
Acquisition of Cases in Sequential Games using
Conditional Entropy

Luc Lamontagne, Francis Rugamba & Guy Mineau

Université Laval, Québec, Canada
{luc.lamontagne, guy.mineau }@ift.ulaval.ca

francis.rugamba.1@ulaval.ca

Abstract. In this paper, we present an experiment we conducted on the acquisi-
tion of cases in sequential game environments. We describe an approach where
demonstration traces are segmented into cases without supervision. Formation
of the traces is performed using unsupervised clustering of game states and is
guided by the conditional entropy of the sub-sequences. Application of this ap-
proach to a real-time reactive game indicate that the performance of the result-
ing case bases are comparable to a reactive CBR structure while reducing sub-
stantially the number of cases obtained from the acquisition phase.

1 Introduction

Developing game characters is a difficult task due to the increasing complexity of the
game environments and scenarios. Game developers have to face challenges to create
characters with interesting and intelligent behaviours. A promising direction to reduce
programming complexity is to develop video game characters using machine learning
techniques.

One paradigm gaining popularity for this purpose is learning by demonstration
[2][5][7]. In such an approach, the system observes a teacher performing a task and
cumulates information from this demonstration. The teacher can either be a human or
some external components. The sequences resulting from the demonstration, usually
obtained from an execution trace, indicate the various situations that were tackled by
the teacher and prescribe the corresponding actions that were taken. Such demonstra-
tions can be used subsequently for constructing a software artefact that can be reused
to control some character behaviours.

In this paper, we concentrate on the problem of constructing cases from traces gen-
erated in a sequential environment. Our work can be interpreted in two different ways.
The first interpretation would be that to build cases from traces where the action rec-
ommendations are of varying length. In this setting, each case would cover an arbi-
trary number of episodes in the traces. In the second interpretation, we aim to build
state-transition diagrams (STD) approximated by a set of cases. Here the main issue
would be to choose, based on some characteristics of the traces, a compact set of
states. But, from a technical point of view, both interpretations are almost equivalent
as the cases are constructed from unsupervised segmentation of the traces.

203

In our experimentations, we evaluate our approach for Pac-Man, a reactive pursuit
game. Pac-Man constitutes an interesting test bed as it offers a real time dynamic
environment and it involves sequential decision making.

The paper is organized as follows: the next section presents an overview of the
proposed approach. In Section 3 we describe how the approach was applied to the
game of Pac-Man. Section 4 explains how segmentation is performed using unsuper-
vised clustering and conditional entropy (an information theoretic measure). Finally,
experimental results are presented in Section 5 to illustrate how this scheme compares
to a reactive approach for case acquisition. The paper ends with a conclusion and
some recommendations for future work.

2 Building Cases from Demonstration T races

As mentioned previously, learning by demonstration was adopted to acquire traces
from game plays. The steps required to implement this approach in a dynamic game
environment are the following:

(a) To acquire game traces by observing demonstrations from a teacher indicating
how some non-player characters (NPC) should behave during a game;

(b) To construct, from the game traces provided by the teacher, an intermediate
structure that can be reused to build a decision policy and to activate the NPCs.

(c) To modify the decision structure in order to optimize either behaviour perform-
ance or decision time.

As illustrated in F ig. 1, the traces acquired in step (a) consist of a sequence of epi-
sodes where each episode describes the states of the game board and the action taken
by the teacher.

A conversion of the trace into an intermediate representation is required to build a
decision policy. We make use of cases to make this representation. CBR offers vari-
ous techniques to reuses episodes in new situations and to modify the structure of the
case base to optimize the performance of the system.

From a CBR point of view, each pair <game state, teacher action> of an episode
can be associated to a single case. In this acquisition strategy, a reactive case corre-
sponds to a single episode.

Another strategy is that a case represents multiple consecutive episodes. A mono-
lithic case could represent a full trace [6]. However, as our game traces are long and
can contain a few thousands of episodes, we must provide some techniques to break
down the traces into sub-sequences. We propose in Section 4 a technique to break
down the sequences into cases containing a variable number of episodes.

As efficient time response is required, video game designers often make use of fi-
nite state machines (or state-transition diagrams - STD) [3] to compile the decision
policy of non player characters (NPC). With slight modifications to a case representa-
tion, it is possible to approximate a state machine using a case base. This is the ap-
proach we adopt in this work as we structure cases to represent the elements of a state

204

machine while we exploit the sequence of states observed in the traces to form the
case base.

F ig. 1. A trace converted as a sequence of states and actions

A state machine is a directed graph consisting of states related to each other by
transitions. We consider Mealy machines where states are associated to symbol(s)
observable from the environment. And transitions have two different parts:

a) some conditions that should be satisfied to enable a change of state,
b) an output symbol to be emitted when activating the transition.

To approximate such diagrams with cases, we must map states and transitions to
case features. In our experiments, each case is divided into 3 parts as follows:

 We select one or more attributes of the problem description to represent the
states of the STD. Hence the set of states correspond to the combination of val-
ues for these attributes.

 The remaining <attributes, value> pairs of the case problem represent the condi-
tions of the transition.

 The action recommended by the teacher (the solution part of the case) is the
output symbol of the transition.

Given the current state of the game board, a NPC decision module would consider
all the cases associated to this state and would choose the action(s) recommended by
the case having conditions most similar to the current game configuration.

205

To build cases that are not limited a reactive formulation (i.e. having a single ac-
tion as solution), we propose in Section 4 a scheme where we identify states of the
game that are highly correlated. Correlation of the states is evaluated using condi-
tional entropy, an information theoretic measure. Based on these correlations, we
merge corresponding cases together. Case merging produces a more compact case
base where each case designates a subset of episodes coming from one of the original
traces. This scheme could also be considered as a segmentation of the traces into
cases of variable length. Before to describe this case acquisition scheme in further
detail, we explain in the next section how we applied the general acquisition approach
to the game of Pac-Man.

3 Application to a Reactive Game Pac-Man

To conduct our experiments, we made use of Pac-Man as a test bed. The task for
this pursuit game is to move a yellow circled character in a maze to eat dots and fruits
while avoiding some ghosts. The structure of the maze does not change during the
game (F ig. 2). The actions of the Pac-Man correspond to the four possible moves in
the maze: up, down, left and right. The motion of the ghosts is pseudorandom and the
behavior rules change from one implementation to another. To conduct our experi-
ments, we modified an implementation of this game developed by Benny Chow [1] to
extract traces from game demonstrations.

F ig. 2. Configuration of the Pac-Man board

We developed a computer player to make the demonstrations. Given the current
location of the Pac-Man, this agent selects a target on the board, i.e. the closest object
among the dots, the fruits, the power pellets or the edible ghosts. Then it uses a best-
first search algorithm to determine the shortest path to the target object while avoiding
the ghosts (if they are in attacking mode). Pac-Man applies the actions to follow this
path as long as the target remains unchanged.

206

3.1 Representation of the state of the game board

To represent traces provided by these demonstrations, we selected some of the at-
tributes found in the literature [4][9] to model the game board:

 Location: an identifier designating the current location (the cell) occupied by
the Pac-Man.

 Power: the state of the power pellet;
 Wall states: four (4) attributes indicate if neighbouring cells are accessible

(open or closed);
 Ghosts distance: some attributes indicating the Manhattan distance between

the Pac-Man and the four ghosts. Special variables indicate the distance to the
nearest ghost and if this ghost is edible or in attacking mode;

 Dot distance`: two variables indicate the distance between the nearest power
pellet and fruit.

3.2 Using reactive cases as an approximation of a state machine

From game play traces, we initially form one case for each episode. Doing so, we
adopt a reactive approach as each case recommends only one action to cope with a
situation. All the episodes of the traces are stored in the case base.

As each case must represent a pair <state, transition> to approximate a state ma-
chine, the cases are structured as follows:

 State: the location of the Pac-Man character on the game board.
 Time: some index indicating the position of the episode in a trace.
 Conditions: some attribute values pairs describing the state of the game board as

presented in the previous section
 Action: the move applied to Pac-Man.
 Outcome state: the location where Pac-Man ended up after applying the action.

Hence the case base represents the various transitions that were observed in the
state space during the demonstrations. While this approach seems attractive, the size
of the case base represents a limitation from a computational point of view. In our
experiments, we generated some case bases containing tens of thousands of cases.
This size can represent a serious limitation for applying CBR in real-time games. We
investigate in section 4 how to merge cases together to reduce the case base.

3.3 Playing with reactive cases

To perform reasoning with cases structured as state transitions descriptions, we reuse
the nearest neighbour from a partition of the case base corresponding to the current
state of the game. To do so, the following steps are performed:

 Given the current state of the game board (in our case, the cell containing Pac-
Man), fetch all the cases representing transitions originating from this state;

207

 Compare condition attributes of the cases to their corresponding values on the
game board to determine the similarity of each candidate case.

 Apply the action recommended by the case having the most similar conditions.

In our experiments, the similarity of a case corresponds to the proportion of attrib-
utes having values corresponding to the game state. Uniform weights were assigned to
the attributes.

4 Segmentation of T races using Conditional Entropy

The scheme presented in the previous section relies on the usage of reactive cases to
approximate state machines. This approach results in thousands of cases, each of them
recommending a single action. Hence case retrieval must be performed at each frame
of the game to determine the actions of the non player character.

We investigated the possibilities to reduce the number of cases in the case base.
Analysis of the game traces reveals some interesting aspects that can be exploited.
Game traces contain the complete history of states and actions performed during some
games. One can try to determine some frequent patterns of states in the traces to de-
termine sub-sequences of episodes that would form cases.

In our application, this would correspond to finding some regularity in the moves
of the NPC. Analysis of the sequence of episodes can help to identify positions that
are often observed in sequence. We also denote the fact that there is little game play
variation in some parts of the game board. This might be explained by the structure of
the game board containing long corridors and few intersections. If such-sub-
sequences exist, we propose to identify them and to group corresponding episodes as
individual cases. We describe in the next paragraph how we used hierarchical cluster-
ing and information theory to address this problem.

4.1 F inding correlations in consecutive episodes

To identify sequences of states that are correlated, we evaluate the level of uncer-
tainty associated to specific trajectories. Given that some episodes with state x often
lead to episodes with state y, then we can consider that the uncertainty associated to
state x is low. In the context of Pac-Man, if one player frequently chose the same
direction at one specific intersection, then decision behaviour at this intersection cell
is highly predictable (which correspond to low uncertainty for this state). On the other
hand, if the sub-sequences of the traces leading to a specific position y are much di-
versified, then uncertainty on how games can end up at state y is higher. To make
these intuitions operational, we use conditional entropy to measure the level of uncer-
tainty related to variations in sequences.

Entropy [8] is an information theoretic measure that estimates the amount of disor-
der, or uncertainty, related to the distribution of random variables. Given a variable X
and a probability distribution indicating how likely the variable can take different
values xi, entropy H(X) is given by

208

=
=1

log

where p(xi) is the frequency of state value xi in the demonstration traces.
Conditional entropy quantifies the entropy remaining on a variable X given that

some random variable Y has been observed. Marginal conditional entropy is the same
measure defined for some specific values, and is formulated as follows:

= | = |
=1

log |

By using marginal conditional entropy in our Pac-Man application, we intend to
measure if moving from location x to location y during game plays is highly predict-
able (or unpredictable). Lower conditional entropy values would indicate that players
often move from y to x, or equivalently that there is low uncertainty that has x follows
y in the demonstration traces. If low entropy values are observed in the traces, we
suppose that a case could be formed each time the two states are observed consecu-
tively in the traces without losing too much information or game play performance.

To measure the dependency between two consecutive locations y and x, we meas-
ure the residual uncertainty RU which is the reduction in entropy when knowing that
location y precedes location x:

 , = (,) =
|

And we merge cells for which the average value of RU(x,y) and RU(y,x) is the
lowest.

4.2 M erging Cases using Conditional Entropy

To determine the states, we apply an agglomerative hierarchical clustering algo-
rithm that successively group states together (i.e. merge cells of the game board as
new states). Given a threshold value indicating acceptable levels of residual uncer-
tainty, the algorithm determines a set of states as follows:

(a) Form a set containing states for each possible location on the board.
(b) Compute the residual information between each pair of state that can be ob-

served consecutively in the traces.
(c) While some states can still be merged together:

(i) Find the two states with the lowest residual information;
(ii) Remove them from the set of states;
(iii) Form an new state by grouping them together and add it to the set;
(iv) Evaluate the residual information of the new state with respect to all the

neighbouring states;
(d) Once completed, remove from the set all states with residual entropy higher

than some threshold values.

209

F ig. 3 illustrates the first few iterations of the algorithm when applied to Pac-Man
where neighboring cells having low entropy values have been merged together to
form new states of the game.

Once a set of combined states have been constructed by this algorithm, cases cor-
responding to the states are merged together. A new combined case contains the fol-
lowing attributes:

 State: the locations merged together on the game board;
 Time: the time index when the first location in the combined state is first occu-

pied;
 Conditions: the state of the game board when the combined state was first en-

tered;
 Action: the list of moves applied to the PacMan while staying in the combined

state.
 Outcome state: the location where PacMan ended up after applying the action.

F ig. 3. - Grouping of states in the first few iterations of the algorithm.

To exploit these merged cases as a decision policy, retrieval is performed to select
the best case to apply for a specific board configuration. Once a case is selected, all
the actions recommended by the case are applied before any further retrieval is exe-
cuted. In fact, whenever a sequence of actions is triggered, no observation of the game
board is made before the complete sequence of actions is executed.

One would expect that execution of combined cases with short list of actions
would provide performance similar to reactive cases. However, experiments are
needed to determine how cases with longer action lists can influence performance.

Grouping 4

Grouping 1

Grouping 3

Grouping 2

210

5 Experimental results

To conduct our experiments, we built traces acquired during 33 games using the com-
puter player described in Section 3 of this paper. The traces generated from these
games contain a total 29 552 episodes. The board configuration in our experiments
contains 300 cells that are accessible by Pac-Man. Hence the initial case base used to
approximate a state machine contained almost 30 000 reactive cases defined over 300
possible states.

To evaluate the performance that can be obtained using this reactive case base, we
played 200 games. An average score of 5684 points was reached over these games.

F ig. 4. Average score obtained for different number of states. The square line corresponds to
the results of the computer player. And the diamond line corresponds to the case base player.

F ig. 5. Average score vs. number of cases resulting from segmentation.

We repeated the same experiments with different case bases generated by merging
cases using the scheme described in Section 4. Results presented in F ig. 4 indicate
that a reduction in the number of states (the horizontal axis) degrades the performance
(average score). As more states are merged together, lists of actions in the cases get
longer which results in less reactivity in the behaviour of the game character.

0

1000

2000

3000

4000

5000

6000

050100150200250300

0

10000

20000

30000

40000

050100150200250300

211

However, we consider that the loss of performance is minor. By compressing the
state space to less than 100 states, which represent less than a third of the original
states, we observe a reduction of performance of only 10%. Moreover, a reduction of
more than 90% of the states results in a degradation of 17.4% in average game score.
Hence applying important reductions of the number of states seem to have limited
effects on the performance of the corresponding case base being generated.

F ig. 5 indicates the number of cases (vertical axis) corresponding to different set of
states (horizontal axis). It is interesting to note that states that were grouped earlier
during the clustering process involve more cases that states during later in the process.
Hence the proposed case acquisition scheme seems to substantially reduce the size of
the case base while limiting performance degradation.

6 Conclusion

In this work, we conducted a study to determine how cases can be built from sequen-
tial traces acquired during game demonstrations. We considered an approach where
game episodes are converted into cases representing the states of the game, the condi-
tions describing the game environment and actions that lead to subsequent episodes.
We proposed an algorithm to group cases together to represent multiple episodes in
the traces. And evaluate for this scheme for the game of Pac-Man indicates that dy-
namic segmentation of traces into cases seem to be a viable approach. As future work,
we would like to explore algorithms to select attributes describing states. And we
would like to explore how segmentation algorithms, not relying on unsupervised clus-
tering techniques, could be applied to the acquisition of cases from traces.

7 References

1. Chow, B. Executable open source Pac-Man in java. http://www.bennychow.com
(01/06/2010).

2. Floyd, M. W., Esfandiari, B., Lam, K.. A case-based reasoning approach to imitating Ro-
boCup players. FLAIRS, pp. 251-256, 2008.

3. Fu, D., Houlette., H. The ultimate guide to FSMs in games. AI Game Programming Wis-
dom 2, pp. 283-302, 2004.

4. M. Gallagher and A. Ryan. Learning to play Pac-Man: an evolutionary, rule-based ap-
proach. In Evolutionary Computation 2003, IEEE, volume 4, pp. 2462-2469, 2003.

5. M. Mehta, S. Ontanon, T. Amundsen, and A. Ram. Authoring behaviors for games using
learning from demonstration. In ICCBR Workshop on CBR for Computer Games, 2009.

6. S. Ontañón, Case Acquisition Strategies for Case-Based Reasoning in Real-Time Strategy
Games, FLAIRS 2012.

7. Houcine Romdhane and Luc Lamontagne. Forgetting reinforced cases. In Advances in
Case-Based Reasoning, LNCS 5239, Springer Berlin / Heidelberg, pp. 474-486. 2008.

8. R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and Computing in Applied Probability, 1(2), pp. 127-190, 1999.

9. I. Szita and A. Lorincz. Learning to play using low-complexity rule-based policies: illus-
trations through MS. Pac-Man. JAIRS, 30(1), pp. 659-684, 2007.

212

