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Figure 1: Halftone images produced with different techniques. Visual quality of our images is comparable with that produced with structure-
aware halftoning. At the same time, our method is two to three orders of magnitude faster than structure-aware halftoning (less than one
second vs. hundreds of seconds). This difference is even bigger for larger images. Important notice: all images in this article have been
prepared to be visualized on a graphic display, at 300 dots per inch. To visualize them correctly using Acrobat reader, please set the menu
Edit/Preferences/Page Display/Resolution to “Custom resolution 100 pixels/inch”, and visualize using 300% zoom.

Abstract

We present an original error-diffusion method which produces vi-
sually pleasant halftone images while preserving fine details and
visually identifiable structures present in the original images. Our
method is conceptually simple and computationally efficient. The
source image is analyzed, and its local frequency content is de-
tected. The main component of the frequency content (main fre-
quency, orientation and contrast) serve as lookup table indices to a
pre-calculated database of modifications to a standard error diffu-
sion. The modifications comprise threshold modulation and varia-
tion of error-diffusion coefficients. The whole system is calibrated
in such a way that the produced halftone images are visually close to
the original images (patches of constant intensity, patches contain-
ing sinusoidal waves of different frequencies/orientations/contrasts,
as well as natural images of different origins).

Our system produces images of visual quality comparable to that
presented in [Pang et al. 2008], but much faster. When process-
ing typical images of linear size of several hundreds of pixels, our
error-diffusion system is two to three orders of magnitude faster
than [Pang et al. 2008]. Thanks to its speed combined with high vi-
sual quality, our error-diffusion algorithm can be used in many prac-
tical applications which may require digital halftoning: printing, vi-
sualization, geometry processing, various sampling techniques, etc.

1 Introduction

Digital halftoning is a technique for rendering continuous-tone im-
ages on devices having a limited number of available tone values. A
typical application for digital halftoning algorithms is printing. In
fact, millions of printers rely on digital halftoning in order to repro-
duce on paper a wide range of images: photos, business graphics,
synthetic images, etc. Image quality and speed are two crucial is-
sues to which any digital halftoning must be very sensitive. The
algorithm that we introduce in this paper addresses both issues: it
combines the quality of one of the best known techniques with the
speed of conventional error-diffusion methods.

According to [Pappas et al. 2003; Lee and Allebach 2007], there
are three classes of digital halftoning algorithms:

e C(lass I algorithms employ point processes, also called dither-
ing [Bayer 1973; Ulichney 1987].

e Class II algorithms use neighborhood processes, such as error
diffusion [Floyd and Steinberg 1976].

e Class III algorithms make use of iterative algorithms such
as global search or direct binary search (DBS) [Analoui and
Allebach 1992; Bagqai et al. 2003].

Class I algorithms are the fastest, but their quality is insufficient for
many practical applications, such as driving popular ink-jet print-
ers or visualization on displays. Class III algorithms are the best
from the quality viewpoint. Nevertheless, their complexity is too
large, and they are impractical for most real-world applications.
Class II algorithms are the most popular ones: they combine qual-
ity and speed. Nevertheless, the quality of images produced with
Class II algorithms is far from perfect; it is clearly inferior to that
of Class III.

Recently, impressive structure-aware halftoning has been pro-



posed [Pang et al. 2008]. This Class III algorithm performs itera-
tive optimization according to a perceptual texture-sensitive metric.
The method produces excellent results, but at very high cost: im-
ages of practical interest require minutes of processing time, which
is obviously unacceptable for most practical applications.

The goal of the present article is to show that a Class II structure-
aware algorithm can be built. The name of our system—structure-
aware error diffusion—reflects its essential nature: on one hand,
it inherits the essential features of structure-aware halftoning. On
the other hand, it is basically a Class II (error-diffusion) algorithm.
Consequently, our algorithm benefits from the best features of both:
it has quality comparable to that of Class III algorithms, and the
speed of Class II ones.

The rest of the article is organized as follows: In Section 2 we give
a brief review of the main relevant prior art. In Section 3 we give an
overview of the system. In Section 4 the results are presented and
discussed. Finally, in Sections 5 and 6 we discuss limitations and
draw conclusions.

2 Previous work

The error-diffusion algorithm, first introduced by Floyd and Stein-
berg [1976], has been extensively studied in the literature [Ulichney
1987; Kang 1999; Sharma 2002]. We consider that this research
area is well-established and well-documented. For this reason, we
explore in this section only the bibliography directly related to our
work. We refer interested readers to excellent and very complete
textbooks mentioned hereabout.

The main advantage of the initial version of the algorithm is its
simplicity combined with fairly good overall visual quality of the
produced binary images. The basic algorithm has a number of
inherent drawbacks: first, the algorithm produces identifiable vi-
sually harmful artifacts in highlights and in dark areas (worm ar-
tifacts). Moreover, at certain intensity levels, close to 1/2, 1/3,
2/3, etc., patches of regular structure may appear. These prob-
lems have been addressed in [Ostromoukhov 2001] by introducing
intensity-dependent variable diffusion coefficients. This technique
has been further improved in [Zhou and Fang 2003], by introducing
intensity-dependent noise, in order to break regularities near criti-
cal intensity levels such as 1/2, 1/3, 2/3, etc. Both papers use very
similar optimization techniques for finding near-optimal intensity-
dependent diffusion coefficients. This approach became a popular
standard base (see [Pang et al. 2008]). For this reason, we shall
designate by the term “standard error diffusion” a generic imple-
mentation of the method described in [Ostromoukhov 2001] and
improved in [Zhou and Fang 2003]. In fact, we build our sys-
tem on top of this “standard error diffusion”: we effectively use
intensity-dependent diffusion coefficients. In addition to this “stan-
dard” component, we use a set of modified diffusion filters, as ex-
plained in Section 3.2. Modified diffusion filters depend on local
spectral content of the image (local frequency/orientation/contrast);
the proportion between “standard” and modified diffusion filters is
adjusted during the calibration phase, as explained in Section 3.3.

Eschbach and Knox [1991] improved the basic error diffusion
mechanism by modulating the threshold process with the edge re-
sponse, in order to improve the standard error diffusion in the tex-
tured area. They used the inverse of the input image as the thresh-
old. Their approach (also known as edge-enhancement) has been
further improved and generalized by [Hwang et al. 2004; Kwak
et al. 2006]. The latter considers both local luminance average
and variation. However, even these improved versions of edge-
enhancement contain a major drawback: the strength of the en-
hancement is controlled by a unique global coefficient. Conse-
quently, the method is sensitive to only one particular sub-range

of frequencies and contrasts. In complex images with mixed fre-
quency/contrast content this method can fail. This particular draw-
back has been explained in [Pang et al. 2008]. In accordance with
Pang et al. [2008], we give more evidence of fundamental insuffi-
ciency of the edge-enhancement technique, in the most advanced
version described in [Kwak et al. 2006]. Basic and generalized
edge-enhancement techniques show one additional drawback when
repetitive structures are present in the image. In fact, harmful un-
desirable Moiré-like patterns may appear . These harmful artifacts
are clearly visible in Figure 2, no matter whether strong or weak
enhancement coefficients were used. Once again, our method does
not suffer from this harmful effect, as shown in Figure 2.

In the present paper, we further improve the ideas of [Kwak et al.
2006]. We do use image-dependent threshold modulation, but we
replace the unsharp filter by a frequency- and orientation-dependent
Gabor filter as explained in Section 3.1. Moreover, we modulate the
strength of the threshold modulation by an amount determined dur-
ing the calibration phase, as explained in Section 3.3. Our method
provides a consistent improvement over [Kwak et al. 2006], even
though visual difference between the results produced with both
methods may appear rather subtle in some cases.

More recently, [Pang et al. 2008] introduced a new, more sophis-
ticated structure-aware halftoning method. This method preserves
both the global tone and the texture information, by using, within a
complex optimization process, a combined metric which takes into
account tonal and structural fidelity. This method generates results
of excellent quality, one of the best known to date. However, as we
mentioned before, this method belongs to Class III, and is therefore
very slow. We use [Pang et al. 2008] as the target reference for
quality for our Class II structure-aware error diffusion.

2.1 Local frequency analysis

Classical Fourier analysis [Bracewell 1980] represents an image
as a sum of sine waves of different orientations, periods, am-
plitudes, and phases. Usually, a Discrete Fourier Transform
(DFT) [Bracewell 1980] is performed on images represented by dis-
crete sets of intensities. Frequencies describe the images’ essential
nature: high frequencies correspond to fine details whereas low fre-
quencies represent large-scale variations. Natural images may have
heterogeneous frequency content.

While DFT provides a global analysis, many image processing ap-
plications need local analysis. Some existing techniques have been
designed to that end [Turner 1986; Simoncelli and Freeman 1995].
Our error-diffusion method uses local frequency content (dominant
frequency/orientation/contrast within a small window) in order to
get better sensitivity to structures present in the image. In presence
of a complex frequency content, our method takes into account the
most prominent frequency component only.

Local spectral analysis is not part of our contribution. Any analysis
tool can be used as long as it detects the main frequency content.
Local frequency content analysis described in Chapter 13 of [Jahne
2004] is well-documented and satisfies our needs. Let us briefly
summarize their technique. A gradient vector Ag is computed for
each pixel of the image. Finding the dominant orientation within a

window is done by maximizing the term Xy w(Ag - k_é)2 over the

neighborhood, where w is a windowing function and Ko is the local
orientation vector. Then, the DFT of the neighborhood window
is computed and the dominant frequency and contrast are extracted,
using known dominant orientation. For more details, refer to [Jahne
2004].
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Edge-enhancement (strong coeft.)
[Kwak et al. 2006]
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[Zhou and Fang 2003]
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Structure-Aware Halftoning
[Pang et al. 2008]

Our method

Figure 2: Patches of sine waves. In each set of 6x6 patches, frequency changes along the x axis; contrast — along the y axis. Standard error
diffusion spoils low-contrast patches, especially for high frequencies. Edge-enhancement is unable to reproduce faithfully all frequencies
and contrasts. Please notice the excellent visual coherence of the results produced with our method: the progression of relative contrast is

visually close to that of the original.
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Figure 3: Schematic representation of the architecture of our
structure-aware error diffusion. Please refer to Sections 3.1 and
3.2 for the meaning of all terms.

3 Structure-aware error diffusion

In this section, we provide an overview of our structure-aware error-
diffusion algorithm.

The conventional error-diffusion algorithm processes each pixel of
an input image in a particular sequential order (typically scanline
or serpentine). The intensity of the pixel is compared with a thresh-

old (constant or position-dependent). The result of that comparison
determines the intensity of the output pixel, O or 1; the quantization
error is distributed to the unprocessed neighboring pixels according
to a particular diffusion filter.

In our method, uniform thresholding is adaptively replaced by
thresholding from a parametrized anisotropic Gabor filter, and stan-
dard diffusion filter is adaptively replaced by a parametrized Gaus-
sian filter. The adaptive transition from standard to structure-driven
error diffusion is controlled by a weight parameter w.

During the offline calibration step, we select a perceptually optimal
set of parameters for each of a large number of combinations of
frequency/orientation/contrast (typically, 6> combinations). In the
run-time part of our method, analyzed frequency content of each
pixel then serves as index to the calibration table, and error diffu-
sion is performed in accordance with the retrieved parameters. Fig-
ure 3 gives a schematic representation of our run-time architecture;
pseudo-code is given in Appendix A.

3.1 Threshold modulation

Threshold modulation is a powerful tool for edge enhancement in
error diffusion [Knox 1989; Eschbach and Knox 1991; Hwang et al.
2004; Kwak et al. 2006]. In this paper, we bring two important



modifications to previous threshold modulation schemes. First, our
modulation depends on the local frequency content of the image (lo-
cal dominant frequency/orientation/contrast). Second, we calibrate
the amount of threshold modulation in such a way that for each spe-
cific combination of dominant frequency/orientation/contrast, our
error-diffusion system produces halftone output which is perceptu-
ally close to the source image.

[Kwak et al. 2006] applied an isotropic unsharp mask filter on the
input image for calculating the threshold matrix. This improves
the original edge enhancement [Knox 1989; Eschbach and Knox
1991], but, as [Pang et al. 2008] pointed out, the method suffers
from blurriness because important and unimportant frequencies are
equally amplified.

More recently, [Kang et al. 2009] remarked that feature enhance-
ment using isotropic filters such as difference-of-Gaussians does
not preserve the sense of “directedness”, making aggregates of light
edge pixels look less like lines.

Our method relies on the hypothesis that anisotropic filters should
perform better than their isotropic counterpart in presence of
anisotropic image structure. We chose the Gabor filter [Gabor
1946] to accomplish this task for its very simple spectral proper-
ties. Since anisotropy is a property that varies throughout the image,
the parameters of the Gabor filter change locally. We checked our
hypothesis, and found that our method produced very satisfactory
results.

Let us describe the threshold modulation part of our structure-aware
error diffusion. Standard error diffusion uses constant threshold.
We use threshold modulation determined as a linear interpolation
between two terms: (1) frequency-content-dependent filtered ver-
sion Fg of input image Img, and (2) noise modulation m, as
in [Zhou and Fang 2003].

The term F{ is the result of a local convolution with a suitable Ga-
bor kernel and input image Img modulated by a variable strength
parameter 3:

Fo(z,y) =8> > Img(z —i,y—j)- Gaboro,s(i,])

J

where the function Gaboryg, y is defined from local frequency f and
orientation 6 given by image analysis:

le +y/2
Gaborg,r(z,y) = exp <2‘720 cos (f:v') +e

2’ = xcosf+ ysinb,

y = —xsinf + ycosb,

and c is a constant that nulls the sum of the filter coefficients. In our
current implementation, a fixed value o = 1.6 was used.

The amount of threshold modulation 3 constitutes the main bal-
ancing factor for sensitivity to different natures of structural con-
tent. It is controlled carefully at the calibration step for the whole
range of frequencies and contrasts. Since the image analysis de-
scribed in Section 2.1 provides a finite number of combinations of
frequency/orientation, all Gabor kernels were pre-calculated for fast
run-time access (see Appendix A).

3.2 Modified diffusion filter

The method described in [Ostromoukhov 2001] provides a collec-
tion of 3-coefficient error-diffusion filters that produce best results
on regions of constant tone. However, this method was conceived

for low-frequency images and may blur high-frequency details. No-
tice that the midtone-improved version of the standard error diffu-
sion [Zhou and Fang 2003] suffers from the same drawback, as
shown in Figures 1 and 7. Ulichney mentioned in his book [Ulich-
ney 1987] that larger filter size can allow sharper feature preserva-
tion. Also, [Marcu and Abe 1996] explored the use of analytical
coefficient distribution, in particular that of a Gaussian kernel.

According to our hypothesis, diffusion coefficients following a dis-
tribution based on frequency, orientation, and contrast should pre-
serve structure sensitivity better than standard coefficients in pres-
ence of strong frequency content. We checked this hypothesis, and
found that best results were obtained from a 12-coefficient Gaussian
distribution with adjustable variance ¢ and anisotropy a.

Both ¢ and a are controlled by calibration. In the absence of lo-
cal frequency content, standard coefficients Hg are used. Transi-
tion from standard to structure-driven diffusion coefficients Hy is
controlled by linear interpolation with the calibration parameter w.
Gaussian kernels are pre-calculated for fast run-time access (see
Appendix A).

3.3 Calibration

Perhaps the most crucial step of our method is its calibration, the
process by which we ensure that any local frequency information
is associated with proper threshold modulation and error diffusion
coefficients.

Our method relies on one fundamental hypothesis: by obtaining
optimal halftoning results on an artificial image containing a single
characteristic frequency, we should obtain near-optimal halftoning
results on a region of a natural image that shows the same local
frequency.

Automatic calibration was used by [Ostromoukhov 2001] and
[Zhou and Fang 2003] for patches of uniform pixel luminance.
Even though such an approach could be applied to our case, we
chose to rely instead on the well-established method of side-by-
side comparisons used, for example, in the classical color matching
experiment [Wyszecki and Stiles 2000]. In our method, a uniform
reference patch is shown side-by-side with a halftoned calibration
patch whose parameters are adjusted by the observer until the best
possible match between the two patches is reached. The experiment
is repeated for several values of frequency/orientation/contrast of
the reference patch.

Figure 4 illustrates the calibration process. To calibrate a given fre-
quency, orientation, and contrast, we create a reference square patch
with that frequency and orientation displaying two close but differ-
ent contrasts: the central part, delimited by the red circle, shows
the contrast to calibrate; the peripheral area shows a contrast value
which has already been successfully calibrated.

First, the observer adjusts viewing distance until sine waves in the
peripheral area are just imperceptible. At that distance, sine waves
in the continuous-tone side of the central area should be at the
threshold of visibility. Then, sliders are used to adjust the param-
eters for uncalibrated contrast until sine waves in the halftone side
of the central area are also barely perceptible. The patches are dy-
namically updated, permitting the observer to act interactively.

Four parameters are required to control the behavior of our halfton-
ing process: [ is the strength of the applied threshold modulation,
which is the amplitude of the Gabor convolution filter; o and a
are the parameters of the Gaussian error diffusion filter; w is a lin-
ear blending factor between no-contrast standard coefficients and
noise-modulated threshold, and parametrized Gaussian coefficients
and Gabor-filtered threshold.
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Figure 4: The calibration patches. Left side: continuous-tone sine
waves of fixed frequency and angle. Right side: halftone images
produced using adjustable set of parameters. The peripheral area
delimited by the red circle serves to determine the appropriate ob-
servation distance. For the purpose of illustration, we exaggerated
the contrast difference between inner and outer areas.

Once the calibration is done, a 3D lookup table is filled
by interpolation of the calibration parameters for all fre-
quency/orientation/contrast. They are used at run-time for a lookup
table search of an arbitrary required frequency/orientation/contrast
parameter.

All images shown in this paper use the same calibration. In our im-
plementation, we use a total of around 1.3MB of lookup data split
among five tables: interpolated calibration parameters for all fre-
quency/orientation/contrast; Gabor filters for a variety of frequen-
cies and orientations; Gaussian diffusion filters for a variety of o
and a; no-contrast standard diffusion filters for all tones; mid-tone
improvement noise weights for all tones [Zhou and Fang 2003].
The pseudo-code in Appendix A indicates how each table is used.

3.4 Kernel size analysis

In Section 2.1, local frequency content is extracted from a pixel’s
neighborhood. The quality and computation time of the analysis
depend on the size of the neighborhood window. To obtain the best
quality/computation-time tradeoff, a systematic study was done on
the choice of kernel size.

Table 1 shows how kernel size relates to computation time. Since
local frequency analysis is parallel by nature, we implemented it
both on GPU and CPU.

Figure 5 illustrates how results produced by our method can be de-
graded due to a poor frequency analysis. Some important structure
details were lost with the 8 x 8 kernel, even more with the 4 x 4
one. Best results were observed for the 32 x 32 kernel, but the qual-
ity difference between the 16 X 16 and the 32 x 32 kernels is very
small. The best tradeoff between speed and quality was reached by
the 16 x 16 kernel on our hardware.

Kernel size CPU GPU
4 x4 1.18 0.04
8 x 8 2.27 0.23

16 x 16 6.74 0.75
32 x 32 26.31 15.09

Table 1: Frequency analysis time (in seconds) for a typical 512 x
512 image. CPU: AMD Athlon 64 Dual Core 6000+ @ 3.01GHz
4GB. GPU: nVidia Corporation GeForce 9800 GTX 512MB.

4 Results

We evaluate the results produced with our method using both sub-
jective (visual) comparisons and objective measurements.

Our Struct.- Edge Std. Ordered
method aware enhanc. error- dither
halfton. diff.
Ribbon 43.14 41.04 36.27 48.56 30.16

Arm 38.57 36.78 28.11 43.11 29.46

Knee 35.40 34.63 27.66 4091 28.71
Desert 39.92 38.21 40.37 4391 28.88

Cat 39.82 37.51 35.51 43.02 28.39
Tree 40.66 37.67 34.95 44.20 28.35
Snail 38.75 36.92 35.67 43.29 30.36

Table 2: PSNR comparison.

4.1 Visual comparison

For visual evaluation, we use the set of test images already shown in
previous articles, namely in [Pang et al. 2008]. This set comprises a
wide range of important features: small details of various contrasts,
smooth tone gradation, visually identifiable structures (leaves, hair,
tissue or brush structure), etc.

Images in Figures 1 and 7 show a clear and undeniable advantage
of our method over standard error diffusion: small details are bet-
ter preserved; our images appear sharper and globally nicer. Visual
comparison of our method with structure-aware halftoning [Pang
et al. 2008] shows that both methods produce very comparable
quality.

We added comparisons using a few artificial images: a grayscale
ramp in Figure 6 and patches of sine waves of different frequencies
and contrasts in Figure 2. The visual quality of the ramps is not a
surprise: in absence of strong frequency content, our error diffusion
becomes a mid-tone improved standard error diffusion. The patches
in Figure 2 show a clear advantage of our method over all others,
except the structure-aware halftoning. Compared to standard er-
ror diffusion, our method better reproduces the range of contrasts
and frequencies. Our method performs much better than edge en-
hancement, too. Notice excellent visual coherence of the results
produced with our method: the progression of relative contrast is
visually close to that of the original.

4.2 Objective quality evaluation

Objective metrics were applied to all test images to confirm our
method’s capacity to preserve tones and structures.

The peak-to-signal noise ratio (PSNR) is a standard measure of re-
construction quality for lossy image compression. [Pang et al.
2008] used this metric on blurred versions of grayscale and halftone
images to evaluate tone preservation. PSNR for Gaussian blurred
(o =2) grayscale and halftone image pairs are given in Table 2. Re-
sults show that PSNR for our method remains consistently close to
that of standard error diffusion and structure-aware halftoning.

The mean structure similarity measure (MSSIM) is a visual quality
metric first introduced by [Wang et al. 2004] and used by [Pang
et al. 2008] as a central criterion for their convergence algorithm.
From the results shown in Table 3, we find that our method is close
to structure-aware halftoning, which confirms visual observation.

4.3 Computation time

Table 4 shows computation time for our structure-aware error dif-
fusion compared to previous methods. Although the quality of our
results is close to that of [Pang et al. 2008], our method is dramat-
ically faster. In fact, execution time under one second makes our
method suitable for real-world applications.
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Figure 5: Structure-aware error diffusion using analysis tool of different kernel sizes.
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Figure 6: Gray ramps halftoned with different methods.

Our Struct.- Edge Std. Ordered
method aware enhanc. | error- dither
halfton. diff.

Ribbon 26.93 25.36 25.11 20.49 19.27
Arm 46.51 47.34 45.85 35.66 32.78
Knee 37.12 39.29 36.62 27.01 24.54

Desert 6.39 7.00 4.02 2.75 222

Cat 14.64 17.62 11.65 7.42 5.53
Tree 13.37 15.35 12.58 5.53 4.50
Snail 37.26 37.87 34.62 31.23 30.80

Table 3: MSSIM comparison.
Our method | Our method Structure- Edge- Std.
+ Analysis aware enhanc. error-
halftoning diff.
0.22 0.97 135.41 0.10 0.04

Table 4: Computation time (in seconds) for a typical 512 x 512
image

Note that our code is not optimal, especially its analysis part. With
a relatively modest effort, our execution time could be further im-
proved.

5 Limitations and future work

Although our method produces very satisfactory results in most
cases, there are several issues which could be improved. First, our
method works very well in presence of one clearly dominant lo-
cal frequency. In rare cases when two or more equally important
frequencies are present, our method is presently misguided by the
analysis. We plan to carry out research which would incorporate
treatment of multiple equally important frequencies in the frame-
work described in this article. A better, specific analysis tool should
be developed for this purpose.

In this paper, we limited our consideration to one-channel images.
Extension to multi-channel (3-channel RGB or 4-channel CMYK
images) may require additional work. A naive straightforward ex-
tension such as mutually independent per-channel halftoning works
rather well. But, in order to get even better quality for color images,

a more sophisticated collaborative multi-channel error-diffusion
scheme may be required. We plan to carry out research in this di-
rection too.

The images shown in this paper have been prepared using a cali-
bration with respect to a “dummy”” LCD display. It would be quite
worthwhile to integrate the calibration process into the framework
defined by ICC [Sharma 2002], to be used with a concrete printing
device having strong hardware constraints (e.g. strong non-linear
dot gain, depending on the nature of the printer: electrostatic, ink-
jet, etc.).

6 Conclusion

The error-diffusion method presented in this article combines the
advantages of several halftoning methods known to date. On one
hand, the overall visual quality of the images produced with our
method is comparable with that of the best known error-diffusion al-
gorithms, such as [Ostromoukhov 2001; Zhou and Fang 2003]. On
the other hand, our algorithm is sensitive to structures present in the
source images, in a wide range of frequencies and contrasts. From
this point of view, our algorithm approaches the quality of [Pang
et al. 2008], without being prohibitively slow. We have tested our
algorithm with a wide variety of artificial and natural images, pro-
ducing very satisfactory results. Our algorithm is conceptually sim-
ple and easy to implement.

Thus, we have shown that a structure-aware digital halftoning algo-
rithm of Class II mentioned in Section 1 can be efficiently built.

We think that thanks to its unique combination of visual quality,
sensitivity to structures, and speed, our algorithm may be used in
a wide range of graphical applications in which digital halftoning
is required. Typical applications may be printing, visualization, or
various sampling techniques.
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APPENDIX A: Pseudo-code of the Structure-
Aware Error Diffusion

STRUCTUREAWAREERRORDIFFUSION(Imyg, FreqContent)

1 Err <« NIL [ Array of quantization error values
2 for each processed pixel (4, j)
3 > Retrieve threshold and diffusion filter from lookup tables
4 3,0, a,w < GETCALIBRATIONPARAMS (FreqContent; ;)
5 Gabor «— GETGABORFILTER( FreqContent; ;)
6 m «— Noise() GETNOISEINTENSITY (Img; ;)
7 Fg « B-Conv(Img, Gabor)
8 Hy, — GETGAUSSIANFILTER(0, a)
9 H; — GETSTANDARDFILTER(Img; ;)
10
11 modulated Threshold < Lerp(Fg, ;, m,w)
12 modified DiffusionFilter «— Lerp(Hy, Hq, w)
13
14 > Perform error-diffusion
15 Img; j — Img; ; + Err;
16 Out; ; < QUANTIZE(Img; ;, modulated Threshold)
17 Erry; «+ Img; j — Outy j
18 DISTRIBUTEERROR(4, j, Err, modified DiffusionFilter)
19  return Out

Lerp(vi,v2,t) is a linear interpolation function, which calculates
(1 — t)v1 + tve [Pharr and Humphreys 2004].

GETXXX() functions access corresponding lookup tables.
CoNV() is the local convolution described in section 3.1

QUANTIZE() compares pixel luminance to threshold and re-
turns BLACK if below, WHITE otherwise.

DiSTRIBUTEERROR() distributes quantization errors over unpro-
cessed neighbor pixels according to the modifiedDiffusionFilter
values.
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Figure 7: A few sample images produced with different halftoning techniques.



