Web et données liées Release 2012

December 05, 2012

CONTENTS

1	Web de données				
	1.1	Motivation et historique	1		
	1.2	Linked Open Data			
2	RDF	1	15		
	2.1	Introduction	15		
	2.2	Syntaxe abstraite et sémantique	15		
	2.3	Syntaxes concrètes	18		
	2.4	Vocabulaires			
3	SPAI	ROL	23		
	3.1	Introduction	23		
	3.2	Description du graphe	24		
	3.3	Requête SELECT			
	3.4	Autres types de requête			
	3.5		29		
4	Méta	-vocabulaires	31		
	4.1	Introduction	31		
	4.2	RDF-Schema			
	4.3		35		
In	dev		37		

WEB DE DONNÉES

author Pierre-Antoine Champin

1.1 Motivation et historique

Figure 1.1: source: http://en.wikipedia.org/wiki/File:Tim_Berners-Lee.jpg

1.1.1 Le Web vu par Tim Berners-Lee (1989)

« Vague, but exciting »

1.1.2 Web de ressources

Le web est constitué de **ressources**, par exemple :

- le bulletin météo du jour pour Lyon
- le bulletin météo du jour pour le lieu courant
- ma commande de café de jeudi dernier

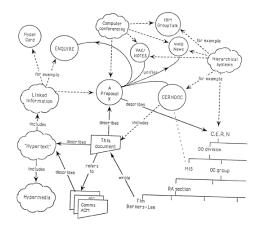


Figure 1.2: source: http://info.cern.ch/images/proposal.gif

Chaque ressource est identifiée par un IRI (Internationalized Resource Identifier), e.g.:

- http://meteo.example.com/lyon
- http://meteo.example.com/ici
- http://commerce.example.com/commande/192837

/!\ Un IRI n'est pas un nom de fichier (cf. exemples ci-dessus)

Parenthèse: URL/URI/IRI

- URL: Uniform Resource Locator (RFC 1738, 1994)
- URI: Uniform Resource Identifier (RFC 2396, 1998)
- IRI: Internationalized Resource Identifier (RFC 3987, 2005)
- technologies successives
- même concept

Ressources et représentations

- Une ressource n'est jamais manipulée directement, mais toujours à travers des **représentations** (pour la créer, la consulter, la modifier).
- Les représentations d'une ressource peuvent varier en fonction
 - de son état
 - de l'agent qui manipule la ressource (négociation de contenu, context)

représentation :	utilisable par :
texte	humains, moteurs de recherche
médias (image, son)	surtout humains
données structurées	machines

1.1.3 De HTML à XML

XML (eXtensible Markup Language) a été recommandé par le W3C en 1998. L'objectif était de pallier la sémantique « faible » de HTML.

```
<!-- HTML -->
<a href="http://champin.net/">
  Pierre-Antoine <strong>Champin</strong>
  (<em>Maître de conférences</em>)</a>
<!-- XML -->
<Person homepage="http://champin.net/">
  <givenName>Pierre-Antoine</givenName>
  <surname>Champin</surname>
  <job>Maître de conférences</job></Person>
```

1.1.4 XML et la sémantique

On a dit tout et son contraire l'apport sémantique de XML :

- XML a *plus* de sémantique que HTML,
- XML a moins de sémantique que HTML,

Les deux ont leur part de vérité.

XML a plus de sémantique que HTML...

... dans le sens ou il est extensible : on peut donc exprimer des choses que HTML ne permet pas d'exprimer (e.g. "<givenName>").

• Importance des *espaces de noms*, qui évitent les collisions de noms et fournissent ainsi une sémantique « structuraliste » (i.e. par différenciation).

XML a moins de sémantique que HTML...

... dans la mesure ou :

- un navigateur standard ne saura pas quoi faire de la balise <qivenName> ou de la balise <0 ν 0 μ 0>,
 - tout au plus il saura les afficher s'il possède une feuille de style,
- tandis qu'il connaît la sémantique de la balise : elle dénote un texte à mettre en évidence selon les moyens dont il dispose, par exemple :
 - en le mettant en italique (standard)
 - en le mettant en gras (police déjà en italique)
 - en le mettant en couleurs (police sans italique, terminal)
 - en marquant une pause (synthèse vocale)

XML: apports et limitations

Le surplus de sémantique promis par XML n'est donc pas « magique » : il suppose

- de créer de nouveaux langages basés sur XML (DTD, schémas),
- d'écrire les logiciels qui interpréteront ces nouveaux langages,
 - → chaque langage reste relativement idiosyncratique.

XML: apports et limitations (suite)

L'apport est donc essentiellement technique : la base commune de XML permet de *factoriser* les efforts de développement et d'apprentissage :

- analyseurs syntaxiques (parsers),
- langages de schémas (DTD, XML-Schema, Relax-NG...),
- langages de requêtes (XPath, XQuery),
- langages de transformation (XSL-T),
- méthode de signature cryptographique (xmldsig),
- methode de compression (EXI)...

1.1.5 De XML à RDF

- Le modèle sous-jacent de la syntaxe XML est un arbre (XML Infoset), ce qui n'est pas adapté à la structure décentralisée du Web.
- L'objectif du *Resource Description Framework* (RDF), recommandé par le W3C en 1999, vise à munir le Web d'un modèle de données plus adapté, ayant une structure de *graphe*.
- L'objectif est de construire le *Semantic Web* : un web dans lequel les machines ont (enfin) accès à la sémantique des données.
- Recommandation un peu hâtive, présentant quelques défauts importants (notamment l'absence de sémantique formelle).
 - \rightarrow faible adoption de RDF

1.1.6 De RDF à RDF

- En 2004, le W3C publie un nouvel ensemble de recommandations sur RDF pour remplacer celles de 1999.
- Pour des raisons de compatibilité avec l'existant, certains aspects sont conservés malgré les débats qu'ils suscitent, mais les défauts considérés comme majeurs sont corrigés.
- Après cet échec relatif, l'appellation *Semantic Web* tombe peu a peu en disgrâce. Certains défenseurs de RDF parlent plus modestement de *Data Web*, puis de *Web of Linked Data* (2006).

1.1.7 Le mouvement OpenData

Toute donnée publique (gouvernementale, ONU) ou publiée (scientifique) devrait être accessible sous une forme permettant le traitement automatique (en plus d'une forme lisible pour des humains).

• http://data.gov/

Figure 1.3: source: http://www.w3.org/RDF/icons/

- http://data.un.org/
- http://data.gouv.fr/
- http://opendata69.org/
- Raw Data Now (Tim Berners-Lee à TED)

1.2 Linked Open Data

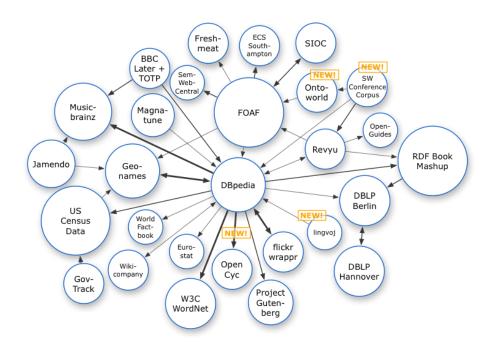


Figure 1.4: source: http://richard.cyganiak.de/2007/10/lod/

1.2.1 Les quatre principes de Linked Data

- Utiliser des IRIs pour nommer les choses (= ressources).
- Utiliser des IRIs HTTP pour pouvoir obtenir des représentations de ces ressources.
- Fournir ces représentations en utilisant des langages et des protocoles standards (RDF, SPARQL).
- Inclure des liens pour permettre de découvrir de nouvelles ressources.

d'après Tim Berners-Lee, http://www.w3.org/DesignIssues/LinkedData.html

Ouvrir les données liées

- Intérêt des IRIs : tout jeu de données peut référencer des données d'un autre jeu de données
 - réutilisation de l'existant
- Intérêt des IRIs déréférençable (cool IRIs) : permet de découvrir de nouvelles données sur le mode de l'hypertexte
 - passage à l'échelle
 - importance d'un format commun → RDF
- Linked open data star scheme

Figure 1.5: source: http://lab.linkeddata.deri.ie/2010/lod-badges/

1.2.2 Projet emblématique : DBpedia

- Projet lancé par Chris Bizer en 2007.
- Objectif: extraire les informations structurées (infobox) présentes dans Wikipedia pour les exposer en RDF.
- En juillet 2011 (version 3.7):

The new DBpedia data set describes more than 3.64 million things, of which 1.83 million are classified in a consistent ontology, including 416,000 persons, 526,000 places, 106,000 music albums, 60,000 films, 17,500 video games, 169,000 organizations, 183,000 species and 5,400 diseases.

Informations structurées dans Wikipedia

1.2.3 Le « LOD cloud »

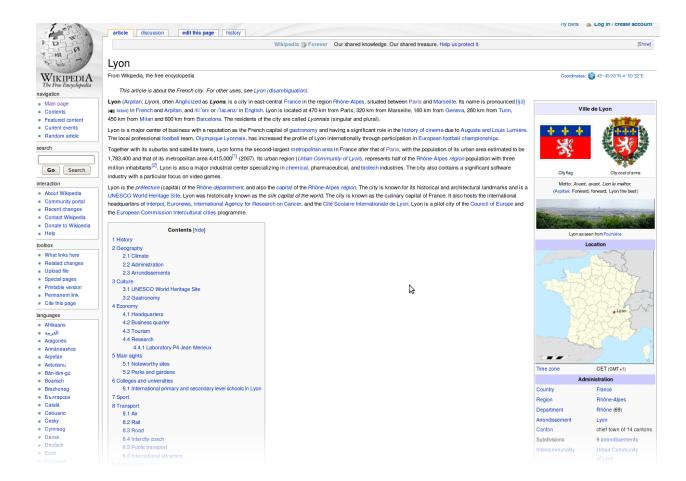


Figure 1.6: source: http://en.wikipedia.org/wiki/Lyon

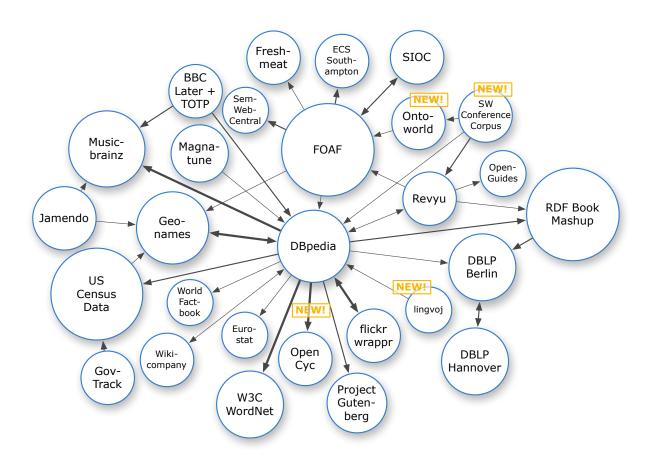


Figure 1.7: source: http://richard.cyganiak.de/2007/10/lod/ En 2007

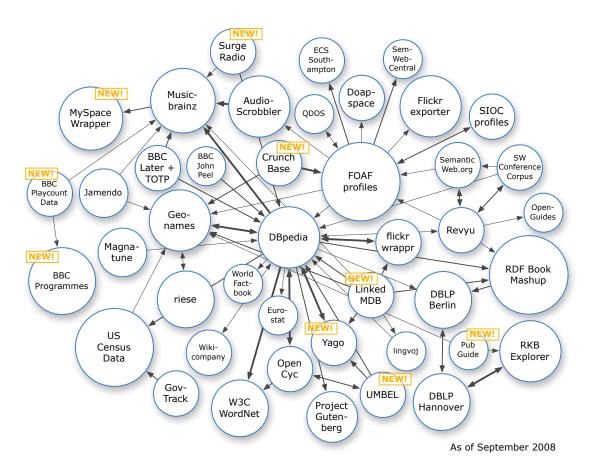


Figure 1.8: source: http://richard.cyganiak.de/2007/10/lod/en 2008

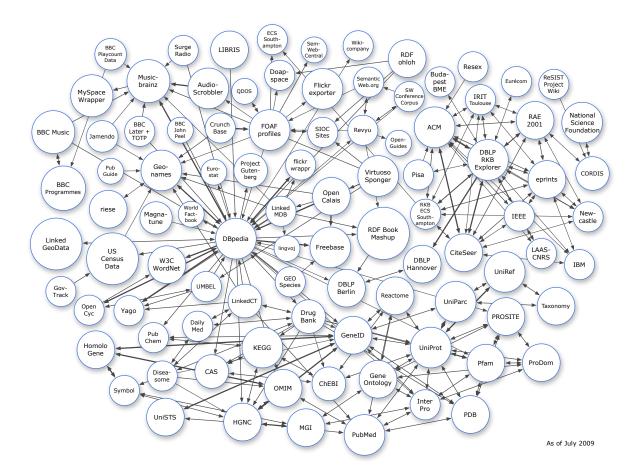


Figure 1.9: source: http://richard.cyganiak.de/2007/10/lod/en 2009

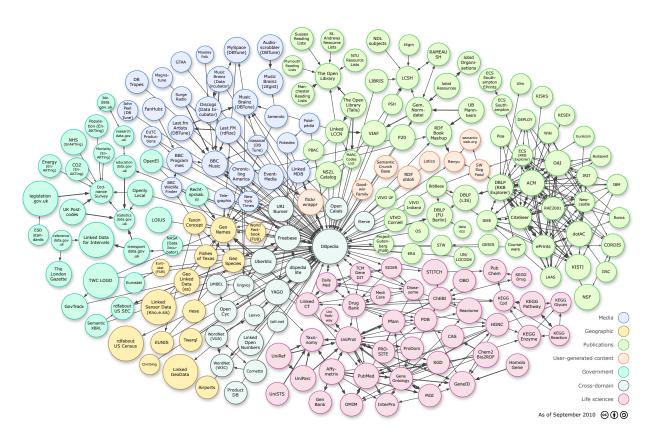


Figure 1.10: source: http://richard.cyganiak.de/2007/10/lod/en 2010

Le « LOD cloud »

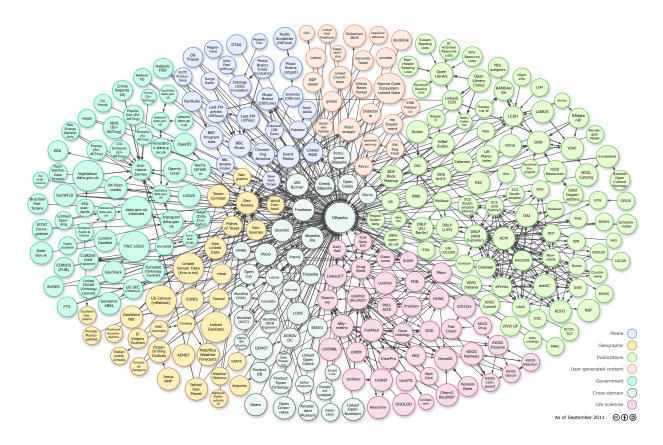


Figure 1.11: source: http://richard.cyganiak.de/2007/10/lod/en 2011

Rechercher et explotation des données

- Annuaire des sources de données :
 - http://thedatahub.org/
- Moteur de recherche :
 - http://sindice.com/
- Navigateurs de données :
 - http://graphite.ecs.soton.ac.uk/browser/ (navigateur simple)
 - http://sig.ma/ (navigateur multi-source)
 - http://www.visualdataweb.org/relfinder.php

1.2.4 Divergences et convergences

• The Open Graph protocol (Facebook)

http://ogp.me/

• Schema.org (Bing, Google, Yahoo)

http://schema.org/

http://schema.rdfs.org/

CHAPTER

TWO

RDF

author Pierre-Antoine Champin

2.1 Introduction

2.1.1 Vue d'ensemble

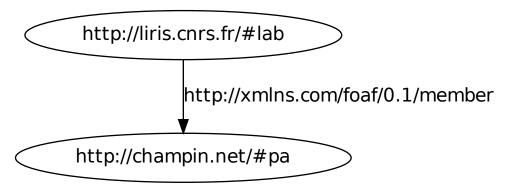
RDF 2004 définit:

- une syntaxe abstraite (modèle de donnée),
- une sémantique pour interpréter la syntaxe abstraite,
- plusieurs syntaxes concrètes pour représenter/échanger la syntaxe abstraite.

2.2 Syntaxe abstraite et sémantique

2.2.1 Triplet

Toute information en RDF est représentée par un *triplet*, signifiant qu'une *chose* est en *relation* avec une autre.


Exemple:

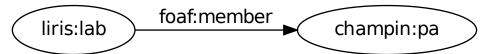
Le laboratoire LIRIS (sujet)
a pour membre (prédicat)
Pierre-Antoine Champin (objet)

Nommage

Les choses sont nommées par des IRIs :

http://liris.cnrs.fr/#lab http://xmlns.com/foaf/0.1/member http://champin.net/#pa On peut représenter ceci graphiquement :

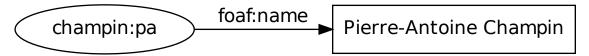
2.2.2 Préfixes


Pour simplifier les notations, on définit des préfixes courts correspondant à des préfixes d'IRI:

```
liris: → http://liris.cnrs.fr/#
foaf: → http://xmlns.com/foaf/0.1/
champin: → http://champin.net/#
```

On utilise ensuite des noms préfixés :

liris:lab foaf:member champin:pa

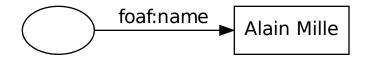

et également sous forme graphique :

2.2.3 Littéraux

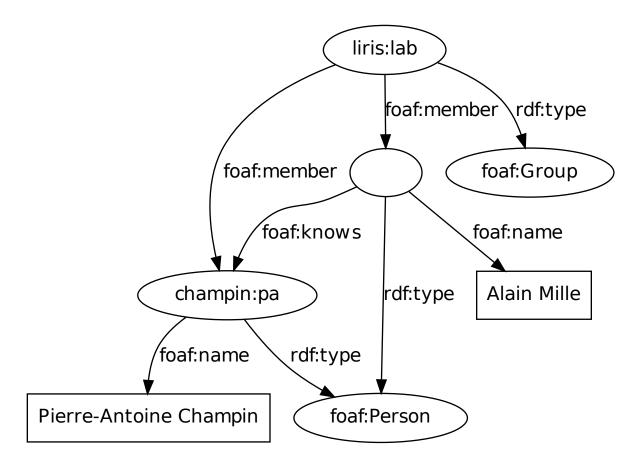
On peut également lier une ressource à une *donnée typée* (chaîne de caractère, entier, réel...), nommée un littéral. champin:pa foaf:name "Pierre-Antoine Champin"

Traditionnellement, on représente les littéraux par des nœuds rectangulaires :

2.2.4 Nœuds muets


Enfin, RDF permet de parler d'une ressource sans connaître son IRI. Cela revient en logique à utiliser une variable quantifiée existentiellement.

(quelque chose) foaf:name "Alain Mille"


On parle alors de nœud muet (par analogie aux variables muettes).

Graphiquement, on représente cette ressource par un nœud vierge (blank node).

16 Chapter 2. RDF

2.2.5 Exemple de graphe

2.2.6 Sémantique et inférences

La structure du graphe permet de faire un minimum d'inférence, sans même avoir besoin de connaître le vocabulaire.

Exemple: « Toto est le tata de titi et tutu »

Par analogie, étant donné un arbre XML, on peut inférer en un arbre dans lequel seul l'ordre des attributs a changé.

Bien sûr, des inférences supplémentaires peuvent être faites en prêtant une sémantique particulière aux IRIs utilisés dans le graphe.

Exemple: « tata est une relation symétrique et transitive »

Vocabulaire et sémantique additionelle

On verra plus tard des langages (RDF-Schema, OWL) permettant de définit la sémantique de certains IRIs.

Mais ces langages ne peuvent pas remettre en cause la sémantique du graphe lui-même.

Analogie : lorsqu'on définit un format XML, on prête une sémantique particulière aux éléments et attributs de ce format, mais on ne peut *pas* prêter de sémantique à l'ordre des attributs ;

- sémantiquement, ce ne serait plus du XML,
- pragmatiquement, les outils standards (analyseur syntaxique, sérialiseurs) ne permettraient pas de contrôler cet aspect de la syntaxe.

2.3 Syntaxes concrètes

2.3.1 RDF/XML

- syntaxe recommandée par le W3C (1999)
- · basée sur XML
- relativement complexe et verbeuse

Syntaxe http://www.w3.org/TR/rdf-syntax-grammar/

Valideur http://www.w3.org/RDF/Validator/

RDF/XML: exemple

```
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:foaf="http://xmlns.com/foaf/0.1/"
 <foaf:Group rdf:about="http://liris.cnrs.fr/#lab">
  <foaf:member>
   <foaf:Person>
    <foaf:name>Alain Mille</foaf:name>
    <foaf:knows
    rdf:resource="http://champin.net/#pa"/>
   </foaf:Person>
  </foaf:member>
  <foaf:member>
   <foaf:Person rdf:about="http://champin.net/#pa">
    <foaf:name>Pierre-Antoine Champin</foaf:name>
   </foaf:Person>
  </foaf:member>
  </foaf:Group>
</rdf:RDF>
```

2.3.2 Turtle: Terse RDF Triple Language

- dérivée du langage N3
- en passe d'être recommandé par le W3C (en 2012)
- vise la simplicité et la compacité

Syntaxe http://www.w3.org/TR/turtle/

Valideur http://www.rdfabout.com/demo/validator/

18 Chapter 2. RDF

Turtle: exemple

```
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix champin: <http://champin.net/#> .
liris:lab
    a foaf:Group ;
    foaf:member champin:pa, _:am .
champin:pa
    a foaf:Person;
    foaf:name "Pierre-Antoine Champin" .
   a foaf:Person;
    foaf:name "Alain Mille" ;
    foaf:knows champin:pa .
Turtle: exemple 2
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix champin: <http://champin.net/#> .
liris:lab
    a foaf:Group ;
    foaf:member champin:pa, [
      a foaf:Person;
      foaf:name "Alain Mille" ;
      foaf:knows champin:pa .
    ] .
champin:pa
    a foaf:Person;
    foaf:name "Pierre-Antoine Champin" .
```

2.3.3 RDFa: RDF in attributes

RDFa est une utilisation d'attributs (existants ou supplémentaires) de (X)HTML pour y inclure du RDF (à la manière des micro-formats) :

- facilite la migration de contenus HTML vers RDF
- facilite la maintenance en cohérence de la version HTML et des données RDF (DRY : Don't Repeat Yourself)

Syntaxe http://www.w3.org/TR/rdfa-primer/

Valideur http://check.rdfa.info/

Distiller http://www.w3.org/2012/pyRdfa/

RDFa: exemple

2.3.4 JSON-LD

- Rappel: JSON est un langage d'échange de données, basé sur Javascript, et très utilisé en développement web.
- JSON-LD (JSON Linked Data) permet d'interpréter une structure JSON comme du RDF,
- grâce à un contexte (implicite ou explicite).
- · Objectif: faciliter l'adoption de RDF (syntaxe abstraite) auprès des développeurs d'applications web.

Syntaxe http://www.w3.org/TR/json-ld-syntax/

Valideur http://json-ld.org/playground/

JSON-LD: exemple

2.3.5 Autres syntaxes

- Comme l'illustrent RDFa et JSON-LD, tout langage peut être interprété comme du RDF:
 - dialectes en XML (GRDDL)
 - microformats (http://http://microformats.org/)
 - microdata (http://www.data-vocabulary.org/)
- Prépondérance de la syntaxe abstraite.
- Difficulté : faire correspondre des IRIs là ou d'autres langages utilisent des termes « locaux ».

20 Chapter 2. RDF

2.4 Vocabulaires

2.4.1 Trouver un vocabulaire

- http://swoogle.umbc.edu/
- http://lov.okfn.org/

2.4.2 Quelques vocabulaires utiles

- Dublin Core
- FOAF: Friend of a friend
- SIOC: Semantically-Interlinked Online Communities
- WGS84: Word Geodetic System
- GoodRelations

Dublin Core

Méta-données à propos des documents :

- titre, résumé...
- créateur, contributeur...
- date de création, de dernière modification, versions...

description http://lov.okfn.org/dataset/lov/details/vocabulary_dc.html

homepage http://purl.org/dc/terms/

FOAF: Friend of a friend

Description de personnes et de leur réseau social

- Personne (nom, prénom, page weg, adresse e-mail, connaissance...)
- Groupe (membres...)
- Document (a pour sujet...), Image (représente...)

description http://lov.okfn.org/dataset/lov/details/vocabulary_foaf.html

homepage http://www.foaf-project.org/

SIOC: Semantically-Interlinked Online Communities

Description de communautés en ligne

- · Forum, Blog, Wiki...
- Article, Commentaire...

description http://lov.okfn.org/dataset/lov/details/vocabulary_sioc.html

homepage http://rdfs.org/sioc/spec/

2.4. Vocabulaires 21

WGS84: Word Geodetic System

Coordonnées géographiques

- SpatialThing, Point
- lattitue, longitude, altitude

description http://lov.okfn.org/dataset/lov/details/vocabulary_geo.html
homepage (rdf) http://www.w3.org/2003/01/geo/wgs84_pos

GoodRelations

e-commerce

- Produit et Service, Offre...
- quantité, prix, garantie...

description http://lov.okfn.org/dataset/lov/details/vocabulary_gr.html

homepage http://purl.org/goodrelations/v1

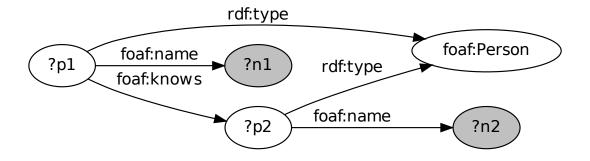
22 Chapter 2. RDF

THREE

SPARQL

author Pierre-Antoine Champin

3.1 Introduction


3.1.1 Objectifs

- Vous donner des bases pour écrire des requêtes SPARQL.
- Bonus: lire/écrire du Turtle (très proche de SPARQL).
- Ce n'est qu'une introduction ; pour en savoir plus :

http://www.w3.org/TR/sparql11-overview/

3.1.2 Requête simple

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?n1 ?n2
WHERE {
     ?p1 a <http://xmlns.com/foaf/0.1/Person> .
         foaf:name ?n1 ;
         foaf:knows ?p2 .
     ?p2 a foaf:Person ;
         foaf:name ?n2 .
}
```


3.2 Description du graphe

3.2.1 Préfixes

```
Rappel: les préfixes servent à abréger les IRIs.
SPARQL:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX : <http://example.com/>
Turtle:
@prefix foaf: <http://xmlns.com/foaf/0.1/> . # /!\ point final
@prefix : <http://example.com> . # après chaque déclaration
```

3.2.2 Termes

IRI en extension (relatif ou absolu):

```
<http://xmlns.org/foaf/0.1/Person>
<../other-file.rdf>
<#something>
<>
```

IRI abrégé:

foaf:Person
:something

Termes (suite)

Litéral:

```
"Bonjour"
"Hello"@en  # avec tag de langue
"123"^*xsd:integer # typé
```

```
# equiv. "42"^^xsd:integer

1.5  # equiv. "1.5"^^xsd:decimal

314e-2  # equiv. "314e-2"^^xsd:double

true  # equiv. "true"^^xsd:boolean
```

Nœud muet:

```
_:toto
[] # voir ci-après
```

Termes (suite)

Variable (SPARQL seulement):

?foo \$foo

NB: pas de distinction entre ? et \$.

3.2.3 Triplets

• 3 termes (sujet, prédicat, objet) séparés par des espaces et suivis d'un point ".":

```
?p1 foaf:name "Pierre-Antoine Champin" .
```

• cas particulier : le mot clé "a" en position de prédicat est un raccourci pour http://www.w3.org/1999/02/22-rdf-syntax-ns#type:

```
?p1 a foaf:Person .
```

• le retour à la ligne vaut pour une espace ; la structure est donnée par la ponctuation.

Factorisation

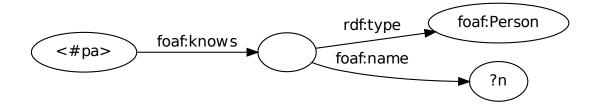
• On *peut* « factoriser » plusieurs triplets ayant le même sujet en séparant les couples <prédicat, objet> par un point-virgule ";":

```
<#pa> a foaf:Person;
    foaf:givenName "Pierre-Anntoine";
    foaf:surname "Champin".
```

• On *peut* « factoriser » plusieurs triplets ayant le même sujet et le même prédicat en séparant les objets par une virgule ", " :

```
<#pa> foaf:phone <tel:+33-472-44-82-40>, <tel:+33-472-69-21-73>.
```

- On peut bien sûr combiner les deux types de factorisation.
- On n'est jamais obligé de factoriser, on peut aussi répéter les termes.


Nœud muet

Lorsqu'un nœud muet n'a qu'un seul arc entrant, au lieu de lui inventer un identifiant local :

```
<#pa> foaf:know _:quelqun .
_:quelqun a foaf:Person ; foaf:name ?n .

on peut utiliser la notation []:

<#pa> foaf:knows [
    a foaf:Person ;
    foaf:name ?n
] .
```


3.2.4 Sous-graphe optionel

En SPARQL, on peut accepter qu'une partie du graphe ne soit pas satisfaite :

```
?p1 a foaf:Person ; foaf:name ?n .
OPTIONAL { ?p1 foaf:phone ?tel }
```

3.2.5 Filtres

En SPARQL, on peut ajouter des contraintes sur les valeurs d'un graphe, avec la clause FILTER.

```
?p foaf:age ?a .
FILTER (?a >= 18)
```

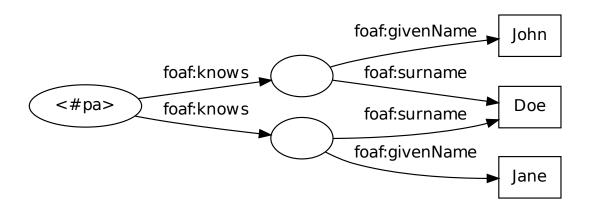
On peut combiner des conditions avec les opérateurs logiques « et » (& &), « ou » (| |) et « non » (!).

```
FILTER ( 20 <= ?a && ?a < 30 )
```

Opérations utiles pour les filtres

- comparaisons : =, !=, <, >, <=, >=
- opérateurs arithmétiques : +, -, *, /
- nature d'un nœud: isIRI, isBLANK, isLITERAL, isNUMERIC
- vérifier qu'une variable (utilisée avec OPTIONAL) a bien une valeur : Bound
- recherche de texte : REGEX (<variable>, <texte>)

3.3 Requête SELECT


3.3.1 Présentation

- Similaire au SELECT de SQL : projection sur un sous-ensemble des variables du graphe
- · Résultat : tableau
 - une colonne par variable sélectionnée
 - une ligne par résultat
- Structure:

```
SELECT <variables> WHERE { <graphe> }
```

3.3.2 DISTINCT

```
SELECT DISTINCT ?sn
WHERE { <#pa> foaf:knows ?p. ?p foaf:surname ?sn. }
```


3.3.3 LIMIT et OFFSET

Pour obtenir les 10 premiers résultats :

```
SELECT ?p
WHERE { <#pa> foaf:knows ?p. }
LIMIT 10

Pour obtenir les 5 résultats suivants :
SELECT ?p
WHERE { <#pa> foaf:knows ?p. }
LIMIT 5 OFFSET 10
```

3.3.4 ORDER BY

```
SELECT ?p ?n
WHERE { <#pa> foaf:knows [ foaf:givenName ?p ; foaf:surname ?n ] }
ORDER BY ?n ?p

On peut aussi trier par ordre descendant:

SELECT ?p ?n
WHERE { <#pa> foaf:knows [ foaf:age ?age ] }
ORDER BY DESC(?age)
LIMIT 1
```

3.3.5 GROUP BY

Sert à aggréger certaines valeurs avec l'une des fonctions d'aggrégations : Count, Sum, Avg, Min, Max, GroupConcat et Sample.

```
SELECT ?p1 count(?p2)
WHERE { ?p1 foaf:knows ?p2 }
GROUP BY ?p1

On peut combiner GROUP BY avec ORDER BY et LIMIT (attention à l'ordre):

SELECT ?p1 count(?p2)
WHERE { ?p1 foaf:knows ?p2 }
GROUP BY ?p1
ORDER BY DESC(count(?p2))
LIMIT 3
```

3.4 Autres types de requête

3.4.1 ASK

- Sert à demander si un graphe existe ou non dans la base.
- · Résultat : vrai ou faux
- Structure:

```
ASK { <graphe> }
```

3.4.2 CONSTRUCT

- Sert à construire un graphe à partir des résultat d'un autre
- Résultat : un graphe RDF
- Structure:

```
CONSTRUCT { <graphe> } WHERE { <graphe> }
```

• Peut jouer un rôle similaire à XSL-T pour RDF

3.4.3 SPARQL Update

Depuis la version 1.1, possibilité de *modifier* les données.

3.5 Quelques requêtes utiles

3.5.1 Exploration des types de ressources

```
SELECT ?type count(?0)
WHERE { ?0 a ?type }
GROUP BY ?type
ORDER BY DESC(count(?0))
LIMIT 30
```

3.5.2 Exploration des propriétés liées à un type

```
SELECT DISTINCT ?prop
WHERE { ?o a <http://example.org/UnType> ; ?prop ?val . }
LIMIT 30
```

CHAPTER

FOUR

MÉTA-VOCABULAIRES

author Pierre-Antoine Champin

4.1 Introduction

4.1.1 Motivation

Découverte de la sémantique d'un terme (IRI) en le déréférençant.

```
Exemple: http://dbpedia.org/resource/James_Bond
:James_Bond
    a dbo:FictionalCharacter;
    dbo:creator :Ian_Fleming .
```

Ce principe s'applique également aux classes et aux prédicats.

4.1.2 Problème

Syndrome du dictionnaire : il faut pouvoir s'« arrêter » sur des termes connus.

Nécessité d'un vocabulaire (ensemble de termes) permettant de décrire d'autres vocabulaires : **métavocabulaires**.

Analogie : XML-Schema est un vocabulaire XML dont la sémantique est connue *a priori*, et qui permet d'exprimer la structure de nouveaux vocabulaires.

4.1.3 Objectif

Expliciter formellement la sémantique des vocabulaires (en conformité avec la sémantique de RDF), afin de

- limiter les problèmes d'ambigüité sur les termes
- permettre leur découverte dynamique
 - relations sémantiques internes
- assurer l'interopérabilité
 - relations sémantiques avec d'autres vocabulaires

4.1.4 Exemples d'inférences

4.2 RDF-Schema

4.2.1 Présentation

- RDF-Schema (ou RDF-S) est une recommandation du W3C publiée en même temps que RDF (1999 et révisée en 2004).
- Il permet d'exprimer une hiérarchie de classes et une hiérarchie de propriétés (relations).
 - → hiérarchie au sens *large* : treillis
- Il permet aussi d'exprimer des contraintes sémantiques sur les propriétés et les classes.

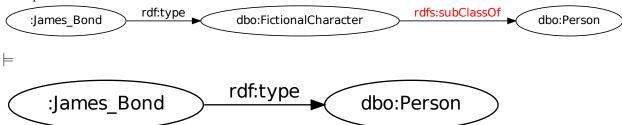
/ contrainte sémantique ≠ contrainte d'intégrité

4.2.2 Escpaces de noms et préfixes

Suite à des circonvolutions historiques, le vocabulaire RDF-Schema utilise deux espaces de nom, associés respectivement aux préfixes suivants :

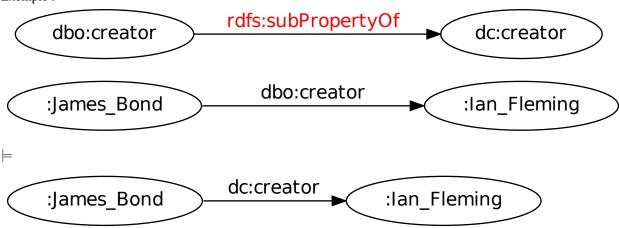
4.2.3 rdf:type

rdf:type indique l'appartenance d'une ressource à une classe.


Exemple:

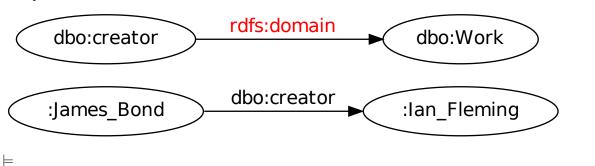
4.2.4 rdfs:subClassOf

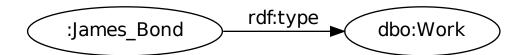
rdfs: subClassOf indique une relation une spécialisation entre classes (« est une sorte de », ou « tous les <math>X sont des Y »).



4.2.5 rdfs:subPropertyOf

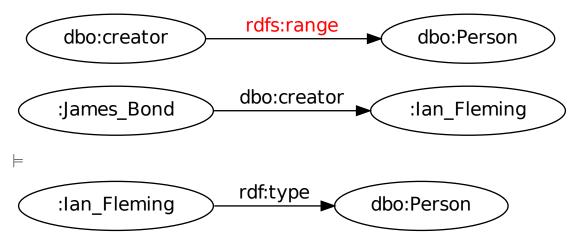
rdfs: subPropertyOf indique une relation une spécialisation entre propriétés (« est une sorte de »).


Exemple:


4.2.6 rdfs:domain

Indique qu'une propriété porte nécéssairement sur les instance d'une classe.

Exemple:


4.2. RDF-Schema 33

4.2.7 rdfs:range

Indique qu'une propriété a nécéssairement pour valeur les instance d'une classe.

Exemple:

4.2.8 Documentation

RDF-Schema fournit aussi des termes pour documenter un vocabulaire :

- rdfs:label permet d'associer un libellé textuel à un URI (éventuellement plusieurs, par exemple dans plusieurs langues);
- rdfs:comment permet d'associer un commentaire textuel plus long;
- rdfs:seeAlso permet de pointer vers une autre ressource.

4.2.9 Méta-modélisation

Rien n'empèche, en RDF-S, d'avoir une classe qui soit elle même une instance d'une autre classe (méta-classe). C'est d'ailleurs de cette manière que les classes sont identifiées.

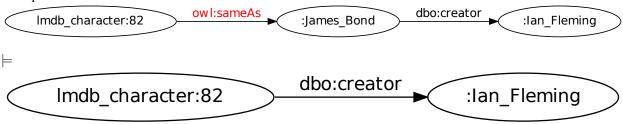
4.2.10 Contrainte sémantique ≠ contraintes d'intégrité

Les méta-propriétés rdfs:domain et rdfs:range ne servent pas à vérifier qu'un graphe serait « valide ». Il ne permettent que d'inférer des faits supplémentaires.

- Comme RDF-S n'a pas de négation, ceci n'entraîne jamais d'incohérence formelle.
 - \rightarrow en d'autre termes, la sémantique de RDF-S ne permet pas de détecter les incohérences (conceptuelles) que pourraient entrainer ces inférences.

4.3 **OWL**

4.3.1 Présentation


OWL (Web Ontology Language) a été recommandé par le W3C en 2004, et sa version 2 en 2009.

- C'est un méta-vocabulaire (comme RDF-S) inspiré des **logiques de descriptions** avec valeurs concrètes (littéraux).
- Il définit plusieurs profils offrant des compromis différents en terme d'expressivité et de complexité.
- Il mime les capacités de méta-modélisation de RDF-S (punning).

4.3.2 owl:sameAs

Indique que deux IRIs dénotent la même ressource.

4.3. OWL 35

INDEX

RFC RFC 1738, 2 RFC 2396, 2 RFC 3987, 2