Injecting Semantic Background Knowledge
into Neural Networks using Graph Embeddings

Konstantin Ziegler*, Olivier Caelen’, Mathieu Garchery*i, Michael Granitzer*, Liyun He-GueltonT,
Johannes Jurgovsky**¥, Pierre-Edouard Portier*, Stefan Zwicklbauer*

*University of Passau, Germany, { firstname.lastname}Quni-passau.de
TATOS Worldline, Belgium and France, { firstname.lastname}@worldline.com
fINSA Lyon, France, {firstname.lastname}@insa-1lyon. fr

Abstract—The inferences of a machine learning algorithm
are naturally limited by the available data. In many real-world
applications, the provided internal data is domain-specific and
we use external background knowledge to derive or add new
features. Semantic networks, like linked open data, provide a
largely unused treasure trove of background knowledge. This
drives a recent surge of interest in unsupervised methods to
automatically extract such semantic background knowledge and
inject it into machine learning algorithms.

In this work, we describe the general process of extracting
knowledge from semantic networks through vector space embed-
dings. The locations in the vector space then reflect relations in
the original semantic network. We perform this extraction for
geographic background knowledge and inject it into a neural
network for the complicated real-world task of credit-card fraud
detection. This improves the performance by 11.2%.

Index Terms—Semantic Web, Semantic Networks, Knowledge
Graphs, Neural Networks, Graph Embeddings, Outlier Detection,
Fraud Detection

I. INTRODUCTION

Data-driven inference and machine learning mechanisms
have become powerful technologies not only in research, but
also in everyday applications. However, inferences made by
machine learning methods are obviously limited by the relevant
patterns found in data. But even in the case where relevant
patterns exist, the machine learning method may not be able to
identify them. These limitations can be overcome with manual
feature engineering or the integration of background knowledge.

Integrating background knowledge can be done either on an
algorithmic level, for example through kernel functions, or on
a data level by enriching and combining data sets. In either
case, new features contain relevant background knowledge,
that is general facts that are obvious to humans, but not
contained or identifiable in the data. However, the integration
of background knowledge usually remains a manual task. In
particular, it particularly requires manual effort to convert
background knowledge, represented as semantic networks, like
the semantic web, into a tabular structure. Furthermore, adding
additional attributes may decrease efficiency and performance
of machine learning algorithms due to correlated features,
a higher dimensional data set or unsuitable encodings. For
example, nominal variables (gender, country, user-id, etc.)
are usually added as one-hot-encoding in neural networks,
that is every attribute value constitutes one input parameter.

Hence, nominal variables with a large cardinality dramatically
increase the dimension of the input space.

For some practical classification problems, machine learning
methods may offer acceptable solutions even without careful
engineering or tuning. However, in most scenarios the tasks are
rather difficult in the sense that an algorithm is asked to find the
best hypothesis from a large set of valid ones, either because
the modeled assumptions are far off from the true distribution
or because the set of representable hypotheses largely exceeds
the number of observations. But one can still cope with this
notion of difficulty by tuning the model’s hyper-parameters or,
when possible, collecting more observations. Another kind of
challenge emerges once observations of different classes are
particularly mixed in input space, that is the classes overlap.

A semantic network (or knowledge graph) is a multi-
relational directed graph composed of entities as nodes and rela-
tions as edges [1]. In our work, we present a method to integrate
linked open data [2], [3] as background knowledge into neural
networks. In particular, we use graph embeddings based on
previous work [4], that is real-valued vector representations for
nodes in the semantic network, in order to capture the semantic
properties of an individual node. These embeddings are then
used to initialize an embedding layer in the neural network.
During subsequent training these embedding layers from the
semantic background are further adapted to the given task.

Our method is applied to a large scale real world data set
for credit-card fraud detection. This domain seems particularly
well-suited to the injection of background knowledge, because
the internal application data does not reflect the cultural
context of a transaction, for example local holidays, judicial
system, etc. — an information which may be extracted from
the background knowledge in the linked open data. In this
domain, we show, that by creating embeddings for country
nodes in DBpedia [5], we can significantly improve the fraud
detection performance. Furthermore, we study the effect by
augmenting the dataset with information on public holidays,
which again shows the detection improvement.

Credit-card fraud detection offers an optimal use-case for the
evaluation of injecting semantic background knowledge as the
rarely occurring fraudulent credit-card transactions are very sim-
ilar to many legitimate transactions with respect to the input fea-
tures. A classification algorithm may not be able to accurately

discriminate such nearby instances without further assumptions
about the data. These assumptions could be introduced in form
of additional knowledge that has been extracted from external
unrelated data sources. In this work, we show how to leverage
and integrate such prior knowledge from structured knowledge
bases like semantic networks in an automated manner.

We make the following contributions.

« Extraction into generic feature representations. (section II)
« Application to geospatial and temporal linked open data.
o Injection in a neural network and improvement on a
real-world application credit-card fraud detection. (subsec-
tion IV-D) This generalizes the common approaches of fea-
ture engineering using embeddings of semantic networks.

The rest of the paper is structured as follows. In section II,
we formalize the problem and describe our approach. In
section III, we describe the credit-card data provided by our
industrial partner Worldline, the peculiarities of credit-card
fraud detection, and the related work. In section IV, we
provide the setup, the experiments, the evaluation, and the
results. Finally, we conclude in section V with an outlook.

II. APPROACH

In this section, we present our approach in two steps.
First, we describe how to obtain graph embeddings following
our previous work on embeddings for entity disambiguation.
Second, we discuss how to integrate those embeddings in the
context of neural networks.

In order to obtain semantically preserving embeddings on
graphs, we use our embedding algorithm developed for entity
disambiguation [4]. This algorithm is similar to other recently
proposed graph embedding methods, such as Node2Vec
[6], DeepWalk [7] or LINE [8]. We briefly summarize our
algorithm in the following.

A. Problem Statement
We combine two sources of information.
o A relational database D = (d;j)1<j<n,i<j<m, With n
tuples (rows) of m attributes (columns) each, representing
our internal application data, and

« asemantic graph G = (V, F) representing our background
knowledge

Furthermore, we assume that there is some attribute j* in
the database, where the value set A;- = {dij*: 1<i<n}
can be identified with some subset of vertices V* C V of
G. For example, attributes like “country” or “year” can be
easily identified with entries in the DBpedia. Without loss of
generality, we assume that j* = 1, s.t. every tuple in D has
the format d; = (v,d, 2, ...,d;m) for some v € V*.

The problem of injecting semantic background knowledge
is then a combination of feature learning and transfer learning:
First, we extract semantic knowledge in the form of a vector
representation and then transfer this knowledge by injecting
the embeddings in the form of enriched features. We show
the generation of vector representations in the next subsection
and its effect on the performance in section IV.

B. Semantic Embeddings

Embeddings are real vectors associated to discrete concepts.
These vectors inherit some of the semantics of the concepts,
so that similar concepts are associated with close vectors.
Their semantic similarity can then be easily expressed in terms
of the cosine similarity or a vector space metric. Embeddings
have been well researched in the field of natural language
processing for representing the semantics of words on a corpus
[9], with Word2Vec being the most well known algorithm.

Word2Vec is a group of unsupervised learning algorithms
to create word embeddings from (textual) documents. To
train these embeddings, Word2Vec uses a two-layer neural
network to process non-labeled documents. The neural network
architecture is based either on the continuous bag of words
(CBOW) or the skip-gram architecture. Using CBOW, the input
to the model could be w;_o, w;_1,w;41, W;42, the preceding
and following words of the current word w;. The output of the
network is the probability of w; being the correct word. In this
context, the task can be described as predicting a word given
its context. The skip-gram model works in the opposite fashion:
the input to the model is a word w; and Word2Vec predicts
the surrounding context words w;_o, W;—1, Wit1, Wit2. If two
words appear in similar contexts, their vector representations
are close in the embedding space. Word2Vec obtains a vector-
representation for every word by predicting word-sequences.

C. Graph Embeddings

To employ Word2Vec, we have to generate a meaningful
sequence of vertices from V* for a given RDF-graph. We
proceed in two steps. First, we transform the RDF-graph into
an undirected simple graph G. Second, we perform a random
walk (with occasional jumps) on G and record all vertices
from V* that we visit.

We consider the RDF-graph as an undirected simple graph
G = (V,E), where the nodes V are the resources of the
knowledge base. Two resources u,v € V share an edge in
G, if there is a properties p in the knowledge base such that
either (u, p,v) or (v,p,u) (or both) are an RDF-triple in the
knowledge base. In other words, we forget the directions of
all edges in the RDF-graph and merge multiple edges.

Our random walk is parametrized by two discrete
probability distributions. For a node v € V, we denote its
neighborhood as N (v), its degree as deg(v) = |N(v)|, and
the logarithmic transformation of the relative degree as
reldeg™(v) = —log(deg(v)/|E|). We introduce a random
variable X on V' which samples a node proportional to its
reldeg®, that is with probability

Pr(X = v) o reldeg”(v) (1)

When our random walk is at a node v, we can pick the
next node either uniformly at random from N (v) (“step”) or
according to X from V' (“jump”). The latter is also our choice
for the initial node.

The resulting algorithm takes two parameters. First, a real
value « describes the probability of a “jump” — as opposed to
a “step”. In our experiments, we use o = 0.1. However, values

of 0.05 < a < 0.25 do not significantly affect the resulting
Word2Vec model. Second, the integer parameter 6 specifies
the number of sampled nodes from the graph. We suggest
to use § = 5 - |E|, which results in ~ 500 random walks
for DBpedia. Higher values of # do not improve the entity
embeddings but increase the training time. We note that we
only write a node v to the corpus file if it is contained in the
subset of desired entities V*. The corpus creation approach
for RDF-knowledge bases is summarized in Algorithm 1.

Algorithm 1: Generate Word2Vec corpus from RDF-graph

input :undirected graph
G = (V, E), relevant entities V* C V/, random variable X on V/
output : word2vec corpus

parameter : « node jump probability, & number of samples

v <$4 V randomly according to X
walks < 0

while walks < 0 do
if v € V* then
| appendToOutputFile(v)
if randomInt(100) > (a * 100) then
‘ vl N (v) uniformly at random ; // step
else
‘ vV randomly according to X ; // jump
walks <+ walks + 1;

return OutputFile

ITII. GEOGRAPHICAL AND
TEMPORAL DATA FOR CREDIT CARD FRAUD DETECTION

We study the effect of our proposed method in a real world
application: Credit-card fraud detection (CCFD). The goal of a
fraud detection system is to identify frauds among a set of given
credit-card transactions. The system can enrich the transaction
data with further features and match the current transaction with
the previous purchases and the profile of the credit-card holder;
such additional features can include simple features like the
average expenditure or the average number of transactions in
the same day. It is also possible to add more advanced features
like the ones that we propose in this work. Concretely, we
automatically extract semantic information about countries and
public holidays from publicly available knowledge bases and we
represent this information in the form of dense vectors that can
be readily injected into a classifier as additional features. In the
experimental section we will check if these new features have
the potential to be informative in determining if a transaction
is a fraudulent one or not.

A. A difficult binary classification problem

The credit-card fraud detection problem consists in
identifying the frauds among a set of given credit-card
transactions. Traditionally, the fraud detection is processed
by expert-rule based systems. In this work, we address this
problem from a machine learning point of view, as a two-class
(legitimate and fraudulent) classification task. Thus, we try
to predict the class of a transaction given its attributes, which
contain contextual information about the transaction (for

example the time and place where it took place) and the credit-
card holder. By doing so, we expect the attributes — also called
features in the machine learning community — to be sufficiently
expressive to distinguish fraudulent from legitimate transactions.
Like in any classification task, we first build a classifier
according to observed data (“training phase”), before evaluating
it on new, unseen transactions by comparing the labels assigned
by the model with the expected ones (’testing phase”).

The binary classification problem of credit-card fraud
detection has been widely studied, because of its great
importance for credit-card holders, credit-card issuers and
banks, as the financial losses due to fraud are already very high
and growing. However, existing models are not giving satisfying
results yet, and there is not a unique well-accepted approach
as of now. In subsection III-C, we briefly review existing
systems that have been built for this task, showing different
possible approaches. We also outline some characteristics
and challenges that are very specific to the CCFD problem in
subsection III-B, and explain if and how they can be bypassed.

Our motivation to inject linked data is driven by the
following two hypotheses.

o Hge,: “Semantic information on the geographical data can

improve the performance of a fraud detection algorithm.

o Hienp: “Semantic information on the temporal data can

improve the performance of a fraud detection algorithm.

Geographic information about countries appears to be a
valuable resource in our context as it enables us to relate, so
far, independent countries to each other; both via geographic
proximity and governmental affiliation. Another aspect is the
injection of temporal semantic information such as public
holidays. Public holidays are interesting in the context of
credit-card fraud detection because the credit-card holder’s
behavior is expected to change on public holidays. Therefore,
knowing if a transaction takes place on a public holiday or
not could be an informative feature for our classification task.

s

s

B. Peculiarities of credit-card fraud detection

Credit-card fraud detection is a highly relevant but very
specific classification problem: many particularities of this
machine learning task have been pointed out in previous
research. We now summarize the specific research questions
and explain how we intend to deal with them in this work.

Due to the fraudulent behavior it tries to uncover and the
huge financial losses involved, credit-card fraud detection is
by nature a very sensitive matter. Research in this domain
is absolutely necessary to reduce fraud costs, but credit-card
data cannot be shared for confidentiality reasons. This makes
credit-card fraud detection an opaque field, where existing
techniques are often kept (at least partially) secret and results
cannot be easily compared.

The second specificity of credit-card fraud is the highly
unbalanced distribution in the datasets. Fraudulent transactions
represent a very small proportion of all transactions: the
average fraud rate is often under 0.5% [10], [11]. Thus,
credit-card fraud detection is often considered as an anomaly
detection problem, which is characterized by a highly

unbalanced distribution between positive and negative
examples. This can be a serious problem for many machine
learning algorithms that perform very poorly on uneven
distributions. In our case, we choose to overcome this difficulty
by downsampling (discarding) legitimate transactions in the
datasets to obtain new datasets with much higher fraud rates.
This technique seems to work well with neural networks.

The next specificity of credit-card fraud detection is
the complex nature of the problem: frauds are difficult
to distinguish from legitimate transactions, and the class
distributions are overlapping [10], [11]. Moreover, and as
mentioned previously, different fraud schemes are used by the
fraudsters, leading to heterogeneous fraudulent transactions.
We do not address the problem of distinguishing between
possible fraud schemes, as our transaction dataset does not
contain information about fraud types. A further problem
is that class labels can be unreliable, as mentioned in [12].
Concerning our research, the labels of the dataset provided
by our industrial partner Worldline seem reliable enough.

C. Related Work

As credit-card fraud detection is a widely studied classi-
fication task, many different machine learning models and
techniques have been applied to it. A comparative study of
existing systems can be found in [12], a review of statistical
methods for fraud detection in general in [12], and strategies for
feature engineering for fraud detection in [13]. In general, two
complementary dimensions have been explored in the domain
of credit-card fraud detection. On one hand, different machine
learning models and algorithms, such as random forests,
support-vector machines, and boosting have been compared to
evaluate their relative performance and adaptation to this prob-
lem. On the other hand, feature engineering methods have been
used to make input transaction data more explicit to help target
models. These two points will be detailed in the following.

1) Machine Learning and Statistical Models: Among all
models used for credit-card fraud detection, artificial neural
networks are quite popular. These machine learning models
are used to approximate unknown functions from which the
inputs are projected to the outputs, and can be used directly
on the transaction data to build a classifier [14]—-[16]. In the
case of credit-card fraud detection, neural networks implicitly
try to model a function that returns a label corresponding to
the nature of the transaction (legitimate or fraudulent) taking
the transaction features as parameters. It is also possible to
combine neural networks with data mining techniques to build
association rules-based systems, like in the study conducted
by [17]. Furthermore, optimization techniques, like genetic
algorithms, are used to improve the model’s performance, for
example of neural networks [16] or rule-based systems [18].
Meta-learning models, which allow to combine classifiers by
stacking them so that the next classifier learns from the behavior
of the previous one, can also be an option, as shown in [19].

2) Feature engineering: Feature Engineering is comple-
mentary to classical learning algorithms to improve model
prediction performance. Feature engineering systems focus

TABLE I
FRAUD/NON-FRAUD SAMPLES IN THE TRAINING/TEST DATA.

Fraud Non-fraud Total
Training data 67381 603 092 670473
Test data 16603 9446387 9462990

primarily on how to optimize data representation in order to
better use machine learning techniques. For example, Paulheim
et. al [20] significantly reduced the prediction error of their
model by adding new attributes related to their classification
task of fuel consumption, such as car types and categories.

One intuitive and efficient way to characterize the transaction
context such as the spending history would be feature aggrega-
tion, as in [21]. The main idea here is to combine several trans-
actions of the same credit-card holder to reduce noise and ex-
tract an average spending behavior. Parallel to feature aggrega-
tion, new attributes can be added. In [10], the spending history
is materialized by recency (time since last purchase), frequency
(of credit-card use) and monetary (transaction amount) at-
tributes. Through feature engineering, more complex attributes
can be designed: the authors of [13] use von Mises distribution
to encode periodic attributes such as the hour of the transaction,
and [10], [22] proposes to design a network of merchants and
credit-card holders based on the transactions between them.

Although introducing new features can be very efficient,
feature engineering requires advanced knowledge and
understanding of the data, and this often makes it complex. We
propose in this work a new feature engineering approach based
on graph embedding of linked open data, which provides a
way to integrate in an elegant way external knowledge, in a
supervised learning context.

IV. EXPERIMENTS
A. Data

Our training data contains transactions from 1st of March
2015 to 13th of May 2015. We undersampled the majority
class, that is the class of fraudulent transactions, to obtain an
overall fraud rate of 10% in the whole training set. The test
data contains 9462990 transactions from the period 14th of
May 2015 to 31st of May 2015. The class distribution in the
test and training data is summarized in Table I.

A single transaction from the dataset is characterized by
attributes (features) giving information about the context in
which it has been issued. The features cover a variety of
properties of the card-holder, the merchant involved and the
transaction itself, for example time of transaction, amount
spent. All but these two features are categorical.

In this context, we assess the performance gain induced by
our extracted features: the semantic embeddings of countries
and the public holiday feature. The holiday feature is two-fold
and it indicates whether the transaction takes place on a public
holiday according to its location (referred to as “transaction
holiday”) or according to the address of the credit-card holder
(called card holder holiday”).

B. Setup

As a classifier we implemented a deep neural network with
all available features as input and an additional embedding
layer that provides access to the country embeddings. On top
of this input layer, we stack five fully connected layers of
decreasing size (180, 160, 140, 120, 100) with tanh-activations
and finally a fully connected output layer of size 2 with
softmax-activation. The layer sizes were chosen manually
after experimenting with several other topologies. The
network is trained as binary classifier on single credit-card
transactions with label “fraud”/“non-fraud” and the following
parameters: learning rate and embedding learning rate = 0.01,
L1-regularization at 0.01 and 100 training iterations. We
implemented the neural network in Python using the symbolic
computation library Theano' for automatic differentiation.
All experiments were conducted on a NVIDIA Tesla K80 GPU.

In the experiments, we compare four different configurations
for the embedding layer:

« no external feature at all, that is using one-hot encoding

for all features

« embedding the country feature as a vector representation

using the approach of Algorithm 1 with the skip-gram
architecture

« adding a “transaction holiday” feature (with possible

values “Yes”/*No”/“N/A”) using the transaction date,
the seller country and the external data from Mozilla’s
calendars

o with the previous two combined.

C. Performance Measures

Another particularity of the fraud detection problem is that
classical performance measures from the confusion matrix
(true positive rate, true negative rate, accuracy) are not suitable
[11], [23], [24]. With a fraud rate around 0.1%, a dumb
model classifying all transactions as legitimate would reach
an accuracy score of 99.9%, although it would be totally
useless. More advanced measure such as Receiver Operator
Characteristic (ROC) curves, which show how the number of
correctly classified positive examples (recall) varies with the
number of incorrectly classified negative examples, still presents
an overly optimistic view of an algorithm’s performance when
the dataset is highly skewed [25]. One well accepted measure is
the area under the precision-recall (PR) curve of the fraudulent
class. This curve represents the precision (proportion of true
positives among found positives) at different recall (proportion
of found positives among expected positives) steps, and the
AUC (area under curve) expresses the global quality of the
classifier when considering various discrimination thresholds.

In our work, given the context of the project and the
collaboration with Worldline, performance measures are those
used by the company. This includes pk (precision at k) scores
and area under curve (AUC). The pk score represents the
precision (i.e. the proportion of frauds) among the k most
suspicious transactions. In practice, pk is used, because the

Thttp://deeplearning.net/software/theano/

Precision/Recall for fraudulent transactions - aggregated plot comparison 14-31.05.2015

S

: N
\

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

— no_external_data (0.2434)

— tx_holiday (0.2488)

— country_embed (0.2708)

— tx_holiday+country_embed (0.2660)

08

°
>

Precision

o
=

0.0

Fig. 1. Global AUC scores over the whole test period (14.05.2015-31.05.2015)
with and without public holiday attribute (transaction holiday) and external
country embeddings.

number of alerts reported to a human expert for validation
is limited. Higher pk-scores lead to more frauds that will
be detected immediately. The curve used for AUC is simply
the pk score at different recall steps (considering the k most
suspicious transactions at each step) until all fraudulent
transactions are retrieved. A perfect classifier would always
rank frauds as more suspicious than legitimate transactions, the
pk score would always be 1 (at any k), and the AUC would
therefore be 1. We are aware that our performance measures
do not take the cost structure into account, but these metrics
have been chosen to make our models comparable to other
studies conducted within the research collaboration project.

D. Results

Figure 1 shows the global AUC scores of the different
configurations over the whole test period. The baseline
configuration obtains a score of 0.2434. With the holiday
attribute, the model performs slightly better (AUC = 0.2488,
+2.2% w.r.t. the baseline). The performance gain is much more
significant with the country embeddings integration (AUC
= 0.2708, +11.2%). The configuration with both external
knowledge sources (public holiday and country embeddings)
gives a somewhat lower score (AUC = 0.2660, +9.3%), but it
must be noted that this model performs the best on the most
suspicious transactions. Precision values of around 0.90 can be
reached at low recall values, which is note-worthy because the
classifiers are mostly used at high confidence values in practice.

Figure 2 shows the average daily AUC scores of the
different configurations, expressing similar tendencies as with
the global scores over the whole test period. The configuration
with public holiday attribute (AUC = 0.2427, +2.1%)
performs better than the baseline model (AUC = 0.2377). The
configuration with external country embeddings gives the best
overall AUC score (0.2567, +8.0%), and the model with both
external knowledge sources has a slightly lower score (AUC
= 0.2519, +6.0%) but performs better on the most suspicious
transactions (higher precision at low recall values).

V. CONCLUSION

We have shown that injecting semantic background
knowledge from external sources can improve the performance

http://deeplearning.net/software/theano/

10 Precision/Recall for fraudulent transactions - aggregated plot comparison average day 14-31.05.2015

— no_external_data (0.2377)

— tx_holiday (0.2427)

— country_embed (0.2567)

— tx_holiday+country_embed (0.2519)

Precision
°
kS

\\

0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1.0
Recall

Fig. 2. Average daily AUC scores over the whole test period (14.05.2015—
31.05.2015) with and without public holiday attribute (transaction holiday)
and external country embeddings using the Neural Network classifier.

of a neural network for credit-card fraud detection. We have
shown this using country embeddings derived from DBpedia
and holiday labels derived from Mozilla’s calendar project.
Our experiments have also shown that combining several new
features to add to the training data is not straightforward:
adding a feature can decrease the model’s performance in
presence of another feature.

However, combining semantic vector representations
of countries and public holidays seem to work quite well,
especially for low recall values where a higher precision can be
reached. Concretely, it means that such classifier will perform
better on the most suspicious transactions, which represents
the most common use case in practice. Therefore, combining
country embeddings and public holidays successfully improves
the detection rate of fraudulent transactions.

Further research should integrate semantic networks beyond
the geographical and temporal data investigated here and
further investigate the relation between (automatic) semantic
representations and (manual) semantic features.

ACKNOWLEDGMENT

The authors would like to thank Emanuel Berndl for
pointers to linked data literature.

REFERENCES

[1] S. Guo, Q. Wang, B. Wang, L. Wang, and L. Guo, “Semantically smooth
knowledge graph embedding,” in Proceedings of ACL, 2015, pp. 84-94.
T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28-37, 2001.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so
far,” Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1-22, 2009.
[Online]. Available: http://dx.doi.org/10.4018/jswis.2009081901

S. Zwicklbauer, C. Seifert, and M. Granitzer, “Doser - a
knowledge-base-agnostic framework for entity disambiguation using
semantic embeddings,” in The Semantic Web. Latest Advances and New
Domains - 13th International Conference, ESWC 2016, Heraklion, Crete,
Greece, May 29 - June 2, 2016, Proceedings, ser. Lecture Notes in
Computer Science, H. Sack, E. Blomqvist, M. d’Aquin, C. Ghidini, S. P.
Ponzetto, and C. Lange, Eds., vol. 9678. Springer, 2016, pp. 182-198.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-34129-3_12

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer et al.,
“Dbpedia—a large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167-195, 2015.

[2]

[3

[t

[4

=

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp- 855-864.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701-710.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proceedings of the 24th Inter-
national Conference on World Wide Web. ACM, 2015, pp. 1067-1077.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.
V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu,
M. Snoeck, and B. Baesens, “Apate: A novel approach for automated
credit card transaction fraud detection using network-based extensions,”
Decision Support Systems, vol. 75, pp. 38-48, 2015.

S. Maes, K. Tuyls, B. Vanschoenwinkel, and B. Manderick, “Credit card
fraud detection using bayesian and neural networks,” in Proceedings of
the Ist international naiso congress on neuro fuzzy technologies, 2002,
pp. 261-270.

R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,”’
Statistical science, pp. 235-249, 2002.

A. C. Bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten, “Feature
engineering strategies for credit card fraud detection,” Expert Systems
with Applications, vol. 51, pp. 134-142, 2016.

S. Ghosh and D. L. Reilly, “Credit card fraud detection with a neural-
network,” in System Sciences, 1994. Proceedings of the Twenty-Seventh
Hawaii International Conference on, vol. 3. 1EEE, 1994, pp. 621-630.
E. Aleskerov, B. Freisleben, and B. Rao, “Cardwatch: A neural network
based database mining system for credit card fraud detection,” in
Computational Intelligence for Financial Engineering (CIFEr), 1997.,
Proceedings of the IEEE/IAFE 1997. 1EEE, 1997, pp. 220-226.

R. Patidar, L. Sharma et al., “Credit card fraud detection using neural
network,” International Journal of Soft Computing and Engineering
(IJSCE), vol. 1, no. 32-38, 2011.

R. Brause, T. Langsdorf, and M. Hepp, “Neural data mining for credit card
fraud detection,” in Tools with Artificial Intelligence, 1999. Proceedings.
11th IEEE International Conference on. IEEE, 1999, pp. 103-106.

1. Trivedi and M. M. Monika, “Credit card fraud detection,” International
Journal of Advanced Research in Computer and Communication
Engineering, vol. 5, no. 1, 2016.

S. Stolfo, D. W. Fan, W. Lee, A. Prodromidis, and P. Chan, “Credit
card fraud detection using meta-learning: Issues and initial results,” in
AAAI-97 Workshop on Fraud Detection and Risk Management, 1997.
H. Paulheim, P. Ristoski, E. Mitichkin, and C. Bizer, “Data mining with
background knowledge from the web,” RapidMiner World, 2014.

C. Whitrow, D. J. Hand, P. Juszczak, D. Weston, and N. M. Adams,
“Transaction aggregation as a strategy for credit card fraud detection,”
Data Mining and Knowledge Discovery, vol. 18, no. 1, pp. 30-55, 2009.
B. Lebichot, F. Braun, O. Caelen, and M. Saerens, “A graph-based,
semi-supervised, credit card fraud detection system,” in International
Workshop on Complex Networks and their Applications. Springer,
2016, pp. 721-733.

A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and
G. Bontempi, “Learned lessons in credit card fraud detection from
a practitioner perspective,” Expert systems with applications, vol. 41,
no. 10, pp. 4915-4928, 2014.

D. Hand, C. Whitrow, N. Adams, P. Juszczak, and D. Weston,
“Performance criteria for plastic card fraud detection tools,” Journal of
the Operational Research Society, vol. 59, no. 7, pp. 956-962, 2008.
J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 233-240.

http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1007/978-3-319-34129-3_12

