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A B S T R A C T

Artificial Intelligence (AI) and Human-Computer Interactions (HCIs) are two
research fields with relatively few common work. HCI specialists usually design
the way we interact with devices directly from observations and measures of
human feedback, manually optimizing the user interface to better fit users’ ex-
pectations. This process is hard to optimize: ergonomy, intuitivity and ease of
use are key features in a User Interface (UI) that are too complex to be simply
modelled from interaction data. This drastically restrains the possible uses of
Machine Learning (ML) in this design process. Currently, ML in HCI is mostly
applied to gesture recognition and automatic display, e.g. advertisement or item
suggestion. It is also used to fine tune an existing UI to better optimize it, but as
of now it does not participate in designing new ways to interact with computers.

Our main focus in this thesis is to use ML to develop new design strategies for
overall better UIs. We want to use ML to build intelligent – understand precise,
intuitive and adaptive – user interfaces using minimal handcrafting. We propose
a novel approach to UI design: instead of letting the user adapt to the interface,
we want the interface and the user to adapt mutually to each other. The goal is to
reduce human bias in protocol definition while building co-adaptive interfaces
able to further fit individual preferences.

In order to do so, we will put to use the different mechanisms available in ML to
automatically learn behaviors, build representations and take decisions. We will
be experimenting on touch interfaces, as these interfaces are vastly used and can
provide easily interpretable problems. The very first part of our work will focus
on processing touch data and use supervised learning to build accurate classifiers
of touch gestures. The second part will detail how Reinforcement Learning (RL)
can be used to model and learn interaction protocols given user actions. Lastly,
we will combine these RL models with unsupervised learning to build a setup
allowing for the design of new interaction protocols without the need for real user
data.
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R É S U M É

L’Intelligence Artificielle (IA) et les Interfaces Homme-Machine (IHM) sont
deux champs de recherche avec relativement peu de travaux communs. Les spé-
cialistes en IHM conçoivent habituellement les interfaces utilisateurs directement
à partir d’observations et de mesures sur les interactions humaines, optimisant
manuellement l’interface pour qu’elle corresponde au mieux aux attentes des
utilisateurs. Ce processus est difficile à optimiser : l’ergonomie, l’intuitivité et la
facilité d’utilisation sont autant de propriétés clé d’une interface utilisateur (IU)
trop complexes pour être simplement modélisées à partir de données d’interaction.
Ce constat restreint drastiquement les utilisations potentielles de l’apprentissage
automatique dans ce processus de conception. A l’heure actuelle, l’apprentissage
automatique dans les IHMs se cantonne majoritairement à la reconnaissance de
gestes et à l’automatisation d’affichage, par exemple à des fins publicitaires ou
pour suggérer une sélection. L’apprentissage automatique peut également être
utilisé pour optimiser une interface utilisateur existante, mais il ne participe pour
l’instant pas à concevoir de nouvelles façons d’intéragir.

Notre objectif avec cette thèse est de proposer grâce à l’apprentissage auto-
matique de nouvelles stratégies pour améliorer le processus de conception et
les propriétés des IUs. Notre but est de définir de nouvelles IUs intelligentes
– comprendre précises, intuitives et adaptatives – requérant un minimum d’in-
terventions manuelles. Nous proposons une nouvelle approche à la conception
d’IU : plutôt que l’utilisateur s’adapte à l’interface, nous cherchons à ce que
l’utilisateur et l’interface s’adaptent mutuellement l’un à l’autre. Le but est d’une
part de réduire le biais humain dans la conception de protocoles d’interactions, et
d’autre part de construire des interfaces co-adaptatives capables de correspondre
d’avantage aux préférences individuelles des utilisateurs.

Pour ce faire, nous allons mettre à contribution les différents outils disponibles
en apprentissage automatique afin d’apprendre automatiquement des compor-
tements, des représentations et des prises de décision. Nous expérimenterons
sur les interfaces tactiles pour deux raisons majeures : celles-ci sont largement
utilisées et fournissent des problèmes facilement interprétables. La première partie
de notre travail se focalisera sur le traitement des données tactiles et l’utilisation
d’apprentissage supervisé pour la construction de classifieurs précis de gestes tac-
tiles. La seconde partie détaillera comment l’apprentissage par renforcement peut
être utilisé pour modéliser et apprendre des protocoles d’interaction en utilisant
des gestes utilisateur. Enfin, nous combinerons ces modèles d’apprentissage par
renforcement avec de l’apprentissage non supervisé pour définir une méthode de
conception de nouveaux protocoles d’interaction ne nécessitant pas de données
d’utilisation réelles.
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1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 About This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Context

In both our personal and professional life, we are using more and more elec-
tronic devices to perform a growing range of tasks. Repetitive tasks and simple
decision processes are automated, access to pertinent information and repre-
sentation of said information is optimized, and new interactions of increasing
abstraction are made possible. One of the many pieces required to propose such
interactions are User Interfaces (UIs).

1.1.1 User Interfaces

Using any form of electronic device requires a UI to communicate with it. In one
way, the UI translates the user intent to the device, in the other it gives the user an
interpretable representation of the state and/or results computed by the device. In
the user-to-computer direction, a UI usually has a physical part (button, keyboard,
touchscreen...) and an interaction protocol, i.e. a translation from user actions on
the physical interface to properties of the query to input. The computer-to-user
direction involves the transmission of pertinent system information to the user,
classically in the form of a display, audio signal or in few cases haptic feedback.

These UIs vastly evolved in the last 80 years along with computational capabili-
ties, gradually gaining versatility, expressivity and intuitiveness. Nowadays, we
can perform a wide range of actions through the use of electronic devices: from

1



2 introduction

Figure 1.1 – Example of a touch UI for 3D navigation. This is the Autodesk’s Nav-
isworks software combined with Itekube’s TouchIT, an overlay used
to identify and interpret finger motions to actions in the application.
Fingers in contact with the surface are represented as white circles.
Their current motion is interpreted as a 2 finger pan and scale and is
applied with the set parameters (displayed in the top-left window).

conceptually simple actions such as media display or communication, to more
complex ones such as trading, modelization or industrial design. For each of these
actions, specialists have to design a proper UI in order to perform them. Part of
the Human-Computer Interaction (HCI) research focuses on making UIs easier to
use, more precise, and allow for new and more abstract interactions. While the
optimality of these UIs can be hard to measure, some UI components have been
widely accepted as standards. The mouse/keyboard combo and smartphones are
good examples of versatile, well accepted physical interfaces. The software part
of UIs is also subject to active research, even for well-known physical interfaces.
As an illustration, we display in Figure 1.1 a touch interface in development for
navigation in 3D scenes.

A UI tries to maximize positive user feedback from experience: if an UI receives
some negative feedback from test users, this UI can be updated to address the
corresponding problems, or a new paradigm can be proposed instead to better
satisfy users.
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1.1.2 Machine Learning

Whenever we face a data-related optimization problem, Machine Learning (ML)
is a tool to consider. Since 2012 (Krizhevsky et al. 2012), ML has seen growing
interest from the academic and the industrial world through supervised Deep
Learning (DL). DL, although lacking a formal definition, refers to neural models
with multiple hidden layers. The interest of these hidden layers is to build
internal representations of the data or the distribution the model is learning from.
Shining in image classification, DL was quickly applied to any kind of data for
an array of different tasks: classification, segmentation, structured representation,
item generation... DL is now a widely used solver for many objective function
maximization (or loss minimization) problems. Supervised DL however requires a
label (or ground truth) from a human supervisor for each observed sample. This
constraint makes the building of a dataset extremely time-consuming for complex
tasks and prone to mislabelling. Different learning signals can be used to train
DL models: Deep Reinforcement Learning (RL) for example uses instead a reward
signal for the DL model to maximize. This allows for the use of unlabelled data
and minimizes the need for human supervision during training.

While ML solutions still tend to generalize poorly in the face of real data, because
of noise and factors not met during training, they can excel given controlled
conditions. If these models are deployed in “close enough” conditions, they
tend to significantly outperform handcrafted models. However, one of the major
drawbacks of DL algorithms is the requirement of huge amounts of data to train
a good model. In applications where data is scarse, applying DL can prove
challenging. So, in short, DL is not necessarily the way to go whenever facing
an optimization problem: a number of conditions needs to be met in order for
DL to add value to the optimization process. In our case however, provided we
correctly break down the whole UI design process, we state that ML could be used
for several parts and add abstraction and precision compared to existing methods.

Applying ML to UI design is not a new concept, although mostly all the cor-
responding works can fit into two coarse categories: item suggestion in the
computer-to-user direction and action recognition in the user-to-computer direc-
tion.

Item suggestion — In the first category, search engines are a widely used and
researched application. For example, in Li et al. 2019, authors use a combination
of decision trees and neural networks to train learning-to-rank algorithms for
personal search. We can also cite Dehghani et al. 2017, who proposed a webpage
ranking model using weakly supervised neural networks. Advertisement is
another highly used application: for example, Perlich et al. 2013 describe a large-
scale machine learning system for targeted display advertising using transfer
learning. At last, we can cite graphical display adaptation, with Moran et al.
2018 using a machine learning model to automatically write Graphical User
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Interface (GUI) prototypes from a mock-up. All these applications are focused on
“What to show to the user?”.

Action recognition — This research topic is extremely broad, and we can find
extensive work on many types of sensors with different ML architectures:

• touch gesture classification (Lü et al. 2012),

• hand gesture recognition (Benalcázar et al. 2017),

• speech recognition (Oord et al. 2016),

• action recognition in videos (Zhu et al. 2018; Sanabria et al. 2019),

• action recognition from 3D data (Halim et al. 2016),

• eye tracking (Krafka et al. 2016),

• or haptic feedback (Sun et al. 2019).

These works cover the question “What action was performed by the user?”.
This leaves one question to encapsulate the complete UI: “How to interpret this

action?”. To our knowledge, there has been no attempt to answer this question
using ML. Automating this process will be the main focus of this thesis.

1.2 Motivations

Developing better interfaces allows for better accessibility to specific tools, a gain
in productivity for professional interfaces and even an access to new interactions
(augmented reality for example).

If more and more interactions tend to be well optimized – understand intuitive,
fast and precise –, abstract and complex actions still tend to suffer from limited
interfaces. In these cases, the “optimal” way to interact is either hard to define,
or just does not exist: different users might in fact prefer or need to perform
some actions in a different fashion. This makes the optimization process of the
interaction protocol potentially intractable. Furthermore, we want to optimize
a vague notion of what we can call “user satisfaction” which is not directly
measurable. For a same UI, this satisfaction can vary depending on the user,
making it even harder to validate the quality of a solution. This validation step
will usually involve a number of test users providing feedback while using the UI
combined with performance metrics.

We can observe a few limitations to handcrafted UI design:

• the design can be subject to a specialist bias that might not be suitable for
less experienced users,

• iteratively optimizing an existing UI can be time and resource-consuming,
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• once designed, the adaptability of the UI to the user is limited.

We claim that with a proper formalism, ML can help mitigate these drawbacks
while still allowing for the discovery of new UIs. As said earlier, we will work on
the software user-to-computer part of the UI. The interest of doing so is twofold:

• potentially discover more efficient interaction protocols,

• and design co-adaptive interfaces, able to change during use.

We will illustrate this claim by experimenting on touchscreen-related tasks.
We will gradually tackle more complex problems using ML to end-up with the
automatic learning of an interaction protocol for 3D navigation. This is a real
problem with no globally accepted solution and being able to automatically find
a satisfying solution will serve as a realistic proof of concept for our approach.

One of the biggest challenges with using ML comes from the limited amount of
data available: collecting data from humans in a specific context is inherently hard,
even more so when the data we want to observe depends on a variety of factors
(application state, personal preferences, type of device used...). This problem is
particularly present in HCI, as some of the core challenges come from interpreting
human intent and displaying information in the most comprehensible way. Thus,
human feedback is potentially needed during multiple phases of the design. It is
at least required for the validation of a UI.

This data limitation makes the training of ML models extremely hard, and it
will require a careful definition of the training protocol and the models to still
be able to obtain satisfying solutions. In the case of interaction protocol learning,
training only from human gestures rapidly becomes unrealistic as performed
gestures depend on both the user intent and the application state. Training a ML
model would require huge amounts of data even for simple interaction protocols.
As we will show throughout this thesis, we will need to design strategies and
properly process data to gain knowledge from a limited set of real interactions.
This will allow us to solve real-life problems without the need for human input at
each step of the training phase of our models.

As we are wanting to perform more abstract and more complex actions with
high dimension physical interfaces (multitouch multiuser surfaces, augmented
reality, haptic sensors...), designing good UIs becomes the more complicated. Our
goal with this work is to help with the design of such UIs by automating part of
the design process on one hand, and on the other let the interface protocol adapt
while it is used, thus fitting even more to the user’s needs.

In this thesis, we formulate the software user-to-computer communication as
two distinctive problems (Figure 1.2): first the recognition of discrete gestures,
and second the continuous coupling of gestures and actions. The recognition
of discrete gestures is the most intuitive task, requiring to identify the type and
eventual properties of a user action, e.g. recognizing a zoom or a slide gesture
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Figure 1.2 – The design process of the user-to-computer direction of a UI can be
split into two problems. They are usually tackled separately with
a gesture recognizer identifying the type and potential parameters
of the user action and an interaction protocol assigning the corre-
sponding action in the application. We will show later in this thesis
that gesture recognition does not necessarily needs to be explicit, and
a ML model can internalize this process to assign an action in the
application w.r.t. the user action.

on a touch surface. This is a classification and eventually a regression task,
traditionally solved in ML using supervised learning. The second problem deals
with the correspondence between user actions on the device and actions in a
virtual environment. For example, attributing a zoom gesture on a touch surface
to a “move forward” action in a 3D navigation environment. A good solution
for this task is extremely important for a UI to be satisfying: this correspondence
process heavily weighs on the intuitiveness and the naturalness of the overall UI.
Its design is complicated: there are no direct metrics to tell how good a solution
is. This task is classically complementary to the recognition task, meaning that we
attribute actions in a virtual environment with respect to the corresponding class
and properties of a gesture. We will show that RL can be used to perform both
tasks at once, with the recognition process being performed implicitly by the RL
agent.
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Figure 1.3 – Illustration of a Model E (EVA) produced by Itekube. It is a mul-
tiuser, multitouch touch table used from document manipulation to
collaborative 3D design reviews.

1.3 About This Thesis

This work is the fruit of an industrial partnership between the Itekube company,
the LIRIS and LITIS laboratories. Itekube produces hi-tech touch tables with a
focus on industrial applications. These tables are thought to be used as a multiuser
display and workspace, meant to propose an intuitive and accessible interface for
potentially complex uses. Their touch tables are used in a variety of contexts, to
cite a few: medical imaging, blueprint display on construction sites, computer
assisted design or city mapping display.

While software and hardware requirements are getting more and more demand-
ing, Itekube wants to use its knowledge to provide efficient hardware as well
as intelligent software to interact with the client’s applications in the best way
possible (see Figure 1.3 for an illustration of said hardware). Along with standard
methods, Itekube is looking for possible Artificial Intelligence (AI) solutions in
order to provide better, co-adapative interfaces. This PhD project was elaborated
to start conceiving such methods.

1.3.1 Contributions

The work achieved in this thesis is split in four different chapters, highlighting
different fundamental concepts:



8 introduction

• Chapter 3 describes our work on gesture recognition using novel data
processing and supervised learning. We compare a variety of different DL
architectures on a classification task using a novel interaction gesture dataset,
Itekube-7, which was made publicly available. We also develop a novel
architecture, dubbed Conv-MDGRU, a compact combination of convolution
operations for input observation and multidimensional recurrence between
states. This architecture is our best performing model while possessing the
lowest number of trainable weights. Itekube-7 contains 6591 unique gestures
performed by 27 different users, split into 7 classes. We can sum up our
contributions as a novel DL architecture, a touch data processing and an
interaction touch gesture dataset.

• Chapter 4 addresses the problem of the continuous coupling of user gestures
and actions in a simplified environment using RL. We formalize this problem
with a novel ML perspective and test this setup by re-learning a well-known
solution: the “pinch-and-zoom” protocol allowing for the linear manipula-
tion of 2D objects. This training is done using a custom 2D environment and
an handcrafted user model, allowing us to use synthesized user gestures
instead of human gestures. The handcrafted user model however constrains
us to learn a specific solution: this motivates us to automatically learn user
models in specific conditions to avoid using human gestures while synthe-
sizing coherent data to train our models. Our contributions in this chapter
is the formalization of interaction protocol learning as a RL problem and
the constitution of a proper environment to re-learn a known interaction
protocol.

• Chapter 5 focuses on learning in an unsupervised fashion a representation
of natural gestures. We will train Variational Auto-Encoders (VAEs) to build
robust features from smooth and disentangled latent spaces using Itekube-7.
The quality of the latent space and the reconstructions are mostly assessed
through visualization. The goal is to be able to generate human-like gestures
from semantically meaningful representations. Such a model can be used in
a user model afterward. Our contributions are the learning and the study
of disentangled representations of touch gestures as well as a novel VAE
architecture for sequential data.

• In Chapter 6, we combine the work from the two preceding chapters to
propose a final setup for the automatic learning of complex interaction
protocols. We define a user model combining RL and part of a pre-trained
VAE to act as the user. This user model is trained in parallel with the
interaction protocol model in order to solve a specific task. Thus, both
agents cooperate to solve the task: the user model produces gestures, and
the interaction protocol model interprets them to actions in the environment.
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We experiment on a 3D navigation environment. There are two contributions
in this chapter: first, the definition of a novel model combining a RL agent
and a VAE to produce training data. Second, the design of a Multi-Agent
Reinforcement Learning (MARL) setup allowing for the automatic learning
of interaction protocols.

1.3.2 Publications

The work presented in this thesis can be split into two main parts that each led
to a publication.

The first part deals with multitouch gesture processing and the use of DL for
gesture recognition, resulting in a novel touch gesture processing method and
comparing different DL models on the task. The second part uses mainly RL for
the automatic design of interaction protocols, and proposes a novel combination
of RL and VAE for user modelling. Associated publications are:

• Quentin Debard, Christian Wolf, Stéphane Canu, and Julien Arné (2018).
“Learning to Recognize Touch Gestures: Recurrent vs. Convolutional Fea-
tures and Dynamic Sampling”. In: The International Conference on Automatic
Face and Gesture Recognition (FG);

• Quentin Debard, Jilles Steeve Dibangoye, Stéphane Canu, and Christian
Wolf (2019). “Learning 3D Navigation Protocols on Touch Interfaces with
Cooperative Multi-Agent Reinforcement Learning”. In: The European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD).

Early work during this thesis led to the constitution of a multitouch gesture
dataset, namely Itekube-7. After publication, this dataset was made publicly
available at the url http://itekube7.itekube.com.

http://itekube7.itekube.com
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2.1 User Interfaces

User Interfaces (UIs) are the mediation tools between a user and an electronic
device. They encompass a variety of techniques and cover the hardware as well as
the software side of the interaction process. Designing a UI is a complex task at the
crossroads between a variety of fields from computer science to psychology and
cognitive science. This design process falls in the Human-Computer Interaction
(HCI) research field.

2.1.1 A Short History

The first UIs in the 40’s were programming interfaces, used in the form of
punchcards to declare a sequence of operations to be computed. At that time,

11
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computers mostly solved arithmetic problems. In the 60’s, for the first time, a
computer is used as an interactive tool rather than a program-based calculator
(Sutherland 1964). In the 70’s, Alto from the Xerox Palo Alto Research Center
becomes the first Graphical User Interfaces (GUIs) prototype with a desktop
notion, encasing a collection of programs. At that time, computer users interacted
using Command-Line Interfaces (CLIs). More intuitive, GUIs allow for What-You-
See-Is-What-You-Get (WYSIWYG) interfaces, meaning a screen can display a
visual representation of a process or a file, instead of displaying a functional or
programmed representation. In 1984, with researchers coming from Xerox, Apple
produces the first personal GUI computer, the Macintosh: this is the beginning of
the democratization of personal computers (PCs). PCs evolved in hardware and
software during the 90’s; GUIs were enhanced to be used for different and more
complex tasks while CLIs got more and more marginal for common users.

In the 2000’s, the refinement of capacitive touch screens allows for the large
scale distribution of a different type of interface in the form of smartphones. While
the LG Prada from LG Electronics is officially the first phone to use a capacitive
touchscreen on top of its screen (released in 2007), the Apple’s iPhone released
the same year will get more exposure. This is the first popular alternative to the
mouse-keyboard combo. If touchscreens really shone from that point on, their
concept goes back to 1965 (Johnson 1965). In this paper, Johnson describes the
concept of capacitive touchscreens, using the electromagnetic perturbation of a
finger to detect a touch. Shortly after in 1972, optical touchscreens are described in
a patent from the University of Illinois. Instead of measuring capacitance, optical
touchscreens use infrared sensors to detect the intersection of a beam with a finger.
In 1975, the first resistive touchscreen is described in a patent filled by George
Samuel Hurst. Resistive touchscreens detect a touch using two conductive layers
that come in contact when pressed. This last type of touchscreen will be the most
used until the smartphone era.

Keyboard/mouse and touchscreens make up for most of our interactions with
computers as of today. New interfaces such as voice command or augmented
reality are getting increasing exposure with their precision and versatility improv-
ing, but their use can still be considered marginal. This is one of the reasons
behind our focus throughout this thesis on touchscreen experiments: while the
concepts we develop can be applied to virtually any UI, we will be experimenting
exclusively on touchscreens. This allows us to provide easily understandable
experiments on a largely used physical interface and minimize the necessary
engineering workload to train and deploy models. As such, this thesis will not
provide a full state of the art in UI but will focus instead on touch interfaces. For
a thorough study of the history of HCI, see Grudin 2016.
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2.1.2 Discrete Interactions: Touch Gesture Recognition

Automatic human gesture recognition is an extremly prolific field. Using many
different sensors such as RGB cameras, depth sensors, body sensors, in our case
touch surfaces, these gestures are classified and measured through representations:
geometric features, graphs, state machines, sequences, and more recently, learned
features. The classifying and measuring algorithms are also varied, ranging from
deterministic decisions to Support Vector Machines (Cortes et al. 1995) and Deep
Neural Networks. We brush in this subsection a state of the art of discrete touch
gesture recognition, i.e. the classification of a sequence of user finger trajectories
into a unique class.

Touch gestures — can be distinguished into two types:

• symbols, such as drawings or handwriting. These gestures are spatially
complex, but their temporal properties are of no interest to properly classify
them;

• interactions, meant to perform an action using the touch surface as an
interface. These actions require spatial and temporal precision, as the user
will expect the interaction to be as precise and fast as possible.

Classifying symbolic gestures is a simpler task than classifying interaction ges-
tures. In Chapter 3, we will focus on the multitouch gesture recognition of interac-
tion gestures using Deep Learning (DL) models. Touch gestures are traditionally
dealt with handcrafted representations. The most commonly used methods have
been developed by system designers, using procedural event-handling algorithms
(see for instance M. Wu et al. 2003 or Malik et al. 2005). Different frameworks such
as Gesture Markup Language (GestureML) were proposed in order to formalize
touch gesture interactions. We describe in the following the most successful and
most recent methods for touch gesture recognition.

Midas (Scholliers et al. 2011) uses a set of logical rules to classify events on
the surface. They define sets of temporal and spatial operators to create lists of
rules that make up for a gesture definition. With the possibility to define custom
operators and priority rules, its gesture definition is extensible to some point,
and it allows for interaction gesture recognition, but lacks spatial invariance or
robustness to noise.

Proton++ (Kin et al. 2012) is another framework based on regular expressions
for gesture recognition: a gesture is seen as a sequence of events represented
with a state machine. It allows for continuous control with a callback, although it
only supports a unique gesture at a time, and is limited by the rigidity of regular
expressions. Multitouch gestures are also hard to define with this framework
because of the absence of a finger permutation solution.
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Figure 2.1 – Illustration taken from Lü et al. 2012. Touch interface used to input
training data to the model. We experiment with the same type of
inputs in this thesis although our classification task is defined on
different classes.

$Q or Q dollar (Vatavu et al. 2018) is the latest iteration of a touch gesture
recognizer for symbolic gestures. This recognizer cast the touch trajectories as
a point cloud and computes a dissimilarity metric between the gesture to be
recognized and templates of each class. Its computation is greatly optimized,
emphasizing on limiting the complexity of the algorithm. This method performs
well for well designed gestures but struggles when trajectories get too far from
the templates, which can happen in real condition applications.

As efficient and fast as they can be, these methods arbitrarily declare gesture
properties, putting hard constraints on the natural variance that can be found
between users and conditions. The gestures are precisely defined and tend to lack
generalization in a different context; this contradicts our paradigm of minimal
user constraint and maximum generalization.

In contrast to these rule-defined gesture frameworks, Rubine 1991 proposed a
more flexible gesture definition, learning a classifier from example using hand-
crafted geometric features and Linear Discriminant Analysis for classification. Up
to our knowledge, this is the first attempt at classifying gestures using Machine
Learning (ML). This method however is limited: it can only discretly classify
symbolic gestures with single strokes.

Gesture Coder (Lü et al. 2012) takes a conceptually similar approach to Proton++,
as it defines gestures using state machines, equivalent to regular expressions on
“atomic actions”. However, these state machines are learnt from user gestures
by successively expanding the state machine to fit examples. When hitting an
ambiguity, they use binary decision trees to learn a disambiguation. These trees
after training are translated to if-then-else statements. While more flexible than
rule-based approaches, Gesture Coder still struggles to cope with natural variance
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coming from users and devices. An illustration of the hardware used to record
gestures is given in Figure 2.1.

Z. Chen et al. 2014 uses a graph representation of finger state transitions, then
embeds the graph structure into a feature vector. These feature vectors are then
classified using a Support Vector Machine (SVM). While SVMs allow for a flexible
classification of embeded gestures, this method will not be able to handle noisy
transitions messing with the embedding (e.g. an accidental touch) and can have
trouble with closely related spatial features.

To our knowledge, DL has not been applied to touch gesture recognition. This
can be explained by the fact that most classifiers are designed specifically for
a device and for specific actions, requiring little adaptation or generalization
capabilities. In this case, state machines usually provide a sufficient accuracy
while being relatively simple to deploy. In Chapter 3, we describe our work on
Deep Learning models, working on general models deployable in most conditions.
As a final note, we also recommend Cirelli et al. 2014 as a good survey of the
evolution in multitouch recognition.

2.1.3 Continuous Interactions: Interaction Protocols

An important part of our work focuses on a specific component of touch UIs
which we call the interaction protocol. This protocol defines the translation
from user gestures performed on touch surfaces to continuous actions in virtual
environments. In the HCI literature, this interaction protocol refers to a specific
part of the software side of an interaction technique (Hinckley et al. 2012, Ortega
et al. 2016): the interaction technique is usually coupled with hardware and/or a
specific software environment. There are at least as many interaction techniques
as there are applications, in consequence we cannot propose an exhaustive list
for touch interfaces. We will instead provide examples to illustrate the scientific
background and our motivations to automate this process.

In Chapter 4, we address the problem of automatically learning a suitable
interaction protocol for GUIs on touch surfaces, which requires users to manipulate
3D objects, for instance in Computer Assisted Design software or in Geographic
Information Systems. To give a concrete example, inspecting a virtual mechanical
product or navigating in a virtual building or city requires the possibility to
change the camera viewpoint through rotations, translations, zooming, i.e. to
manipulate 6 degrees of freedom (3 for the camera position and 3 for the camera
direction) through trajectories of eventually multiple fingers in the 2D plane of
the touch table. In these situations, the problem is particularly ill-posed, as the
trajectories produced by a user on the flat touch screen are restricted to a 2D
surface, whereas the applications require the user to perform manipulations in a
virtual 3D environment. From a naive point of view, we can choose to constrain
ourselves to an active plane in the 3D environment, defined for instance according
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to the camera view and a depth parameter, in order to be able to accurately
transpose 2D actions into 3D actions. This method is however tedious for the user
and is therefore not suitable for a time efficient, satisfying interface.

In Ropinski et al. 2005, they discuss a navigation technique for travelling in 3D
city models. The “interaction panel” in this publication is taken from Szalavári
et al. 1997. Another 3D navigation UI is described in Tan et al. 2001 using either
a mouse or a touch-pad. These advanced methods approach this mapping from
gestures to actions in a 3D environment using several parameters: not only the 2D
gesture themselves, but also the position of the camera (view of the user), the state
of the 3D environment, or any information perceived by the user (D. Bowman
et al. 2006; Cashion et al. 2012). Theoretically, these methods offer more complex
manipulation strategies and higher efficiency. However, the challenge here lies
in the combination of precision and efficiency on one hand, and ease of use and
learnability (by humans) on the other hand. While all these UIs are efficient in a
specific context, there is no universally accepted canonical solution for this kind
of problem.

2.2 Supervised Deep Learning for Classification on
Sequential Data

We describe in this section the theoretical background behind the DL algorithms
used throughout this thesis and state-of-the-art related work.

Deep Learning architectures as of now can be extremely large and complicated,
combining a multitude of different mechanisms and learning signals, with a
variety of regularization methods. There is however some common ground for
every DL architecture:

• they are trained to maximize or minimize an objective function J with respect
to their learnable weights.

• Every architecture is trained using variants of backpropagation. The error
gradient can come from many different sources, but the update mechanism
is always the same.

• there is a limited number of methods to structure the network. As of now,
connections can be built with fully connected, convolutional, recurrent or
attention layers.

In a supervised learning context, the task for DL models is to learn to attribute
the correct discrete or continuous label to observed data. This correct label is set
by human supervision, hence the name. The learning problem can be seen as
minimizing a loss function expressed as the error between the predicted label and
the correct one, or ground truth.
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The phase consisting in tweaking the weights of the architecture from observed
data and labels (the training set) is called the training phase. The true goal of
this training phase is not for the model to perfectly score on this training set. The
goal is to score well on data not seen during training, without supervised labels.
This true performance is measured on a test set (or before on a validation set,
depending on the protocol). The core difficulty and interest of DL comes from
the notion of generalization: how well can the model perform on data never seen
during training? How much noise or variance can it sustain before failing? This
is the motivation behind the complexity and the variety of architectures in the
literature.

2.2.1 Fully Connected Networks and Backpropagation

A neuron is a function parametrized by a set of learnable weights W = {wi}i
and a learnable bias b, where wi, b ∈ R. The neuron receives a vector of inputs
X = {xi}i and produces an activation a such as:

z = ∑
i

wixi + b ,

a = f (z) ,
(2.1)

where f is called an activation function. Its role is to add non-linearity inside
Neural Networks (NNs). This function is usually a tanh or a ReLU (V. Nair et al.
2010). We can note that without an activation function, a neuron is simply a linear
binary classifier. A layer is a set of an arbitrary number of neurons processing
the same input and getting gradient from the same layer or output. The type of
layer will depend on the constraints between weights and how the outputs of the
neurons are handled.

The simplest form of layer is the Fully Connected (FC) layer: a set of j neurons
as described above produces a vector of outputs a = {aj}j. The length of the
vector a is usually referred to as the size of the layer. A NN is a stacking of K
layers, with the k-th layer taking the activations of the (k− 1)-th layer as input. In
a complete Fully Connected Network (FCN), to avoid confusion, we can write the
weights as wk

i,j and biases as bk
j .

If we work on a binary classification task, one of the simplest architectures to
try to solve this problem would be a NN with one hidden layer and an output
layer with as much neurons as there are classes. This output layer produces a
confidence score ŷ traditionnally called logits for each class. We then usually
produce a probability vector over the labels by applying the softmax function
on the logits. Passing data into the network to produce logits is referred to as
the forward pass. An illustration of such a network is given in Figure 2.2 for an
hidden layer of size 4, an input size of 3 and 3 classes.
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Figure 2.2 – Graphical representation of a Fully Connected Neural Network with
one hidden layer of size 4, observing input x and outputting logits ŷ.
We highlight the weights w and biases b related to the forward pass
passing through the second neuron of the hidden layer. Scalars are
represented as squares, neurons as circles.

Now that we have defined an architecture, we will describe the principles of
backpropagation. Once a prediction ŷ is produced, we want to compare it to
the true label y. We can define an objective function J measuring an error as the
distance (not necessarily in the mathematical sense) between ŷ and y. The goal of
the NN will be to minimize this function. In the case of function minimization,
the objective function is usually referred to as a loss function. While the mean
squared error can be seen as the most intuitive loss function, we tend to represent
y as a one-hot vector and compute the cross-entropy between ŷ and y. Among the
justifications, we can cite a better numerical stability and a better behavior when
close to convergence. The goal of backpropagation is then to minimize the loss by
iteratively updating the weights and biases of the network. In other words, the
goal is to find the parametrization of the NN that attains a global minimum of J.
In practice, because of the complexity of cost functions, we aim for “good” local
minima. The quality of a minimum is often measured through complementary
metrics such as accuracy. One of the simplest way to do so is to use gradient
descent. If we omit indices, a gradient descent update is:

w← w− α
∂J
∂w

,

b← b− α
∂J
∂b

,
(2.2)
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where α is a positive scalar called the learning rate. With enough iterations
for each weight and bias of a neural network (where J is recalculated at each
iteration), we ensure that the NN finds at least a local minimum in the cost function
J. About the learning rate, it is manually fixed and controls how sensitive the
updates are in the gradient direction: fixing it too high (close to 1) might result
in gradient descent missing the local minimum, whereas setting it too low might
trap consecutive updates in a bad local minimum. In order to smoothen this
update, the stochastic gradient descent variant is preferred, computing the partial
derivatives as the mean of an arbitrary number of partial derivative samples. This
number of samples is called batch size in the ML literature. A lot of different
methods propose to dampen the defaults of vanilla gradient descent: AdaGrad
(Duchi et al. 2011), RMSProp (Hinton 2012), ADAM (Kingma et al. 2014) and
AMSGrad (Reddi et al. 2018), to cite some of the most used, usually inject second
order information to improve the convergence speed and robustness. While
more complex optimization algorithms could be used, the size of current neural
networks requires this optimization algorithm to be extremly fast for the network
to be trained in an acceptable duration. As of now, simple differentiable methods
thanks to backpropagation are the golden standard considering the trade-off
between convergence speed and quality of the solution.

To simplify the following equations, we consider that the activation function f
is the same for all neurons. We write f ′(z) the derivative of f with respect to z. In
order to compute the partial derivative for each weight and bias in a distributed
fashion, backpropagation uses the chain rule:

∂J
∂wk

i,j
=

∂J
∂zk

j

∂zk
j

∂wk
i,j

=
∂J
∂zk

j
ak−1

i . (2.3)

The definition of a and z is given in Equation 2.1. Thanks to this notation, the
gradient of every weight (and bias) of a neuron can be easily computed from the
local gradient ∂J

∂zk
j
. Moreover, this local gradient can be iteratively computed from

the upper local gradients, hence the name backpropagation. If we consider indices
i and j from the (k + 1)-th layer, meaning i is the indice on the k-th layer and j the
indice on the (k + 1)-th layer:

∂J
∂zk

i
=

∂J
∂ak

i

∂ak
i

∂zk
i

, (2.4)

where
∂J
∂ak

i
= ∑

j

∂J
∂zk+1

j

∂zk+1
j

∂ak
i

= ∑
j

∂J
∂zk+1

j

wk+1
i,j , (2.5)

and
∂ak

i

∂zk
i
= f ′(zk

i ). (2.6)
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Thus:
∂J
∂zk

i
= ∑

j

∂J
∂zk+1

j

wk+1
i,j f ′(zk

i ). (2.7)

In the end, the only derivatives we have to compute are the derivatives of the loss
function J with respect to the output layer and f ′(zk

i ) for each neuron, and the
latter can be pre-computed during the forward pass.

While theoretically powerful approximators, FCNs tend to behave poorly when
confronted to new data. The absence of regularization combined with the limited
information coming from backpropagation can cause the network to learn poorly
generalizable features such as noise or occurence-related features. This causes the
network to succeed in solving a training set, but yields very poor results on a test
set. This problem is known as overfitting. In order to overcome it, two leads are
mainly explored: regularize the weights in the network to enforce more general
features (e.g. Dropout, BatchNorm), or constrain the weights and the structure of
the network to produce specific features. Convolutional Neural Networks (CNNs),
Recurrent Neural Networkss (RNNs) and Attention mechanisms are successful
examples of such constraints.

2.2.2 Convolutional Neural Networks

CNNs are one of the most used architectures in DL because of their versatility
and effectiveness in a wide range of problems. They consist principally in a
succession of convolutional layers. A convolutional layer learns the weights of an
arbitrary number of convolution operations between the input and convolution
kernels. The kernel parameters are the learnable weights. Each convolution
operation on the input produces a modified version of the input called feature
map. In computer vision, before Deep Learning popularity, such handcrafted
kernels were largely used to exhibit specific properties in an image such as Canny,
Sobel or Gabor filters. Fukushima 1980 with the Neocognitron designed first an
architecture of cascading learnable convolution filters, but this is with Lecun et al.
1998 that current CNNs are defined, using backpropagation to train a succession
of convolutional and subsampling layers ending with fully connected layers.

There are a few parameters commonly tweaked in a convolutional layer:

• the number of kernels/feature maps per layer,

• the size of the kernels,

• eventual padding of the input to alter the size of the resulting feature maps,

• the stride of the convolution, meaning the spacing between two consecutive
local operations of the convolution (the mathematical convolution operation
has a stride of 1 on every dimension),
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Figure 2.3 – Illustration modified from the online Standford CS class CS231n
Convolutional Neural Networks for Visual Recognition. This is a
graphical representation of a convolutional layer with two kernels of
size 3x3 and stride 2x2, observing an image of size 5x5 padded to
size 7x7. This convolutional layer produces two feature maps of size
3x3.

• and the activation function of the kernels.

If we want to conceptually compare a convolutional layer with a fully connected
layer, we can imagine a convolutional layer as a fully connected layer with
periodically constrained weights: let us consider a feature map made with a
kernel of size 3x3, a stride 2x2 and flatten it (concatenate each row to form a
vector). Such a vector would be equivalent to the activations of a fully connected
layer of the same size with periodically constrained weights: instead of having a
weight for each connection between the input and the activation, there would only
be 9 weights reused in multiple locations. CNNs are less prone to overfitting than
FCNs thanks to these constraints put on weights: convolutional features retain
specific patterns more specific than unconstrained relations and as such generalize
better. An illustration of a simple convolutional layer is given in Figure 2.3.

CNNs combine multiple convolutional layers in order to build hierarchical
hidden representations with increasing levels of abstraction in each subsequent
layer. The next layer processes the feature maps of the preceding layer, producing
new feature maps from local representations built in the preceding feature maps.
We can note that using convolutions add shift invariance as inductive bias to the
network. Because convolutions aggregate information from a local region, the
receptive field of kernels becomes larger with respect to the original input with
each new layer. Once the receptive field covers the entire input, all the data has
been processed and we can use a fully connected layer to produce the logits from
a feature vector made from (potentially flattened) high level feature maps. In the
case that the last feature maps are already reduced to scalars, flattening is not
necessary: our feature vector will be the concatenation of these feature maps.
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While used for two decades on static data (mostly images), CNNs have been
recently reported to be also efficient for learning hierarchical features on sequential
data. Even though RNNs are specifically designed to model temporal dependencies
(described in the next subsection), CNNs proved to be competitive, and in some
cases better performing than RNNs. With CNNs, the temporal dependencies of the
data in this case are not covered by a unique hidden state (as with RNNs), but by
a collection of feature maps, which capture temporal correlations of the data at an
increasing level of abstraction. While the first filters capture short term behavior,
the last layers capture long range dependencies. We can find the idea of learning
spatio-temporal convolutional features in Taylor et al. 2010, but it was applied at
that time to Restricted Boltzmann Machines.

In Karpathy et al. 2014, they experiment with different time fusion models
on action recognition in videos from the dataset Sports-1M and UCF-101. The
network is split into a multi-resolution architecture with two parts, each part
processing the input at a different scale. The high-resolution part only observes
the cropped center of the video to reduce computation.

At around the same time, Simonyan et al. 2014 propose an alternative strategy
for action recognition in videos also using CNNs. One CNN is used for recognition
in still frame, building exclusively spatial features, whereas another is fed a
sequence of multi-frame optical flow, able to build temporal features from stacked
optical flow frames. Their activation is then fused, using a SVM in their best
performing variant. It is interesting to note that using only the temporal CNN
already yields way better results on UCF-101 than the method described in
Karpathy et al. 2014. From this observation, we can make the assumption that for
complex problems, reducing noise and variance in the data by selecting a good
representation really helps the convergence of CNNs. This strategy of injecting
prior knowledge over the data to reduce the workload on neural networks for
specific problems is extensively used in the literature.

An interesting use of CNNs is proposed in Gehring et al. 2017, where a complex
variant of CNN was successfully used for sequence-to-sequence classification
in a machine translation task. In this paper, they adapt an encoder-decoder
model with attention Bahdanau et al. 2014, using CNNs instead of RNNs to build
hidden representations and decode them, and they also modify the attention
mechanism to take into account preceding attention steps. This convolutional
model outperformed the state-of-the-art Long Short-Term Memory (LSTM)-based
algorithm, Google’s Neural Machine Translation (Yonghui Wu et al. 2016).

Considering haptic data for human-robot interaction, Albawi et al. 2018 use
CNNs to classify social touch gestures from raw sensor data. More recently, Park
et al. 2019 also process raw sensor data directly using a 1D-CNN to classify four
different touch patterns performed on haptic sensors.
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2.2.3 Recurrent Neural Networks

RNNs are a standard in DL whenever we are manipulating sequential data. Their
purpose is to identify patterns and dependences in a sequence using an internal
memory of past timesteps. For the following RNN equations, we will use a matrix
representation of the weights. If we consider the definition of z in Equation 2.1
and want to write all the weights of a layer with n neurons and m inputs:

z1 = ∑
i

w1,ixi + b1,

z2 = ∑
i

w2,ixi + b2,

...
zn = ∑

i
wn,ixi + bn.

(2.8)

we can rewrite this equation system in matrix form:
z1
z2
...

zn

 =


w1,1 w1,2 · · · w1,m
w2,1 w2,2 · · · w2,m

...
...

...
wn,1 wn,2 · · · wn,m




x1
x2
...

xm

+


b1
b2
...

bn

 . (2.9)

This can simply be written:

z = Wx + b, (2.10)

where W is the weight matrix and b the bias vector.
We consider sequential data x = {xt}t∈{0,...,T}. We remind that xt is a vector.

An RNN builds recurrent internal representations called a hidden state ht, and
produces an output yt at each timestep t. This hidden state can be of arbitrary
length and the output yt is usually computed as a linear combination of weights
and ht. is a vector of the same size as yt. If W, U and V are the cell weights and
bh, by bias vectors, the vanilla version can be formulated as:

ht = tanh(W.ht−1 + U.xt + bh),
yt = V.ht + by,

(2.11)

where weights U process the current input, W the preceding hidden state and
V the current hidden state. We can see the recursive definition of ht depending
on its preceding value. In a classification task, yt is usually producing logits,
activated using the softmax function to produce a probability vector over the
labels. In some contexts, RNN layers may directly output ht, declaring yt = ht.
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Recurrent models trained using a variant of backpropagation called BackPropagation
Through Time (BPTT). This is simply backpropagation also propagating the error
from the current timestep to the preceding hidden state (from the W weights).
This temporal term unrolls all timesteps to retropropagate the error recursively.
In theory, the hidden state can store information from any point in the sequence
and handle temporal dependencies of any scale, supposing the hidden state is
large enough. In practice, the temporal term in BPTT causes numerical instabilities
leading to vanishing or exploding gradients (Bengio et al. 1994).

LSTMs (Hochreiter et al. 1997) are a widely used variant of vanilla RNNs that
aims to correct this issue. It adds a memory cell c to retain information, and use a
gating system to read, write and forget from it. Gates act as a selection mechanism
for key operations on the cell memory: the forget gate f selects the information
to be kept from the older memory, the input gate i selects the information to be
added from the temporary state c̃ and the output gate o selects the information
to be outputed from c into h. Let σ be the sigmoid function, � the Hadamard
product, an LSTM cell can be formulated as:

ft = σ(W f · ht−1 + U f · xt + b f ),

it = σ(Wi · ht−1 + Ui · xt + bi),
ot = σ(Wo · ht−1 + Uo · xt + bo),

c̃t = tanh(Wc̃ · ht−1 + Uc̃ · xt + bc̃),
ct = ft � ct−1 + it � c̃t,

ht = ot � tanh(ct),
yt = ht.

(2.12)

Whenever we refer to an LSTM cell, we will refer to this model. The separation of
c and h is debatable; some LSTM variants fuse them, we will describe one shortly
after. An LSTM cell of size X means that its memory cell c and hidden state h are
vectors of size X. In consequence, the gate vectors and the output are also of size
X.

Lastly, we will describe the Gated Recurrent Unit (GRU) (Cho et al. 2014), a
lighter version of LSTM with comparable performance throughout the literature.
GRUs simplify the gating principle of LSTMs and fuse the memory cell and hidden
state back. It uses two gates: a reset gate r filtering the information to be kept
from the older hidden state, and an update gate z doing a linear combination
of the older hidden state and new information to produce the new hidden state.
Formally:
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rt = σ(Wr · ht−1 + Ur · xt + br),
zt = σ(Wz · ht−1 + Uz · xt + bz),

h̃t = σ(Wh · (rt � ht−1) + Uh · xt + bh),

ht = (1− zt)� ht−1 + zt � h̃t,
yt = ht.

(2.13)

All these models presented are recurrent in one direction. This means that if we
are working on structured data of higher dimension (RGB images or multitouch
gestures for example), the other dimensions need to be stacked in order to be
treated as one “big” input vector. In the case of touch gesture for example, this
means stacking the (x, y) information of all fingers at a time to create a tensor for
each timestep, then the RNN processes this tensor at each timestep. This prevents
the model from searching for sequential dependences parametrized by finger IDs.

2.2.4 Multi-Dimensional Recurrent Neural Networks

When the observed data is multidimensional, building recurrent architectures
can be problematic. What if there are sequential dependencies to learn from
different dimensions, say spatial and temporal dependencies? One possible
strategy is to use Multi-Dimensional Recurrent Neural Networks (MDRNNs) or
Multi-Dimensional Long Short-Term Memorys (MDLSTMs) (Graves et al. 2007), a
straightforward extension of the 1D original models. There are also closely related
variants like GridRNNs (Kalchbrenner et al. 2016).

In these models, the hidden state at some point during recurrence is not only
computed from one single predecessor (t−1) but from a predecessor for each
dimension. In order to extend LSTMs to N dimensions, Graves et al. 2007 adds
a forget gate for each dimension to control the information coming from each
dimension. Omitting the gate indices, the equations for a 2D-LSTM are:
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f 1 = σ(W f 1 · ht−1,i + Vf 1 · ht,i−1 + U f 1 · xt,i + b f 1),

f 2 = σ(W f 2 · ht−1,i + Vf 2 · ht,i−1 + U f 2 · xt,i + b f 2),

i = σ(Wi · ht−1,i + Vi · ht,i−1 + Ui · xt,i + bi),
o = σ(Wo · ht−1,i + Vo · ht,i−1 + Uo · xt,i + bo),

c̃t,i = φ(Wc̃ · ht−1,i + Vc̃ · ht,i−1 + Uc̃ · xt,i + b),

ct,i = f 1 � ct−1,i + f 2 � ct,i−1 + i� c̃t,i,

ht,i = o� φ(ct,i),
yt,i = ht,i.

(2.14)

This model can handle sequences with variable length in every dimension: this
allows for more flexibility than CNNs that require fixed length inputs. For some
experiments in Chapter 3, we use a more robust variant called Spatio-Temporal
LSTM (Liu et al. 2016). This variant adds a “trust-gate” which filters the input
in order to compensate for noise. The intuition behind it is to reduce the effect
of input too different from what the cell expects. The sensitivity of the trust gate
is manually set using a parameter λ ∈ [0, 1]. It uses the same equations as a
2D-LSTM but applies the following trust gate τ to the i� c̃t,i product:

x̃ = tanh(Wx̃ · xt + bx̃),
x̂ = tanh(Wx̂ · ht−1,i + Vx̂ · ht,i−1 + bx̂),

τ = exp (−λ · (x̃− x̂)2).

(2.15)

These MDLSTMs solve one of the problems of 1D LSTMs and can scale to an
arbitrarily large input in both dimensions, but requires a large number of weights
in order to do so. This statement motivated us to find a lighter version of MDLSTMs
by extending GRUs to multiple dimensions. We further enhance this architecture
by combining convolutional and recurrent features in a novel fasion. This new
architecture is defined and tested in Chapter 3.

While attention mechanisms and Transformer-based networks (Vaswani et al.
2017) are not used in this thesis, they should be mentioned when describing DL
for sequential data. A large number of architectures derivated from Transformer
(Devlin et al. 2019; Radford 2018) are currently state-of-the-art on a multitude of
Natural Language Processing tasks.
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2.3 Reinforcement Learning for Continuous Control

Before getting into the core subject, we will summarize in this section the
theoretical background of Reinforcement Learning (RL) used in Chapter 4 and
Chapter 6. This will allow us to justify our choices and to properly explain the
formalization of the problem.

RL is a Machine Learning paradigm used to learn policies in order to solve
control problems in an environment. More precisely, a RL agent learns a policy π

that observes at each timestep a state st of the environment and takes actions at in
this environment. This action modifies the state of the environment (st+1) and the
agent receives in consequence a reward rt+1 = f (st, st+1, at) measuring the quality
of the action taken. This function f is handcrafted to reward successful behaviors
in the environment. An optimal policy is learned through an optimization process
by maximizing the expectation of the cumulative sum of rewards or return Gt.
Let J be the objective function and θ a parametrization of π. At any time t, the
optimization problem can be formulated as:

arg max
θ

J = arg max
θ

(E[Gt]),

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . ,
(2.16)

where γ ∈ [0, 1] is the discount factor. This factor was added to cope with
continuous tasks, where there is an infinite number of timesteps: in this case, the
return can become infinite. Setting γ below 1 ensures the convergence of Gt. On
episodic tasks, i.e. with a finite number of timesteps, a policy should theoretically
optimize on the discounted return with an infinite horizon (γ = 1). However,
experimental results when using NNs as a policy or a value estimator show that it
is better set inferior to 1 (Jiang et al. 2016). In consequence, we will consider any
return to be discounted to simplify the writing.

This optimal policy problem is modelled using the probabilistic framework of
Markov Decision Processes (MDPs). Simply put, we cast the policy as a probability
distribution πθ(at|st). In this case, we consider that the dynamics of our system p
are entirely determined by the unknown transition matrix:

p(s′|s) = Pr[st+1 = s′|st = s]. (2.17)

Finding an optimal policy in these conditions is known in the literature as solving
a stochastic optimal control problem. Historically, RL solves this problem using
variants of two strategies: policy-based methods, focusing on directly finding a
good behavior from sampled trajectories, and value-based methods focusing on
the evaluation of observed states and actions.
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2.3.1 Policy gradient

If we think of the policy πθ as a parametric model trainable using backpropaga-
tion, e.g. a neural network, the first intuition to solve the optimization problem in
Equation 2.16 is to find a computable expression of the gradient ∇θ J(θ) in order
to update the policy parameters θ using gradient ascent:

θi+1 = θi + α∇θ J(θi), (2.18)

where α is the learning rate for the update. The Policy Gradient Theorem (Sutton
et al. 1998) allows us to express the gradient as:

∇θ J(θ) = Eπθ
[Q(s, a)∇θ log πθ(s)], (2.19)

where Q(s, a) = E[Gt] is the state-action value function, measuring the quality
of an action a taken during state s. Learning to estimate this Q-value will be
our main concern with Q-learning algorithms, but for policy gradient we prefer
to directly estimate the Q-value using sampled rewards. Now, let us consider
a trajectory τ followed by the policy, represented as an ordered sequence of T
triplets (s, a, r). In this case, the policy is following the sample path Pr[πθ(a0|s0) =
a, ..., πθ(aT|sT) = a(T)] noted πθ(τ). This sample path depends on the unknown
transition matrix p and can be developped as:

πθ(τ) = p0(s0)
T

∏
t=1

(πθ(at|st)p(st+1|st)), (2.20)

where p0 is the distribution initializing the state of the environment. Because p
and p0 are independent from θ, we can write the gradient of log πθ(τ) as:

∇θ log πθ(τ) =
T

∑
t=1

(∇θ log πθ(at|st)). (2.21)

This result is important: it means that we can compute the gradient of the policy
along the whole trajectory independently from environment dynamics.

Now, we can rewrite the Policy Gradient Theorem applied to the trajectory τ.
Lets approximate Q(st, at) with the sampled Gt from τ. Injecting Equation 2.21 in
Equation 2.19 gives us:

∇θ J(θ) = Eπθ
[

T

∑
t=1

(Gt∇θ log πθ(at|st))]. (2.22)

The last thing to do to explicit this gradient is estimate the expectation. A simple
way to do so is to approximate its value by sampling a large number of trajectories
and average the values. The gradient is computed along the whole trajectory,
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applying a Markov Chain Monte-Carlo method, and is backpropagated through
πθ using stochastic gradient ascent. Such gradient will enforce policies following
trajectories with high return (not necessarily individual actions with high rewards)
while moving away from low return trajectories. This training algorithm is known
as the REINFORCE algorithm (Williams 1992), and is the simplest form of RL
using stochastic gradient ascent for policy optimization. In this case, the policy is
stochastic, meaning it produces a vector of probabilities over the possible actions;
we can sample it in order to decide which action to take.

2.3.2 Q-learning

We present here the precursor of most value-based methods in RL as of today.
We retain all notations presented earlier in this section.

By taking an action a while observing state s, all the possible trajectories
afterward can only expect at most a certain return. Taking a different action
(i.e. following a different policy) during state s might give a different maximum
expected return for the next state. This value, depending on the action taken, can
be seen as a measure of how good an action is depending on the observed state. It
is formally known as the state-action value function Q∗(s, a) = maxπ Eπ[Gt|st =
s, at = a]. Knowing this function means solving the control problem, and the
optimal policy π∗ in this case can be defined as a∗ = arg maxa Q∗(s, a). Contrarily
to policy gradient that consider sampled returns as unbiased samples for the
Q-value, Q-learning focuses on learning an estimate of this optimal Q-value in
order to select the optimal action.

The Bellman equation is an important tool to compute the Q-value:

Q∗(st, at) = Est+1 [rt+1 + γ max
at+1

Q∗(st+1, at+1)|st, at]. (2.23)

In the case of discrete states and actions, it allows us to describe the Q-function in
a recursive fashion and compute an estimate of the Q-value iteratively:

Qi+1(st, at) = Est+1 [rt+1 + γ max
at+1

Qi(st+1, at+1)|st, at]. (2.24)

Thanks to the Bellman equation, we can solve our problem using a Temporal
Difference (TD) method, directly using two consecutive instants to update the
estimate rather than needing a full trajectory. It means that once an action is
taken and a reward is given, we can look back at the Q-estimate used to perform
the action and correct it. If used as is for value iteration, without a Q-function
estimator, the quality of the solution is however limited: it is equivalent to learning
a look-up table of Q-values independentely from each state, which is not desirable
for generalization purposes, and when the environment can display a large
number of states.
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A better way of solving the control problem is to use a Q-function approximator
Qφ(s, a) ≈ Q∗(s, a) parametrized by φ. In practice, this approximator is a neural
network. Using Equation 2.24 to write the target of Qφ(s, a) as y = Est+1 [rt +
γ maxat+1 Qφ(st+1, at+1)|st, at], we can express a loss function for our estimator,
updated at each timestep:

L(φ) = Est ,at [(y−Qφ(st, at))
2]. (2.25)

It is interesting to note that the target – as with policy gradient – depends on the
parametrization we want to optimize. This loss can easily be differentiated with
respect to the weights and, ignoring the factor 2, we end up with the gradient:

∇φL(φ) = Est ,at

[(
rt + γ max

at+1
Qφ(st+1, at+1)−Qφ(st, at)

)
∇φQφ(st, at)

]
. (2.26)

Instead of computing the expectation, we will sample multiple transitions in
order to approximate it and bootstrap the Q-value, performing stochastic gradient
descent to update the weights of Qφ(s, a). This is known as the Q-learning
algorithm (Watkins et al. 1992).

So, in short, Q-learning tries to learn an estimation of the value of the states
and the actions taken by a deterministic policy, whereas policy gradient tries to
directly solve the control problem by learning the policy. Both strategies have
advantages and drawbacks, to name a few:

• deterministic policies in noisy environments will have trouble finding states
with good values. We need to inject some noise in the decision, e.g. follow
an ε-greedy policy during training to enforce exploration.

• TD methods such as Q-learning tend to converge faster than simple policy
gradient methods.

• The stochastic policy of REINFORCE naturally allows for (approximate)
continuous control by sampling from a multivariate gaussian with means
computed by the policy.

These methods however are not exclusive: we can intuitively picture a policy-
based algorithm using an estimate of the Q-value using TD. This is precisely what
Actor-Critic methods do.

2.3.3 Actor-Critic

Actor-Critic methods combine the advantages of both policy gradient and
value-based methods. Once REINFORCE and Q-learning are described, the
definition of vanilla Q Actor-Critic (Degris et al. 2012) is straightforward: let
πθ be a differentiable policy parametrized by θ and Qφ(s, a) a differentiable
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estimator of Q∗(s, a) parametrized by φ. We will respectively call these models
the actor and the critic. If we take the policy gradient of REINFORCE defined in
Equation 2.22 and replace the sampled Gt with Qφ(st, at), we can bootstrap and
produce a gradient timestep by timestep for the actor : Qφ(st, at)∇θ log πθ(at|st).
The gradient of the critic was already expressed in Equation 2.26 with the Q-
learning algorithm. Thus, training the actor and the critic together becomes in
pseudo-code:

Algorithm 1: Q Actor-Critic
Initialize s, θ, φ and learning rates αθ and αφ

Sample a1 ∼ πθ(a|s = s1)
for t = 1, . . . , T do

Receive reward rt+1 and next state st+1
Sample next action at+1 ∼ πθ(a|s = st+1)
Update the actor: θi+1 = θi + αθQφ(st, at)∇θ log πθ(at|st)
Update the critic: φi+1 = φi + αφ∇φL(φ) (Equation 2.26)

end for

We can see that both models have non-stationary targets. This makes this
nonconvex optimization process complex (NP-hard at worst), even more so when
using NNs as actor and critic, and convergence is not assured. A great deal
of papers propose empirical methods to stabilize the optimization process and
quicken the convergence speed of Actor-Critic RL agents (Lillicrap et al. 2015;
Mnih et al. 2016; Yuhuai Wu et al. 2017; Haarnoja et al. 2018).

2.3.4 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2015) is the algorithm
we use for our RL agents in Chapter 4 and Chapter 6. Because we do not contribute
in this thesis in the training process of the policy, we will perform an overview
of DDPG, noting the differences with Q Actor-Critic, rather than an in-depth
description. DDPG is an actor-critic method combining training stabilization tricks
from Deep Q-Network (Mnih et al. 2013) and Deterministic Policy Gradient
algorithms (Silver et al. 2014). DDPG allows for off-policy continuous control
and can be extended to a Partially Observable Markov Decision Process (POMDP)
modelization.

The first addition compared to Q Actor-Critic is the use of a replay buffer to
store rollouts in the environment. That means keeping in memory the quadruplets
(s, a, r, s′) visited during the rollout phase. The training phase of the actor and
the critic will be done by randomly sampling batches of quadruplets from the
replay memory. This allows us to break noisy correlations from trajectories and
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consider every sample independently from each other (desirable with our MDP
modelization).

The second addition is the use of target networks µ′ and Q′ to update the actor
and the critic to perform “soft updates”. This means that target networks are
slowly moved in the direction of the current updated networks instead of being
directly updated.

The third addition is that the policy gradient is computed a bit differently in
order to take into account the deterministic policy µ. If we modify the Actor-
Critic algorithm in Algorithm 1, with samples taken from the replay memory, the
network updates become:

θi+1 = θi + αθ∇aQφ(st, at)∇θµθ(st)|a=µθ(s),

φi+1 = φi + αφ∇φL(φ),

θi+1
T = τθi+1 + (1− τ)θi

T ,

φi+1
T = τφi+1 + (1− τ)φi

T ,

where

∇φL(φ) = Est

[(
rt + γQ′φT

(st+1, µ′θT
(st+1))Qφ(st, at)

)
∇φQφ(st, at)

]
.

(2.27)

The factor τ is set largely inferior to 1, and will modulate the importance of the
updates on the target networks.

2.4 Artificial Intelligence and Human-Computer In-
terfaces

Our work in this thesis stands between two active fields of computer science:
HCI and ML. While both these fields have been active for more than 50 years, their
interaction is still relatively recent; we will paint an overview of the current uses
of ML in HCI in this section.

Adaptive User Interface — To quote Langley 1997, “An Adaptive User Interface
(AUI) is an interactive software system that improves its ability to interact with
a user based on partial experience with that user”. In practice as of now, this
adaptability is still limited to the visual display of pertinent information to the
user, depending on a request or preferences. ML in this case is traditionally
used for user profile modelization. To the best of our knowledge, Pazzani et al.
1996 is the first proposal of ML for an AUI. In this paper, the authors learn user
profiles using a bayesian classifier in order to display webpages of interest. This is
around the same time that PageRank is developped (the ranking algorithm behind
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Google, published in (Brin et al. 1998)). As of today, most “pertinence” algorithms
use ML. For an overview of state-of-the-art AUI with adaptive visualization, see
Alvarez-Cortes et al. 2007.

Reinforcement Learning and UI design — RL is a machine learning framework
in which a software agent learns to solve an environment by taking actions that
maximizes some cumulative reward (cf Section 2.3). RL has seen some specific
uses for AUI design, more precisely for user profiling and representation tasks.

• In Seo et al. 2000, a RL agent learns to detect user preferences implicitly from
observing user behavior instead of direct feedback. This agent adapts user’s
profile by maximizing the number of times it properly selects an hyperlink
chosen by the user.

• In Ferretti et al. 2014, a RL agent uses user feedback to learn a user profile for
personalized web page display. Each element of the UI (font size, colors...) is
affected a value. This value can be updated by a RL agent with respect to
the number of times a user chose or discarded an item in the UI.

• X. Chen et al. 2015 is a good example of potential GUI design automation
using RL. The goal of this paper is to model user behavior in menu search.
Building upon Bailly et al. 2013, this modelization can allow for the test-
ing of newly designed interfaces or to predict rational strategies in aimed
movements. An illustration of the setup is given in Figure 2.4.

Machine learning and 3D interactions — 3D UI design has been studied for
about 20 years (D. A. Bowman et al. 2001). In the 3D UI context, a good overview
of current state-of-the-art 3D UI methods is given in Ortega et al. 2016. On the
ML side, while it has been used in user interface and user experience design
for about two decades (Langley 1997; Weld et al. 2003), using ML for interaction
design is to the best of our knowledge an application yet to be explored. In the
user-to-computer side of the UI, ML is classically used to improve the accuracy of
an existing interaction protocol:

• in Weir et al. 2012, a gaussian process regression is used to improve touch ac-
curacy by automatically learning the offset function used to correct parallax
bias. They show that this function is non-linear and user-dependent.

• in Lü et al. 2012; Z. Chen et al. 2014, supervised deep learning is used to
improve the recognition rate of some multitouch gesture classes compared to
standard state machine methods. This is important to note that these works
enhance the sensitivity of an already existing UI with a defined interaction
protocol, they do not cope with the automatic design of such a protocol.

• In the 3D interaction context, Lacoche et al. 2019 propose to automatically
select the best suited interaction technique for a user based on a prior 2D
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Figure 2.4 – Illustration taken from X. Chen et al. 2015. Definition of the user’s
menu search problem as a RL problem, allowing for the automatic
evaluation of newly designed interface menus.

test. With a dataset consisting of performances and preferences of a set
of users on three different interaction techniques, they train an SVM-based
model in a supervised fashion to learn the best interaction technique for a
user. As stated in this paper, adapting interaction techniques to the user is
not a common process in the field of 3D UIs.

Knowledge discovery from unlabelled data — In Chapter 5, we try to auto-
matically learn the prior knowledge of a user for touch interactions from a small
part of all the possible interactions a user can perform. Extracting knowledge
from natural data without supervision is a fascinating challenge taken on by
unsupervised learning in the ML community. This challenge is closely related to
natural data generation: if the model learns a close estimator of a natural distribu-
tion, we can without problems sample from it and produce “realistic” synthesized
data. These generative models usually derived from Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014) and Variational Auto-Encoders (VAEs)
(Kingma et al. 2013) are extensively used in a variety of contexts. Knowledge
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discovery using unsupervised learning is an extremly prolific field that we cannot
fully cover here. We instead propose to cover UI related work.

To our knowledge, generative models in HCI were only used for GUI generation:

• Nguyen et al. 2018 use a combination of RNNs and GANs to generate UI
design samples from user-provided descriptions.

• Cha et al. 2019 use a spatio-temporal autoencoder as a feature extractor for
facial gesture recognition with AR/VR headsets. Once trained, the encoder
processes the input and a classifier is trained to recognize the facial gesture.

While not unsupervised, we can mention Beltramelli 2018 that trains a supervised
DL model to generate the corresponding code from a GUI sketch: this is an example
of a generative task constrained with the use of annotated information.

Reinforcement learning and generative models — In Chapter 6, we craft a
user model by combining RL and the decoder part of a VAE. While our user model
is a novel combination of such models, combining the latent representations
of generative models with policy learning was explored in some recent work.
In Higgins et al. 2017, the encoding part of a modified VAE is used to build
disentangled representations for a RL policy to use in domain adaptation tasks.
In A. Nair et al. 2018, a VAE together with an RL agent are trained for different
purposes: synthesize training data from real observations of the policy, embed the
observations to provide latent representations to the policy and measure reward
signals in the latent space.
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Chapter abstract

We will describe in this chapter the nature of touch gesture data, their process-
ing and the training of a device-invariant model for a classification task.

• We address the problem of classifying sequential data characterized by
variable amounts of data per time instant. We propose a range of different
Deep Learning (DL) models and compare their performance on the task.

• We propose a new dataset of multitouch sequential gestures, Itekube-7.
It is, up to our knowledge, the first of its kind, as existing datasets are
restricted to symbolic gestures.

• We describe a novel input sampling method which drastically reduces the
length of the input sequences while at the same time preserving important
sharp transitions in the data.

• We also compare DL models against state-machine methods on Itekube-7,
and the state of the art on a standard dataset in touch gesture recognition.

Part of the work in this chapter led to the following publication:

37
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• Quentin Debard, Christian Wolf, Stéphane Canu, and Julien Arné (2018).
“Learning to Recognize Touch Gestures: Recurrent vs. Convolutional
Features and Dynamic Sampling”. In: The International Conference on
Automatic Face and Gesture Recognition (FG).

3.1 Touch Gesture Data

This chapter is focused on touch gesture recognition, and more specifically on
interaction gestures (see Section 2.1.2). These gestures are meant to be interpreted
as actions in an application and can have both spatial and temporal properties
affecting their meaning. As an example, the smartphone interaction gestures
are some of the most used: tap to select, slide a finger to move the view of a
document or an image, stretch to zoom... Recognizing classes with strong spatial
and/or temporal correlation combined with the natural variance of users and
input conditions make for a challenging classification task. Throughout this
chapter, we will process gestures recorded with Itekube’s software CaptureIT
displayed in Figure 3.1.

A trajectory performed by a finger on a touch surface can be seen as a sequence
of (x, y) pairs with a specific time length. Defining a device-invariant model for
such data though can already be tricky: devices can vary in height, width, ratio
and sampling rate. Worse, this sampling period can vary in time on the same
device. In practice, we observed sample rates between 5 ms and 25 ms. For
a classification task, gestures of a same class can vary in spatial and temporal
features. Multitouch interactions add another layer of difficulty:

• we need to track each finger to correctly build each sequence,

• and we need to synchronize them to properly interpret the gesture.

The tracking problem is systematically handled by low level libraries of current
operating systems. One of its downside is that these methods can track a finger
only as long as it is in contact with the surface. If it is lifted up and put on the
surface again, it will get a new ID for the new trajectory; this will have to be
handled by the model. In the meantime, we need to structure and denoise the
dataflow returned by the device. The first part of this task is mostly performed by
Itekube’s library. For the purpose of training Deep Learning (DL) models, we will
record touch interactions using Itekube’s CaptureIT, a tool that logs interactions
in an XML format (see Figure 3.2). This format includes metadata about the type
of gesture performed, the user identification and the device properties, along with
the datapoints sent by the device.

Beforehand, these raw data are pre-processed: x and y positions are usually
given by a device using pixels or its relative coordinate system. That is problematic
because deformations can occur when we compare two gestures from different
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Figure 3.1 – Acquisition of an interaction touch gesture of the rotation class using
CaptureIT. Each finger trajectory is displayed with a different color,
each point of a trajectory corresponds to a sample. The complete
gesture is saved as a XML file.

devices because of resolution, scale and/or ratio differences. In order to avoid
adding workload to the model, we need absolute measurements. This can be
done simply by normalizing x and y values between 0 and 1, and use the ratio
of the device to deform measurements to a 1:1 ratio. Although we need the real
dimension of the device in order to be scale-invariant, this information is not
always available. This variation will have to be taken care of by the model. Our
processing though ensures that other geometric properties are retained through
devices.

Denoising is also applied: some devices tend to occasionally send the same
datapoint multiple times, or give multiple positions for a unique finger during
a same timestamp. This is easily handled by deleting duplicates and taking the
mean position whenever multiple positions at a time are given. Mislabelling can
happen when two fingers are close to each other. As there is no simple method to
correct these, the model will have to handle this noise.

Whenever we refer to raw data, we mean to refer to this XML representation.

3.1.1 Itekube-7

We will now describe in this subsection the dataset collected for the classification
task.
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Figure 3.2 – Processed XML representation of a multitouch gesture. Includes
metadata and a sequence of datapoints. Each datapoint records, from
left to right, the ID of the finger, its normalized x position and y
position, and the relative timestamp.

We introduce a new touch gesture dataset containing 6591 gestures of 7 different
interaction classes: Press Tap, Press Double Tap, Press Scale, Press Twist, Rotation,
Scale and Translation, illustrated in Figure 3.4. “Press” is used to describe the
action of holding a finger (usually the thumb) on the surface while performing at
the same time the other action with another finger (usually the index). Dataset
statistics regarding duration and gesture size are illustrated in Figure 3.3.

The recording of a gesture starts at the first contact of a finger with the touch
surface and finishes when no contact is registered for more than 300ms. Data
were collected from a total of 27 different people. These persons are from different
professional backgrounds and aged from 12 to 62. The anonymized and pre-
processed dataset is available at http://itekube7.itekube.com.

It is important to note that even though some gesture classes would require
continuous coupling in a real application (Rotation, Scaling...), we cast the problem
as a discrete recognition task without considering for example the regression of
gesture parameters.

The gesture descriptions provided to the users were deliberately minimal, in
order to grasp as many user variations as possible. The gestures can be executed
anywhere on the screen, with any orientation, scale or velocity. Users were asked
to perform the gesture naturally, we did not insist on a very strict definition of
the finger state transitions. It means the user knows the different classes, and

http://itekube7.itekube.com
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Figure 3.3 – Distribution of gesture size and gesture amplitude with respect
to gesture class (top) and user (bottom) in Itekube-7. Gesture
size is computed as the L2-distance between extrema coordinates
d((minx, miny), (maxx, maxy)).
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Figure 3.4 – The classes of the proposed novel multitouch gestures dataset. Red
presses are held throughout the gesture. Grey touches are taps: quick,
almost immobile contacts with the surface. Blue touches are slides.

performs each one as he wants as long as we can distinguish the different classes.
In consequence, some classes can be defined by different transition sequences; for
example, on Press Tap, some users lift the press finger first, whereas others lift
the tap one first. Some classes are highly correlated: Press Tap and Press Double
Tap are only distinguishable from their transitions, Press Scale and Scale differs
from one small variation. From our experiments, these two classes were usually
the hardest to separate (see Table 3.2).

We will define a classification problem using Itekube-7 in Section 3.3. In the
next section, we describe the different models considered to solve this problem.

3.1.2 Feature Preserving Sampling

We will process raw input to a more structured representation reducing device
variance and allowing for an easy synchronization of the different fingers. We
call this representation a contact matrix Ut,i (see Figure 3.5). Each element ut,i of
this contact matrix is a (x, y)t,i coordinate pair, where t the t-th timestep, and i
is the ID of a finger. We define a minimum number of fingers depending on the
application, and zero pad the unused entries: the number of rows in the contact
matrix will define how much fingers can be processed simultaneously at a time
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Figure 3.5 – From raw data to a normalized representation: (a) a graphical rep-
resentation of a gesture, where red presses are held throughout the
gesture; grey touches are taps: quick, almost immobile contacts with
the surface; blue touches are slides. (b) synchronized sequences of
2D coordinates (x, y) over time for tracked finger IDs.

by our model. In practice, this number should be increased to 10 for one user,
but because the classes in our experiment only take up to 3 different IDs, we will
keep it down to 3 here.

During online inference for real-time models, the number of columns of the
contact matrix will be fixed to a relatively small size: the contact matrix will act
as a circular buffer for datapoints in these scenarios, where the newest element
pushes the oldest once the buffer is full. This will give the model a small history
at each timestep to take a decision ; such a model will also require an internal
memory of some kind to cope with long term dependences.

In this chapter though, our experiments will deal with fully performed gestures,
without early detection. This means that the contact matrices of recorded gestures
will have a varying number of columns. Variable temporal length is a hard
problem for convolutional models, that require fixed input size. In theory it can
be dealt with sequential models, like recurrent neural networks and their variants.
In practice, effects like vanishing/exploding gradients (Bengio et al. 1994) tend
to limit these models to relatively short sequences, despite efforts to tackle these
limitations (Hochreiter et al. 1997, Cho et al. 2014).

In the experimental section we will compare different neural sequence models,
but here we chose to restrict ourselves to fixed length representations. In order to
reduce the dimensionality of the input and help the model cope with redundancy
and noise, it is common to sample the input before feeding it to the model.
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Algorithm 2: Dynamic sampling for a desired number of k sampled
points

Input: a gesture U = {ut,i}, t ∈ {0, ..., T}, i ∈ {0, 1, 2}
a transition indicator O = {ot}, ot ∈ {0, 1}

Output: Ordered and indexed set of sample points U′

1. U′ = {U0} ∪ {Ux|ox = 1, x ∈ {0, ..., T}} where Ux is the x-th row of U

2. While |U′| < k:
m = arg max

x∈{0,...,T−1}
|U′x+1 −U′x|

U′ = U′ ∪ bUmc

Existing work tends to perform sampling spatially, as for instance in Wobbrock
et al. 2007: because the task in these papers is to classify symbolic gestures,
temporal features such as state transitions or velocity are of minimal interest.
We call state transition the moment when at least one finger is added onto or
withdrawn from the touch surface. When the task involves interaction gestures
(Z. Chen et al. 2014, Lü et al. 2012), dimension reduction is often done through
feature extraction/embedding, not sampling.

We chose in this case to normalize the data through a static transform which
compresses it into a fixed length representation. State transitions, which are key
features in touch gesture recognition (Lü et al. 2012), are preserved with this
sampling strategy. For gestures with high temporal content, where spatiality does
not alter much the classification (such as a Press Tap, see Figure 3.4), missing one
of these transitions will most likely result in a misclassification of the gesture.
Using a uniform sampling, quick transitions such as a tap can be missed.

The goal is to transform a variable length sequence (un
t,i), t = {1..Tn} into a

fixed length representation (u′nt,i), t = {1..K}. We perform this by choosing N
sampling time instants t which are common over the finger IDs i. The set sampling
points should satisfy two properties:

• (i) the points should be spaced as uniformly as possible over the time period;

• (ii) the sampled signal should preserve finger transitions, i.e. transitions
(finger up or finger down) should not be lost by the transform.

To formalize this, we introduce a transition indicator variable ot:

ot =

{
1 if transition at time t,
0 else.

Then, the inverse problem, namely creating observed gesture sequences from a
set of given sample points, can be modeled as a probabilistic generative model,
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in particular a Hidden Semi-Markov Model (HSMM) (Yu 2010) with explicit state
duration modelling. Obtaining samples from the observed sequence then corre-
sponds to decoding the sequence of optimal states.

In this formulation, the indicator variables ot correspond to the observations
of the model, whereas the hidden state variables St correspond to the sampling
periods. Each state variable can take values in the set of hidden states Λ={1..K},
which correspond to the K target samples. The desired target sampling points
correspond to instants t where changes occur in the hidden state St. The transition
function of the model is a classical forward model (upper case letters indicate
random variables, lower case letters realizations):

q(i,d,j) , P(S[t+1:[=j|S[t−d+1:t] = i) =

=

{ 1
S if j=i + 1
0 else

(3.1)

The duration probability distribution encodes above property (i), which aims
sampling points equally spaced with a target period of Tn

K :

pj,d , P(S[t+1:t+d]=j|S[t+1:[ = j) =

= 1
Z (d−

Tn

K )2
(3.2)

where Z is a normalization constant.
The observation probabilities encode the hard constraints on the transitions

(above property (ii)):

bj,d(ot+1:r+d) , P(o[t+1:t+d]|S[t+1:t+d] = j) =

=

{
0 if ∑r+d

j=t+1 oj > 1
1
Z′ else

(3.3)

where Z’ is a normalization constant. In other words, sampling periods spanning
over more than 1 transition are forbidden, which makes it impossible to lose state
features.

If the number of transitions is lower than the number K of desired sampling
points, then the Semi-Markov model parametrized by the above equations 1 can be
decoded optimally using the Viterbi algorithm (Yu 2010). Because the complexity
is high, we solve the problem faster and heuristically with a greedy algorithm,
which first selects all transition points for sampling, and then iteratively adds
additional sampling points in the longest remaining sampling intervals (see
Algorithm 2 and Figure 3.6).

1. For space reasons, we omitted the initial conditions which ensure that the optimal sequence
begins with state 1 and terminates with state T.



46 touch gesture recognition

Figure 3.6 – (a) Example of a gesture; (b) its feature preserving fixed length rep-
resentation. First, transitions (in red) are sampled. Then additional
sample points (blue) are selected to temporally homogenize the sam-
ple until it reaches the limit sample size (here: 10).

A drawback of the proposed sampling method is the variations in the sampling
rate over gestures: since the sampling rate is not uniform over the full interval, we
lose velocity information if we only consider spatial coordinates. One possibility
would be to keep timestamp information additionally to coordinates, making it
possible for the model to extract the required local velocity. In practice, experi-
ments showed that the resulting gestures are sufficiently equally sampled and
adding timestamps did not improve performance.

3.2 Neural Models

Our classification problem is a sequential learning problem of fixed length
but with input dimensions varying over time. Each input gesture is a sequence
(un

t,i)t=1,Tn of length Tn where n is the index of the touch gesture, i the finger ID
provided by the touch device and un

t,i = (xn
t,i , yn

t,i)
T are the spatial 2D coordinates

of finger i on the touch screen. An example of such a sequence is illustrated
schematically in Figure 3.5a. In the following, gesture indices n can be omitted
for clarity, unless necessary for comprehension.

Our contact matrix representation helps us cope with this varying input dimen-
sion. We could also have used handcrafted representations to embed this set of
samples into a fixed length representation, which describes the spatial distribution
of the points. In the literature, several representations have been proposed, but
we will only mention Shape Context (Belongie et al. 2002). In Belongie et al. 2002,



3.2 neural models 47

log polar histograms are computed for a point cloud, which describe the positions
of individual points relatively to other points in the cloud.

In our work, we prefer to automatically learn a suitable feature representation
from data and fix the max number of IDs observable at a time. This feature
learning can either be done statically by using fully connected or convolutional
features, or sequentially. The latter implies to integrate the different samples ut,i
iteratively over i using a sequential model.

It is very important to remark here that the dimension over finger IDs i is
unordered. In other words, the model is required to ignore the order of the
data over its finger ID dimension. Example given, if we consider three finger
trajectories with ID 1,2 and 3, all gestures combining these trajectories at the same
time({1, 2, 3}, {3, 2, 1}...) are the same. The model will need to learn to embed the
data into a spatial representation, in a similar spirit as Shape Context histograms.
Ensuring invariance to finger order is therefore important; a simple way to enforce
is data augmentation, i.e. shuffling finger IDs during training in order for the
model to observe every possible combination of finger ID.

The resulting features ft can then be integrated temporally: ŷ=ψ( f1:T , θψ),
parametrized by θψ. This model ψ operates in the time dimension and predicts a
gesture class ŷ for the sequence. We will provide four Deep Neural Network (DNN)
models applying four different strategies to perform this task:

A baseline Recurrent Neural Networks (RNN) (Figure 3.7a), in which features ft
over finger IDs i are computed statically in a fully connected fashion. These
features are then integrated temporally with the recurrent mechanism. The
architecture is a two-layer Long Short-Term Memory (LSTM) iterating on the
time dimension and a Fully Connected (FC) layer activating the output of the
last layer to produce logits.

A baseline Multi-Dimensional Recurrent Neural Network (MDRNN) displayed
in Figure 3.7b, where ft is also computed sequentially. The model iterates
upon the finger ID and time dimension all together in a grid-like fashion.
Our architecture is a two-layer Multi-Dimensional Long Short-Term Memory
(MDLSTM). The layer stacking with MDRNNs means that at time and space
(i, j), the cell of a higher layer will use as an input the activation of the
lower cell during the corresponding space and time positions (i, j), observing
this transitory representation rather than the input data. We feed the last
activation in both the time and space dimension to a FC layer to produce
logits.

A baseline Convolutional Neural Network (CNN) (Figure 3.7c) which, instead
of an iteration mechanism, builds a hierarchy of local features in both dimen-
sions. At first, the visible scope of each feature is limited to the convolution
kernel size, but with each layer, the scope widen (building local features of
feature maps) until the whole sequence has been parsed to build features.
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Figure 3.7 – Feature representations for sequences: (a) Sequential learning of
fixed-length representations. data are aggregated in a fully connected
fashion by an RNN and then integrated temporally; (b) a MDRNN
integrates in both dimensions, iterating from top-left to bottom-right;
(c) convolutional features for sequential data. Higher layers integrate
information from a bigger window in the sequence. Input data is
shown in blue, output in red (best viewed in color).

A new Convolutional Multi-Dimensional Gated Recurrent Unit (MDGRU) ar-
chitecture, combining both multi-dimension recurrence and convolutional
features. The proposed CNN uses 2D spatio-temporal filters. The sequential
input data is structured into a 3D tensor, with the finger ID as first dimension,
time as the second dimension, and input channels as the third dimension (x
coordinates correspond to the first channel and y coordinates to the second
channel). An illustration of the architecture used in the experiments is given
in Figure 3.8, and a detailed description will be given in Section 3.2.1.

We will argue the superiority of convolutional features in our case, and in
Section 3.3 we will corroborate these arguments through experiments. Details of
RNNs, LSTMs, MDLSTMs Gated Recurrent Units (GRUs) and CNNs can be found in
Section 2.2.

3.2.1 Convolutional MDGRU

We now describe our novel convolutional MDGRU architecture. The idea of
combining convolutional operations and multi-dimensional recurrence is not new:
Van Den Oord et al. 2016 inspired us in this sense, using convolution operations to
process the input and compute the states of MDLSTM layers in an image generation
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Figure 3.8 – Illustration of the CNN pipeline (batch dimension omitted). Input
is processed by a first conv layer of kernel size (3, 3) followed by a
max-pooling (1, 2) that produces 128 feature maps of size [3, 5]. These
feature maps are processed by another similar layer producing 128

feature maps of size [3, 3]. A last conv layer reduces the feature maps
to 256 scalars. Finally, a FC layer is applied to produce the logits.

task. While alternating convolutional and MDLSTM layers has seen some successful
uses (Moysset et al. 2015; Moysset et al. 2018; Naz et al. 2017; Breuel 2017), we
believed that these architectures could be drastically reduced in size while still
being capable of combining both the robust local features of CNNs and the long
term dependency modelization of MDLSTMs. Instead of alternating these layers, we
can change the way the MDLSTM processes its inputs. Even more so, we can reduce
the number of weights by generalizing GRUs to multi-dimensional recurrence.
While this model can be theoretically applied to inputs of any dimension, we
will provide the equations for the 2D case for lisibility purposes. We build upon
the equations presented in Section 2.2, mixing the concept of MDLSTM with the
specific gating of GRUs to formulate an implementation of a MDGRU:

z1
z2
r1
r2

 = σ
(
x ·U + hi−1,j · V1 + hi,j−1 · V2

)
h̃1 = tanh(x ·Uh̃1

+ r1 � hi−1,j · Vh̃1
)

h̃2 = tanh(x ·Uh̃2
+ r2 � hi,j−1 · Vh̃2

)

h = (1− z1)� hi−1,j + (1− z2)� hi,j−1 + z1 � h̃1 + z2 � h̃2

yt = ht

(3.4)

In this case, we define a reset gate ri and an update gate zi for every dimension
using information from both preceding hidden states and the current input, and
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we compute the new hidden state by independently leveraging information from
both dimensions. We can criticize a few points in this implementation:

• the number of added weights is important, with two new gates and a
supplementary transitional hidden state per dimension,

• the update mechanism of each dimension does not take into account the
transitional hidden state of the other dimension,

• and the input weights U of each component only use the current input value
rather than a local neighborhood.

This last point highlights the limitations of MDRNNs compared to CNNs: they
rely solely on the iteration upon hidden states to compute both local and global
features from the data. Because of the simple nature of the hidden state (a vector),
the bandwidth of features encoded in the hidden state is limited, even more so
with vanishing and exploding gradient problems, whereas CNNs natively separates
features with different levels of abstraction and can simply build collections of
local features with a more stable gradient. This motivates us to try to learn local
features in the input weights U instead and use the hidden state to focus on
long term dependencies between such local features. This can be simply done
by changing the matrix multiplication x ·U by a convolution operation x ∗U .
Considering the first two bullet points, we can instead choose to compute a unique
transitional hidden state using information from both dimensions, and fuse the
update process: z

r1
r2

 = σ
(
x ∗U + hi−1,j · V1 + hi,j−1 · V2

)
h̃ = tanh(x ∗Uh̃ + r1 � hi−1,j · Vh̃ + r2 � hi,j−1 ·Wh̃)

h = (1− z)� hi−1,j + (1− z)� hi,j−1 + z � h̃

(3.5)

This is our Conv-MDGRU cell, processing at each iteration a local neighborhood of
the current input and using in one step both preceding hidden states to compute
the new one. While using the same factor (1− z) to leverage both older hidden
states can lead to information loss, we postulate that this also enforces a global
structure of the hidden state, precisely in order to limitate this information loss.
Our full Conv-MDGRU model is simply a one-layer Conv-MDGRU, with a FC
layer processing the last activation to produce the logits.

3.3 Experimental Results

We experimented mostly on Itekube-7, and a second dataset was used for
additional evaluation: the Mixed Multistroke Gestures (MMG) dataset (Anthony
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Methods Dynamic Data Accuracy
sampling augmentation

A State Machine - - 59.50

B LSTM - X 58.71

C LSTM X X 73.10

D ST-LSTM - X 60.01

E ST-LSTM X X 87.72

F CNN - - 65.96

G CNN - X 73.00

H CNN X - 83.93

I CNN X X 89.96

J Conv-MDGRU X X 92.38

Table 3.1 – Results on the proposed multitouch dataset: different sequential mod-
els and ablation study. The state machine model is a deterministic
recognizer developped at Itekube tweaked to compete on Itekube-7.
While its results are perfectible, it would require a lot of engineering
and will most likely not attain the precision of our best performing
models. Except for the Conv-MDGRU, all results were discussed in
Debard et al. 2018.

et al. 2012). The latter dataset contains 9600 gestures from 20 participants in
16 classes Figure 3.9. All classes are symbolic gestures: the temporality of the
sequence has no importance for the classification, we classify the symbol drawn by
all the trajectories. This classification problem is thus simpler than the Itekube-7
one. Each class is performed 10 times by a participant at three different speeds,
resulting in 30 occurrences per class per participant. We could not find other
interaction gesture datasets to compete on, and results on other symbolic gesture
datasets would not be of much interest, given the simpler nature of the task. We
will detail the experiments on the MMG dataset at the end of the section.

Because the variance from one user to another is a capital notion that a model
should generalize on well, we will be splitting the gestures per user, following
a “Leave-One-Subject-Out” protocol. Indeed, we need to ensure that the model
can correctly label gestures from an unknown user. To do so, each user from the
dataset was given a number, from 1 to 27. All the gestures performed by users 2,
3, 9, 12, 17, 23 and 27 were used as the test set. The rest of the gestures was used
for the training and the validation set. The hyperparameter tuning was optimized
over the validation set.
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Predicted
1 2 3 4 5 6 7

G
ro

un
d

Tr
ut

h

1 92 6 0 1 0 1 0

2 7 91 0 0 1 1 0

3 6 5 64 9 4 11 1

4 0 1 1 91 6 1 0

5 0 0 0 2 98 0 0

6 0 0 0 1 2 97 0

7 0 1 0 0 0 2 97

Table 3.2 – Confusion matrix on the test set for our dataset. Classes are: Press Tap,
Press Double Tap, Press Scale, Press Twist, Rotation, Scale, Translation

It is important to know that our best performing model Conv-MDGRU was
developped after the initial submission of this work to the conference, and as
such is still unpublished. We will provide the details and the results obtained
with this model but we will keep the convolutional model as a reference for
ablation studies, as performed in the publication.

3.3.1 Experimental setup

Data augmentation is performed for the training set on the ID permutations:
each gesture of the training set is augmented by permutating its lines (correspond-
ing to a single finger trajectory). For our multitouch dataset, we set the maximum
number of fingers to 3 and thus keep all 6 permutations of each gesture. We also
perform data augmentation on gesture scale, applying a random scaling factor
(between 0.75 and 1.5) to each of the permutations, adding up 6 artificial gestures
per gesture. This brings the size of the augmented training set to 12 times the
original one. Thanks to the freedom given to the subjects to perform gestures,
data augmentation on gesture orientation was not necessary.

Architectures and implementation details — We implemented all models in
Tensorflow (Martín et al. 2015). All hyper-parameters have been optimized over
the validation set, the test set has not been used for this. In particular, the
number of sampled points is set to K=10: we experimentally found this sampling
size to be the best trade-off between information maximization and redundancy
minimization for our problem. All models use a learning rate of 0.001 and an
Adam optimizer with decay rates of 0.9 (β1) and 0.999 (β2).

• For readability purposes, we refer to convolutional layers with x feature maps
as CONVx layers, and max pooling layers as POOL. The convolutional model
has the following architecture: a CONV128 layer, a 1×2 POOL layer (max
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pooling only on the time dimension), again a CONV128 layer and a 1×2
POOL layer, a CONV256 layer and a FC layer providing the prediction score
for each class. Activation functions are ReLU (Krizhevsky et al. 2012), all
convolutional kernels are 3×3. The FC layer is linear (no activation function).
We apply dropout (Srivastava et al. 2014) to each CONV layer and FC layer.
Dropout is set to 0.5, applied to all layers except the last. The network is
further normalized using batch normalization (Ioffe et al. 2015). The model
is trained for 400 epochs.

• The LSTM used in Table 3.1 is the standard version of Hochreiter et al.
1997, trained for 300 epochs. For this model, all 3 (x, y) coordinate pairs
are concatenated to produce a 6 dimensional feature vector. There are 128

hidden units for a cell, and a FC layer is used to produce the logits.

• For the 2D Spatio-Temporal LSTM we used the variation of Liu et al. 2016,
which is itself a variant of the MDLSTM (Graves et al. 2007). The model
is detailed in Equation 2.15. We apply recurrent dropout as defined in
Semeniuta et al. 2016 with the drop rate set to 0.35 and recurrent batch
normalization (Cooijmans et al. 2016). It is trained for 150 epochs. In our
model, each cell possesses 64 hidden units and the trust parameter is set
to 0.5. An activation layer takes all cell outputs (from the whole grid) to
compute predictions.

• Lastly, the hidden state size of the Conv-MDGRU is set to 128 with no
activation function. The kernel of the input convolution is of size (3, 3).
Recurrent dropout (modified to randomly drop h̃) and batch normalization is
applied to this layer. A FC layer uses the last activation of the Conv-MDGRU
layer to produce logits. This model is trained for 100 epochs.

For every model, we use batches of 128 gestures. Models are optimized on the
cross-entropy loss, computed from logits by applying a softmax.

Evaluation protocol — We report classification accuracy on the test set, which
has been used neither for training nor for architecture and hyperparameter
optimization. The split between test data, validation data and training is subject-
wise. No subject (user) is in more than one subset of the data.

All models have been optimized using the validation error which is measured
with the leave-one-subject-out cross-validation (LOSOCV) protocol, common in
gesture recognition. All but one user are used as training data, and one is used as
validation. We perform the training for each possible permutation and average
each score to obtain the final result. After optimization of architectures and
hyperparameters, the full combined training+validation set was used again for
retraining the final model tested on the test set.
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Sampling Accuracy
type

A No sampling 73.00

B Uniform 80.95

C Rand. Uniform 80.62

D Dynamic 89.96

Table 3.3 – Comparison between different sampling methods for our convolutional
model. The uniform sampling samples evenly spaced datapoints. The
random uniform sampling is a noisy version of the uniform sampling,
randomly sampling around the uniformly selected datapoints using a
gaussian distribution.

3.3.2 Ablation Study

In order to assess the effectivness of each part of the process, we proceed to an
incremental evaluation of our method. All the results are displayed in Table 3.1.

• The two recurrent baselines perform worse than the convolutional model,
which confirms the reasoning that hierarchical respresentations over time
are useful for sequences. However, 2D-LSTMs do have several interesting
properties, while performing close to the convolutional model (-2 points).
They use only 138,631 trainable weights in total (against 446,983 of the CNN),
and they can be unrolled on varying input dimensions. In general, recurrent
models are more easily generalizable while CNNs tend to perform better for
this task.

• We trained a model without transition preserving dynamic sampling. To
this end, and in order to still have a fixed length representation for the
convolutional model, the sequences were cropped or padded to 104 points,
which is equivalent to 1200ms. This value is fitting 95% of all the dataset
gestures. We observed that longer gestures were most likely held for too long
or noisy. The architecture was optimized for this experiment (again on the
validation set), which resulted in two additional convolutional layers with
pooling which are able to cope with these longer sequences. We added 1×3
max-pooling over the time dimension. With 65.96% on the test set, the model
performs much worse than the version with dynamic sampling. With data
augmentation the recognition rate rises to 73.00%, but is still far from the
89.96% we obtain from the full model with dynamic sampling.

• Data augmentation is an important part of the method, which increases
the invariance of the respresentation with respect to the order of the finger
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Evaluation protocol
Methods Number of Accuracy

parameters

LSTM 22,663 73.10

4 layers stacked LSTM 472,839 73.65

CNN 112,903 86.99

CNN 446,983 89.96

Table 3.4 – Result difference when changing the number of parameters of the
models.

IDs delivered by the device, as well as the scale of the gestures. The best
performing model w/o augmentation scores at 83.93%, almost 6 points below
the best performance with augmentation.

• Our sampling method was also compared to a uniform and a randomized
uniform sampling (see Table 3.3). This last sampling method was defined by
uniformly segmenting the sequence, and then picking a sample from each
segment using a normal distribution.

Convolutional and sequential models — In order to ensure that the result
gap between convolutional and sequential models was not correlated to the
number of parameters, we show in Table 3.4 the different results obtained with
varying number of weights with these two types of models. The weights of the
convolutional model were tweaked by changing the number of feature maps,
while the LSTM model was made “deeper” by stacking layers and increasing the
hidden state size (more efficient than just increasing the hidden state size).

Runtime complexity — All computations were done on Nvidia Titan-X Pascal
GPUs. Training the convolutional models on our dataset takes 1h 11min (∼400

epochs). Testing a single gesture takes 1.5 ms, including the dynamic sampling
procedure. To assert the portability of this model, runtime on CPU (Intel i7-
7700HQ, laptop) is 5ms, only 3.3 times slower than on GPU. This is because input
tensors are small, resulting in limited GPU acceleration, I/O being the bottleneck.
It is also possible to greatly reduce the number of weights in the CNN while losing
little precision. This trade-off will be considered if a device requires minimal
computation.

3.3.3 Comparison with the state of the art

We applied the method on the MMG dataset, one of the very few standard
datasets of this problem. On this dataset, gestures are complex drawings with a
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Figure 3.9 – Illustration of the different MMG classes (illustration taken from
Anthony et al. 2012). Input is processed by a first conv layer of kernel
size (3, 3) followed by a max-pooling (1, 2) that produces 128 feature
maps of size [3, 5]. These feature maps are processed by another
similar layer producing 128 feature maps of size [3, 3]. A last conv
layer reduces the feature maps to 256 scalars. Finally, a FC layer is
applied to produce the logits.

finger or a stylus, performed with a varying number of strokes for a same class.
This problem can be seen as symbol recognition. As such, state transitions are not
relevant for this task, because temporality does not give meaningful information.
We therefore detected geometric transitions as spatial discontinuities (corners) in
the finger trajectories. To this end, we calculated thresholded angles of the spatial
gradient and thresholded derivates of these angles. We then sampled 48 points
of each gesture using the feature preserving method given in Section 3.1.2 (as
opposed to uniform sampling of 96 points done in Anthony et al. 2012).

For this dataset, we chose an architecture similar to the 6-layers CNN for our
own dataset. However, convolutions are 1D, as there is only one stroke at one time
on the surface. The architecture is described as follows: 2x(CONV-128+POOL),
2x(CONV-256+POOL), CONV-512, 1x FC. The first CONV layer uses a kernel of
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Evaluation protocol
Methods LOSOCV User-independent

Proposed method 98.62 99.38

Greedy-5 (Anthony et al. 2012) N/A 98.0

Table 3.5 – Results on the MMG Dataset. The User-independent protocol is de-
tailed in Anthony et al. 2012.

size 5 while the others use a kernel of size3. There are a total of 747,536 trainable
parameters.

Table 3.5 presents the results on this dataset. We used different evaluation
protocols: there is no test set for this dataset, so we used the LOSOCV protocol
described above for our validation error, as well as the user-independent protocol
used in Anthony et al. 2012. In this protocol, a user among 20 is randomly
selected as the test subject, while the training is performed on the 19 other users.
The training is done using 9 samples from every class randomly taken from
every training user. We then classify one random sample of every class from the
test subject. This process is performed 100 times and classification results are
averaged.

We can see that the obtained performance of 99.38% is close to perfect recog-
nition and beats the state of the art of 98.0% given in Anthony et al. 2012. This
further confirms the interest of our model and sampling procedure.

Because of the lack of publicly available datasets for interaction gestures, we can-
not further compare our model to existing methods, and we claim that comparing
our model on another symbolic gesture dataset would not yield any meaningful
information.

3.4 Conclusions

We have proposed a novel method for multitouch gesture recognition based on
learning convolutional features from fixed length input. We have also introduced
a dynamic sampling algorithm which preserves sharp features in the input data.
We demonstrated the effectiveness of DL models, validating this approach on
our dataset of interaction gestures and on an existing symbolic gesture dataset.
As expected, the symbolic gesture task proved easier to solve with DL models:
the need to recognize a combination of temporal and spatial patterns makes our
classification task more complex. This work is the first step toward a rich and
adaptative model for touch surface interactions, its runtime complexity allowing
for the development of real-time applications.

There are two evident generalizations of this classification task:
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• segmentation of a data flux in order to recognize multiple gestures at once.
This will open our research to multi-user interactions and long dependency
gestures, e.g. a gesture performed with a sequence of successive (but not
occuring at the same time) finger trajectories.

• Real-time classification of gestures: this implies working with hierarchical
models and early detection processes (Hoai et al. 2014).

A lead for the first generalization would be either deterministic segmentation
(i.e. clustering), or model the task as a seq2seq problem. Indeed, we can imagine a
model processing the data before classification, returning a cluster label for every
finger in contact. Because prior knowledge about classes is relevant for clustering,
this model could also be part of a bigger one performing clustering as well as
classification.

The second generalization can most likely be addressed using hierarchical
models combining convolution features and recurrent models. Given a small time
window (that will fix the reaction time of our model), a small CNN computes
local features of the contact matrix buffer, while a higher level recurrent model
aggregates these features and produces one label (or the absence of label) at each
timestep. Combining both real-time and clustering capabilities is key to tackle the
challenge of a general multi-user multitouch action recognizer.

With the touch gesture recognition subject covered, we will now address the
learning of interaction protocols.
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Chapter abstract

Now that we treated the subjects of touch gesture recognition and touch
data processing, our next step is to focus on learning how to interpret these
gestures. In other words, how to map gesture properties to actions in a virtual
environment.
In this chapter, we will formalize the interaction protocol design problem,
expressing it as a continuous optimal control problem; we will provide the
methodological and experimental ground to establish Reinforcement Learning
as a powerful learning mechanism for interaction protocols. Using Reinforce-
ment Learning allows for both the learning of interaction protocols and the
online tuning of the protocol during use, making a first step toward co-adaptive
interfaces.
This modelization will then be tested on a virtual environment requiring for
the user to move an object to a destination, with the goal of automatically
learning an already known optimal interaction protocol for the task. We will
describe the experimental setup and discuss generalization.
Some of the work in this chapter is part of the following publication:

59
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• Quentin Debard, Jilles Steeve Dibangoye, Stéphane Canu, and Christian
Wolf (2019). “Learning 3D Navigation Protocols on Touch Interfaces with
Cooperative Multi-Agent Reinforcement Learning”. In: The European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECMLPKDD).

4.1 Interaction Protocols as Reinforcement Learn-
ing Agents

When a user uses an electronic device in order to achieve a task, he performs ac-
tions using an interface. These actions modify the environment or the application
of the task and the user receives a feedback (usually visual and/or audible) to
signal corresponding modifications. We call the translation of user finger motions
to actions in the virtual environment an interaction protocol.

We give an illustration in Figure 4.1 of Autodesk Navisworks, an application for
3D design review, used here to display a construction. In this case, the interaction
protocol must interpret user gestures on a touch screen to camera motion in the
3D environment. The interaction protocol currently used by our industrial partner
is defined by Itekube’s TouchIt plugin with settings displayed on the top-left. The
current finger motion is a two-finger pinch (or scale) where two fingers are drawn
closer through time. This finger motion is interpreted as a translation on the
z-axis of the camera, orthogonal to the display plan: the viewpoint is moved back
proportionally to the finger motion with a coefficient set in TouchIt. The complete
interaction protocol is a collection of correspondance rules like this one to cover
all the actions that a user may want to perform in the virtual environment.

The preceding chapter dealt with the automatic categorization of such user
actions for touch devices. We now focus in this chapter on the correspondance
between user actions and actions in virtual environments. These categorization
and coupling tasks can be complementary (and lighten the load on the coupling
model) but we will treat them separately here: our coupling model will categorize
gestures internally.

An interaction protocol is application-dependent: some applications may use
different sets of user action categories, and the same user action in two different
environments might have different semantics. Even more so, an interaction
protocol might be parametrized by the current state of the environment (e.g.
current viewpoint in a 3D navigation system). Its complexity can rapidly scale
with the complexity of said application/environment.
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Figure 4.1 – Example of a touch User Interface (UI) for 3D navigation. This is the
Autodesk Navisworks software combined with Itekube’s TouchIT, an
overlay used to identify and interpret finger motions to actions in the
application. Fingers in contact with the surface are represented as
white circles. Their current motion is interpreted as a 2 finger pan
and scale and is applied with the set parameters displayed in the
top-left window.

4.1.1 Formalizing the Interaction Protocol Design Problem

In the following work, we will sometimes use the term interface agent to
describe an interaction protocol modelled as an Reinforcement Learning (RL)
agent for lisibility purposes. Stricto sensus, the interaction protocol is just part of
an interface, but because we will not mention any other part of a UI in this work,
we believe this simplification should not induce confusion.

If we condense the properties of an interaction protocol, it can be seen as a
function with:

• two inputs: user actions and eventually environment properties,

• one output: a vector of actions to be performed in the environment,

• a parametrization optimized to maximize usability.

We want in this chapter to automatically learn such interaction protocols, cou-
pling user actions with actions in a virtual environment. Among the challenges,
quantifying usability (and more precisely user satisfaction) and collecting training
data will be the hardest to overcome. We will experiment again on touch inter-
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faces to showcase practical cases. The motivation of automatically learning these
interaction protocols is twofold:

• allow for the design of co-adaptive interfaces, able to continue learning during
real use: the interface also adapts to the user,

• and potentially discover new interaction protocols for complex applications.

Indeed, Machine Learning (ML) is not meant to replace humans in the design
process of UIs: ultimately, these UIs are to be used by humans, and the complexity
of priors, expectations and the notion of intuitivity seem too complicated to be
entirely modelled as of now. We claim that we can however model part of it, and
doing so will allow for the design of better interfaces through the data processing
power of ML.

In this chapter, we propose to solve this interaction protocol design problem
for touch interfaces by casting the interaction protocol as an RL agent. RL is
traditionnally used to solve Markov Decision Processes (MDPs): we need to find
a setup that can be interpreted as such. In the following section, we explain
the thought process allowing for the definition of an RL problem. For a detailed
description of RL and MDPs, we invite the reader to go back to Section 2.3.

An MDP can be condensed as a tuple (S, A, p, R) where:

• S is a finite set of states of the environment that the agent can observe,

• A is a set of actions the agent can perform,

• p is the system dynamics represented as a transition matrix between states,

• R is a set of rewards the agent can receive depending on the action taken and
the consequent state of the environment.

Following the MDP formalism, an RL agent observes the state s of an environ-
ment and takes action a, effectively updating the environment state to s′. The
agent receives in consequence a reward r measuring the quality of the new state
the environment is in. The goal of the agent is to maximize this cumulative reward
Gt, also called return, by learning a policy πθ(a|s). This policy is parametrized
by θ and produces an action a with respect to the state s. Let J be the objective
function of the RL agent, the agent objective at time t is defined as:

arg max
θ

J = arg max
θ

(E[Gt]),

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . ,
(4.1)

where γ ∈ [0, 1] is called the discount factor, used for convergence purposes.
Now falling back to our interaction protocol design problem, the environment

of an RL agent modelling the interaction protocol would obviously be the appli-
cation the user wants to interact with: the agent thus produces actions in this
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Figure 4.2 – Casting the problem of designing interaction protocols as a Reinforce-
ment Learning problem.

application/environment. Defining its observation becomes more complicated:
in a classical MDP problem, the agent directly observes a representation of the
application, its state. In our case however, the agent must take action with respect
to user gestures rather than the application state. This is illustrated in Figure 4.2.
Because user gestures are not a direct representation of the environment state,
our problem is currently impossible to model using a fully observable MDP back-
ground. This intermediate representation is problematic: the agent must observe
and take action with respect to user gestures. These gestures are more correlated
to the action to be performed than the properties of the environment.

If we relax the constraints of state observation, we can model our problem using
a Partially Observable Markov Decision Process (POMDP) framework. POMDPs
are a generalization of MDPs: instead of considering the observations of the
agent as samples of the environment properties, we consider instead that the
agent only receives partial information. A POMDP can be described as a tuple
(S, A, p, R, Ω, O) where:

• the set of environment states S is not observable (in our case the virtual
environment variables),

• the agent takes action in A (the possible actions to be performed in the
environment),

• the environment dynamics are modelled through a transition matrix p (the
probability to go from state s to s′),

• rewards from R depend on the new state (measuring the quality of the action
taken),

• Ω is a finite set of observations perceived by the agent (all the possible user
gestures),
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• and O is the probability distribution describing the probability for the agent
to observe o depending on the new state s′ and the taken action a (in our
case, this distribution can be interpreted as the user intent).

For an RL agent to solve a POMDP, it must build an additional internal represen-
tation of this distribution O. This is precisely what we want: this distribution O
can be seen as the user decision process to perform a gesture o with respect to
the preceding agent action a and the following state of the application s′. In
other words, for the interface agent to solve the problem, it must learn to model
both the environment dynamics and the probability for the user to perform a
gesture o.

Completly modelling O as we said earlier is of course impossible: the decision
process of a human user is extremly complex and it can vary depending on the
user. Part of this distribution however may be modelled: when a use-case is
simple enough, we can expect an almost deterministic choice of o, e.g. in a “click
on this button” type of query. For this assertion to hold, we need to consider
during the training of the agent that the user will systematically try to solve the
task and produce optimal gestures. This implies that there is a deterministic
relation between O and p. Because the decision process of the user O is directly
correlated to the solution of the task and depends on the environment dynamics,
learning to model O means effectively solving the POMDP. While human users do
not perform optimal actions every time, this setup still allows us to learn a realistic
interaction protocol: this optimal user assertion can be seen as training sample
selection (or denoising) and will not prevent a human user to use it sub-optimally
afterward.

Our interaction protocol design problem is a special case of POMDP where
O implicitly depends on p. Solving this problem is still a very challenging task:
in practice, the agent might need to perform an action for each finger motion to
act in real time. At time t, the observation ot should be seen as the user’s finger
positions, st the current application state and at the corresponding action. A
gesture is then a sequence of observations of arbitrary length. Because of these
long-term dependencies, our model would need an internal memory to process
the full history of states and actions to correctly model O.

Assessing the complexity of such a modelization for a novel application, we
prefer at first to limit the model. We will consider user gestures in their simplest
form, i.e. finger motion between two timesteps, or in other words two positions
(start and finish) per finger. An observation ot will be the stacking of these
finger positions. In consequence, ot will be the complete observation of a user
gesture. This modelization gets rid of the realistic long-term dependencies but
still learns to translate atomic user gestures to actions in the environment. With
the deterministic relation between O and p, this POMDP can be solved in a similar
fashion to fully-observed MDPs where o effectively replaces s. To summarize,
MDP-based RL can be used to learn an interaction protocol given:
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• a task-based virtual environment,

• optimal atomic user gestures ot,

• and a reward correlated to usability.

This last point is the topic of our next section.

4.1.2 Learning Signals and Environments

A major setting in the formulation of the RL problem is the reward function:
after each action, what reward should be given to our agent? A good reward
definition is mandatory as the agent will be trained to maximize its accumulated
return. If the reward function is not carefully designed, our agent might converge
to unexpected behaviors, oscillate without converging or just diverge (numerical
instabilities).

In our case, the goal is to maximize the usability of a specific application. The
International Organization for Standardization (ISO) defines the usability in ISO-
9241 as “The extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfaction in a specified context
of use”. Following this definition, our reward function should be designed to
enforce policies maximizing these properties:

• Effectiveness: from the ISO-9241, effectiveness is defined as the “accuracy
and completeness of user goal achievement”. In the case of UIs, this is a
performance metric measuring the capacity of a user to successfully perform
a task while using a specific UI. Effectiveness is directly correlated to the
achievement of a task and is in consequence easily measurable.

• Efficiency: from the ISO-9241, efficiency is the “resources spent by user in
order to ensure accurate and complete achievement of the goals”. It is usually
measured as a function of the time spent by the user to complete a task. In
our case, we can replace the notion of real time by the number of time steps
required to solve an episodic task. This is again easily measurable. Special
cases of efficiency such as ease-of-use can be derived from it by comparing
for example first time-user efficiency with expert efficiency on a specific UI.

• User satisfaction: defined in ISO-9241 as “comfort and relevance of applica-
tion”. This satisfaction concept encompasses all the subjective appreciations
of the user and is hard to explicit. W. J. Doll et al. 1988 define the user
satisfaction as “the opinion of the user about a specific computer application,
which they use”. In other words, this notion condenses the user’s perception
of features like the visual aspect of the UI, its complexity with respect to
the task or the optimality of the interactions. User satisfaction is obviously
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correlated to effectiveness and efficiency but also depends on personal percep-
tion. In consequence, user satisfaction is not directly measurable, and this is
problematic: it means that we cannot inject in the reward function the value
we want to optimize on. We need to either find an estimate of this implicit
notion or constrain our model so that optimizing on correlated metrics (ef-
fectiveness and efficiency) is enough to also optimize user satisfaction. The
measurement of user satisfaction is a challenging topic still discussed in a
variety of applications (W. Doll et al. 2004; Song et al. 2017; Machmud 2018;
Al-Fraihat et al. 2019).

The most straightforward (and unbiased) approach to the reward design would
be to ask human users to perform gestures and tell wether they are satisfied or
not by the action the interface took. This optimal training setup is sadly not a
viable strategy, because RL agents can take millions, even billions of steps before
properly converging. Requiring human input at each timestep, either to craft the
reward or perform gestures, is therefore unrealistic. This leads us to formulate
two statements:

• not only the reward function should be designed without human input,

• but the gesture selection also needs to be simulated, at least for a subset of
interactions.

In consequence, we need to model two human-related tasks: the measurement of
user satisfaction corresponding to the interface behavior and the gesture selection
with respect to the environment state. On a side note, using a simulated user
still allows for the learning of co-adaptive interfaces, in two consecutive stages:
a first offline training stage using a simulated user, meant to learn a pre-built
interface usable by a human user, followed by an online tuning phase where real
users use the interface and provide feedback to further adapt the interface to their
expectations.

Currently, optimizing user satisfaction without direct human feedback is a
seemingly impossible challenge: it would require to model all these implicit
human perceptions. However, we focus here on learning interaction protocols,
not the whole interaction technique. It means that we should only consider parts
of the user satisfaction correlated to the interaction protocol. If we restrain the
training process to specific tasks to be performed by the user (“move from A to
B”, “fetch this document”...), we make the assumption that the user satisfaction
related to the interaction protocol is strongly correlated to performance metrics.
The only subjective part is related to the type of gesture performed: some gestures
are easier to perform and more intuitive depending on the action. For example, if
we want to scroll down while reading a document, sliding one finger to the top
feels very intuitive whereas tapping on the bottom less so. In this case, using a
task-based environment is mandatory to train the interaction protocol: it makes
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Figure 4.3 – Illustration taken from Brouet 2014. The square is manipulated using
two-finger Rotate-Scale-Translate (RST) interactions. One motion can
be interpreted as a combination of rotation, scaling and translation of
the square.

measuring the performance easier, and better, it allows for the definition of an
optimal performance. The downside to this approach is restricting training to
situations with known outcomes and objectives. However, the learned interaction
protocol can still generalize to other tasks and environments: as long as the
actions to be performed are semantically equivalent (manipulating a document,
navigating on a map...), the interaction protocol will be relevant.

4.2 Experiment: Learning a Touch Interaction Pro-
tocol

As a first proof of concept, we will attempt to solve a well-known interaction
protocol for which a commonly accepted solution does exist, the goal being to
verify whether ML can discover the existing solution. Our choice here is the
protocol of the most commonly used Rotate-Scale-Translate (RST) multitouch
technique for 2D object manipulation (see Figure 4.3). protocol widely used for
smartphones and tablets. The name is a misnomer, since the interface does not
only allow to zoom, but also to translate and rotate the content of surface through
2D gestures made by two fingers.

We suppose that a user performs gestures with exactly two fingers on a touch
screen and we investigate the motion between two different time instants. We
denote by l = [lx ly]T the screen coordinates of a single finger at the first instant
and by l′ = [l′x l′y]T the coordinates at the second instant. If we need to explicitly
identify a finger, we will index finger i with a superscript as in li or l′i.
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Figure 4.4 – 2D environment used to (re-)learn the RST protocol. The user must
superimpose the red shape (object) onto the black one (target). User
gestures are displayed as black arrows and the corresponding new
position of the object is displayed in transparency.

4.2.1 Environment and known solution

We need to define an episodic task that requires the use of RST interactions.
This can be done with a simple 2D manipulation task. Let there be an object on
a 2D plane with position, scale and angle properties. Let there be a target with
the same properties initialized differently. While the target is immovable, the user
will be asked to move the object to match it with the target. The environment is
displayed in Figure 4.4, with the object symbolized by a red shape and the target
by a black shape. User gestures are displayed as arrows.

We assume from the current state of touch devices that the optimal interaction
protocol for this task is the RST protocol: gestures performed by the user are
interpreted as a combination of translation, rotation and scaling. Conceptually, the
RST protocol can be interpreted as “a 2D finger motion on the screen induces the
same 2D motion of the manipulated surface”. In other words, the transformation
applied to the segment drawn between fingers is the same that is applied to the
manipulated object.

We will derive the analytical form of this known solution before describing
the experiments learning it. The transformation interpreted from user gestures
and applied to the object is a special case of affine transformation where the
shear component is zero. It transforms coordinates l into l′ as l′ = Al+ t where
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t = [tx ty]T is the translation component and the rotation+scaling matrix A can
be calculated from the rotation angle α and the scaling factor σ as follows:

A =

[
cos α − sin α

sin α cos α

] [
σ 0
0 σ

]
=

[
σ cos α −σ sin α

σ sin α σ cos α

]
. (4.2)

The 4 parameters of the motion are thus α, σ, tx, ty, which we will combine into
a parameter vector θ = [σ cos α σ sin α tx ty]T. If we have the motion of two
different fingers (l1, l′1) and (l2, l′2), using homogenous coordinates, we can
rewrite the linear relation of each finger position l′ = Al + t as l′ = Lθ where l′ is
a vector containing the last finger coordinates and L is a matrix containing the
first finger coordinates in a suitable form. Given a pair of corresponding pairs l

and l′ for two fingers, we can express their relationship as follows:
l′1x
l′1y
l′2x
l′2y

 =


l1
x −l1

y 1 0
l1
y l1

x 0 1
l2
x −l2

y 1 0
l2
y l2

x 0 1




σ cos α

σ sin α

tx
ty

 . (4.3)

If a user gesture is given, the RST solution corresponds to finding the θ̂ param-
eters of the transform to be applied to the object given gesture ([l1, l2], [l′1, l′2]).
Because L is always invertible (except for the degenerated case where both fingers
are at the origin), the linear equation in Equation 4.3 can be solved easily as:

θ̂ = L−1l′. (4.4)

This final vector θ̂ is the set of parameters of the affine transform to be applied to
the object.

4.2.2 Handcrafted User Model

As stated earlier in this chapter, we need to simulate user gestures to have
enough training data for our model. Because we already know the optimal
solution for the interaction protocol, finding an analytic formulation of a user is
pretty straightforward: let us reverse the problem and ask “what is an optimal
user gesture given an object and a target position?”. Because the transform
applied to the object is the same transform applied to the segment between fingers
from one instant to the other, we already almost solved this problem if we use
Equation 4.3. Indeed, if we know the vertices of the object and the target, it is
trivial to compute the corresponding parameters of the transform. Supposing
we randomly select two finger positions on the object, we can then apply the
known transform to these positions and compute their corresponding position on
the target. The motion from the first positions to the second is then the optimal
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gesture. The only consideration to have is that even an optimal human user would
not solve the problem in one step: because of physical constraints, he would only
perform part of this optimal gesture and move a certain distance in the direction
of the target, the distance moved being proportional to the time spent between
the two timesteps. In consequence, for realism purposes, we need to compute
an intermediate optimal finger position as long as the object is too far from the
target.

To formalize the above strategy, let us consider two object vertices v1 and v2
and their corresponding vertices v′1 and v′2 on the target. We consider that the
user will move the object toward the target while keeping the positions vi on the
segments [vi, v′i] (which is the optimal way to solve the task). It means we can
find intermediate positions of vi on these segments using the linear combination:

vinter
i = (1− µ)vi + µv′i , µ = max(1,

0.5
||v′i − vi||2

), (4.5)

where µ can be interpreted as the user’s gesture velocity. A small µ will mean
small relative increments toward the target. µ is arbitrary and can be seen as a
coefficient inversely proportional to the refresh rate of the device. This definition
of µ goes in the sense that a human user will tend to do faster gestures while
far from the target and slower, more precise gestures while close to it. Now
that we have two points of the wanted intermediate object position, we can
use Equation 4.3 to get the transformation of every point of the object to the
intermediate position. At last, we can choose two random finger positions p1
and p2 on the object, transform them using the computed θ̂ parameters and build
the two trajectories [p1, pinter

1 ] and [p2, pinter
2 ]. The state si of the agent will be

the concatenation of these two trajectories, resulting in a vector of size 8 (4 (x, y)
couples).

4.2.3 Reward Function

Fundamentally, sparse rewards (+1 in case of success, -1 otherwise) offer the
simplest form of reward and minimize the prior injected during credit assignment:
in such a case, we simply ask the agent to complete the task without enforcing
specific behaviors. If the sampling of the objective space done during rollouts
is good enough – meaning that the agent perceives enough rewards to correctly
evaluate the policy or the value estimator–, after some iterations the agent will
find the optimal policy to solve the task. Sparse rewards are desirable because
we do not indirectly supervise the agent, and in environments where the optimal
policy is not known, the RL algorithm might find better behaviors that the one
currently used by human specialists.

In our environment however, positive reward is extremly hard to perceive for
untrained policies: at first, the policy will randomly move the object without
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correlation with user gestures. Until it “luckily” moves the object on the target and
gets a positive reward, it will not be able to start learning because the agent will
never have had a positive learning signal to start evaluating good behaviors. This
would lead to an extremly long training process until the agent starts matching
the object with the target. To avoid this situation, we can help the agent and
give it a reward at each timestep correlated to the quality of each action it takes:
we change our sparse reward function to a dense one. An intuitive qualitative
measurement for our problem is to use the distance between the object and the
target: because we consider user gestures to be optimal, the distance between
object and target should diminish at each timestep.

We can define our reward function in this task as the sum of L1- and L2-distances
between the object vertices and the target vertices:

r = −∑
i
( ||oi − ti||1 + ||oi − ti||2 )− 0.2, (4.6)

where oi and ti are the coordinates of the i− th vertice of the respective shapes (an
alternative would be the Huber loss). Let us recall that the interface agent does not
have access to these positions, or else it would learn to solve the task independently
from user gestures. The constant −0.2 reward is set to continuously encourage
fast solutions. A positive reward of +25 is given if the agent successfully finishes
an episode. While these constant rewards are not mandatory for convergence,
they help mostly during early stages of the training to find rewarding trajectories
and avoid stalling close to the target position (because the distance is small). These
values are chosen so that the expectation of the sum of rewards per episode is
close to 0 for an agent close to the optimal solution.

4.2.4 Experimental Setup

For our episodic task, because there is no failure condition per se and object
position are not limited, we must set a maximum number of steps per episode in
order to avoid early returns to explode: because of the early random manipulation
of the object, the agent might sometimes get the object far from the target. This
can lead to highly negative return values and can make the optimization process
unstable. We experimentally set the maximum number of steps per episode to 50:
it has experimentally be observed as a good trade-off between discarding early
bad trajectories and exploration limitation.

We use Deep Deterministic Policy Gradient (DDPG)(Lillicrap et al. 2015) to train
the policy (actor) and a Q-function approximator (critic). Details of the algorithm
are given in Section 2.3. In what follows, we call FCX a Fully Connected (FC) layer
with X hidden units.

The actor is a fully connected network made of two hidden FC32 layers activated
with ReLU, and a FC output layer activated with tanh. Layer normalization (Ba
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et al. 2016) is applied to each hidden layer. The output of the actor is a vector
of size 4: X-axis and Y-axis translation, scaling factor and rotation angle. We
arbitrarily scale the amplitude of the outputs with respective coefficients 0.025,
0.025, 0.05 and 0.1 in order to produce coherent motion with respect to numerical
values of the environment.

The critic starts with a FC32 hidden layer activated with ReLU, getting the
state as an input. The action of the actor is concatenated to the output of the
first hidden layer, and a second FC32 layer with ReLU is applied on this vector.
The FC output layer has no activation and produces the Q-value estimate. Layer
normalization is also applied to hidden layers. We observed that with smaller
architectures the training of the agent was unstable, prone to divergence, whereas
bigger architectures led the agent to sometimes be stuck in local minima. We
apply L2-regularization on the critic weights.

We apply some adaptive parameter noise (Lillicrap et al. 2015) injecting noise
directly in the actor weights rather than adding noise to the action to enforce
exploration. Because the policy is stochastic, adding noise is theoretically not
mandatory, but we observed faster convergence using this exploration method.

Hyperparameters – DDPG is very sensitive to hyperparameters. The agent
needed proper tuning before being able to converge even on this simple problem.
After experimentation, we found the following set of hyperparameters to allow
for the fastest convergence:

• discount factor γ = 0.99

• target network update coefficient τ = 0.001

• L2-regularization factor set to 10−2

• critic learning rate αc = 10−3

• actor learning rate αa = 10−4

• batch size 2048 (but batch size from 1024 to 4096 led to similar results)

• noise parameter set to 0.1

• the episode is considered a success when ∑i ||oi − ti||2 < 0.08

The training session is split in two phases: a rollout phase to record data, and a
training phase to update the agent. At first, the agent performs 100 rollouts in
the environment. All the (s, a, r, s′) quadruplets are saved in the replay memory.
After the rollouts, the agent is trained using 50 batches sampled from the replay
memory. The agent is then evaluated on one episode without noise. We call the
combination of rollout, training and evaluation phase an epoch. The training is
manually stopped when no improvement of the policy is observed.
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Figure 4.5 – An example rollout of the interface policy learned for the RST problem.
Shapes need to be superimposed, finger trajectories are indicated by
arrows. There are 5 steps passing between each image.

4.2.5 Results

We compare our trained agent to the optimal solution computed using Equa-
tion 4.4. This optimal solution is easily modelled as we defined both the analytic
solution of a user and of the interface. On an average of 100 episodes, the optimal
solution finishes an episode in 40 steps and obtains a reward of +0.5 per episode.

After a training of about 300k steps, the interface agent obtains very similar
results: on an average of 100 episodes, it finishes an episode in 41 steps and
obtains a reward of +0.4. It is visually impossible to separate the optimal solution
from the learned agent. An illustration of a rollout in the environment is given in
Figure 4.5.

4.3 Conclusions

We showed in this chapter that we are able to automatically re-learn an inter-
action protocol in controlled conditions: this is an important step toward both
adaptive interaction protocols and the automatic design of such interaction pro-
tocols when the optimal solution is unknown. We learned in this chapter that
human decision processes can be automated if their objective is properly defined:
once usability is correctly measured, the modelling of both the interface and the
user is feasible and the interface can be optimized using RL.

This RL problem is very challenging: real data cannot be used even though the
learned protocol must be usable by humans, and the value we want to optimize
on cannot be entirely explicited. Because we cannot effectively measure user
satisfaction, we proposed a setup in which user satisfaction is strongly correlated
to efficiency and effectiveness: in this case, we are able to optimize user satisfaction
indirectly by optimizing on performance metrics. With our assumption of optimal
user gestures, we were able to simulate a user and produce training data for
the agent. However, crafting such a deterministic user is only possible if the
interaction protocol solution is already known. Applications of this setup are thus
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limited to re-learning existing solutions and eventually adapting them during real
use.

In order to generalize to potentially unknown solutions, we cannot use a
handcrafted user model, but we also cannot use real human users: we have to
learn to synthesize coherent training data. The focus of Chapter 5 is to build
knowledge representation of human user touch gestures in order to learn a user
model. Such a model will be used in Chapter 6 to propose an entirely automated
setup allowing for the learning of interaction protocols when the optimal protocol
is unknown, i.e. when optimality may not be attainable.
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Chapter abstract

Because of the need for huge amounts of training data, user modelling is a
necessity to produce complex and potentially unknown interaction protocols.
However, providing a generic user model is obviously an overly complex task
considering all the prior knowledge required. Before considering the selection
process of which gesture to perform, we will learn what the properties of human
touch gestures are.

In this chapter, we focus on learning this specific prior knowledge: we use a
novel type of Variational Auto-Encoder (VAE) to automatically learn mean-
ingful features from a touch gesture dataset, assessing their quality through
reconstruction and latent space visualization.

Some of the work in this chapter is part of the following publication:

• Quentin Debard, Jilles Steeve Dibangoye, Stéphane Canu, and Christian
Wolf (2019). “Learning 3D Navigation Protocols on Touch Interfaces with
Cooperative Multi-Agent Reinforcement Learning”. In: The European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECMLPKDD).
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5.1 Natural Gesture Distribution Approximation

As stated in the preceding chapter, learning interaction protocols whithout
knowing the solution requires a user model to produce training data for our
interface agent: it is unrealistic to use human data or to deterministically model
the decision process of which gesture to perform. The question is how to learn a
model of this decision process for an episodic task?

Deciding which gesture to perform requires at first to determine what choice
there is, i.e. what gestures could be performed by a human user. These gestures
must be intuitive to the user and respect some intrinsic human concepts: physical
limitations, semantic correlation with the action to be performed in the environ-
ment and topological similarity between finger trajectories and spatial or temporal
trajectories of the action.

A good interaction protocol will try to use the most intuitive gestures possible
for a given action in order to maximize user satisfaction. However, the difficulty
with interaction protocol design is that maximizing user satisfaction can be a
competitive process to maximizing performance (effectiveness and efficiency). In
complex applications, there is a trade-off between user satisfaction and perfor-
mance, and the optimality of such a trade-off can be user-dependent. We expect
that if our user model is good enough, our interface agent will naturally converge
to an acceptable trade-off.

In order to build such a user model, we will focus at first in this chapter on
learning “what a good gesture is”, independently from a specific environment or
task.

5.1.1 Generative Models for Distribution Approximation

If we consider the space of all the possible gestures that can be performed on a
touch screen, our objective is to learn a subspace which corresponds to gestures
naturally performed by humans. To this end, we suppose the existence of a
training dataset of natural gestures X = {xi}, which have been collected from user
interactions. This training data can be collected without any manual annotation
as simple interaction traces. These trajectories do not need to be correlated to
the environment the agents will be working on, but a higher variability in the
trajectories will give the user model more flexibility toward the definition of a
solution. In our case, Itekube-7 (Chapter 3) is a good candidate for a varied dataset
of human touch gestures.

Conceptually, we want the most intuitive gestures to be very likely to be used
whereas more technical (but still natural) gestures are to be used in specific
contexts. This is what we call the natural distribution of touch gestures: we
want to learn an approximation of this distribution.
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For a proof of concept, we will restrain ourselves to two-finger gestures. Let
x∈X be an observation in the form of natural two-finger trajectories performed
by a human user. We define an observation as an N-length sequence of 4-tuples,
each 4-tuple consists of a pair of coordinates (x, y), one for each of the two fingers.
Considering normalized positions, X=[0, 1]4N is the space of observations of
length N. The gesture space X thus covers all possible pairs of 2D trajectories,
including trajectories which are anatomically impossible to perform by human
fingers. Human gestures are a small subset of this observation space, parametrized
by some latent properties.

We want to build a model capable of capturing latent properties producing
any natural gesture x from a latent representation z. Sampling values from z
should provide us samples of the manifold of natural human gestures. This
involves learning a distribution p(x|z) and to be able to evaluate it from a given z.
Restricting our simulated user to produce samples of the latent representation z
should therefore restrict it to produce natural gestures.

Several approaches exist for learning generative models of probability dis-
tributions from training data, among which are Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014) and Variational Auto-Encoders (VAEs)
(Kingma et al. 2013). Our definition of p(x|z) can be related to either the genera-
tive part of a GAN or the decoder part of a VAE. In this work, we chose VAEs for
two reasons:

• they are simpler to train and less sensitive to hyperparameters,

• and the latent space dimensions are more independent, due to the soft con-
straint put on the prior to be close to a multivariate Gaussian.

This last point is in fact extremely important: it ensures that the representation of
touch gestures we learn transition seemlessly from geometrically and semantically
close gestures. This property is illustrated in Section 5.3 and will be put to use in
Chapter 6.

The main drawback of VAEs is the fuzzyness of the generated samples: because
the code is sampled from a distribution (see the following equations), the gener-
ated examples tend to display some natural noise that can be detrimental in a
generation task. Our novel VAE architecture alleviates this problem by encoding
all the gesture properties in the code and letting the “drawing” process entirely
up to the decoder (see Section 5.3 for a comparison between architectures). With
our architecture, the gesture properties will show some natural noise related to
the sampling, but the drawing process of the gesture will be independent from
the sampling process.

The VAE is trained on the dataset X, approximating the distribution pθ(x) by
measuring the reconstruction error on a sample xi coded by an encoder E into a
code zi, then reconstructed into x̂i using a decoder D. To describe the problem
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from a probabilistic point of view, the probability pθ(x) of a sample x can be
decomposed into a prior and a likelihood as:

pθ(x) =
∫

pθ(x|z)pθ(z)dz (5.1)

where the prior on z is defined as a standard Gaussian distribution pθ(z) =
N (0, I). This choice of distribution is common in VAEs (Kingma et al. 2013). In
our case (continuous values), we can also impose that the likelihood is Gaussian
distributed:

pθ(x|z) = N (x|D(z, φd), σ2I) (5.2)

where D(z, φd) is the decoder of the VAE. The integral is difficult to evaluate, but
can be approximated by a point estimate z=qφ(x) from the variational distribution
q:

pθ(x) ≈ N (x|D(qφ(x), φd), σ2I) (5.3)

qφ(z|x) can be seen as an encoder, noted E(x, φe). In this case, we need to ensure
that qφ(z|x) is a good estimate of the true posterior pθ(z|x). This is done using
the Kullback-Leibler divergence, noted DKL. Considering the approximation error
for only a sample xi, the KL divergence becomes DKL(E(xi, φe)||p(z)). As stated
earlier, pθ(z) = N (0, I). If we use the L2-norm to measure the reconstruction
error, the total error can be written as a variation of the evidence lower bound
(ELBO) (Kingma et al. 2013):

ELBOi = ||xi − D(E(xi, φe), φd)||2 − β DKL(E(xi, φe)||N (0, I)) (5.4)

where β is a parameter allowing us to adjust the tradeoff between the reconstruc-
tion precision and the latent space regularity (Matthey et al. 2017). Ideally, this
parameter should be high enough for our latent distribution to get close to a
standard normal distribution. This would ensure the smoothness of our latent
space and favor semantic interpretations of the latent code z (see Section 5.3.3).
In practice, the complexity of this distribution and the limitations of our models
would cause the VAE to make poor reconstructions with such constraints. This
requires us to lower β to allow some distorsion of qφ(z|x) and adjust the recon-
struction/regularity tradeoff. We can then update φe and φd by minimizing this
error using backpropagation.

5.2 Recurrent Variational Auto-Encoder

Usually with VAEs, the decoder network produces fixed length outputs in
order to reconstruct the input. We can find encoder and decoder architectures
using Fully Connected Network (FCN), Convolutional Neural Network (CNN) or
Recurrent Neural Networkss (RNNs) in the literature. In our case, classically using
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Figure 5.1 – Architecture of the sequential VAE. The encoder in blue processes
input x to produce the latent code z by sampling it from a Gaussian
distribution, then the decoder in red reconstructs the input x̂ from z.
x can be a sequence of arbitrary length, where xi is a tuple containing
the finger positions at time i.

FCN or CNN produced poor, fuzzy reconstructions, not suitable to make satisfying
human-like gestures (see Figure 5.2). At one point, we made an important
observation: considering the sequence of finger positions that is a gesture, if we
are observing a continuous gesture, the semantic remains the same throughout
the sequence (rotation, translation...). In other words, the meaning of a gesture
is independent from its duration, although the parametrization might differ
(rotation angle, scaling factor...). We chose in consequence to encode the semantics
of the gesture in the code and leave the unrolling of the gesture through time
to the decoder: this is the reason behind the architecture of our sequential VAE
(Figure 5.1). This architecture allows us to:

• get rid of the fuzzy reconstructions by moving the sampling process to gesture
parameters,

• and be able to unroll the gestures to an arbitrary length, effectively generating
shorter or longer sequences of a semantically equivalent gesture.

The encoder is made at first of a Gated Recurrent Unit (GRU) unrolling on
timesteps. The last activation of this GRU is processed by two different Fully
Connected (FC) layers producing the mean and the variance of the latent Gaussian
distribution, from which the latent code z is sampled. The decoder then uses the
full code z at each timestep to produce the next finger positions, using its internal
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memory to unroll the features encoded by z to the needed length. This allows
our VAE to treat not only input of varying length, but also produce outputs of
varying length during inference. This can be used to reconstruct missing or noisy
datapoints, and in our case to produce gestures of the required length.

This architecture drastically reduces the natural fuzziness of VAE outputs com-
pared to static architectures: while the semantics encoded by z are noisy by nature,
the sequence is generated from the unrolling of the decoder, and these temporal
properties can be learned with low dependence from z because z is entirely ob-
served at each timestep. Basically, the dependence of temporal features to z is
reduced, and this helps in reconstructing closer gestures while maintaining the
properties encoded by z.

5.3 Experiments

We use a subset of Itekube-7 (introduced in Section 3.1.1) to train every VAE,
using gestures from the translation, pinch and rotation classes. All gestures are
sampled to 10 datapoints using dynamic sampling (Section 3.1.2). In consequence,
a gesture is represented as a tensor of size (10, 2, 2) containing 10 datapoints, each
datapoint being two (x, y) couples. The latent code size is set to 8. All VAEs are
trained for 50 epochs, a batch size of 128 and a learning rate of 0.005. We linearly
increase the value of β from 0 to its maximum value during the first half of the
training. This technique is known as warm-up (Sønderby et al. 2016) and is used
to prevent the early inactivation of latent units observed in variational free energy
minimization models (MacKay 2001).

5.3.1 Architectures

We will discuss in this section the results obtained with 3 different architectures
based on different features: a fully connected, a convolutional and our recurrent
VAE.

The hyperparameters for each architecture were optimized from experience.
Because of their important number, we will not display this grid search process. If
not explicitly stated otherwise, the default architectures used for these experiments
are the following:

Fully Connected VAE – The input is flattened to a vector of size 40. The
encoder is made of two FC layers of size 128 activated with ReLU. Two distinct FC
layers produce the respective mean and variance for a multivariate Gaussian from
which the code z is sampled from. The decoder is made of a FC layer of size 128

activated with ReLU, and a following FC of size 40 with no activation producing
the reconstructed gesture. The output is then reshaped to match the initial shape
(10, 2, 2).
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Convolutional VAE – The input is reshaped to (10, 4, 1). It means that convo-
lutions are applied in a spatio-temporal fashion, and we consider in consequence
a unique channel. No padding is used to apply convolutions, and batch nor-
malization (Ioffe et al. 2015) is applied to every convolutional layer (conv layer)
and transposed convolutional layer (trans conv layer) besides the last one. ReLU
is used as the activation function for every layer except the last trans conv one,
which has no activation function. The encoder is made of 3 conv layers and a max
pooling:

• a conv layer of kernel size 3x2 and a 1x2 stride producing 64 feature maps,

• a max pooling of kernel size 2x1 and stride 2x1,

• a conv layer of kernel size 3x2 and a 1x1 stride producing 128 feature maps,

• and a conv layer of kernel size 2x1 and a 1x1 stride producing 256 feature
maps.

The output of this last conv layer is a vector of size 256. This vector is processed
by two FC layers to produce again the mean and variance of the latent distribution.
The FC layer producing the variance is activated with the softplus function to
forbid incoherent values. Each latent value of z is then seen as a channel for the
decoder, i.e. the input size of the decoder is (1, 1, 8). The decoder is then:

• a trans conv layer of kernel size 3x1 and a 1x1 stride producing 256 feature
maps,

• a trans conv layer of kernel size 3x2 and a 1x1 stride producing 128 feature
maps,

• and a trans conv layer of kernel size 6x1 and a 1x1 stride producing 4 feature
maps.

This last trans conv layer produces vectors of size 10, so, after reshaping, we get
our 40 values to reconstruct the gesture. This upsampling process was motivated
by two remarks: first, put the emphasis for the decoder on temporal features rather
than spatial ones, falling back to the concept of semantic-encoding latent space,
and second this uses way less weights with respect to the number of features than
reconstructing the gesture in the convolution domain.

Sequential VAE – The architecture was detailed in the last section. As for
hyperparameters, the two GRU layers of the encoder have a hidden state of size
128. The first GRU layer of the decoder has a size of 256, and its second layer of
course as a hidden state of size 4 to generate a datapoint.
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Architecture Reconstruction KL-loss Total Loss
loss

FC 0.42 39.34 0.82

CNN 0.74 41.26 0.95

RNN 1.03 13.12 1.95

Table 5.1 – Comparison of best performing models for each architecture.

5.3.2 Reconstruction and Generation Capabilities

While VAEs are trained to minimize the combination of the reconstruction loss
and the KL-loss, this numerical value alone is not sufficient to assess the quality of
a model; visual results should also be taken in consideration. There are two main
reasons: the L2−norm is not perfect to describe the distance between two gestures,
as gestures with close spatial properties can have different meanings, and the
encoding of visually poorly correlated features by the VAE is also a desirable
quality. This property emphasizes on a natural semantic disentanglement of latent
features.

The numerical results for each architecture are displayed in Table 5.1. These
results were obtained using a β of 0.01, 0.005 and 0.07 respectively for the FC,
CNN and RNN architectures. This choice of β was motivated by the reconstruction
quality, the disentanglement and expressiveness of latent features and the quality
of generated samples by each VAE. It is important to note that the optimization
problem gets more complicated with the increase of β. This makes sense, con-
sidering we are asking the model to solve the same reconstruction task while
constraining even more the topology of the latent space. In consequence, results
in Table 5.1 have to be taken with a grain of salt. From this table, we can see
that the sequential VAE is seemingly the worst performing of all 3 with respect
to the global loss. As we just said, this can be explained by the bigger β: the
sequential VAE is in fact tackling a more complex problem. If we train the FC and
convolutional VAE with the same β, they are converging to a similar reconstruction
loss (even smaller), but their latent space and reconstructions are worse. Another
important observation is the KL-loss, smaller for the sequential VAE. This means
that its latent space will exhibit better topologic properties. As stated in the
beginning of this chapter, this will be very important for our user model.

An illustration of the differences between architecture reconstructions is given in
Figure 5.2. Both the convolutional and the fully connected VAE tend to reconstruct
closely the gesture: reconstructed datapoints are close to their original counterpart.
We can see however artifacts in the reconstructions, making it easy to distinguish
from real gestures: the convolutional and the fully connected VAE did not learn
the inherent smoothness of human gestures and seem to just try to fit datapoints.
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Figure 5.2 – Reconstruction examples using the different VAEs. For each architec-
ture, the first line displays reconstructed gestures while the second
displays the corresponding original gestures.
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The sequential VAE displays different properties: its reconstructions are smooth,
but sometimes tend to get further from the original gesture than the other VAEs.
So, considering the L2−distance between datapoints, its reconstructions are worse.
However, these reconstructions maintain the semantic of the original gesture while
displaying satisfying geometric properties: this is in our case a more desirable
property than straight close reconstruction in the L2−distance sense.

Figure 5.3 – Navigating the latent space learned by the VAE by displaying gestures
generated using different codes z. We set the default code to all zeros
(middle column). We then change the values of one variable at a time
in the range [−2, 2]. So, any code used in this graph will have at most
one non-zero value. Lines correspond to different modified latent
variables (dim=8). Columns correspond to different values.

5.3.3 Walking the Manifold Encoded in the Latent Space

Observing the reconstruction capabilities of the VAEs is more of a sanity check
rather than a proper estimation of the VAE quality. In order to really assess the
quality of the learned latent space, we must evaluate its topological properties.
A smooth latent space with poorly correlated latent variables is desirable if an
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Reinforcement Learning (RL) agent is to use this latent space to take action: its
exploration of the latent space will be faster and local features it may learn
during training will generalize more easily to different parts of the problem. To
illustrate this second statement, lets consider the continuity between code values
and properties of the corresponding generated gesture. If for a certain code
value, a gesture is generated, we expect small changes made to the code (say the
increment of a latent variable) to induce small changes to the generated gesture.
This property is enforced by the KL constraint onto the latent distribution.

We illustrate the sequential VAE latent space in Figure 5.3. Once trained, we feed
handcrafted codes to the decoder and observe the generated gestures. Because
we want to observe the features encoded by each latent variable, we set at first
the code to all zeros, then we alter the value of a latent variable one at a time.
The results displayed in Figure 5.3 are very satisfying: we can see that most
latent variables are encoding semantically meaningful properties. The first line
corresponding to variations of the first latent variables encode clockwise rotations
around an axis. The 5th and 8th variables encode translation-like gestures on a
different axis. So, the latent space is not only smooth, but also decently disen-
tangled, meaning individual latent variables encode particular and semantically
meaningful properties.

In order to not overload this thesis with similar graphs, we will not display
the corresponding latent space visualizations of the fully connected and the
convolutional VAE. The properties of their corresponding latent space was similar:
while some slight disentanglement could be observed for translation-like gestures,
most of the generated gestures were semantically correlated. These gestures
also shown the same “fuzzy” artifacts that can be observed on the reconstructed
gestures shown in Figure 5.2.

5.4 Conclusions

We proposed in this chapter a modelization of the natural gesture space using
a novel VAE architecture to automatically find a low dimension parametrization of
this space with specific topologic properties. This will allow us in the next chapter
to build a user model using this pre-trained VAE in order to produce data and
learn complex interaction protocols.

While applied to touch gestures in this thesis, we believe this sequential VAE
could see some applications in sequential data processing, for tasks such as the
reconstruction of an incomplete or a noisy signal, thanks to its varying input and
output length.
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Chapter abstract

In Chapter 4, we have cast the interaction protocol design as a Reinforcement
Learning problem and validated this approach on a problem with a known
solution. In Chapter 5, we have built representations of natural gestures using
unsupervised learning.
In this chapter, we will combine these works to propose a Multi-Agent Rein-
forcement Learning setup learning simultaneously a user and an interaction
protocol model. We combine in a novel fashion Reinforcement Learning and
Variational Auto-Encoders to craft a user model: this allows us to synthesize
training data for the interface agent without the need for human input. This
user modelling is mendatory for training interaction protocols with unknown
solutions because no optimal user can be analytically defined.
We will experiment on a 3D navigation environment, learning to navigate in
the 3D space to attain a target position. Along with the difficulties discussed
in Chapter 4, solving this problem will also require us to solve an ill-posed
mapping problem with no known optimal solution.
Work in this chapter is part of the following publication:

• Quentin Debard, Jilles Steeve Dibangoye, Stéphane Canu, and Christian
Wolf (2019). “Learning 3D Navigation Protocols on Touch Interfaces with
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Figure 6.1 – Intuitive casting of the human user as a RL agent for automatic in-
teraction protocol design. The user agent observes the environment
and produces gestures while the interaction protocol agent inter-
prets this gesture to produce the corresponding action in the virtual
environment.

Cooperative Multi-Agent Reinforcement Learning”. In: The European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECMLPKDD).

6.1 Multi-Agent Reinforcement Learning Setup

We now come back to learning our interaction protocol by modelling it with a
Reinforcement Learning (RL) agent. In Chapter 4, we proposed a setup allowing
for the automatic learning of already known interaction protocols. This method
was limited by the need for a simulated user to synthesize gestures as training
data for our agent: if the solution is unknown, we cannot analytically model user
gestures. The impossibility to train our interface agent from real data and the
unknown nature of an optimal solution compels us to learn a user model in order
to generate training data. Following the casting of the interaction protocol as a
RL agent (see Section 4.1.1), this user model should be able to produce coherent
human-like gestures for each state of the environment.

6.1.1 User Model

A simple intuition for such a user model could be to also use a RL agent to
model the user. This is illustrated in Figure 6.1. However, a naive implementation
of this solution does not work: without any proper constraint between the user
and the interface agent, there is no incentive for the agents to communicate using
human-like gestures. They will converge to simpler modes, the simplest one
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being the regression of one policy to an identity, letting the other agent solve the
problem by directly observing and taking action in the virtual environment. This
means that if we are to use a RL agent to take decisions as a user, we need to
constrain it to do so using human-like gestures.

As stated in Chapter 4, the goal of our interaction protocol is to maximize
usability, decomposed in three components: effectiveness, efficiency and user
satisfaction (more details in Section 4.1.2). For our user model to produce the
required training data, it needs to select an appropriate gesture given an environ-
ment state at each timestep. By appropriate, we mean:

• intuitive, allowing for the interface agent to maximize user satisfaction,

• and coherent with the current environment state and task, allowing for the
maximization of efficiency and effectiveness.

The coherence of gestures can be estimated in goal-driven environments and is
supposed to be the same for every user: the fastest way to successfully perform
a task is optimal in the sense of efficiency and effectiveness. Intuitivity however
depends on a multitude of conditions: physical constraints, knowledge transfert,
personal preferences... Satisfying those conditions effectively increase the conse-
quent user satisfaction of an interaction protocol. This is the most difficult part of
the interaction protocol design because user satisfaction is not directly measurable
while being extremly important to the overall quality of an interface.

Training a model to learn what gestures to perform with respect to the envi-
ronment state seems hardly feasible in a supervised fashion: we fall back to the
problems of the absence of measurable values to optimize on and the limited
amount of available data. There is however information to learn from observing
unlabelled gestures: the range of spatial and temporal properties of human-
performed gestures. Collecting unlabelled gestures is way less resource- and
time-consuming: simple interaction logs are enough. Modelling these latent prop-
erties may allow our model to learn constraints to generate human-like gestures.
Once this generative model is trained, we must also model the decision process of
which specific gesture to produce. In consequence, we designed a two-part user
model:

• one part of this model is trained to learn human gesture properties from a
limited interaction set using unsupervised learning. The training of this part was
described in Chapter 5: we used a Variational Auto-Encoder (VAE) to generate
data from Itekube-7. In the process, the VAE encoded gesture properties in its
latent space. If we discard the encoder of our VAE and use the decoder, we can
choose to generate arbitrary gestures by manually inputting a latent code.

• The other part of our user model will learn to produce a coherent latent code
with respect to the current environment state. This part is modelled by a RL
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agent. To summarize, our user model will be a RL agent producing codes
interpreted by a trained decoder, soft-constraining our user model to human-
like gestures; the policy of the user agent will learn to produce gestures by navigating
the latent space of the VAE.

Formally, like the interface agent, the user RL agent will have to solve a Partially
Observable Markov Decision Process (POMDP) (see Section 4.1.1 for a detailed
description). The cause however is different:

• the interface agent perceives an observation oi in the form of user gestures
while it takes action in the virtual environment. For the problem to be a fully
observed Markov Decision Process (MDP), the interface agent would need to
directly observe a state of the virtual environment. Because we chose not to
model long-term dependencies (processing pairs of time instants independently
from the past), this special case of POMDP can be solved like a fully observed
MDP, without internal memory.

• The user agent directly observes a state of the virtual environment, but its
action, i.e. the choice of code to be interpreted by the decoder as a gesture,
does not directly impact the environment. Instead, after being produced by
the decoder, the gesture is interpreted by the interface agent. In consequence,
the transition probability p(s′|s, au) is not fixed and depends on πi: such a case
breaks the MDP framework. Instead, we can consider that p is fixed, but there
is a probability distribution O for the agent to observe ou with respect to au
and s′. In our case, O is in fact entirely parametrized by πi. We can note that
instead of a classical POMDP, the set of states S in this case is equal to the set of
observations ω. Again, because we do not consider long-term dependencies,
this POMDP can be solved like a fully observed MDP.

As stated in Chapter 5, the most used gestures in Itekube-7 (statistically the most
intuitive) are close to an all-zeros code, the all-zeros code being the absence of
finger motion. The corollary is that unusual or hard-to-perform gestures are
coded with high values: it means that we can directly control how unlikely
we can authorize the gestures of our user model to be by limiting the norm of
the code produced by the RL agent. In consequence, our user model will not
be able to produce every humanly possible gesture; it will however be able to
use a consequent range of human-like gestures and will tend to choose likely
gestures while being able to measure semantic differences between them directly
from the code values. Because the interface agent will need to learn to interpret
these gestures from a semantic viewpoint, the more different the gestures are
for different actions, the easier its convergence will be: well-defined gestures for
specific actions will be a preferred convergence mode over less defined boundaries.
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6.1.2 Formalization

We formulate the task of jointly learning the interaction protocol and a user
model as a cooperative Multi-Agent Reinforcement Learning (MARL) problem, as
shown in Figure 6.2. Two agents are learned all together, each with its own policy
and Q-value estimator:

• We call Ai the agent learning the interaction protocol. Learning its policy πi
is the original goal of this work, as this agent is responsible for translating 2D
finger gestures into actions in a virtual environment. Its observations noted as
oi are the gestures produced by the user model during training or by a human
user during real use. The agent Ai takes action ai in the virtual environment
with respect to the gesture produced. The reward r perceived is shared with
the user agent Au.

• The user model U models a user performing a task in a virtual environment,
using the interaction protocol defined by the policy of Ai. Its purpose is to
replace human users during the costly pre-training phase of Ai by feeding
coherent training data to the interface agent. It is made of a RL agent Au
that observes a representation of the environment ou and outputs a code au
interpreted by a pre-trained VAE decoder D to produce gestures. We note this
oi = D(au).

These Au and Ai agents are trained to maximize the same objective function,
sharing the same reward r, which makes this problem a cooperative MARL problem.
It is however an unusual MARL problem: only Ai directly takes action in the virtual
environment, whereas Au acts indirectly by producing the input of Ai. Both agents
need to learn good behaviors for the setup to converge to a good solution. Because
the decoder is fixed, the agents will have to learn to communicate using gestures.

The method can be more formally described as follows. The task is a sequential
cooperative MARL setup where Au produces the observation of Ai and Ai does
not get any observation of the virtual environment. In what follows, we denote ot

.
as the observation of an RL agent at time t, at

. as the action at time t and rt
. as the

resulting reward from action at
. . π. will denote an agent policy. All symbols are

indexed by subscripts u or i, which stand respectively for the agent Au and Ai.
Let st be the state of the software environment at time t, for instance the viewpoint
in a building or the 6D pose of a mechanical object in a computer-assisted design
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Figure 6.2 – Cooperative MARL problem for jointly learning the interaction pro-
tocol and a user model. Generative model parts are blue and RL
agents are green. The user agent Au observes the environment and
produces a code interpreted by the decoder D as a user gesture. This
user gesture is observed by the interaction protocol agent Ai which
consequently produces an action in the environment. At the end of
this iteration, both agents receive a reward r strongly correlated to
efficiency and effectiveness.

problem concatenated to the target position. Then, a given time step t in our
sequential cooperative MARL setup will unroll as follows:

ot
u = st,

at
u = πu(ot

u),

ot
i = D(at

u), (6.1)

at
i = πi(ot

i),

ot+1
u = st+1,

rt
u = rt

i = r(at
i , st+1),

where rt
u=rt

i is the joint reward at time t computed using the reward function r.
For convergence purposes, these agents must be trained sequentially: when an
agent updates its policy, the other is just used during the rollout phase to collect
training data by letting the agents take action in the environment.

To clarify the usage of our MARL setup for learning adaptive interaction pro-
tocols, we are going to detail the complete processing chain of our adaptive
interaction protocol design, from untrained models to human use:
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1. At first, a VAE is trained on a set of unlabelled human gestures to approximate
the natural gesture distribution. This process is described in Chapter 5. The
goal here is to automatically learn human-like constraints on touch gestures
to be used by our user model. Once trained, the encoder is discarded and the
decoder is used as part of the user model.

2. Once the VAE is trained, we can use our MARL setup to learn a first version of
the interface agent. This is a generalization of our work in Chapter 4, allowing
for the learning of potentially unknown interaction protocols. From a human
perspective, this phase can be seen as a pre-training phase: this automated
training process is not meant to fully replace human supervision, but it allows
for the crafting of an interaction protocol usable by humans without using
human input. It is important to note that depending on the initialization of
the pre-training phase, the resulting interaction protocol might be substantially
different.

3. After the pre-training phase, the interaction protocol can be further tuned from
a few real interaction samples performed by specialists: this tuning step can be
used to alleviate unwanted biases or enforce a specific behavior. The reward
function will be different (and sparser) as we cannot expect human users to be
optimal at all times. At the end of this phase, we will have designed a generic
interaction protocol, only requiring human input during the fine-tuning of the
interaction protocol.

4. At last, the model can be used by the end user and will continue adapting from
use to further maximize user satisfaction by using the same reward function
as specialists. In practice, these interfaces could end up taking the form of
personal user profiles, saving interface models for specific applications.

During this thesis, we did not have enough time to implement the human fine-
tuning of the interface (step 3-4); we will in consequence discuss our work on the
pre-training phase (step 1-2) in the following.

6.2 Experiment: Learning a 3D Navigation Interac-
tion Protocol

In order to test the pre-training phase of our setup, we defined a navigation
task in a virtual 3D environment. Compared to our experiments in Chapter 4

on re-learning the Rotate-Scale-Translate (RST) protocol, there is no uniquely
accepted solution: mapping 2D gestures to 3D actions is an ill-posed problem.
In consequence, there is no evident transform to interpret user gestures and
design choices must be done. To this end, we extended the 2D toy problem to
3D, maintaining the user’s goal of moving a (now 3D) content to superimpose an
object over a non-moving object, as shown in Figure 6.3. As there is no simple
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Figure 6.3 – Representation of our virtual environment for 3D navigation. Two
views of the same scene are displayed, a first-person view on the left
and a fixed view on the right. The user must move in the 3D space to
attain the target position illustrated by a red arrow. The green arrow
is fixed to the current user view to help visualization: the task can be
formulated as superimposing the green arrow with the red one. User
gestures of the current timestep are displayed on the top-left while
the corresponding actions on the view/green arrow are displayed
top-right.

handcrafted way to simulate a human user, we use the multi-agent RL setup
illustrated in Figure 6.2.

6.2.1 Environment

The environment is illustrated in Figure 6.3. The 3D affine transformation to be
learned by the interface agent can be expressed using homogeneous coordinates
in 4 dimensions as a 4×4 matrix φ:

φ =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 , R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , t =

t1
t2
t3

 (6.2)

As we do not consider scaling (redundant with forward motion), the matrix is
totally parametrized by 6 coefficients: [τx, τy, τz, ρx, ρy, ρz], where τ. and ρ. are,
respectively, translation coefficients and Euler angles on the 3 axis. We limit the
Euler angles to ]−π, π] to ensure their unicity given an axis. Such a vector can
define transformations as well as object positions when using a fixed referential in
the environment. With this formalization, The user agent Au gets as observations
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the camera position vector and learns a policy over actions which are finger
trajectory vectors [l1

x l1
y l′1x l′1y l2

x l2
y l′2x l′2y ]. The interface agent Ai observes the

output of U and learns a policy over residual transformation vectors of the camera.
In other words, if st is the current st+1 = st + ai. We define the reward function
similarly to the reward used in the 2D problem described in Chapter 4:

r = −∑
i
( ||oi − ti||1 + ||oi − ti||2 )− 0.2, (6.3)

where {oi} and {ti} are respectively the vertices of the green and the red arrow
(see Figure 6.3). The difference with the 2D reward function is that each object
has 2 vertices instead of 3, and that vertices are in the 3D space.

6.2.2 Experimental Details

We chose the model-free off-policy actor-critic method Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al. 2015) described in Section 2.3.4. In our
setup, an epoch cycle consists of two phases: (i) a rollout phase on an episode,
where all quadruplets [state, action, reward, new state] are stored in the replay
memory of the agents; (ii) a training phase where quadruplets are randomly
sampled from the memory, batched (in sizes of 4096) and used to train the actor
and the critic of the agents. We define an epoch as 100 epoch cycles. The training
is arbitrarily stopped when no improvement on the metrics is observed. A training
session takes about 2 days on a Titan-X Pascal GPU.

Joint training of both, Au and Ai, was not successful. We suspect the added
variance and the moving value of state-action pairs for both agents as a source of
the problem. Similar to Boutilier 1996, we chose to train them in an alternating
manner: during an epoch, only one agent will be trained, while the weights of the
other agents are kept fixed.

We consider two ways for the two agents to communicate. The simplest one is
a two-instant communication: the decoder produces a gesture of only two time
instants, and the interface produces the corresponding action. It is simple, but
leads to non-smooth user gestures difficult to appreciate from a human viewpoint.
We also consider stacking time instants: Au produces a complete gesture of 10

timesteps, and Ai must produce the corresponding sequence of actions (9 if
there are 10 timesteps). In this case, a step from the RL perspective will contain
10 update steps of the environment. This decouples the update speed of the
agents from the sampling speed of the finger gestures, referred to as “Stacking” in
Table 6.1.

Architectures – In what follows, FCX refers to an FC layer with X hidden units,
with layer normalization and ReLU activation. The actor of Au is an MLP with two
hidden FC100 layers. The output layer is FC and activated with tanh, predicting
a vector of size 8 (the latent code z expanded by the VAE decoder D). Another
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Mean reward/ep. Mean #steps/ep. Nb. training steps

No Stacking 3.6±1.0 53±1 17.6M±0.4M
Stacking 0.5±1.5 56±4 24.6M±6.3M

Theoretical Opt. 5.0 40 N/A

Table 6.1 – Results on the 3D environment. The last line gives theoretical optimal
results based on the interface action amplitude, without considering a
naturalness constraint. The Mean reward/ep. is the mean cumulated
reward per episode obtained in the best performing epoch. The Mean
nb. steps/ep. is the mean number of timesteps needed to successfully
finish an episode in the best performing epoch. The Nb. training steps
is the number of environment steps that was needed to attain the best
performing epoch. Stacking improves usability but NOT efficiency.

FC100 layer is plugged to the first hidden layer, with an output layer producing
the estimate âi. The critic of Au is an MLP with two hidden FC100 layers. The
policy action is concatenated to the first hidden layer. A linear FC layer predicts
the value Q.

The actor of Ai is an MLP with two hidden FC64, and an output layer with
tanh activation. The output size is either 6 for the standard solution or 6x9=54 for
the stacked solution. The critic of Ai has the same architecture as the critic of Au,
except hidden layers are FC64.

6.2.3 Results

Quantitative results are given in Table 6.1. Each setup was reproduced with 3

different random seeds. We consider that a run has converged whenever all 100

episodes of an epoch are successful. Once it has converged, it can still improve by
solving episodes faster. This is measured as the mean number of steps needed to
solve an episode. The mean reward per episode is also correlated to the quality
of the interaction protocol, but should be interpreted differently. Indeed, a run
with a lower mean step per episode but a higher mean reward per episode is most
likely less satisfactory than a run with higher steps but lower reward. This is
because the first type of solutions tend to be less continuous with harsher action
changes, while the second is technically slower but goes in the direction of the
objective more smoothly.

“Stacking” and usability — the interaction protocols must also be observed
visually in order to assess their global quality: good interfaces should display
distinctive characteristics, such as a similar curvature between 2D trajectories
and 3D movements of the camera, or well defined classes for similar actions.
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Figure 6.4 – An example of 4 back to back frames from the MARL setup learning
the 3D navigation problem with instant stacking. We want to em-
phasize on the continuous aspect of user gestures (top-left) and the
semantic. We can see that the user agent is currently performing a
rotation-like gesture.

While stacking does NOT improve efficiency (as shown in Table 6.1), it makes the
interaction protocol more usable. The continuous aspect of gestures using instant
stacking is illustrated in Figure 6.4. The results of this experiments are published
in Debard et al. 2019.

We cannot fully assess the quality of this learned interaction protocol without
performing a user satisfaction study: while the efficiency and effectiveness of the
interaction protocol are good, we have no measurment of the user satisfaction. Our
setup however ensures that some properties of satisfying interfaces are provided:
because we only learn the interaction protocol, we need only consider the gesture-
related satisfaction, i.e. intuitivity and naturalness of gestures. Our setup favorizes
naturalness but cannot infer intuitivity, and this is the point that requires human
testing. Falling back to our step-by-step method for learning adaptive interaces
described in Section 6.1.2, this human testing corresponds to the third step. After
the pre-training of the interface, there are two possibilities:

• the interaction protocol is just not intuitive enough to be used correctly: it
is discarded and another interaction protocol with a different initialization is
tested.

• The interaction protocol is usable: it is further refined through human use to
ensure maximum usability before being deployed to end users.

This process will complete the training process of adaptive interaction protocols
while reducing the need for human supervision to later steps of interaction design.

6.3 Conclusions

We have described in this section an automatic learning process for complex
interaction protocols, allowing for the automation of effectiveness and efficiency
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maximization in interaction protocol design. This design method is meant to
achieve three goals:

• reduce the workload of User Interface (UI) designers by only requiring human
intervention during the intuitivity evaluation process,

• produce adaptive interaction protocols to better fit user expectations,

• and potentially discover new interaction protocols in complex environments
where the initial design of an interface is a difficult task.

We believe that the progressive replacement of handcrafted algorithms by Machine
Learning (ML) algorithms in UIs will gradually make these interfaces more flexible
and allow users to better manipulate them to their needs. Our model is a proof of
concept that can be enhanced and derived in many ways: define more specific
constraints to produce better solutions, combine the learning of different parts of
the UI, add an internal memory to the RL agent... The modularity of our setup can
allow for the tackling of virtually any interaction protocol design problem given a
proper training environment and correlated interaction logs.
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This chapter closes three years of work between Machine Learning (ML) and
Human-Computer Interaction (HCI). We can now summarize the contributions of
this thesis and discuss their limitations and perspectives.

7.1 Contributions

User Interface (UI) design is a systematic challenge for new technologies and
applications. As these applications are getting more complex, so does the UI
design process. At some point, analyzing and processing user data becomes
complicated for human specialists and ML starts to shine through automated
feature learning and decision making. However, good ML solutions require data
availability, a careful problem definition and a fitting architecture for the models
to correctly generalize to real-life applications: these were the points adressed
throughout this thesis to improve both the usability of ML in HCI and the quality
of the ML solutions.
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7.1.1 Supervised Learning for Touch Gesture Recognition

Gesture recognition is the first step toward user intent understanding: before
interpreting a gesture, we must correctly identify it. We defined a proper pipeline
to train such recognizers to be as generalizable as possible device- and user-wise.

• Because of the absence of public interaction touch gesture datasets, the first
step was to create a challenging dataset containing as much natural variance as
possible. We collected Itekube-7, composed of 6591 gestures distributed in 7

different classes and performed by 27 different users. Its goal was to propose
a challenging classification task with generalization in mind. The test set for
the classification task was made of gestures performed by users absent from
the training set, requiring a solution to perform well on unseen users. Users
were encouraged to show as much variety as possible while getting a minimal
protocol. We believe this dataset is the most challenging touch gesture dataset
publicly available as of now.

• We proposed a new feature preserving sampling method for touch gestures,
allowing for reduced fixed-length representation without interpolation. This
dynamic sampling method allowed us to reduce the number of datapoints by
about a factor 10 while still preserving good performance.

• We then compared baseline Deep Learning (DL) architectures on the classifica-
tion task using state-of-the-art models for sequential data. We observed through
these experiments the superiority of convolutional features for our problem.

• Because we wanted our solution to be usable in a maximum number of contexts,
the model needed not only be performing but also portable. This motivated
us to condense the capabilities of recurrent and convolutional features into
one cell: the Conv-MDGRU. We combined the local observation at a time of
Convolutional Neural Networks (CNNs) with the multi-dimensional recurrence
of Multi-Dimensional Long Short-Term Memorys (MDLSTMs) while further
reducing the number of weights by generalizing Gated Recurrent Units (GRUs)
to multi-dimensional recurrence. This architecture performed better than our
baseline CNN while having 10 times less weights.

7.1.2 Interaction Protocol Design

The following work focused on the interpretation of user gestures to actions
in a virtual environment, called the design of interaction protocols. This task is
inherently hard because of a number of reasons:

• the protocol must allow for the performance of desired actions while minimizing
the time required for the user to learn it,
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• different users have different expectations and prior knowledge, making a
unique interaction protocol hard to satisfy every user,

• user satisfaction is not directly quantifiable, making the conception and the
evaluation of an interaction protocol a tedious process requiring user feedback.

We proposed a novel approach to mitigate these problems, using Reinforcement
Learning (RL) to learn interaction protocols from synthesized training data. This
part can be seen as our most innovative work, using ML to help overcome a
recurring challenge in HCI.

• We cast the interaction protocol as a RL agent observing user gestures and taking
actions in a virtual environment. The agent had to solve a Partially Observable
Markov Decision Process (POMDP) problem, interpreting user intent through
observed gestures. A simplified experiment was used to test this concept: the
agent needed to re-learn an already known interaction protocol, namely Pinch-
to-Zoom. This experience was done in a 2D environment requiring a user to
superimpose an object over a target location. The object could be translated,
rotated and rescaled. User data was synthesized in a deterministic fashion
using our knowledge of the solution. The interface agent could only observe
user gestures (without information about the position of the object and target).
We showed that in these conditions, a RL agent is able to re-learn the optimal
interaction protocol for this task.

• In order to synthesize user data for unknown interaction protocols, we needed to
learn a user model. This meant learning knowledge representations usable by a
model to decide which gesture to perform. Thus, we trained a Variational Auto-
Encoder (VAE) on Itekube-7 to reconstruct gestures, illustrating the qualities
of its latent space for our task. We compared different encoder and decoder
architectures and proposed a novel sequential-VAE: instead of decoding each
latent variable by unrolling the code with a Recurrent Neural Networks (RNN),
the whole code is used for generation at each timestep. Firstly, this forces the
code to condense both spatial and temporal properties of the gestures, secondly
it allows us to control how long the decoder should unroll the code. Once
trained, the decoder can then generate gestures of arbitrary length. Our user
model was then a RL agent observing the environment and producing a code
interpreted by the trained VAE decoder to produce gestures. This constrained
our user model to produce gestures from the learned human gesture properties.

• As a final contribution, we made use of this user model to train an interface
agent on a 3D navigation environment. This environment was a generalization
of our earlier 2D environment, where the user had to move a camera in a 3D
space to reach a target position; in this case, the optimal solution is unknown.
We proposed a Multi-Agent Reinforcement Learning (MARL) setup to train the
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user and the interface agent all together where the agents learned to cooperate
in order to solve the task. We showed that the obtained solutions were getting
satisfying performance results while the user agent was constrained to the
learned human-like gestures.

7.2 Perspectives and Future Work

This thesis proposed new directions to design better and co-adaptive UIs. Every
contribution can be further developed and improved to generalize to more com-
plex contexts and tackle more real-life applications. We discuss in the following
section the improvements we did not have time to develop during this thesis and
their potential interest.

7.2.1 Real-Time Gesture Recognizer

During the first part of our work on gesture recognition, we limited ourselves to
discrete gesture recognition. In real case scenarios, we want our model to handle
real-time classification and early detection of the gestures. This could be done
using:

• a variant of our dynamic sampling saving transitions and uniformly dropping
the datapoint excess,

• and a hierarchical model combining short-sighted features on a low level with
a higher level recurrent model aggregating these features temporally.

This approach would also allow for the regression of potential gesture parameters
such as rotation angle or scaling coefficient. If we want this model to be used
in a multi-user context, the model must be able to perform some clustering to
group fingers by gesture. The higher level of our model should play a role in this
decision process as temporal information can help sort out ambiguous situations
(close fingers used for different gestures).

7.2.2 More Human-Like User Models

As of now, our user model is only constrained to produce its gestures from
the trained latent space of our VAE. While this constrain is enough to display
some human-like gestures, it does not take into account other important natural
constraints. For example, a human user will tend to minimize the effort required
to perform a gesture. This could be translated as minimizing the number of
different gestures as well as their complexity. The user model also needs to model
long-term dependencies if we are to work in environments requiring sequences of
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gestures to perform an action (click on a menu then select an action). This lead
will however be limited by the current state-of-the-art in RL: continuous control in
partially observable environments are hard-to-solve problems, and the existing
algorithms to learn such policies have trouble converging.

7.2.3 Memory-Based Interface Agents

The automatic design of co-adaptive interfaces still is a long way from being
solved. Building upon our work, we can enhance our current interface modeliza-
tion to better fit human expectations. The logical step to take as with the user
agent is to model long-term dependencies. The interface agent should use this
information to not only interpret sequences of gestures, but also propose more
human-like actions. There are two temporal properties we can think of right now:

• continuity, meaning that a continuous gesture should be interpreted as a contin-
uous sequence of actions,

• and correlation between the curvature of user gestures and the corresponding
actions. It means that variations in the local curvature of a gesture should be
reflected in the interpretation of the interface.

These conditions are important for the interface to be intuitive.

7.2.4 Adaptation During Real Use

Last but not least, the mendatory step to deploy these solutions in real condi-
tions is to find out how to integrate user feedback during real use to tune the
interface. Some signals can be used such as the repetition or the cancelling of a
gesture (most likely indicating a bad interpretation of the agent), but we can also
imagine direct feedback in the form of binary rewards: the possibility for the user
to hit a “happy face” or a “sad face”.

7.2.5 A Final Point

There is a lot of exciting work to do to propose more flexible and co-adaptive
interfaces. The most direct interest from this work may be the learning of more
robust gesture recognizers in difficult contexts. With a reasonable amount of work,
we believe there would be added value to re-learn current interaction protocols
and replace them with their RL counterpart. By doing so, each interface could
propose co-adaptation and fit individually to users. Eventually, with more robust
RL models and with better constraints, we can expect the automatic design process
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to help specialists design new interfaces for complex environments: the MARL
setup could propose prototypes for the specialist to evaluate.

Completly modelling human users is nonsensical with the current capabilities
of ML, thus the complete automation of UI design is impossible. We can however
already automate part of this process, and in consequence optimize these parts
with respect to collected data. This thesis aimed to take it a step further to
gradually automate more of this design process. Our possible uses of electronic
devices will grow with the quality of the interfaces: the more we blur the lines
between the man and the machine, the more we can expect from it; and Artificial
Intelligence is very likely to play an important role in this.
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