RDF Tutorial

Pierre-Antoine Champin

April 5, 2001

Introduction

This document is a presentation of the Resource Description Framework
(RDF) recommended by the World Wide Web Consortium (W3C), to model
meta-data about the resources of the web. It is described in both docu-
ments [1] and [2]; the former focuses on syntactical aspects while the later
addresses the definition of vocabularies (often named schemas). Though this
is a pragmatic approach, I will use a slightly different plan, more suited to
my own goals (using RDF in knowledge representation systems). The first
section will describe the RDF model, which is its fundamental syntax. The
second section will present the semantic aspects of RDF, the concepts and
the corresponding vocabulary. The last section will describe the XML syntax
proposed in [1].

1 Model

1.1 URIs

RDF identifies resources with Uniform Resource Identifiers (URI) as de-
scribed in [?], but with a slight difference: RDF uses what we will call
qualified URIs, that is, URIs with an optional fragment identifier (a text
added to the URI with a "#" between them). For [?], the fragment identifier
returns “a property of the data resulting from a retrieval action”; however,
RDF considers every qualified URI (with or without fragment identifier) as
a full resource by itself'. In the rest of this tutorial, we will therefore use the
word “resource” in the RDF point of view, unless specified otherwise.

'Tt could then lead to more than one fragment identifier in a URL... This would not be
incompatible with [?] but I've never seen such URI used.

1.2 Triples and graph

The base element of the RDF model is the triple : a resource (the subject) is
linked to another resource (the object) through an arc labeled with a third
resource (the predicate). We will say that <subject> has a property <predi-
cate> wvalued by <object>. For example, the triple in figure 1 could be read
as “Champin is the creator of index.html”.

http://purl.org/DC/Creator

http://rama.cpe.fr/index.html mailto:champin@cpe.fr

Figure 1: A triple

All the triples result in a direct graph, whose nodes and arcs are all labeled
with qualified URIs. Note in figure 2 that a resource may have more than
one value for a given property.

http://purl.org/DC/Creator

http://rama.cpe.fr/index.html mailto:champin@cpe.fr

L

http://somesite.org{Schema/contains ‘O@ http://somesite.org{Schema/workswith
0

http://rama.cpe.fr/photol.png mailto:am@cpe.fr

Figure 2: An RDF graph

1.3 Literals

In the RDF recommendation, targets of the graph can be pieces of text
instead of resources; those pieces of text are called literals. Though this is
syntactically useful in RDF documents (being able to write directly some
text rather than storing it in another resource), I think handling it as an
exception to the model is not appropriate, and that there is a cleaner way
of doing it: the piece of text probably has a fragment identifier? and so the

2In an XML syntax, XPointer ([3]) could be used.

literal node could be replaced by a standard URI node in the RDF graph.
Note that this alternative is compatible with the recommendation since it
uses a subset of the model.

1.4 Uniformity

The RDF model is very simple and, above all, uniform. Mostly, the fact that
the only vocabulary is URIs allows the use of the same URI as a node and
as an arc label. This makes things like self-reference and reification possible,
just like in natural languages. This is appreciable in a user-oriented context
(like the web), but may become difficult to cope with in knowledge-based
systems and inference engines.

2 Concepts and vocabulary

We can distinguish three kinds of concepts in RDF: fundamental concepts,
schema-definition concepts (useful for defining new vocabularies) and utility
concepts (concepts which are not absolutely necessary, but likely to be useful
in any application domain).

All these concepts have been given a URI. These URIs are defined as
fragment identifiers of the URIs of the W3C documents defining RDF. For
the sake of clarity, we will rather use the XML non-expanded notation ; that
is, prefixes rdf: and rdfs: will be used instead of
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222# and
http://www.w3.org/TR/1999/PR-rdf-schema-19990303# respectively. The
membership of one or the other namespace may not always seem logical, and
must have historical reasons mostly.

2.1 Fundamental concepts
2.1.1 rdf:Resource

RDF is about describing resources ; according to [1], “resources are always
named by URIs” and “anything can have a URI”. So RDF can theoretically
be used to describe anything. Yet it was mainly designed to handle “network
retrievable” resources.

[?] underlines that “the resource is the conceptual mapping to an entity
(...), not necessarily the entity which corresponds to that mapping at any
particular instance in time”. However most of the time we are interested in
entities themselves. It is therefore important to note that the meta-data we

express about resources may require different levels of interpretation, which
may be valid in a certain context only.

For example, the URI http://www.w3.org/Icons/WWW/w3c_main returns
the W3C logo in the PNG or GIF format, depending on the browser being
used. Another example is a daily weather report, whose URL would return
a different page each day.

It follows that interpretation of resources (and therefore of RDF triples)
is highly contextual. We can define the notion of stable resource as follows:
stability for a resource is the property of being the same in any context, from
the point of view of a user (or a community of users). This definition is
still very contextual: it is dependant on the users we are considering, more
precisely on the task they have to accomplish.

For example, from the point of view of a standard reader, the W3C logo
is stable, since the GIF and PNG versions look the same, but the weather
report is not stable. On the other hand, someone interested only in image
formats may consider the W3C logo unstable and the weather report stable
— assuming the weather report is always generating images in the same
format.

However, in most applications, the task is less likely to change than the
retrieving context, thus the stability assumption may be valuable.

2.1.2 rdf:Property

The properties are resources used as predicate of triples; the semantics of a
triple clearly depends on the property used as predicate. Two things are very
important with the concept of property:

First, RDF considers properties as first class object, unlike most object
modeling languages, where properties are attributes of a class. Even though
the concept of class exists in RDF (see subsection 2.2), properties can be
defined and used independently of classes.

Secondly, as it has been mentioned in subsection 1.4, the fact that prop-
erties are resources allows to describe them with RDF itself. This will be
widely used by the following concepts.

2.1.3 rdf:Statement

A statement is a resource reifying a triple. Such a resource must have at
least 3 properties®: rdf:subject, rdf:object and rdf:predicate, valued by the

3 Actually, [1] defines a fourth property for statements, rdf:type, which must be valued
by rdf:Statement. Since this is generalized by the concept of Class in [2], we don’t mention

corresponding resources.

The reification of triples may seem a utility concept rather than a funda-
mental concept. Nevertheless it is defined as a part of the model in the W3C
recommendation. This supports the will to use RDF as its own meta-system,
to make every element of RDF describable in RDF itself.

2.2 Schema definition concepts

All those concepts are defined in [2], the second document of the W3C, to
allow the definition of schemas, that is, vocabularies of resources to use with
RDF. Not all agents will need to be aware of these concepts : specialized
agents, limited to using a predefined vocabulary, will not.

In schemas, new resources can be defined as specialization of old ones,
thus allowing to infer implicit triples. Schemas also constrain the context in
which defined resources may be used, inducing the notion of schema validity.
We will see that those two notions can be seen as one, in a point of view based
on first-order logic. They all can be expressed as rules allowing to infer new
facts (basically, new triples or negations of triples). In these rules, the 3-ary
logical predicate T (subject, predicate, object) will be used to represent a
believed triple.

2.2.1 rdfs:subPropertyOf

Any property denotes a relation between resources (the set of resource cou-
ples linked by an arc labeled with the property). rdfs:subPropertyOf applies
to properties and must be interpreted as the subset relation between the
relations they denote. Thus the following rule stands:

vsaplaoa D2 T(Sa pb1, O) A T(pla rdfs:subPropertny, p2) = T(S’ b2, 0)

For example, if “mother” is a sub-property of “parent”, any triple having
“mother” as predicate must also be considered as having “parent” as predicate.
This property is very important in schema definitions for interoperability
between RDF agents. In the example above, an agent not knowing the
semantics of “mother” could at least treat it as “parent” (assuming it knows
the semantics of “parent”).

Since rdfs:subPropertyOf denotes a subset relation, the transitivity rule
also stands:

VD1, P2, D3

it here.

T (p1, rdfs:subProperty0f, po) A T (p2, rdfs:subProperty0f, p;)
= T (p1, rdf:subProperty0f, p3)

Note that it is considered invalid by [2] to have cycles in rdfs:subPropertyOf,
though it doesn’t define a way to express this constraint in RDF*. Anyway,
the corresponding logical rule is the following (since any cycle would result,
with transitivity, in a property being its own sub-property):

Vp =T (p, rdfs:subProperty0f, p)

Note also that there is no standard URI for the universal property (super-
property of any property).

2.2.2 rdfs:Class, rdf:type and rdfs:subClassOf

Classes are resources denoting a set of resources, by the mean of the property
rdf:type (instances have property rdf:type valued by the class). Since all sets
of resources presented in this section are resources (they have a URI), they
have by definition the property rdf:type valued by rdfs:Class. On the other
hand, all properties (defined in W3C recommendation or in any schema) have
rdf:type valued by rdf:Property.

Classes are structured the same way as properties, in a subset hierarchy
denoted by the property rdfs:subClassOf. As for rdfs:subPropertyOf, cycles
must not exist though it could be used to express equivalence, but contrary
to the property hierarchy, the class hierarchy has a maximum element: it
is of course rdf:Resource (so any class implicitly has rdfs:subClassOf valued
by rdf:Resource). The following rules, similar to the rules related to rdfs:sub-
PropertyOf, stand:

Vi, cq,c0 T (i, rdf:type, ¢1) AT (c1, rdfs:subClassOf, cy)
= T (i, rdf: type, c2)

Vep, ea,c3 T(cq, rdfs:subClass0f, co) A T (co, rdfs:subClassOf, c3)
= T (¢1, rdf:subClassOf, c3)

Ve =T (¢, rdfs:subClass0f, c)

4Furthermore, this constraint may seem too strong: cycles could be used to express
equivalence between properties.

2.2.3 rdfs:domain and rdfs:range

These properties apply to properties and must be valued by classes. They
are used to restrict the set of resources that may have a given property (the
property’s domain) and the set of valid values for a property (its range). A
property may have as many values for rdfs:domain as needed, but no more
than one value for rdfs:range:

Vp,ri,mo T (p, rdfs:range, r1) A1y # 19 = =T (p, rdfs:range, ro)

For a triple to be valid, the object must match the range (if any) of the
predicate (that is, it must have rdf:type valued by the corresponding class or
one of its subclasses), and the subject must match at least one of the domains
(if any) of the predicate (Note that if the predicate has super-properties, this
must also be checked recursively for all of them). This can be logically
expressed by:

Vs,p,0 T (s, p, o) A3d T (p, rdfs:domain, d)
= 3d’' (T (p, rdfs:domain, d') A T (s, rdf :type, d'))

Vs,p,0,7 T(s, p, 0) A T(p, rdfs:range, r) = T (o, Tdf :type, r)

It is worth noting that, although this two rules are intended to be used
for validity checking only, and the first one (rdfs:domain rule) can actually
only be used this way (it can not be used to perform inference since its conse-
quence is existentially qualified), the second one (rdfs:range rule) has different
interpretations depending on our hypothesizing a closed or open world. In
the closed world hypothesis, any missing triple is considered negated, so the
rdfs:range rule has only to be verified. But in an open world hypothesis,
missing triples are not necessarily false, so the rule could be used to perform
inference instead. Since the “natural” field of RDF is the web, where infor-
mation is by essence distributed and incomplete, the open world hypothesis
seems much more reasonable.

2.2.4 rdfs:Literal

[2] defines a resource rdfs:Literal, denoting the set of literals, declared as a
class (though literals are not resources, according to the recommendation!).
Its intended use is to be the range of properties.

2.3 Utility concepts

These concepts may have been defined in external schemas, but since they are
of very common use, they have been defined once for all in the core schema.

7

2.3.1 rdfs:Container

Containers are collections of resources. They are modeled by an instance of
one of the three subclasses of rdfs:Container: rdf:Bag (an unordered collec-
tion), rdf:Seq (an ordered collection) or rdf:Alt (an alternative). Membership
is modeled by automatically generated properties rdf: 1, rdf: 2, etc. These
properties are all instances of rdfs:ContainerMembershipProperty, a subclass
of rdf:Property®.

This mechanism for modeling collections of resources is much controversed
among RDF implementors: the numbering of membership properties is con-
tentious especially when neither rdf:Bag nor rdf:Alt need an order relation
between their members. Furthermore, these properties can not be expressed
in any schema since there is an unbounded number of them. This can even
cause infinite loops in agents using the XML syntax (see annex A).

2.3.2 rdfs:ConstraintResource and rdfs:ConstraintProperty

It can be interesting for an RDF agent to be informed that an unknown re-
source (or more specifically a property) is defining a validity constraint. The
set of such resources is rdfs:ConstraintResource. Its subclass rdfs:Constraint-
Property is of course a subclass of rdf:Property too. Properties rdfs:domain
and rdfs:range defined above are instances of rdfs:ConstraintProperty.

2.3.3 rdfs:seeAlso and rdfs:isDefinedBy

A given resource may be described in more than one place over the internet.
The rdfs:seeAlso property can be used to point to alternative descriptions
of the subject resource. Its sub-property rdfs:isDefinedBy more specifically
points to an original or authoritative description.

2.3.4 rdfs:label and rdfs:comment

It can be useful to describe a resource with human readable text in addition
to “pure” RDF properties ; this is the role of rdfs:label and rdfs:comment.
The former is used to give a human-readable name of a resource, the latter,
to give a longer description. Note that they may have multiple values for
internationalization needs.

5a common super-property, in my opinion, would have been more useful than a class,

to federate those membership properties.

3 XML syntax

This section describes the XML syntax recommended by [1] (we assume that
the reader is already familiar with XML). It uses XML namespace notations
(|4]), but expanded names are obtained simply by concatenating the names-
pace to the element name. Hence we will use the same convention as in the
previous section for prefixes rdf: and rdfs:.

3.1 Descriptions

An RDF document is a list of descriptions. Each description applies usually
to one resource, and contains a list of properties. Property values are either
URIs, literals or others Descriptions.

In XML, RDF meta-data are embedded in an element named rdf:RDF.
This element contains a sequence of elements named rdf:Description. Those
elements can have one of the two attributes rdf:about or rdf:ID (but not both).

e rdf:about is used to describe any resource ; its value is either an absolute
or a relative URL

<rdf :Description about="http://rama.cpe.fr/index.html">
</rdf:Description>

e rdf:ID is used to define a resource ; its value is a fragment identifier
(without the "#" character) to be added to the XML document URI
A resource may not be defined more than once.
<rdf :Description ID="foo">
</rdf :Description>

e a description without rdf:about nor rdf:ID is said to describe an anony-
mMous resource.

<rdf:Description>
</rdf :Description>

An element rdf:Description contains a sequence of XML elements. Those
elements are interpreted as properties, whose predicate’s URI is the expanded

name of the element. If the element is empty, it must have an attribute rdf:re-
sourcewhose value is the object’s URI (see 1°* dc:Creator in fig.3). Else, it
can contain plain text (then interpreted as a literal - see dc:Title in fig.3) or
a single embedded rdf:Description element (see 2”@ dc:Creator in fig.3).

<?xml version="1.0" encoding="UTF-8" 7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/DC/"
xmlns:os="http://somesite.org/Schema/">
<rdf:Description about="http://rama.cpe.fr/index.html">
<dc:Creator rdf:resource="mailto:am@cpe.fr"/>
<dc:Title> Index of my web site </dc:Title>
<dc:Creator>
<rdf:Description about="mailto:champin@cpe.fr">
<os:worksWith rdf:resource="mailto:am@cpe.fr"/>
</rdf :Description>
</dc:Creator>
</rdf :Description>
</rdf :RDF>

http://purl.org/DC/Cresator

»
Lt

http://rama.cpe.fr/index.html mailto:champin@cpe.fr

http://purl.qrg/DC/Title http://somesite.org{Schema/workswith

"Index of my web site" mailto:am@cpe.fr

Figure 3: XML syntax simple example

In case of ambiguity, the attribute rdf:parseType can be used in property
elements with "Resource" or "Literal" value. The later can be used when a
literal contains XML tags, to prevent their being parsed as a description.

The syntax may also be abbreviated in two ways:

e the description element name may be replaced by any URI. It is inter-
preted as an additional rdf:type property, valued by the named resource.
Note that the context always allows to differ a typed description ele-
ment from a property element.

10

e properties with literal values may be written as attributes of the de-
scription element rather than an embedded elements.

For example, the following description:

<rdf:Descritpion ID="fatherOf'>
<rdf:type rdf:resource=
"http://www.w3.0rg/1999/02/22-rdf -syntax-ns#Property" />
<rdf:label> father of </rdf:label>
<rdfs:subProperty0f rdf:resource="#parentOf'">
</rdf :Descritpion>

may be abbreviated into

<rdf :Property ID="fatherOf" rdfs:label="father of'">
<rdfs:subProperty0f rdf:resource="#parentOf'">
</rdf :Descritpion>

3.2 Contalners

As mentioned in the previous section, RDF containers are defined as a part of
the XML syntax. A container node is described with a special element named
rdf:Bag, rdf:Seq or rdf:Alt (those elements can be used instead of rdf:Des-
criptionelements). Those special descriptions can only have rdf:ID attribute
or be anonymous, they can not have rdf:about.

Membership properties are not used as is, but instead the element rdf:li
is used; the parser has to replace it by the appropriate numbered property.
Figure 4 is an example of it.

3.3 Distributed descriptions

Instead of rdf:about, descriptions can also have attribute rdf:aboutEach or
rdf:aboutEachPrefix. This allows to distribute a description over a set of
resources.

e rdf:aboutEach’s value must be a container’s URI; the corresponding
description applies to every member of the container.

e rdf:aboutEachPrefix’s value is a string; the corresponding description
applies to any resource whose URI starts with this string.

11

<?xml version="1.0" encoding="UTF-8" 7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Bag ID="mybag">
<rdf:1i resource="http://rama.cpe.fr/index.html"/>
<rdf:1i resource="mailto:champin@cpe.fr"/>
<rdf:1i> literal element </rdf:1i>
</rdf :Bag>
</rdf :RDF>

file:/example.rdf#mybag http://rama.cpe.fr/index.html

mailto:champin@cpe.fr

Figure 4: An RDF bag

"literal element”

Implementations of RDF are not bound to keep information about those
distributive descriptions - this is only a syntactic shortcut. It may result in
unexpected behaviours of some agents, as soon as more than one RDF source
is involved (resources defined in a source may match a distributed description
in another one, but not be detected as such).

Moreover, it is not specified whether distributed description may be em-
bedded as property values. Though this possibility is never mentioned, the
formal syntax allows it. A natural interpretation would be that the property
is valued by every resource matching the distributed description.

3.4 Reification

The XML syntax of RDF provides a way to reify asserted statements: a single
arc can be reified by adding an rdf:ID attribute to the property element, which
will define the URI of the reified statement. On the other hand, every arc
generated by a description can be reified by adding an rdf:baglD attribute to
the Description. This defines the URI of a new bag resource, whose members
are the reified statements.

12

A A naughty example
This trivial example is likely to lead most RDF parsers into an infinite loop:

[1] <?xml version="1.0" encoding="UTF-8" 7>

[2] <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
[3] xmlns:rdfs:"http://www.w3.0rg/TR/1999/PR-rdf-schema-19990303#">

[4] <rdfs:Class rdf:ID="WebResource"/>

[5] <rdf:Description aboutEachPrefix="http:" bagID="bag">
[6] <rdf:type resource="#WebResource"/>

[7] </rdf:Description>

[8] </rdf:RDF>

Line 4 generates a resource <this file>#WebResource, then generates an
arc between it and rdfs:Class, labeled with rdf:type.

Then the description lines 5 to 7 is parsed; at this point, there is at least
one resource starting with "http:" (rdfs:Class). So the distributed description
will generate at least one arc, which will be reified and stored in the bag.

But the storing in the bag will generate a membership property rdf:-
_ 1, which starts with "http:". So the distributed description will generate
another arc, another reification stored in the bag, and another membership
property. That may repeat forever.

It is very important for RDF parsers to be able to avoid those infinite
loops; a simple solution is to prevent any membership property from match-
ing rdf:aboutEachPrefix descriptions. A cleaner solution would be to use an-
other schema for containers...

References

[1] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C recommendation, feb 1999.
http://www.w3.o0org/TR/1999/REC-rdf-syntax-19990222.

[2] Dan Brickley and R.V. Guha. Resource Description Framework (RDF)
Schema Specification. W3C proposed recommendation, mar 1999.
http://www.w3.o0org/TR/1999/PR-rdf-schema-19990303.

[3] Steve DeRose, Ron Daniel, and Eve Maler. XML Pointer Language
(XPointer). W3C working draft, dec 1999.
http://www.w3.org/TR/1999/WD-xptr-19991206.

13

[4] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML.
W3C recommendation, jan 1999.
http://www.w3.o0org/TR/1999/REC-xml-names-19990114.

14

