Exchange and Consumption of Huge RDF Data

Miguel A. Martinez-Prieto!?, Mario Arias!?, and Javier D. Fernandez'+?

! Department of Computer Science, Universidad de Valladolid (Spain)
2 Department of Computer Science, Universidad de Chile (Chile)
3 Digital Enterprise Research Institute, National University of Treland Galway
{migumar2, jfergar}@infor.uva.es,mario.arias@deri.org

Abstract. Huge RDF datasets are currently exchanged on textual RDF
formats, hence consumers need to post-process them using RDF stores
for local consumption, such as indexing and SPARQL query. This results
in a painful task requiring a great effort in terms of time and compu-
tational resources. A first approach to lightweight data exchange is a
compact (binary) RDF serialization format called HDT. In this paper, we
show how to enhance the exchanged HDT with additional structures to
support some basic forms of SPARQL query resolution without the need
of "unpacking" the data. Experiments show that i) with an exchanging ef-
ficiency that outperforms universal compression, ii) post-processing now
becomes a fast process which iii) provides competitive query performance
at consumption.

1 Introduction

The amount and size of published RDF datasets has dramatically increased in the
emerging Web of Data. Publication efforts, such as Linked Open Data® have “de-
mocratized” the creation of such structured data on the Web and the connection
between different data sources [7]. Several research areas have emerged along-
side this; RDF indexing and querying, reasoning, integration, ontology match-
ing, visualization, etc. A common Publication-Exchange-Consumption workflow
(Figure 1) is involved in almost every application in the Web of Data.

Publication. After RDF data generation, publication refers to the process
of making RDF data publicly available for diverse purposes and users. Besides
RDF publication with dereferenceable URIs, data providers tend to expose their
data as a file to download (RDF dump), or via a SPARQL endpoint, a service
which interprets the SPARQL query language [2].

Exchange. Once the consumer has discovered the published information,
the exchange process starts. Datasets are serialized in traditional plain formats
(e.g. RDF /XML [5], N3 [4] or Turtle [3]), and universal compressors (e.g. gzip)
are commonly applied to reduce their size.

Consumption. The consumer has to post-process the information in several
ways. Firstly, a decompression process must be performed. Then, the serialized
RDF must be parsed and indexed, obtaining a data structure more suitable for
tasks such as browsing and querying.

4 http://linkeddata.org/

1.P
o, | ((())) / ﬁ K easoning/Integration
% ROF dum; uality/Provenance
) .,

SPARDL Endpoints/

Fig. 1. Publication-Exchange-Consumption workflow in the Web of Data.

The scalability issues of this workflow arise in the following running exam-
ple. Let us suppose that you publish a huge RDF dataset like Geonames (112
million triples about geographical entities). Plain data take up 12.07 GB (in
Ntriples®), and compression should be applied. For instance, its gzip-compressed
dump takes 0.69 GB. Thus, compression is necessary for efficient exchange (in
terms of time) when managing huge RDF. However, after decompression, data
remain in a plain format and an intensive post-processing is required®. Even
when data is shared through a SPARQL endpoint, some queries can return large
amounts of triples, hence the results must be compressed too.

Nowadays, the potential of huge RDF is seriously underexploited due to the
large space they take up, the powerful resources required to process them, and the
large consumption time. Similar problems arise when managing RDF in mobile
devices; although the amount of information could be potentially smaller, these
devices have more restrictive requirements for transmission costs/latency, and for
post-processing due to their inherent memory and CPU constraints [14]. A first
approach to lighten this workflow is a binary RDF serialization format, called
HDT (Header-Dictionary-Triples) [11], recently accepted as a W3C Member
Submission [6]. This proposal highlights the need to move forward plain RDF
syntaxes to a data-centric view. HDT modularizes the data and uses the skewed
structure of RDF graphs [9] to achieve compression. In practical terms, HDT-based
representations take up to 15 times less space than traditional RDF formats [11].

Whereas publication and exchange were partially addressed in HDT, the con-
sumption is underexploited; HDT provides basic retrieval capabilities which can
be used for limited resolution of SPARQL triple patterns. This paper revisits
these capabilities for speeding up consumption within the workflow above. We
propose i) to publish and exchange RDF serialized in HDT, and then ii) to per-
form a lightweight post-process (at consumption) enhancing the HDT represen-
tation with additional structures providing a full-index for RDF retrieval. The
resulting enhanced HDT representation (referred to as HDT-FoQ: HDT Focused on
Querying) enables the exchanged RDF to be directly queryable with SPARQL,
speeding up the workflow in several correlated dimensions:

— RDF datasets are exchanged in compact HDT, reducing transmission costs.

— HDT-FoQ is built on top of HDT, requiring little post-processing. It excels in
consumption latency (the time awaited until the dataset can be consumed).

— HDT-FoQ provides efficient in-memory resolution of triple patterns and joins.

5 http://wuw.w3.org/TR/rdf-testcases/#ntriples

Post-processing is the computation needed at consumption (parsing+indexing) before any query
can be issued.

Our experimental results report figures on each of the achievements above. In
particular, our HDT-driven approach completes the workflow 10 — 15 times faster
than traditional solutions, outperforming them in the three processes. Query
performance evaluation shows that i) the resultant indexed HDT-FoQ achieves
the best overall performance for triple patterns resolution, and ii) an ad-hoc join
implementation on top of HDT-FoQ reports competitive results with respect to
optimized solutions within the state-of-the-art.

This paper is structured as follows. Section 2 reviews the state-of-the-art
and sets HDT foundations. In Section 3, HDT is revisited for basic consumption,
and Section 4 describes how HDT-FoQ enhances it to achieve efficient SPARQL
resolution. Section 5 provides experimental results about the impact of HDT in
the current scenario. Finally, Section 6 concludes and devises future work.

2 State-of-the-art

Huge RDF datasets are currently serialized in verbose formats (RDF/XML [5],
N3 [4] or Turtle [3]), originally designed for a document-centric Web. Although
they compact some constructions, they are still dominated by a human-readable
view which adds an unnecessary overhead to the final dataset representation.
It increases transmission costs and delays final data consumption within the
Publication-Exchange-Consumption workflow.

Besides serialization, the overall performance of the workflow is determined
by the efficiency of the external tools used for post-processing and consum-
ing huge RDF. Post-processing transforms RDF into any binary representation
which can be efficiently managed for specific consumption purposes. Although
it is performed once, the amount of resources required for it may be prohibitive
for many potential consumers; it is specially significative for mobile devices com-
prising a limited computational configuration.

Finally, the consumption performance is determined by the mechanisms used
for access and retrieval RDF data. These are implemented around the SPARQL
[2] foundations and their efficiency depends on the performance yielded by RDF
indexing techniques. Relational-based solutions such as Virtuoso [10] are widely
accepted and used to support many applications consuming RDF. On the other
hand, some stores build indexes for all possible combinations of elements in RDF
(SPO, SOP, PSO, POS, OPS, OSP), allowing i) all triple patterns to be directly
resolved in the corresponding index, and ii) the first join step within a BGP to
be resolved through fast merge-join. Hexastore [18] performs a memory-based
implementation which, in practice, is limited by the space required to represent,
and manage the index replication. RDF-3X [17] performs multi-indexing on a
disk-resident solution which compresses the indexes within B*-trees. Thus, RDF-
3X enables the management of larger datasets at the expense of overloading
querying processes with expensive I/O transferences.

Speeding up consumption within this workflow is influenced by two factors: i)
the RDF serialization format, as it should be compact for exchanging and friendly
for consumption, and ii) efficient RDF retrieval. Scalability issues underlying to
these processes justify the need for a binary RDF format like HDT [6].

2.1 Binary RDF Representation (HDT)

HDT is a binary serialization format which organizes RDF data in three logical
components. The Header includes logical and physical metadata describing the
RDF dataset and serves as an entry point to its information. The Dictionary
provides a catalog of the terms used in the dataset and maps them to unique
integer IDs. It enables terms to be replaced by their corresponding IDs and allows
high levels of compression to be achieved. The Triples component represents the
pure structure of the underlying graph after the ID replacement.

Publication and exchange processes are partially addressed by HDT. Although
it is a machine-oriented format, the Header gathers human-friendly textual meta-
data such as the provenance, size, quality, or physical organization (subparts and
their location). Thus, it is a mechanism to discover and filter published datasets.
In turn, the Dictionary and Triples partition mainly aims at efficient exchange;
it reduces the inherent redundancy to an RDF graph by isolating terms and
structure. This division has proved effective in RDF stores [17].

3 Revisiting HDT for Basic Consumption

HDT allows different implementations for the dictionary and the triples. Besides
achieving compression, some implementations can be optimized to support native
data retrieval. The original HDT proposal [11] gains insights into this issue through
a triples implementation called Bitmap Triples (BT). This section firstly gives
basic notions of succinct data structures, and then revisits BT emphasizing how
these structures can allow basic consumption.

3.1 Succinct Data Structures

Succinet data structures [16] represent data using as little space as possible and
provide direct access. These savings allow them to be managed in faster levels of
the memory hierarchy, achieving competitive performance. They provide three
primitives (S is a sequence of length n from an alphabet X):

- rank, (S, 1) counts the occurrences of a € X' in S[1,1].
- select, (S,) locates the position for the i-th occurrence of a € X' in S.
- access(S, 1) returns the symbol stored in SJi].

In this paper, we make use of succinct data structures for representing se-
quences of symbols. We distinguish between binary sequences (bitsequences) and
general sequences. i) Bitsequences are a special case drawn from X~ = {0,1}.
They can be represented using n + o(n) bits of space while answering the three
previous operations in constant time. We use the implementation of Gonzalez,
et al. [12] which takes, in practice, 37.5% extra space on top of the original bitse-
quence size. i) General sequences are represented using wavelet trees [13]. A
wavelet tree represents a general sequence as a balanced tree of height h = log o,
comprising a total of h bitsequences of n bits. It uses nlogo + o(n)logo bits
and answers rank, select and access in proportional time to its height h.

ID-triples Subjects: /" Bitmap Triples l Z
72 . B
Predicates: »p 10100
. . Predicates:] Sy
E | — —_— 7
6 . Objects: Objects: B, 111101
Fig. 2. Description of Bitmap Triples.

3.2 Bitmap Triples for SP-0 Indexing

HDT describes Bitmap Triples (BT) as a specific triples encoding which represents
the RDF graph through its adjacency matrix. In practice, BT slices the matrix
by subject and encodes the predicate-object lists for each subject in the dataset.
Let us suppose that the triples below comprise all occurrences of subject s:

{(S»Pl,oll); Y (Sapla olnl)a (Sap% 021)7 T (5;p2, 02n2)7 e (&Pk»Oknk)}
These triples are reorganized into predicate-object adjacency lists as follows:

s = [(p1, (0115 , 010y), (P2, (021, 02n,)), +++ (Phs (Ok1s**+ 5 Ok)]-

Each list represents a predicate, p;, related to s and contains all objects
reachable from s through this predicate.

This transformation is illustrated in Figure 2; the ID-based triples repre-
sentation (labeled as ID-triples) is firstly presented, and its reorganization in
adjacency lists is shown on its right. As can be seen, adjacency lists draw tree-
shaped structures containing the subject ID in the root, the predicate IDs in the
middle level, and the object IDs in the leaves (note that each tree has as many
leaves as occurrences of the subject in the dataset). For instance, the right tree
represents the second adjacency list in the dataset, thus it is associated to the
subject 2 (rooting the tree). In the middle level, the tree stores (in a sorted way)
the three IDs representing the predicates related to the current subject: 5,6,
and 7. The leaves comprise, in a sorted fashion, all objects related to the subject
2 through a given predicate: e.g. objects 1 and 3 are reached through the path
2,6; which means that the triples (2,6,1) and (2,6,3) are in the dataset.

BT implements a compact mechanism for modeling an RDF graph as a forest
containing as many trees as different subjects are used in the dataset. This
assumption allows subjects to be implicitly represented by considering that the
1 — th tree draws the adjacency list related to the ¢ — th subject. Moreover, two
integer sequences: S, and S,, are used for storing, respectively, the predicate and
the object IDs within the adjacency lists. Two additional bitsequences: B, and B,
(storing list cardinalities) are used for delimitation purposes. This is illustrated
on the right side of Figure 2. As can be seen, S, stores the five predicate IDs
involved in the adjacency lists: {7,8,5,6,7} and B, contains five bits: {10100},
which are interpreted as follows. The first 1-bit (in B,[1]) means that the list for
the first subject begins at S,[1], and the second 1-bit (in B,[3]) means that the list
for the second subject begins at Sp,[3]. The cardinality of the list is obtained by
subtracting the positions, hence the adjacency lists for the first and the second
subject contain respectively 3 —1 = 2 and 6 — 3 = 3 predicates. The information
stored in S, = {2,4,4,1,3,4} and B, = {111101} is similarly interpreted, but
note that adjacency lists, at this level, are related to subject-predicate pairs.

Table 1. Triple pattern resolution on BT (operations marked with * are performed as
many times as predicates to be included in the list obtained from findPred).

[Triple Pattern[Operations]

(S, P,0) findPred(S), filterPred(P,,P), findObj(pos), filterObj(O.,0).
(S, P,70) findPred(S), filterPred(P,,P), findObj(pos).

(S, 7P, 0) findPred(S), {find0Obj(pos), filterObj (Og,0)}".

(S,?7P,70) findPred(S), findObj(pos)™.

BT gives a practical representation of the graph structure which allows triples
to be sequentially listed. However, direct accessing to the triples in the i-th list
would require a sequential search until the i-th 1-bit is found in the bitsequence.
Direct access (in constant time) to any adjacency list could be easily achieved
with a little spatial o(n) overhead on top of the original bitsequence sizes. It en-
sures constant time resolution for rank, select, and access, and allows efficient
primitive operations to be implemented on the adjacency lists:

— findPred(i): returns the list of predicates related to the subject i (P;), and
the position pos in which this list begins in S,,. This position is obtained as
pos = select1(B,, 1), and P; is retrieved from S,[pos, select1(By,7+ 1) — 1].

— filterPred(P;,j): performs a binary search on P; and returns the position
of the predicate j in P;, or 0 if it is not in the list.

— find0bj (pos): returns the list of objects (O,,) related to the subject-predicate
pair represented in Sy[pos|. It positions the pair: = rank;(B,,pos), and
then extracts O, from S,[select1 (B, x), selecty(B,, x + 1) — 1].

— filter0bj(O;,k): performs a binary search on O; and returns the position
of the object k in O, or 0 if it is not in the list.

Table 1 summarizes how these primitives can be used to resolve some triple
patterns in SPARQL: (S,P,0), (S,P,70), (S,7P,0), and (S,7P,70). Let us
suppose that we perform the pattern (2,6,7) over the triples in Figure 2. BT
firstly retrieves (by findPred(2)) the list of predicates related to the subject 2:
Py = {5,6, 7}, and its initial position in Sp: pos;n; = 3. Then, filterPred (Ps,6)
returns pos,ss = 2 as the position in which 6 is in P,. This allows us to obtain
the position in which the pair (2,6) is represented in Sp: pos = Posin; +posoff =
342 =5, due to P starts in Sp[3], and 6 is the second element in this list.
Finally, £ind0bj (5) is executed for retrieving the final result comprising the list
of objects O5 = {1, 3} related to the pair (2,6).

4 Focusing on Querying (HDT-FoQ)

HDT was originally intended for publication and exchange, but its triples compo-
nent provides enough information for efficient RDF retrieval. The bitsequences
delimiting adjacency lists provide an SP-0 index which allows some patterns to
be efficiently resolved (row BT in Table 2). It enables HDT to be exploited as a
basis for an indexed representation (called HDT-FoQ: HDT Focused on Querying)
which allows exchanged RDF to be directly consumed using SPARQL.

This section presents how HDT is enhanced from an innovative perspective
focused on querying. Three main issues must be addressed to obtain an effi-
cient configuration for SPARQL resolution: i) The dictionary is serialized in

Table 2. Indexes and Triple Pattern resolution through incremental proposals.

Index Order Triple Patterns
SP-O[PS-OJOP-S|[SPO[SP?[S?O[S?? [TPO[?P? [?70
BT VA - - SP-0 [SP-0[SP-0[SP-0| - - -
BT+Wp vV N - SP-0|SP-0|SP-0|SP-0|PS-0|PS-0| -
HDT-FoQ| +/ v v SP-0|SP-0|SP-0|SP-0|0P-S |PS-0|0P-S

a compressed way which allows it to be included as part of the original HDT
representation. It must also be directly consumable to provide efficient opera-
tions for querying the mapping between each term and the corresponding ID. ii)
The original triples component representation is enhanced to provide efficient
RDF retrieval covering all possible triple patterns in SPARQL. iii) Efficient join
algorithms are implemented to perform Basic Graph Patterns (BGPs) [2].

4.1 Functional Dictionary Serialization

The dictionary component contributes greatly to the HDT compactness because
it enables triples to be modeled through three-ID groups. However, RDF dictio-
naries can suffer from scalability drawbacks because they take more space than
ID-triples representations [15]. An advanced serialization addresses this draw-
back while providing basic operations for consumption, i.e., operations from
term to ID (locate), and from ID to term (extract). HDT-FoQ relies on an HDT
representation including such an advanced dictionary. It is organized as follows:

- Common subjects and objects (S0) maps to the range [1, [S0|] all terms
playing subject and object roles.

- Subjects (S) maps to [|S0|+1, |S0|+|S|] all remaining terms playing as subject.
- Objects (0) maps to [|S0|+1, |S0|+|0|] all remaining terms playing as object.
- Predicates (P) maps terms playing as predicate to [1,|P|].

This four-subset partitioning fits the original HDT approach [11] and allows
terms playing as subject and object to be represented only once. This dictionary
organization is serialized through four independent streams which respectively
concatenate, in lexicographic order, the terms within each subset. Each stream
is finally encoded with Plain Front-Coding (PFC) [8]. It adapts differential Front-
Coding compression [19] to the case of string dictionaries and it provides, at
consumption, efficient locate and extract resolution in compressed space.

4.2 A Wavelet Tree-based Solution for PS-0 Indexing

Bitmap Triples (BT) represents the triples component through adjacency lists
prioritized by subject. This decision addresses fast querying for patterns provid-
ing the subject, but makes retrieval by any other dimension difficult.

We firstly focus on predicate-based retrieval on top of BT. This requires the
efficient resolution of patterns providing the predicate while leaving the subject
as variable: (?7,P,0) and (7,P,7). In both cases, all occurrences of P must be
quickly located, but BT scatters them along the sequence of predicates (S,)
and its sequential scan arises as the trivial solution. Thus, the predicate-based
retrieval demands indexed access to Sp, which can be provided by representing
the sequence with the wavelet tree structure.

Algorithm 1 findSubj (i) Algorithm 2 filterSubj(i,j)

1: occs + rank;(Wp,n); 1: pos; «+ select1(Bp,j) — 1;

2: for (z =1 to occs) do 2: posjy1 < select1(Bp,j+1) —1;

3 pos[] < select; Wp, x); 3: oces < rank; Wy, posjy1) — rank;(Wy, pos;);
4: S[] < ranki(Bp, pos[z]); 4: return occs

5: end for

6: return pos;S

This new wavelet-tree based representation of S, is renamed W,,. It adds an
additional overhead of o(n) log(|P|) bits to the space used in the original S,, and
allows each predicate occurrence to be located in time O(log|P|) through the
select operation. This is an acceptable cost for our retrieval purposes because
of the small number of predicates used, in practice, for RDF modeling. In the
same way, the access operation also has a logarithmic cost, so any predicate
within W, is now retrieved in time O(log(|P|)). Finally, note that rank allows
the occurrences of a predicate to be counted up to a certain position of W,,.

The wavelet tree structure allows access by predicate to be supported on two
new primitives traversing adjacency lists:

— findSubj(i): returns the list of subjects related to the predicate i and the
positions in which they occur in W,,. This operation is described in Algorithm
1. It iterates over all occurrences of the predicate 1 and processes one of them
for each step. It locates the occurrence position in W, (line 3) and uses it
for retrieving the subject (line 4) which is added to the result set.

— filterSubj(i,j): checks whether the predicate i and the subject j are
related. It is described in Algorithm 2. It delimits the predicate list for the
j—th subject, and counts the occurrences of the predicate ¢ to pos; (0;) and
posji1 (0j41). Iff 0j41 > 0j, the subject and the predicate are related.

Hence, the wavelet tree contributes with a PS-0 index which allows two addi-
tional patterns to be efficiently resolved (row BT+W,, in Table 2). Both (?S,P,?0)
and (7S,P,0) first perform findSubj(P) to retrieve the list of subjects related
to the predicate P. Then, (?S,P,70) executes findObj for each retrieved subject
and obtains all objects related to it. In turn, (?S,P,0) performs a filter0bj
for each subject to test if it is related to the object given in the pattern.

Let us suppose that, having the triples in Figure 2, we ask for all subjects and
objects related through the predicate 7: (7S,7,70). £indSubj(7) obtains the
list of two subjects related to the predicate (S = {1,2}) and their positions in
W, (pos={1,5}). The subsequent find0bj (1) and find0bj (5) return the list of
objects {2} and {4} respectively representing the triples (1,7,2) and (2,7,4).

4.3 An Additional Adjacency List for 0P-S Indexing

The wavelet-tree based enhancement leaves object-based access as the only non-
efficient retrieval in our approach. As we illustrated in Figure 2, objects are
represented as leaves of the tree drawn for each adjacency list, so the sequence
S, stores all object occurrences within the dataset (each one related to the cor-
responding predicate-subject pair). In this case, we require an additional index
0OP-S which allows adjacency lists to be traversed from the leaves.

l Z Subjects

B i:”‘o i0
Predicates: { °
“[1es67 M Algorithm 3 findPredSubj (i)

Wavelet Tree

pos; < select1(Bop,1);
pos;y1 < select1(Bop,i+ 1) — 1;
for (x = pos; to pos;y1) do
ptr <+ select1(Bo, Bop[z]);
P[] « access(Wy, ptr);
S[] « rank.(B,, ptr)
end for
: return P;S

B, 111101
Objects:
Sn

(P5) (P7) (P8)

DP-Index:{ S| 414352
Bp 111100

W~ DU WN

U2
Fig. 3. Final HDT-FoQ configuration.

The index OP-S is represented with an integer sequence: S,p, which stores,
for each object, a sorted list of references to the predicate-subject pairs (sorted
by predicate) related to it. It is worth noting that the ¢ — th predicate-subject
pair is identified through the ¢ — th 1-bit in B,. A bitsequence B,p is also used
for representing cardinalities as in the upper levels. This is illustrated in Figure
3; for instance, the fourth list in S,p (pointed to by the fourth 1-bit in B,p)
stores the reference {3,5,2}: 3 points to the third 1-bit in B, representing the
relation between the object 4 and the predicate 5; the reference 5 points to the
fifth 1-bit (predicate 7), and the third reference: 8 points to the predicate 8.

This index OP-S enables efficient object-based retrieval trough two new prim-
itives which traverse adjacency lists from the leaves:

— findPredSubj(i): returns the list of predicate-subject pairs related to the
object i. This operation is described in Algorithm 3. It firstly delimits the list
for the object i and then iterates over each reference. Each step locates the
position ptr which points to the position which represents the reference in
B, (line 4). This value is then used for retrieving the corresponding predicate
from W, (line 5), and the subject from B, (line 6).

— filterPredSubj (i, j): checks whether the object i and the predicate j are
related, and narrows their occurrences in the list. It firstly delimits the list
for the object i and then binary searches it to narrow the occurrences of j.

This enhancement contributes to our solution with the index OP-S and al-
lows triple patterns (?S,7P,0) and (?S,P,0) to be efliciently resolved (see row
HDT-FoQ in Table 2). The first one is resolved by performing findPredSubj for
the object provided in the pattern. (?7S,P,0) was resolved through the wavelet
tree, but its resolution is now speeded up. In this case, filterPredSubj(0,P)
narrows the references from 0 to P, and then retrieves the corresponding subject
(as in line 6 of Algorithm 3).

The functionality of the index OP-S can be seen through the (78,7P,1)
pattern. It asks for all subject-predicate pairs related to the object 1 in the
triples represented in Figure 2. The operation findPredSubj (i) firstly narrows
the range of references from the object 1 to S,p[1, 1]. It only comprises the value 4

which points to the fourth 1-bit in B,. It represents the predicate access(W,, 4) =
6 and the subject rank:(B,,4) = 2, so this pattern matches the triple (2,6,1).

4.4 Joining Triple Patterns

HDT-FoQ is the result of post-processing HDT for RDF consumption. It is built,
at consumption, on top of the exchanged HDT, which includes the functional
dictionary and the Bitmap Triples. First, the wavelet tree is constructed using
the implementation provided in the libeds library [1]. Then, the object structure
in Bitmap Triples is scanned to build the OP-S index. The result is a compact
RDF representation optimized to be managed and queried in main memory. As
summarized in Table 2, HDT-FoQ only requires three indexes (SP-0, PS-0 and
OP-S) to perform efficient RDF retrieval, in contrast to the six combinations
used in solutions within the state-of-the-art [18,17].

HDT-FoQ efficiently performs triple patterns, setting the basis for SPARQL
resolution. We rely on the fact that the SPARQL core is built around the concept
of Basic Graph Pattern (BGP) and its semantics in order to build conjunctive
expressions joining triple patterns through shared variables.

Merge and Index joins can be directly resolved on top of HDT-FoQ}. Merge
join is used when the results of both triple patterns are sorted by the join
variable. It is worth noting that triple pattern results are given in the order
provided by the index used (see Table 2). If the results of one triple pattern are
not sorted by the join variable, index join is performed. It first retrieves all
results for the join variable in one triple pattern and replaces them in the other
one. Ideally, the first evaluation should be on the less expensive pattern, in terms
of its expected number of results.

5 Experimental Evaluation

This section studies the Publication-Exchange-Consumption workflow on a real-
world setup in which the three main agents are involved:

— The data provider is implemented on a powerful computational configura-
tion. It simulates an efficient data provider within the Web of Data. We use
an Intel Xeon E5645@2.4GHz, 96GB DDR3@1066Mhz.

— The network is regarded as an ideal communication channel for a fair com-
parison. It is considered free of errors and any other external interference.
We assume a transmission speed of 2Mbyte/s.

— The consumer is designed on a conventional configuration because it plays
the role of any agent consuming RDF within the Web of Data. It is imple-
mented on an AMD-PhenomTM-IT X4 955@3.2GHz, 8GB DDR2Q800MHz.

We first analyze the impact of using HDT as a basis for publication, exchange
and consumption within the studied workflow, and compare its performance with
respect to those obtained for the methods currently used in each process. Then,
we focus on studying the performance of HDT-FoQ as the querying infrastructure
for SPARQL: we measure response times for triple pattern and join resolution.

Table 3. Description of the real-world datasets used in the experimentation.
[Dataset [Plain Ntriples[Size (MB)[Available at |

linkedMDB 6,148,121 850.31 |http://queens.db.toronto.edu/~oktie/linkedmdb
dblp 73,226,756| 11,164.41 |http://dblp.13s.de/dblp++.php
geonames 112,335,008| 12,358.98 |http://download.geonames.org/all-geonames-rdf.zip
dbpedia (en) 257,869,814| 37,389.90|http://wiki.dbpedia.org/Downloads351

All experiments are carried out on a heterogeneous configuration of real-
world datasets of different sizes and from different application domains (Table
3). We report “user” times in all experiments. The HDT prototype is developed
in C+4 and compiled using g++-4.6.1 -03 -m64. Both the HDT library and
a visual tool to generate/browse/query HDT files are publicly available”.

5.1 Analyzing the Publication-Exchange-Consumption Workflow

The overall workflow analysis considers that the publication process is performed
once, whereas exchange and preprocessing costs are paid each time that any
consumer retrieves the published dataset. The publication policy affects the per-
formance of exchange because it depends on the dataset size, but also the de-
compression time (as initial consumption step) which is directly related to the
compressor used for publication. We use two Lempel-Ziv based compressors® for
publication: the widely-used gzip and the 1zma algorithm in the suite p7zip.

We assume that the publication process begins with the dataset already
serialized. Thus, gzip/lzma based publication only considers the compression
time, whereas processes based on HDT comprise the times required for generating
the HDT representation and its subsequent compression.

Table 5 shows the time used for publication in the data provider: gzip is
the faster choice and largely outperforms 1zma and the HDT-based publication.
However, size is the most important factor due to its influence on the subsequent
processes (Table 4). HDT+1zma is the best choice. It achieves highly-compressed
representations: for instance, it takes 2 and 3 times less space than 1zma and gzip
for dbpedia. This spatial improvement determines exchange and decompression
(for consumption) times as shown in Tables 6 and 7.

On the one hand, the combination of HDT and lzma is the clear winner for
exchange because of its high-compressibility. Its transmission costs are smaller
than the other alternatives: it improves them between 10 — 20 minutes for the
largest dataset. On the other hand, HDT+gzip is the most efficient at decompres-
sion, but its improvement is not enough to make up for the time lost in exchange
with respect to HDT+1zma. However, its performance is much better than the one
achieved by universal compression over plain RDF. Thus, HDT-based publication
and its subsequent compression (especially with 1zma) arises as the most efficient
choice for exchanging RDF within the Web of Data.

The next step focuses on making the exchanged datasets queryable for con-
sumption. We implement the traditional process, which relies on the indexing
of plain RDF through any RDF store. We choose three systems®: Virtuoso (re-

7 http://www.rdfhdt.org
8 http://wuw.gzip.org/ (gzip), and http://www.7-zip.org/ (lzma)

Hexastore has been kindly provided by the authors. http://www.openlinksw.com/ (Virtuoso),
http://ht tp://www.mpi-inf.mpg.de/~neumann/rdf3x/ (RF3X).

Table 4. Compressed sizes (MB). Table 5. Publication times (seconds).

; HDT+ . HDT+
Dataset gzip 1lzma gzip 1zma Dataset | gzip 1lzma gzip 1zma
linkedMDB 38.86 19.21 15.77 12.49 linkedMDB| 11.36 882.80 65.57 91.01
dblp 468.47 328.17| 229.23 178.71 dblp 162.91 6,214.32| 808.93 1,319.60
geonames | 701.98 348.93| 305.30 236.59 geonames (196.90 14,683.90|1,586.15 2,337.82
dbpedia |3,872.29 2,653.79(1,660.73 1,265.43 dbpedia |956.71 27,959.85|3,648.75 7,306.17
Table 6. Exchange times (seconds). Table 7. Decompression times (seconds).
; HDT+ . HDT+
Dataset gzip 1lzma gzip 1zma Dataset | gzip 1lzma gzip lzma
linkedMDB 19.43 9.61 7.88 6.25 linkedMDB| 3.04 5.11| 0.33 1.05
dblp 234.23 164.08| 114.62 89.35 dblp 37.08 70.86| 4.63 14.82
geonames | 350.99 174.46| 152.65 118.29 geonames | 45.49 87.51| 8.81 19.91
dbpedia |1,936.14 1,326.89| 830.36 632.71 dbpedia |176.14 357.86(46.51 103.03
Table 8. Indexing times (seconds). Table 9. Overall times (seconds).
. Comp . RDF+|Comp . HDT+
‘ Dataset ‘Vlrtuoso Hexastore| RDF3X ‘HDT—FOQ ‘ Dataset Indexing | EDT-FoQ
linkedMDB 369.05| 1,810.67| 111.08 1.91 linkedMDB 125.80 9.21
dblp 5,543.99 x(1,387.29| 16.79 dblp 1,622.23| 120.96
geonames |17,902.43 X 12,691.66| 43.98 geonames | 2,953.63 182.18
dbpedia X X |7,904.73| 124.44 dbpedia | 9,589.48 860.18

lational solution), RDF3X (multi-indexing solution), and Hexastore (in-memory
solution). We compare their performance against HDT-FoQ, which builds addi-
tional structures on the HDT-serialized datasets previously exchanged.

Table 8 compares these times. As can be seen, HDT-FoQ excels for all datasets:
its time is between one and two orders of magnitude lower than that obtained
for the other techniques. For instance, HDT-FoQ takes 43.98 seconds to index
geonames, whereas RDF3X and Virtuoso use respectively 45 minutes and 5 hours.
It demonstrates how HDT-FoQ leverages the binary HDT representation to make
RDF quickly queryable through its retrieval functionality. Finally, it is worth
noting that Virtuoso does not finish the indexing for dbpedia after more than
1 day, and Hexastore requires a more powerful computational configuration for
indexing datasets larger than linkedMDB. This fact shows that we successfully
achieve our goal of reducing the amount of computation required by the consumer
to make queryable RDF obtained within the Web of Data.

Overall Performance. This section comprises an overall analysis of the pro-
cesses above. Note that publication is decoupled from this analysis because it is
performed only once, and its cost is attributed to the data provider. Thus, we
comprise times for exchange and consumption. These times are shown in Table
9. It compares the time needed for a conventional implementation against that
of the HDT driven approach. We choose the most efficient configurations in each
case: i) Comp.RDF+Indexing comprises lzma compression over the plain RDF
representation and indexing in RDF3X, and ii) Comp.HDT+HDT-FoQ compresses
the obtained HDT with 1zma and then obtains HDT-FoQ.

The workflow is completed between 10 and 15 times faster using the HDT

driven approach. Thus, the consumer can start using the data in a shorter time,
but also with a more limited computational configuration as reported above.

Table 10. Indexing sizes (MB).

[Dataset [Virtuoso[Hexastore| RDF3X [|[HDT [HDT-FoQ |
linkedMDB| 518.01| 6,976.07 377.34 48.70 68.03
dblp 3,982.01 x| 3,252.27 695.73| 850.62
geonames | 9,216.02 x| 6,678.42|/1,028.85|1,435.05
dbpedia X x15,802.03(|4,433.28|5,260.33
15 -LinkedMDB - 16 -Geonames -
14 mRDF-3X m Virtuoso “ WRDF-3X 1 Virtuoso

Fig. 4. Comparison on querying performance.

5.2 HDT-FoQ in Consumption: Performance for SPARQL Querying

This section complements the previous analysis focusing on the performance of
HDT-FoQ as the basis for SPARQL querying. As explained, HDT-FoQ is the final
result, in the consumer, when the workflow Publication-Exchange-Consumption
is driven through our HDT-based approach, and it is used as an in-memory index
for SPARQL querying. We firstly show the spatial needs of HDT-FoQ to be effi-
ciently loaded in the consumer configuration and then study its performance for
triple pattern and join query resolution. Our main aim is to show the HDT-FoQ
efficiency for RDF retrieval and also for joining in order to demonstrate its ca-
pabilities for SPARQL resolution on top of that. We compare our results with
respect to the indexing systems presented above.

Table 10 summarizes the sizes of the indexes built for each dataset within
each studied solution. The columns HDT and HDT-FoQ, respectively, show the
size of the original HDT representation (after decompression) and the resultant
indexed one built on top of it. It is worth noting that the sizes reported for
HDT-FoQ also include the overhead required for managing it in main memory. As
can be seen, HDT-FoQ takes between 15% and 40% of extra space on top of HDT
representations. These results place HDT-FoQ as the more compact index, largely
doing better than the other solutions. Finally, we emphasize the comparison be-
tween Hexastore and HDT-FoQ because both are in-memory solutions. Whereas
Hexastore requires =~ 7 GB of main memory for managing just over 6 million
triples (1inkedMDB), our approach just uses 68.03 MB for fitting this dataset
in memory. This achievement is analyzed from a complementary perspective:
the consumer can manage just over 258 million triples (dbpedia) using HDT-FoQ
(and 3GB of memory are still free in the system), whereas only 6 million triples
can be managed using Hexastore (and only 1GB would remain free).

Query performance is evaluated over 1inkedMDB and geonames. For each one,
we design a testbed of randomly generated queries which covers the entire spec-
trum of triple patterns and joins. We consider 5000 random triple patterns of each
type ((7S,P,70) is limited by the number of different predicates). We split join

tests into Subject-Subject (SS), Object-Object (00) and Subject-Object (S0) cat-
egories. For each one, we generate 15 queries with a high number of intermediate
results (big subsets) and another 350 queries with fewer results (small subsets).
The full testbed is available at http://dataweb. infor.uva.es/queries-eswcl2.tgz

Querying times are obtained by running 5 independent executions of the
testbed and average total user times. We compare HDT-FoQ against RDF-3X and
Virtuoso (Hexastore could not run most queries because of the aforementioned
limited free memory). We query these systems within a “warm” scenario: we run 5
previous executions before measuring time for these disk-based systems to have
the required data available in main memory. Figure 4 shows the performance
comparison as {time_in_compared_system}/{time_in_FoQ}. For instance
a value of 6 means that it performs 6 times faster than the compared system.
For visualization purposes, we invert this ratio whenever we run slower, hence a
value of —2 means that we perform 2 times slower.

It is worth noting that HDT-FoQ excels for almost every individual triple
pattern. It speeds-up their resolution, only losing performance for (?S,P,70), in
which a logarithmic cost is paid for accessing predicates in the wavelet tree. The
analysis of join performance shows that i) HDT-FoQ is the most efficient choice
for most of the joins in medium-sized datasets such as 1inkedMDB, thanks to
efficient triple pattern resolution, but ii) these stores leverage their optimized
join implementations in larger datasets (geonames). Optimized join algorithms
implemented on top of HDT-FoQ would allow it to compete fairly in this latter
case by leveraging HDT-FoQ performance for triple pattern resolution.

6 Conclusions and Future Work

Inherent scalability drawbacks of huge RDF graphs discourage their consump-
tion due to the space they take up, the powerful resources and the large time
required to process them. In this paper, we focus on a novel direction for speed-
ing up consumption. We firstly rely on an existing binary format, called HDT
(Header-Dictionary-Triples), which provides efficient exchange. Then, we pro-
pose HDT-FoQ, a compact full-index created over HDT, at consumption. Thus, the
exchanged RDF data become direct and easily queryable.

Our experiments show that huge RDF data are exchanged and post-processed
(ready to be queried) 10 — 15 times faster than traditional solutions. Then, the
proposed in-memory system for consumption (HDT-FoQ) excels in triple pattern
resolution, remains competitive in joins of middle-sized datasets and shows po-
tential improvement for larger datasets.

These results open up interesting issues for future work. We should work on
improving predicate-based retrieval because it reports the less-competitive per-
formance. Our on-going work relies on the optimization of the predicate index
by tuning the trade-off between access time and spatial needs. In addition, we
plan to optimize our join algorithms with Sideways Information Passing mecha-
nisms, leveraging efficient resolution of triple patterns. Finally, although the use
of succinct data structures allows more data to be managed in the main mem-
ory, it could remain excessive for consumers with limited memory. Under this

scenario, we devise an evolution of HDT-FoQ to perform as an in-memory /on-disk
system providing dynamic data management, i.e., efficient insertion, updating
and deletion of triples at consumption.

Acknowledgments

This research has been supported by MICINN (TIN2009-14009-C02-02) and Sci-
ence Foundation Ireland under Grant No.~SFI/08/CE/I1380(Lion-II). The third
author receives a grant from the JCyL and the ESF. We particularly wish to
thank Claudio Gutierrez, for his continued motivation and selfless help, and the
Database Lab (Univ. of A Corufia) for lending us the servers for our experiments.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Compact Data Structures Library (libcds). http://1libcds.recoded.cl/.

SPARQL Query Language for RDF. W3C Recomm. 2008.

http://www.w3.org/TR/rdf -sparql-query/.

Turtle-Terse RDF Triple Language. W3C Team Subm. 2008.
http://wuw.w3.org/TeamSubmission/turtle/.

Notation3. W3C Design Issues. 1998. http://www.u3.org/DesignIssues/Notation3.
RDF/XML Syntaz. W3C Recomm. 2004. nttp://www.w3.org/TR/REC-rdf-syntax/.
Binary RDF' Representation for Publication and Exchange (HDT). W3C Member
Subm. 2011. http://wuw.w3.org/Submission/2011/03/.

C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked Data On the Web
(LDOW2008). In Proc. of WWW, pages 1265-1266, 2008.

N. Brisaboa, R. Canovas, F. Claude, M. A. Martinez-Prieto, and G. Navarro. Com-
pressed String Dictionaries. In Proc. of SEA, pages 136-147, 2011.

L. Ding and T. Finin. Characterizing the Semantic Web on the Web. In Proc. of
ISWC, pages 242-257, 2006.

O. Erling and I. Mikhailov. RDF Support in the Virtuoso DBMS. In Proc. of
CSSW, pages 59-68, 2007.

J. Fernandez, M. Martinez-Prieto, and C. Gutierrez. Compact Representation of
Large RDF Datasets for Publishing and Exchange. In ISWC, pages 193-208, 2010.
R. Gonzalez, S. Grabowski, V. Mékinen, and G. Navarro. Practical Implementation
of Rank and Select Queries. In Proc. of WEA, pages 27-38, 2005.

R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. of SODA, pages 841-850, 2003.

D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth. RDF On the Go: An
RDF Storage and Query Processor for Mobile Devices. In Proc. of ISWC, 2010.
Available at http://iswc2010.semanticweb.org/pdf/503.pdf.

M. Martinez-Prieto, J. Fernandez, and R. Canovas. Compression of RDF Dic-
tionaries. In Proc of. SAC, 2012. Available at: http://dataweb. infor.uva.es/sac2012.pdf.
G. Navarro and V. Mékinen. Compressed Full-Text Indexes. ACM COMPUT
SURV, 39(1):art. 2, 2007.

T. Neumann and G. Weikum. The RDF-3X Engine for Scalable Management of
RDF data. The VLDB Journal, 19(1):91-113, 2010.

C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic
Web Data Management. Proc. of the VLDB Endowment, 1(1):1008-1019, 2008.
I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes : Compressing and
Indezing Documents and Images. Morgan Kaufmann, 1999.

