓𝑝𝑖 =
[︁
𝑅𝐼𝐷0

𝑝𝑖 |𝑅𝐶𝑝𝑖 |𝑓𝑅𝐼𝐷0
𝑝

]︁
𝑘𝐴𝑝𝑝.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑟𝑖𝑣

(4)

Rep.Server depends on this feedback to update the reputa-
tion score of the considered participant such that participant’s
reputation is increased if the feedback exceeds some threshold
𝜖. Otherwise, participant’s reputation is decreased as follows:

𝑅𝑝𝑖 =

⎧⎨⎩𝑚𝑖𝑛
{︁
�̂�𝑝𝑖 + 𝑓𝑅𝐼𝐷0

𝑝
, 1
}︁

if 𝑓𝑅𝐼𝐷0
𝑝𝑖

≥ 𝜖

𝑚𝑎𝑥
{︁
�̂�𝑝𝑖 − 𝑓𝑅𝐼𝐷0

𝑝
, 0
}︁

if 𝑓𝑅𝐼𝐷0
𝑝𝑖

< 𝜖
(5)

4.2.4 Re Authentication. A participant asks for a new
pseudonym to join an upcoming campaign with a different
identifier. Thus, he sends his current identifier 𝑅𝐼𝐷0

𝑝𝑖 to the
Auth.Server. Now, Auth.Server knew earlier that this identity
is valid. Thus, this time and in each subsequent renew, the
Auth.Server generates a new identifier (e.g. 𝑅𝐼𝐷1

𝑝𝑖) using a

new random value 𝑟1𝑝𝑖 as described in the following equation.

𝑅𝐼𝐷1
𝑝𝑖 = 𝐸(𝐼𝐷𝑝𝑖 , 𝑟

1
𝑝𝑖)𝑘𝐴𝑢𝑡.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑢𝑏 (6)

The new identifier is forwarded to both the participant
and the Rep.Server in the form of a new identifier as follows.

𝑁𝑒𝑤𝐼𝐷 =
[︀
𝑅𝐼𝐷0

𝑝𝑖 |𝑅𝐼𝐷1
𝑝𝑖

]︀
𝑘𝐴𝑢𝑡.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑟𝑖𝑣

(7)

The objective of sending both the old and new identifier
simultaneously to the Rep.Server is apparent in different
reasons. First, the Rep.Server links the reputation score
of 𝑅𝐼𝐷0

𝑝𝑖 to 𝑅𝐼𝐷1
𝑝𝑖 . Secondly, recording this new identity

allows the participant to use this new identifier to contact the
App.Server for a new task such that he is correctly validated
by the Rep.Server. In addition, the Rep.Server discards the
old pseudonym 𝑅𝐼𝐷0

𝑝𝑖 such that it cannot be used again by
an adversary.

5 SECURITY ANALYSIS

The goal of our evaluations is threefold: (1) analyze the
robustness of our proposal against the threats identified
in Section 3, (2) empirically evaluate the performance of
PrivaSense, (3) compare PrivaSense with the existing systems.
The first goal is discussed in this section whereas the second
and the third goals are discussed in Section 6.

Starting by analyzing the Resilience of PrivaSense against
the reliability oriented attacks:

∙ Sybil Attack : PrivaSense system is protected against
this attack. If the attacker tries to re-randomize the
received RID using a new random number according
to Equations 6 and 1, the resulting pseudonym RID
will not match any valid authentication RID stored in
the Rep.Server. This is because the attacker does not
know the randomization seed used by the Auth.Server,
and hence the attacker will not be able to generate the
same series of randomized RIDs that match the real
ones.

∙ Replay Attack : The attacker cannot directly use the
pseudonym RID twice since each RID is allowed to be
used only once and is discarded after the use by the
Rep.Server. Replay attacker also attempts to demon-
strate a recent pseudonym and an old reputation score
to the App.Server. Attackers are prevented from launch-
ing replay attack. In PrivaSense, Rep.Server maintains
an up-to-date list of both valid pseudonyms and their
associated reputation scores. Rep.Server is responsi-
ble for creating reputation certificate, signing it and
forwarding it to the App.Server. Original reputation
certificates include the most recent pseudonyms and
their corresponding reputation scores and they are
signed by the Rep.Server’s private key 𝑘𝑅𝑒𝑝.𝑆𝑒𝑟𝑣𝑒𝑟.𝑝𝑟𝑖𝑣

which is not accessible to attackers. Private keys are
kept secret all the time. Subsequently, attackers cannot
replay reputation certificates.

∙ Reporting falsified sensor readings: Malicious par-
ticipants try to report falsified sensor readings on be-
half of other participants to degrade their reputation.
PrivaSense protects honest participants against this
attack by requesting participants to authenticate with
the Auth.Server and Rep.Server. These entities verify
the validity of the pseudonyms before considering their
contributions. Such an attack would only be successful
if attackers access the original identities of the targeted
participants and those of their respective pseudonyms.
However, participants’ original identities are kept secret
during their lifetime.

Resilience against privacy oriented attacks:

∙ Identity and Data Re-identification : Participants
authenticate themselves using their anonymous identi-
ties RID. RID is encrypted by Auth.Server. Thus, it
does not reveal any information concerning the partic-
ipant’s real identity. Therefore, an adversary cannot
reveal the real identity of the sensing report provider un-
less he has access to the private key of the Auth.Server.
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In addition, participants adopt one of the existing pri-
vacy preserving cloaking mechanisms to anonymize
their sensed data. Therefore, our system ensures par-
ticipants anonymity from both the identity and data
point of views.

∙ Reputation based Re-identification (RR attack):
Given that the anonymity of identity and the sensed
data are ensured, the supplementary objective of de-
signing a privacy preserving reputation protocol is to
simultaneously ensure the un-linkability based on the
reputation scores assigned to participants. PrivaSense
adopts a double fold anonymization for reputation
accounts. First, Rep.Server forwards an anonymous
reputation certificate to the App.Server as described
in Equation 4. That is, the App.Server cannot link the
assigned reputation score to the original identity. In
addition to that, reputation scores are cloaked based
on Equation 2. So, App.Server knows the anonymized
reputation score related to its pseudonym RID. That
is, adversaries cannot link two consecutive reputation
scores assigned to the same participant based on neither
the identity nor the value of the reputation.

6 EXPERIMENTAL RESULTS

6.1 Evaluation Setup

6.1.1 Simulation Model. Let us now describe the simula-
tion model of a noise monitoring paticipatory sensing ap-
plication similar to [17]. Each simulation involves running
the example application in the sequence described in Sec-
tion 4. Each participant is assigned GPS timestamps and
coordinates taken from the taxi mobile traces real dataset
[16]. The data-set contains the GPS timestamps and coordi-
nates of approximately 500 taxis collected in May, 2008 in
the San Francisco Bay Area. For the first interaction, the
Rep.Server simply assigns participants with some initial rep-
utations while subsequent reputation values are calculated
as described in Section 4.2.3.

We synthesize the noise distribution in an urban environ-
ment by assuming the data agree with the real noise levels
described in [6]. We consider a quiet sensing area where the
mean 𝜇 and standard deviation of the correct noise data is
60 db and 5 respectively. An honest participant sends correct
sensing data. We also include malicious participants in the
simulation to reflect a more realistic usage scenario. However,
malicious participant sends false sensing data. We set the
false data to contradict with the correct data. Therefore, the
mean of false data is 𝜇+ 𝜇/3 (i.e. 80 db). This means that
malicious participant contributes data which correspond to
a completely different level of noise. Thus, even one false
report has a significant impact on the measurements. In addi-
tion, all false reports support each other. Thus, the standard
deviation of false data is set to 0. Hence, we look for the
worst case when all malicious participants collude to cause
the biggest possible disturbance to the system. Table 2 lists
our default parameter settings.

Parameter Value

Number of participant for each task P 150
Number of adversaries for each task A 40
The mean value of correct data 𝜇 60
The standard deviation of correct data 5
The mean value of adversary data (𝜇+ 𝜇/3) 80
The standard deviation of adversary data 0

Table 2: Default Parameter Settings

6.1.2 Evaluation Metrics. We evaluate our proposal ac-
cording to three metrics to measure the levels of anonymity
and reliability as follows:

Links. First, RR Links metric measures the number of con-
tributions linked to their successors in each campaign based
on the RR attack defined in Section 3. Whereas, PrivaSense
Links are the links detected based on RR attack even with
the adoption of PrivaSense.

Linkability. PrivaSense makes the Links metric does not
make sense, because not only a participant’s identity and data
are anonymized but also due to the reputation scores. Thus,
the links that can be detected due to the reputation scores are
mostly removed. To measure the effect of PrivaSense on par-
ticipants’ anonymity, we use another metric called linkability.
For this metric, a set of potential successors of each pseu-
donym is defined such that it contains a list of pseudonyms
that can be the successor of the target participant. A large
potential successors set ensures better anonymity. Note that
the following description is applied to one reputation update.
First, the Euclidean Distances between the location of 𝑅𝐼𝐷0

𝑝𝑖

and the location of all the pseudonyms in the subsequent
contribution are calculated. Then, the pseudonyms which
ensure a distance less than 𝜆 are considered as the potential
successors for 𝑅𝐼𝐷0

𝑝𝑖 . Next, an adversary selects a subset of
the potential successors whose reputation scores are closer to
the reputation of 𝑅𝐼𝐷0

𝑝𝑖 noted as (𝛽𝑠), the linkability metric

is defined as 1
𝛽𝑠

. Small values of this metric indicate much

better anonymity and vice Versa.

RMSE. To measure the PrivaSense reliability, the accu-
racy of the aggregated data is evaluated. Application server
calculates a weighted sum average of the aggregated data
using reputation scores as weights. To measure the disrup-
tion incurred due to the anonymization of reputation scores,
we compare the RMSE of the average noise levels calcu-
lated based on the anonymized reputation scores against the
RMSE calculated using the original reputation scores without
anoymization. The RMSE between two vectors of values is
defined as follows:

𝑅𝑀𝑆𝐸 =

√︃∑︀𝑁𝐶
𝑖=1 (𝜐1,𝑖 − 𝜐2,𝑖)2

𝑁𝐶
(8)

6.2 Results

6.2.1 Privacy.
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Links. In this experiment, we measure the effect of RR
attack. We observe the number of contributions that can be
linked to their successive contributions in each two consecu-
tive campaigns. 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 is set to 0.5. The results are depicted
in Figure 3. It is evident that a large number of participants
are linked to their contributions. In sub-figure (a), where
P=100, RR attacker detects around 40 up to 60 RR links out
of 100 contributions received from 100 participant. Which
means, on average, half of the contributions are linked to
their successors. Whereas in sub-figure (b), where P=300,
the number of RR links detected vary from 30 to 90 out of
300 contributions (i.e. on average 20% of RR links detected
). That is, the number of RR links detected depends on the
number of participants 𝑃 involved in the campaign. In our
experiment, we have an average number between 20% and
50%. This means 35% of RR links are detected. Subsequently,
a while after the system initiation, adversaries construct
a profile of each participant containing their pseudonyms,
contributions’ contents, and reputation scores. That is pri-
vacy preserving attacks (e.g. [7],[1]) are easily adopted to
re-identify the original identities. In the same figure, we can
notice the links detected while PrivaSense is adopted. In both
sub-figures (a) and (b), the PrivaSense links detected are so
small. This is because the anonymization of reputation scores
added to using anonymous certificate described in Section
4.2.2. PrivaSense links detected refer to the ones when the
noise added is zero (i.e. 𝑖𝑑𝑎 = 0), since 𝑖𝑑𝑎 ∈ [0, 𝑐𝑙𝑘𝑖𝑛𝑡𝑟]. That
is, the links detected can be removed if we do not include 0 as
a member of the cloaking interval. That is 𝑖𝑑𝑎 ∈ (0, 𝑐𝑙𝑘𝑖𝑛𝑡𝑟]
since the zero as a noise conserves the original values and
subsequently keeps the links.

Linkability. In this experiment, we measure the linkability
metric as depicted in Figure 4. As the dataset includes a
large number of participants, we only show the linkability for
a subset of them, selected randomly, as well as the average
values of this metric over all participants. We set 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 to 0.5
and 0.3 and show the results in Figure 4 a and b respectively.

From the results of RR attack, we concluded that ad-
versaries construct a profile for each participant. Then, we
attempt to measure the effect of PrivaSense to defend against
this attack. In the results of our system depicted in Figure 4
(a), the average probability of a successful linkage is reduced
to around 30% at the beginning of the sensing campaign with
the first reputation update. As time progresses, the average
probability continues to decrease and it reaches 6% at the
end of the campaign. This is equivalent to a 94% average
improvement. To explain the declining trend in Figure 4,
we recall that the linkability technique works on location
coordinates in successive time intervals. That is, if the adver-
sary made a false link between contributions in Task 𝑡 and
𝑡+ 1, the error in the spatial information would propagate
and compound to that at 𝑡+ 2, which makes it increasingly
difficult to track participants.

In Figure 4 (b), we have used a much lower value of cloaking
range 𝑐𝑙𝑘𝑖𝑛𝑡𝑟. We can see that the average linkability starts at
50% at the beginning of the sensing campaign and decreases

to around 20% at the end of the campaign. This is equivalent
to 80% average improvement. Comparing the results in sub-
figure (b) with the one in (a), we can conclude that, using
higher values for 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 in Sub-figure (a) allows for much
lower values of the average linkability 30% at the beginning
and it reaches 6% at the end. This leads to better anonymity.

According to this experiment, it is evident that our rep-
utation cloaking mechanism introduces better anonymity
and unlinkability for the participants engaged in the sensing
campaign with higher levels of cloaking. However, we should
evaluate the effect of using such cloaked reputation scores
on aggregating the collected data to define how much they
deviate from aggregation based on the original reputation
scores. That is we observe the accuracy of PrivaSense.

Accuracy. In the second experiment, we have used different
values of 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 to cloak the reputation scores. Although, us-
ing large values for this parameter allows for better anonymity
and unlinkability, as demonstrated in the previous experiment,
it affects the accuracy of the aggregated data. Therefore, we
consider a real world participatory sensing application as
the model discussed above. Then, Figure 5 (a) depicts the
weighted sum average of the aggregated contributions. Where
𝑅 − 𝑎𝑣𝑔 is the weighted sum average of the contributions
using the original reputation scores as weights. 𝑐𝑙𝑘 − 0.1,
𝑐𝑙𝑘 − 0.3, 𝑐𝑙𝑘 − 0.5, and 𝑐𝑙𝑘 − 0.7 are the weighted sum av-
erage of the contributions based on the cloaked reputation
scores using different values for the cloaking interval (e.g.
𝑐𝑙𝑘𝑖𝑛𝑡𝑟 ∈ {0.1, 0.3, 0.5, 0.7}). The figure also includes the av-
erage of the aggregated data calculated without incorporating
any additional weights noted as 𝑁 − 𝑎𝑣𝑔.

It is clear from figure 5 (a) that, normal average 𝑁 − 𝑎𝑣𝑔
calculated without adding any weights is far from the ground
truth while the reputation based average 𝑅 − 𝑎𝑣𝑔 is much
closer to the ground truth. It is evident that incorporating
reputation scores in data aggregation gives better insights
about the ground truth. In addition, it is clear from the figure
that each of the averages calculated based on the cloaking
intervals of 𝑐𝑙𝑘 − 0.1, 𝑐𝑙𝑘 − 0.3, 𝑐𝑙𝑘 − 0.5, and 𝑐𝑙𝑘 − 0.7 do
not deviate significantly from average calculated based on
the original reputation values 𝑅− 𝑎𝑣𝑔. That is our cloaking
does not disrupt the aggregated data significantly.

To better quantify the distortion occurred due to the incor-
poration of our reputation cloaking mechanism, we measure
the RMSE for the same experiment and depict it in Figure 5
(b). It is evident that the RMSE calculated according to the
actual values of reputation scores, 𝑅− 𝑎𝑣𝑔, has usually less
values of RMSE compared with those calculated based on
cloaked reputation. In addition, using less values of cloaking
intervals 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 ensures RMSE values which are closer to that
is calculated according to the actual reputation scores (i.e.
𝑅𝑀𝑆𝐸(𝑅−𝑎𝑣𝑔) < 𝑅𝑀𝑆𝐸(𝑐𝑙𝑘−0.1) < 𝑅𝑀𝑆𝐸(𝑐𝑙𝑘−0.3) <
𝑅𝑀𝑆𝐸(𝑐𝑙𝑘 − 0.5) < 𝑅𝑀𝑆𝐸(𝑐𝑙𝑘 − 0.7)). That is cloaking
based on less values of cloaking interval 𝑐𝑙𝑘𝑖𝑛𝑡𝑟 allows for
aggregating data closer to the ground truth with less RMSE.

6.2.2 Comparisons. We compare our proposal against pre-
vious work which intended to ensure the same objectives as
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Figure 3: The number of links detected based on RR attack and PrivaSense
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Figure 4: The linkabiliy for randomly selected participants
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Figure 5: The effect of cloaking interval’s size on the aggregated data and RMSE

the system presented in [8]. We compare the RMSE of the
aggregated data based on Huang et al. in [8] with RMSE of
PrivaSense. In Figure 6, the RMSE of PrivaSense has less
values compared with the previous work by Huang et al. This
ensures that the aggregated data according to our proposal
are more accurate.

To summarize PrivaSense introduces better anonymity
through better un-linkability. In addition, the aggregated data
are more accurate compared with the previous work. More-
over, all the overhead for generating pseudonyms and cloaking
reputation scores has been transferred to the Auth.Server
and Rep.Server. Whereas in the literature, participants are
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usually engaged with other entities in order to generate their
pseudonyms. This ensures that in PrivaSense, participants’
devices are much less overloaded with cryptographic and
computational tasks which may lead to battery drain. We
consider implementing a real world application and measuring
the battery drain as a future work.

7 CONCLUSION

In this paper, We define a new attack in participatory sens-
ing environments. This attack enables an attacker to link
multiple contributions to the same identity. The results ob-
tained clarify that 35% of contributions are linked to their
successors in each campaign. Then, we propose a privacy
preserving reputation system PrivaSense for participatory
sensing applications. Our system adopts a registration and
an authentication phases that ensure participants’ anonymity
and improve the system resilience against the Sybil and re-
play attacks. In addition, a privacy preserving mechanism is
adopted for the contents of the participants’ contributions
which prevents adversaries from using the data to infer the
identity of participants. Moreover, data reliability is ensured
due to the incorporation of a reputation system. Finally, Pri-
vaSense adopts a mechanism to cloak the reputation scores
of participants. That is, the participants can not be linked
to their contributions according to their assigned reputation
scores. The discussion and the results obtained based on a
real dataset demonstrate that the PrivaSense system ensures
better anonymity and un-linkability with a ratio that reaches
about 80%, with much low mean square error introduced to
the aggregated data. We consider ensuring the same objec-
tives within a trustless system model, (i.e. avoid relying on
the trusted entities such Rep.Server and Auth.Server), as a
future work.
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Steenland, Annette Prüss-Üstün, Carlos Corvalán, and Alistair
Woodward. 2004. Occupational noise. Assessing the 7 (2004).

[7] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen,
and Vincent D Blondel. 2013. Unique in the crowd: The privacy
bounds of human mobility. Scientific reports 3 (2013), 1376.

[8] Kuan Lun Huang, Salil S. Kanhere, and Wen Hu. 2012. A Privacy-
preserving Reputation System for Participatory Sensing. In Pro-
ceedings of the 2012 IEEE 37th Conference on Local Computer
Networks (LCN 2012) (LCN ’12). IEEE Computer Society, Wash-
ington, DC, USA, 10–18.

[9] Wei Jiang, Feng Li, Dan Lin, and Elisa Bertino. 2017. No one can
track you: Randomized authentication in Vehicular Ad-hoc Net-
works. In Pervasive Computing and Communications (PerCom),
2017 IEEE International Conference on. IEEE, 197–206.

[10] Apu Kapadia, David Kotz, and Nikos Triandopoulos. 2009. Op-
portunistic Sensing: Security Challenges for the New Paradigm.
In Proceedings of the First International Conference on COM-
munication Systems And NETworks (COMSNETS’09). IEEE
Press, Piscataway, NJ, USA, 127–136.

[11] W.Z. Khan, Yang Xiang, M.Y. Aalsalem, and Q. Arshad. 2013.
Mobile Phone Sensing Systems: A Survey. Communications
Surveys Tutorials, IEEE 15, 1 (First 2013), 402–427.

[12] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles,
Tanzeem Choudhury, and Andrew T. Campbell. 2010. A Survey
of Mobile Phone Sensing. IEEE Communications Magazine 48,
9 (Sept. 2010), 140–150.

[13] Antonis Michalas and Nikos Komninos. 2014. The lord of the
sense: A privacy preserving reputation system for participatory
sensing applications. In Computers and Communication (ISCC),
2014 IEEE Symposium on. IEEE, 1–6.

[14] Hayam Mousa, Sonia Ben Mokhtar, Omar Hasan, Osama Younes,
Mohiy Hadhoud, and Lionel Brunie. 2015. Trust Management and
Reputation Systems in Mobile Participatory Sensing Applications.
Computer Networks 90, C (Oct. 2015), 49–73. https://doi.org/
10.1016/j.comnet.2015.07.011

[15] Hayam Mousa, Sonia Ben Mokhtar, Omar Hasan, Osama Younes,
Mohiy Hadhoud, and Lionel Brunie. 2017. A reputation system
Resilient against Malicious and Colluding adversaries in particia-
tory sensing applications. In Proceeding of CCNC 2017. IEEE
CCNC.

[16] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias
Grossglauser. 2009. CRAWDAD dataset epfl/mobility (v. 2009-
02-24). Downloaded from http://crawdad.org/epfl/mobility/
20090224. (Feb. 2009). https://doi.org/10.15783/C7J010

[17] Rajib Kumar Rana, Chun Tung Chou, Salil S Kanhere, Nirupama
Bulusu, and Wen Hu. 2010. Ear-Phone: An end-to-end partic-
ipatory urban noise mapping system. In Proceeding of the 9th
ACM/IEEE International Conference on Information Process-
ing in Sensor Networks (IPSN10). Stockholm, Sweden, 105–116.

[18] Xinlei Oscar Wang, Wei Cheng, Prasant Mohapatra, and Tarek
Abdelzaher. 2014. Enabling Reputation and Trust in Privacy-
Preserving Mobile Sensing. IEEE Transactions on Mobile Com-
puting 99, PrePrints (2014), 1.

https://hal.archives-ouvertes.fr/hal-01381986
https://hal.archives-ouvertes.fr/hal-01381986
https://doi.org/10.1016/j.comnet.2015.07.011
https://doi.org/10.1016/j.comnet.2015.07.011
http://crawdad.org/epfl/mobility/20090224
http://crawdad.org/epfl/mobility/20090224
https://doi.org/10.15783/C7J010

	Abstract
	1 Introduction
	2 Related Work
	3 Threat Model
	4 PrivaSense
	4.1 Overview
	4.2 Protocol Outline 
	4.2.1 Participant Registration and Authentication
	4.2.2 Issuing a Reputation Certificate
	4.2.3 Privacy and reputation Assessment
	4.2.4 Re Authentication


	5 Security Analysis
	6 Experimental Results
	6.1 Evaluation Setup
	6.1.1 Simulation Model
	6.1.2 Evaluation Metrics

	6.2 Results
	6.2.1 Privacy
	6.2.2 Comparisons


	7 Conclusion
	References

