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Abstract

This paper presents a flexible method to reconstruct
simplified mesh surfaces from large unstructured point
sets, extending recent work on dynamic surface recon-
struction. The method consists of two core components:
an efficient selective reconstruction algorithm, based on
geometric convection, that simplifies the input point set
while reconstructing a surface, and a local update al-
gorithm that dynamically refines or coarsens the recon-
structed surface according to specific local sampling
constraints.

A new data structure is introduced that significantly
accelerates the original selective reconstruction algo-
rithm and makes it possible to handle point set models
with millions of sample points. This data structure
mixes a kd-tree with the Delaunay triangulation of
the selected points enriched with a sparse subset
of landmark sample points. This design efficiently
responds to the specific spatial location issues of the
geometric convection algorithm. It also permits the
development of an out-of-core implementation of
the method, so that simplified mesh surfaces can be
seamlessly reconstructed and interactively updated
from point sets that do not fit into main memory.

Keywords: Surface reconstruction, geometric con-
vection, point set simplification, dynamic level of detail
update, out-of-core reconstruction.

1 Introduction

The recent advances in 3D scanning technologies have
led to an increasing need for techniques capable of pro-
cessing massive discrete geometric data. We consider
the problem of modeling surfaces from unstructured
point sets obtained from 3D acquisition devices such
as range scanners. This task needs flexibility for three
main reasons. First, the complexity of a model may
have to change depending on application requirements
and hardware limitations. This typically involves over-
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sampling reduction, geometry simplification, and level
of detail management. Further, a model should be easy
to update when new data from additional scans or proce-
dural scan completion becomes available, or when ap-
plying smoothing or denoising methods. Finally, one
should be able to tune the parameter values involved in
the algorithms to get the desired result without restart-
ing the modeling process from scratch.

Most existing combinatorial surface reconstruction
techniques produce static results that cannot be updated
easily [1]. To go beyond this type of limitation, we have
developed a dynamic framework with point set simpli-
fication and reconstruction local update abilities intro-
duced in Allègre et al. [2] and based on a geometric
convection algorithm. In this paper, we review the ideas
and results presented in [3] that extend this work so that
large data sets can be handled efficiently (Fig. 1). We
present a data structure that significantly accelerates the
original selective reconstruction algorithm to process
point set models with millions of sample points. This

Figure 1: Dynamic surface reconstruction from a large
point set model: DAVID (3.6M points). A simplified
mesh was first reconstructed (left, 137k points, 4 min-
utes on Pentium IV 3GHz). Then the result was locally
refined on the right temple and hand (right, 175k points,
28 seconds).
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data structure mixes a kd-tree with the Delaunay trian-
gulation of the selected points enriched with a subset of
landmark sample points obtained from the kd-tree. This
design efficiently responds to the specific spatial loca-
tion issues of the geometric convection algorithm, and
is much less expensive than maintaining a global De-
launay triangulation. We also introduce sampling con-
siderations to guarantee the behavior of the simplifica-
tion operations. We further explain how the framework
presented can be extended to an out-of-core implemen-
tation of the method to reconstruct simplified mesh sur-
faces from point sets that do not fit into main memory.
Our method involves neither stitching nor consistent
orientation issues, but only the update abilities offered
by the geometric convection algorithm. We demonstrate
the effectiveness of our framework on various detailed
scanned statues with several million sample points. Our
method can reconstruct high-quality simplified triangu-
lated surfaces in a few minutes. Geometric detail can
then be recovered or reduced locally whenever needed
in a few seconds, which can make the method useful
for viewpoint-dependent surface reconstruction. The
abilities offered by the framework presented undeniably
contribute flexibility to the 3D shape reconstruction pro-
cess with reasonable performance.

The remainder of this paper is organized as follows.
We start with an overview of related research (Sec-
tion 2). Then we present a detailed analysis of the orig-
inal framework in order to highlight the key elements
that deserve special care (Section 3). We also deal
with the sampling properties that should be reflected by
the point set to guarantee the local thickness measure
used by the simplification procedure. Then we describe
our accelerated selective reconstruction algorithm (Sec-
tion 4) before generalizing to an out-of-core extension
(Section 5).

2 Related work

In the last few years, a great deal of work has been car-
ried out on surface reconstruction from data sets with
millions of sample points, including unorganized point
sets [4, 5, 6, 7] and sets of range images [8, 9]. These
methods are often used to produce a triangulated mesh
surface, which is a standard representation for fast vi-
sualization and geometry-processing algorithms. How-
ever, the data used to generate these meshes are gen-
erally overly dense, due to uniform grid sampling pat-
terns, and a mesh simplification step is required for use
in common applications.

Point set simplification techniques offer an alterna-
tive to the standard pipeline by introducing a simplifica-
tion step before the reconstruction process. These tech-

niques aim at reducing the redundancy of the input data
in order to accelerate subsequent reconstruction or visu-
alization. Subsampling algorithms decimate the point
set [10, 11, 12] while resampling algorithms compute
new point locations [13, 14, 15]. These techniques rely
either on oriented normals and local connectivity infor-
mation obtained from k-neighborhoods or on a global
Delaunay triangulation or Voronoı̈ diagram, which rep-
resents a significant part of a surface reconstruction pro-
cess that would take all the points into account.

Several algorithms that perform reconstruction and
simplification in a single framework have been stud-
ied recently. Boissonnat and Cazals [16] proposed a
Delaunay-based coarse-to-fine reconstruction algorithm
controlled by a signed distance function to an implicit
surface. Ohtake et al. [7] developed an algorithm that
resamples a point set using a quadric error metric, cou-
pled with a specific fast local triangulation procedure.
In both cases, the resulting sampling remains static, and
their results were not extended to handle update opera-
tions, especially the removal of sample points when the
level of detail needs to be lowered, or if additional data
become available (e.g., when streaming data on a net-
work, or during a digital acquisition project).

In Allègre et al. [2], we have tackled this limitation by
devising a dynamic surface reconstruction framework
in which the reconstruction becomes selective and evo-
lutive. The originality of the approach is to integrate
surface reconstruction, data simplification and dynamic
data insertion or removal, e.g., for updating the level of
detail, into a single framework. Starting from a dense
unorganized input point set, we reconstruct a simpli-
fied triangulated surface by means of a Delaunay-based
surface reconstruction algorithm called geometric con-
vection [17] coupled with a local point set subsampling
procedure. The Delaunay triangulation is constructed
only for the sample points retained in order to main-
tain a history of the reconstruction process. The recon-
structed surface can then be easily updated by inserting
or removing sample points without restarting the recon-
struction process from scratch. However, the method
lacks an efficient data structure to handle large data sets.

3 Reconstruction framework analysis

In this section, we briefly review the classic geomet-
ric convection algorithm described in [17] and how it is
embedded into a dynamic framework with simplifica-
tion and update abilities, as developed in [2]. We focus
on the geometric predicates and queries involved in the
surface reconstruction algorithm.
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Figure 2: Geometric convection towards a 2D point set. In (a), an enclosing curve is initialized on the convex hull
of the point set. The current edge, enclosed by a non-empty Gabriel half-ball, forms a Delaunay triangle (dark gray)
with the square point. This triangle becomes external, the curve is updated (b), and it continues to shrink. In (c), an
edge is found to block a pocket; it will be forced. The final result is shown in (d) with empty Gabriel half-balls.

3.1 Geometric convection

The geometric convection algorithm is a surface recon-
struction algorithm that proceeds by filtering the Delau-
nay triangulation of an input point set sampled from a
smooth surface [1]. This method has some similarities
with the Wrap [18] and Flow Complex [19] techniques.
The filtration is guided by a convection scheme related
to level set methods [20] that consists in shrinking an
enclosing surface under the influence of the gradient
field of a distance function to the closest sample point.
This process results in a closed, oriented triangulated
surface embedded in the Delaunay triangulation of the
point set, characterized by an oriented Gabriel prop-
erty [17]. This means that for every facet, the diametral
half-ball located inside the surface, or Gabriel half-ball,
contains no sample point.

Let P ⊂ R3 denote the input point set and Ŝ the
surface in convection. The convection scheme can be
completely achieved through the Delaunay triangula-
tion of P by removing the facets that do not meet the
oriented Gabriel property through an iterative sculpting
process that starts from the convex hull. The Ŝ surface
is a closed triangulated surface that is maintained at ev-
ery step, all the facets oriented inwards, and two meet-
ing facets can collapse locally, which may change its
topology. A local study (or a more global solution) is
required to dig into pockets that may locally block the
convection scheme, e.g., based on local granularity. The
algorithm is illustrated on a 2D point set in Figure 2.

The geometric evolution of Ŝ through the convection
process is guided locally by a geometric predicate Pog
and a geometric query Qdt, defined as follows:

(Pog) Given an oriented Delaunay facet pqr, test
whether it satisfies the oriented Gabriel property.
(Qdt) Given an oriented Delaunay facet pqr, find the
point s ∈ P such that pqrs forms a Delaunay tetra-
hedron enclosed in the half-space above the facet.

The half-space above an oriented facet is the half-space
facing the interior of the surface.

Assuming that the Delaunay triangulation of the in-

put point set has been constructed, Pog and Qdt are
both evaluated in constant time, and the overall com-
plexity of the algorithm is linear in the number of De-
launay cells traversed by the surface.

3.2 Selective reconstruction

Considering as a limitation that the original geometric
convection algorithm takes all the data into account, the
idea of our selective reconstruction is to associate it with
a local subsampling procedure. In presence of an overly
dense input point set, our goal is to produce a simplified
triangulated surface that remains close to the sampled
surface, up to an error tolerance, by adapting the sam-
pling density to the local geometry variations.

Every time a new sample point p ∈ P is incorporated
into the surface in convection Ŝ, the idea is to remove
the sample points in P that do not belong to Ŝ in a circu-
lar neighborhood around p whose radius reflects the lo-
cal geometry. The geometric information held by p has
to be sufficiently representative of the point positions in
this neighborhood. The selective reconstruction algo-
rithm therefore relies on a procedure that, given a sam-
ple point, detects and removes all the points in its neigh-
borhood that are not geometrically significant. Redun-
dancy is characterized by a radius that adapts to local
curvature and thickness, and decimation is performed
in a fraction of this radius, called the simplification ra-
dius. In practice, we compute the simplification radius
based on a local thickness measure.

The remainder of this section is organized as fol-
lows. In Section 3.2.1, we formalize the notion of the
local thickness measure that we introduced in [2, 21]
to control the simplification radius. The sampling con-
ditions under which the discrete estimation of this mea-
sure responds to certification are also examined. In Sec-
tion 3.2.2, we then explain how the simplification radius
is controlled, based on the local thickness measure. Sec-
tion 3.2.3 provides a detailed analysis of the selective
reconstruction algorithm in terms of geometric predi-
cates and queries.
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3.2.1 Local thickness measure

The simplification radius is computed using a local
thickness measure that we introduced in [2, 21]. The
goal is to decimate the point set according to the local
geometry while maintaining good sampling conditions
for the reconstruction algorithm. This requires a mea-
sure reflecting both the local curvature of the surface
and the local thickness of the solid that it bounds. The
distance to the medial axis takes these two aspects into
account [22]. However, this distance is not easy to es-
timate from a point set [23, 24]. As an alternative, we
developed a local thickness measure with a local defini-
tion and easy evaluation from a point set.

Continuous setting

Let S denote a closed surface. We wish to estimate the
local thickness of the solid bounded by S at any point
x ∈ S. The main idea of our measure is to grow a
ball B around x until a criterion related to curvature is
met by B ∩ S, or until B touches S, which implies that
B ∩S is no longer a topological disk. The radius of this
ball is called local thickness at point x. This principle is
formalized by the following definition.

Definition 1 (Local thickness). Given a closed sur-
face S, the local thickness lt(x) at a point x ∈ S for a
fixed geometric precision ρgeom of the solid bounded by
S is defined as:

lt : S → R+, x 7→ lt(x) = min{rgeom(x), rtopo(x)}

where rgeom(x) and rtopo(x), respectively, denote a ge-
ometric radius and a topological radius at point x. Let
n(x) denote a unit normal vector at a point x ∈ P (re-
gardless of its orientation). These two radii are defined
as follows:

• rgeom(x) is the distance from x to the closest point
y ∈ S such that:

|n(y) · n(x)| ≤ ρgeom, ρgeom ∈ [0,1]

• rtopo(x) is the distance from x to the closest point
y ∈ S such that the ball B(x, ‖xy‖) ∩ S is not a
topological disk.

The closeness between two points on the surface S is
considered in the sense of the Euclidean distance. The
geometric radius rgeom reflects the thickness in regions
where the surface is highly curved. Curvatures are not
explicitly estimated, but rather we are studying the vari-
ations of normal directions to measure the local curva-
ture of the surface, which will avoid some complex cal-
culations in the discrete setting. The geometric radius is

thus computed as the distance to the closest point such
that the deviation of the normal direction exceeds a cer-
tain threshold. The ρgeom value is the level of contrast
that we wish to preserve when estimating the thickness,
which determines the tolerated variation range of the
normal directions in the neighborhood of the measure
point with respect to the normal direction at this point.
This makes it possible to take into account the smallest
features of the surface, or, in contrast, to consider the
geometry variations at a more global scale, which may
be important in practice to process noisy data.

The rtopo radius bounds the local thickness measure
to a topological disk on the surface. This radius reflects
the distance between the surface patch of the measure
point and the closest one. Assuming that S is a smooth
surface, the radius rtopo(x) at a point x can also be de-
fined as the distance from x to the closest point y ∈ S
such that the sphere centered at x with radius rtopo(x)
is tangent to S at y, i.e., |n(y) · xy

‖xy‖ | = ρtopo with
ρtopo = 1. Thus rtopo can be evaluated analytically, and
to tolerance it by tuning the ρtopo to values lower than 1.
This also makes it possible to devise an algorithm con-
sidering normal directions in the discrete setting.

Figure 3 illustrates the local thickness at two points
on a smooth planar curve. At x1, the minimum radius is
the topological one, whereas at x2, the minimum radius
is the geometric one. It should be noted that the geo-
metric and topological radii are not necessarily relevant
when considered independently. For instance, depend-
ing on the local curvature, the value of the geometric
radius can be influenced by the proximity of another
surface patch. In this case, the topological radius takes
over from the geometric radius. Conversely, the crite-
rion controlling the topological radius may be satisfied
by a point that is too far away from the measure point,

x1

rtopo(x2)

x2

S

rgeom(x1)

rtopo(x1)

n(x2)

rgeom(x2)

n(x1)

Figure 3: Local thickness measured on a smooth planar
curve. The radii of the two circles represent the local
thickness lt at two points x1 and x2.
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so that the geometric radius is the most relevant.
The local thickness can be computed analytically for

surfaces or curves in an explicit or parametric represen-
tation (Fig. 4, top). Because of its local nature, this mea-
sure is not easy to link to the local feature size as defined
by Amenta and Bern [22], although they may be close
to each other in some cases (Fig. 4, bottom). A differ-
ent but related idea has been developed by Boissonnat
and Oudot [25] in a Lipschitz surface sampling frame-
work. A direct link with our study is the definition of a
radius at any point that takes the local variations of the
surface into account. Given a surface S, they define the
k-Lipschitz radius at a point p as the radius of the largest
ball B centered at p such that S ∩ B is the graph of a k-
Lipschitz bivariate function. They prove that guarantees
similar to those obtained with ε-samples of smooth sur-
faces can be obtained from a sample of a Lipschitz sur-
face S such that any point of S has a sample point at a
distance less than a fraction of the Lipschitz radius of S.
However, the authors do not discuss the implementation
of their measure. In our study, we are more concerned
with the estimation of our measure in the discrete set-
ting so as to propose a simple algorithm applicable to a
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point sample on an unknown surface.

Discrete setting

This local thickness measure can be directly extended
to a finite point sample on a closed smooth surface S
equipped with surface normal directions.

Definition 2 (Discrete local thickness). Given a point
sample P on a closed smooth surface S, the local thick-
ness l̃t at a point p ∈ P for fixed precisions ρgeom and
ρtopo is defined as:

l̃t : P → R+, p 7→ l̃t(p) = min{r̃geom(p), r̃topo(p)}

where the radii r̃geom(p) and r̃topo(p) at point p are
defined as follows:

• r̃geom(p) is the distance from p to the closest point
q ∈ P such that:

|n(q) · n(p)| ≤ ρgeom, ρgeom ∈ [0,1]

• r̃topo(p) is the distance from p to the closest point
q ∈ P such that:

|n(q) · pq
‖pq‖

| ≥ ρtopo, ρtopo ∈ [0,1]

The definition is similar to the one in the continuous
setting, the discrete topological radius r̃topo being toler-
anced by the ρtopo parameter.

The validity of this definition, and its relation with the
continuous setting, depends on the properties of P with
respect to S. In the next section, we examine the sam-
pling conditions under which the discrete local thick-
ness measure is well defined.

Sampling conditions

We determined sampling conditions guaranteeing that
the discrete local thickness is defined and consistent
with the continuous measure. We provide the condi-
tions independently for the geometric radius (Condition
1) and for the topological radius (Condition 2). See Fig-
ures 5 and 6 for illustrations.

Condition 1 There exists a constant C ≥ 1 such that
for every point x ∈ S, if there exists a point y ∈ S such
that arccos(|n(x) · n(y)|) > C arccos(ρgeom), then
there exists a point p ∈ P such that ‖xp‖ ≤ ‖xy‖ and
|n(x) · n(p)| ≤ ρgeom.

If Condition 1 is satisfied by the point sample
P , this means that for any point x ∈ S, the dis-
crete radius r̃geom(x) toleranced by ρgeom is smaller
than the continuous radius rgeom(x) toleranced by
cos(C arccos(ρgeom)).
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n(y)

n(x)

n(p)
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p

Cα

Figure 5: Illustration of Condition 1. On the figure, α
represents the angle arccos(ρgeom).

Condition 2 For every point x ∈ S, if there exists a
point y such that B(x, ‖xy‖) ∩ S is not a topological
disk, let z ∈ S be the closest point from y such that
|n(z) · xz

‖xz‖ | < ρtopo. Then there exists a point p ∈ P

such that ‖xp‖ ≤ ‖xz‖ and B(x, ‖xp‖) ∩ S is not a
topological disk.

This condition means that the radius r̃topo parameter-
ized by ρtopo is lower than rtopo parameterized by ρtopo.

x

y

z

n(z)

p

S

Figure 6: Illustration of Condition 2.

These sampling conditions imply a minimum den-
sity of the point sample that is linked to the parameters
ρgeom and ρtopo. However, it is worth mentioning that
there is no upper bound, i.e., the sampling can be denser
than necessary without altering the local thickness esti-
mation.

In practice, one important question is how to choose
the values for the ρgeom and ρtopo parameters. In our se-
lective reconstruction framework, the value of ρgeom is
user-specified. The value of ρtopo should be set accord-

ing to the sampling conditions. However, given a point
set, it is hard to check whether it satisfies these condi-
tions. In all our tests on merged range scans, which are
generally very dense, we used ρtopo = 0.9. Ways to
compute ρtopo for a given point set, as well as the re-
lationship between the geometric and topological radii
warrant further investigation and will be addressed in
future work.

3.2.2 Simplification radius control

Based on the previous discrete local thickness measure,
the simplification radius for a sample point p ∈ P is
computed as a fraction of the local thickness at this
point:

rsimp(p) = α.l̃t(p), α ∈ [0, 1]

where α ∈ [0, 1] is a factor that controls the density of
the point sample that results from the selective recon-
struction algorithm and its distribution near sharp fea-
tures. We call this factor the anticipation factor. Its
effect is illustrated in Figure 7. Decimating with α = 1
results in skinny triangles near sharp features, where the
sampling density increases too rapidly. Setting α to a
value that is less than 1 makes it possible to anticipate
these variations in the subsampling process and to ob-
tain a smooth density gradient near sharp features, as
shown in Figure 8.

This nearly results in a locally uniform sampling and
triangles with a good aspect ratio. In practice, we set its
value to 0.5, which generally provides a good tradeoff
between sampling density and triangle quality. After
the simplification, the sampling distribution will only
reflect the local thickness of the object, which is intu-
itively related to the local feature size. This sampling is
consequently more predisposed to surface reconstruc-
tion algorithms than an initial overly dense sampling.

3.2.3 Algorithm analysis: predicates and queries

In addition to the previously defined Pog predicate and
Qdt query, the selective reconstruction algorithm re-
quires a query Qnn defined as follows:
(Qnn) Given a point p ∈ P , incrementally return its
nearest neighbors in P .

If R̂ ⊂ P denotes the set of removed sample points at a
given time, then Pog, Qdt, are evaluated within P \R̂ at
that time. Since many sample points may be discarded,
constructing the Delaunay triangulation of the entire in-
put point set may be uselessly expensive. In this case,
other predicates and queries are needed to make the tri-
angulated surface evolve on the fly. Evaluating Pog
now involves an additional query Qhb and a predicate
Pct defined as follows:
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(a) (b) (c) (d)
α = 1.0 α = 0.7 α = 0.5 α = 0.3

Figure 7: Selective reconstruction results obtained with decreasing anticipation factors (fixed ρgeom and ρtopo).

Cut view

Top view

α = 0.5α = 1

(a) (b)

Figure 8: Effect of the anticipation factor on the sampling distribution near a sharp edge. Sample points are repre-
sented with their simplification regions. In (a), α = 1; the sampling density after the selective reconstruction process
changes rapidly near the edge, which results in skinny triangles and high valence vertices. In (b), α = 0.5; the
sampling density changes more progressively. The arrows show the direction of the shrinking surface.

(Qhb) Given a facet pqr ∈ Ŝ, report the points in
P \ R̂ located inside the Gabriel half-ball of pqr.
(Pct) Given a point p ∈ P \ R̂, test whether it con-
flicts with a tetrahedron.

The question of how to efficiently evaluate Pog, Qdt,
and Qnn arises. A kd-tree data structure was used in [2]
to report the sample points located inside the Gabriel
half-ball of a facet and to search the nearest neighbors
of a sample point. For a facet that does not satisfy Pog,
the search space for Qdt can be reduced to its Gabriel
half-ball. However, these half-balls may contain a large
part of the input point set, especially at the beginning
of the reconstruction process (see Figure 2(a), for ex-
ample). Moreover, when Pog is satisfied and a pocket
is detected, the search space for Qdt can extend to the
entire half-space above the facet.

The main limitation of the algorithm regarding per-
formance is the lack of visibility of ”what lies ahead”
of the evolving surface in the unexplored domain dur-
ing the convection process. To handle large data sets

efficiently, a better localization of geometric queries is
required. In Section 4, we show that performance can
be considerably improved by dynamically maintaining
a partial Delaunay triangulation of the data.

3.3 Local update

The geometric convection technique (selective or not)
can be used locally to update the reconstructed surface.
This is useful to add or remove data, or to change the
level of detail of the reconstruction. We proposed a lo-
cal reconstruction update algorithm that uses the Delau-
nay triangulation of the sample points retained in the
reconstructed surface. This triangulation maintains in-
formation on the relative order in which the surface tra-
versed the Delaunay cells. When inserting or removing
data, the reconstruction history is locally invalidated in
a conflict region, and the locality of the convection pro-
cess is then exploited to update the reconstruction and
restore the history.

During the reconstruction process, constructing the
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Delaunay triangulation of the retained sample points
makes it possible to locally update the reconstructed
surface by adding or removing sample points in a dy-
namic fashion. This functionality takes advantage of the
discovery relation induced by the convection scheme
on the set of Delaunay cells traversed by the surface.
This relation is stored in the cells that have been vis-
ited (Fig. 9). When inserting sample points, these points
conflict with a set of Delaunay cells that form a conflict
region. This region is retriangulated and the discovery
relation between Delaunay cells is restored by restart-
ing the reconstruction process from its boundary parts
located outside the current surface. The surface can step
back locally when some cells can no longer be discov-
ered. When removing sample points, the conflict region
cells region are the cells attached to the points to be re-
moved. More details are given in [2].

To locally change the level of detail of a reconstructed
surface, a region of interest and a local ρgeom value are
first defined. All the sample points removed in this re-
gion are rehabilitated, and the Delaunay cells whose
circumsphere intersects the region of interest form the
conflict region. The internal Delaunay vertices are re-
moved and the selective reconstruction process restarts
as described above, by taking the local simplification
parameter into account.

4 Efficient implementation

This section describes how the selective reconstruction
can be made efficient and appropriate for large data sets.
Our first goal is to accelerate the evaluation of the pre-
viously mentioned Pog predicate and Qdt query. This
is achieved by first structuring and reducing the search
space covered by these operations, based on a partial
Delaunay triangulation of the input point set. Spatial
search is then carried out through a kd-tree data struc-
ture with an optimized algorithm. At the end of the sec-
tion, we describe an out-of-core selective reconstruction
algorithm that mixes the in-core technique with the lo-
cal update algorithm to handle point sets that do not fit
into memory.

4.1 Data structure and accelerated algorithm

An appropriate data structure is required to efficiently
evaluate the oriented Gabriel predicate, the Delaunay
cell query, and the nearest neighbor query involved in
the selective reconstruction algorithm. We rejected the
possibility of using a global Delaunay triangulation of
the input point set, and we underlined that the use of a
kd-tree only is not a perfect alternative. It is well suited
for nearest neighbor queries. However, it can be heavy

to use for oriented Gabriel predicate evaluations, and it
is clearly not adapted for Delaunay cell queries.

Without some structure information on the domain
bounded by the surface in convection, all the points
contained in the Gabriel half-balls must be reported by
the kd-tree and tested to respond to the Delaunay cell
queries. The search domains can be very large, espe-
cially at the beginning of the reconstruction process,
which is inefficient. To reduce these search domains,
our solution combines a kd-tree with the Delaunay tri-
angulation of the sample points retained in the evolv-
ing surface, since it is already used for update purposes.
We enrich the unexplored part of this triangulation with
landmark points that help structure the unexplored do-
main.

Data structure Let us consider the Delaunay triangu-
lation of the retained sample points at one step of the
reconstruction algorithm. Every facet of the shrinking
surface is the interface between two cells; we call front
cell the one that is enclosed in the surface. Front cells
are connected to opposite vertices on the surface and
give information on the extent of the unexplored do-
main. However, the part of their circumsphere located
inside the surface can enclose a larger spatial domain
than the Gabriel half-balls. The Delaunay triangulation
of the retained sample points is therefore not sufficient
to reduce the search space for the spatial queries in-
volved in the convection algorithm: additional sample
points are required to ”break” large front cells.

We begin with a set of landmark sample points ob-
tained from a kd-tree structure with a threshold on the
maximum number of points per leaf. In every leaf cell,
the point that is the closest to the centroid is retained as
a landmark (their density will be discussed later). The
Delaunay triangulation D̂ of these points is then built
and enriched with the corners of a bounding box. The
surface is initialized on the the bounding box, and the
reconstruction process can then be run benefiting from
smaller front cells that will help to accelerate the evalu-
ation of both Pog and Qdt. In parallel, spatial search is
delegated to a kd-tree data structure that stores the en-
tire input point set, with a specific algorithm that will be
described later.

Accelerated algorithm The accelerated algorithm
dynamically updates the Delaunay triangulation D̂
throughout the reconstruction process by inserting re-
tained sample points and removing unretained land-
marks so that the latter do not affect the final result.
Here we exploit the property that the Delaunay cells that
become external to the surface remain until the end of
the process, which is not the case for internal cells. Ex-
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Figure 9: Local update on a curve reconstructed by geometric convection from a 2D point set. The result of the initial
reconstruction is shown in (a) with the four discovery relations on the cells of the Delaunay triangulation that were
traversed (Ri). A circular refinement region has also been defined. In (b), the sample points located in this region
conflict with the set of colored cells. The R3 relation is broken; the reconstruction process restarts locally. In (c), the
reconstruction has been updated.

(a) (b) (c)

Figure 10: Accelerated selective reconstruction towards a 2D point set. In (a), an enclosing curve is initialized on a
bounding box. A Delaunay triangulation has been built from its corners and a set of landmarks (filled square points).
The current edge is enclosed by a non-empty Gabriel half-ball: the front vertex lies inside. Then, the point that forms
a Delaunay triangle with the edge is searched within the disk that circumscribes the front cell (the square-dot point).
The point set is then locally decimated around the point retained (cross points). In (b), the point retained was inserted
in the triangulation and the curve continues to shrink. The facets attached to the corners of the bounding box are
forced. The final result is shown in (c).

ternal cells are naturally protected from any subsequent
vertex insertion or removal.

We continue with the notations of Section 3.1 to de-
scribe the algorithm. An illustration in 2D is provided
in Figure 10. To check whether an oriented facet pqr of
the surface Ŝ satisfies Pog, we consider its front cell σ
in the current Delaunay triangulation; its circumsphere
is denoted as S. We call front vertex the vertex of σ
that is opposite the facet; its position is denoted as s.
The Gabriel half-ball of the facet is finally denoted as
B, and the half-space above the plane that supports it as
H. The first step to evaluate Pog is to check whether s
lies inside or outside B.

1. If s ∈ B, then the Pog predicate is not satisfied. The
Qdt query is then performed in (P \ R̂)∩S ∩H, which
corresponds to the set of points that conflict with σ. If
this set is empty, then pqrs forms a Delaunay tetrahe-
dron in P \ R̂.

2. If s /∈ B, it it not guaranteed that Pog is satisfied.
To evaluate the predicate, we first obtain all the points in

the set (P \R̂)∩B through Qhb. If this set is not empty,
then Pog is not satisfied and Qdt is then performed in
the set (P \ R̂) ∩ B.
In the case where Pog is satisfied but a pocket is
detected, then Qdt is performed in the set of points
(P \R̂)∩S∩H that conflict with σ. If this set is empty,
then pqrs forms a Delaunay tetrahedron in P \ R̂.
Every time a new Delaunay tetrahedron is formed from
a facet pqr and a point x, then x is inserted into the
Delaunay triangulation provided x 6= s, and the surface
is updated. Note that any facet attached to vertices of
the bounding box should be opened, i.e., the query Qdt
should be performed, even when the predicate Pog is
satisfied.

We now discuss the choice of the landmark points.
The main benefit of these points is at the beginning of
the process, where Gabriel half-balls may contain many
sample points. As their size decreases, this benefit also
diminishes, because the density of these points becomes
insufficient. However, small Gabriel half-balls can be
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processed more efficiently. If this density is too high,
then a great deal of time may be spent removing un-
desired landmarks. As the final simplification rate de-
pends to a large extent on the shape and on the ρgeom

value, the optimal number of landmarks is not easy to
determine. In practice, choosing one landmark for a few
thousand points (between 1k and 10k) is sufficient to
limit the spheres that circumscribe front cells to a few
hundred points in the worst case and obtain a significant
acceleration of the selective reconstruction process.

4.2 Accelerated spatial search

In the accelerated selective reconstruction algorithm,
the Pog predicate is first evaluated by localizing sub-
sets of sample points that conflict with front cells or that
fall into Gabriel half-spheres. When the returned set of
points is not empty for a given facet, then the point that
forms a Delaunay tetrahedron with the facet has to be
found (Qdt). Without information on the structure of
the input point set, every point in this set is a potential
candidate and thus needs to be tested. To reduce the
number of tests, we order them based on a kd-tree data
structure.

We first focus on the simple case where a facet of
the surface is such that its front vertex is located inside
the Gabriel half-ball of the facet. We start by searching
for the non-empty leaves of the kd-tree that are likely
to contain points that fall within the region bounded by
the circumsphere of the front cell, restricted to the half-
space defined by the facet; we call this region C. This
is achieved through a depth-first traversal of the kd-
tree. If a kd-tree cell lies completely inside C, then the
leaves of the corresponding sub-tree are returned. The
leaves that intersect C only partially are also returned.
Testing whether a kd-tree cell intersects C involves two
predicates: a sphere/box overlap test and half-space/box
overlap test [26]. A counter that gives the number of re-
maining points in a leaf avoids testing empty kd-tree
cells.

When non-empty leaves are reported, the next goal
is to obtain the point that forms a Delaunay tetrahedron
with the facet, with an average complexity better than
linear in the number of points contained in the leaves.
Our algorithm proceeds incrementally, starting with the
sample point that maps to the front vertex of the facet as
a candidate. The set of leaves reported for the facet are
stored in a queue denoted as L, and the facet is denoted
as pqr.

1. While L contains more than one element:

(a) Take one point in each kd-tree leaf of L that
falls into C, if existing. Let M denote this set
of points.

(b) Search M for the best point candidate c, that
is the point such that the circumsphere of
pqrc contains no other point of M , based on
Pct.

(c) Remove from L the empty cells and the cells
that do not conflict with tetrahedron pqrc.

2. Search for the best candidate from the remaining
points.

The case where the facet has its opposite vertex out-
side its Gabriel half-ball is treated in a similar fashion,
except that conflicts are first tested within the reported
leaves that intersect the Gabriel half-ball in order to de-
termine whether the facet satisfies Pog. As soon as the
predicate is found to be unsatisfied or if a pocket is de-
tected, then the search is pursued in order to find the
Delaunay candidate.

The method rapidly discards outlier leaves, i.e., those
that are the least likely to contain the right candidate.
However, it is often difficult to decide between the re-
maining leaves, since the candidates can ”jump” from
one leaf cell to another. When the number of remain-
ing leaves stagnates, we stop the process and switch to
a linear search among the remaining points in order to
prevent any computational overhead of testing conflicts
between leaf cells and triangulation cells. In practice,
the overall gain per facet is typically 10% to 20% of
conflict tests between a point and a tetrahedron (Pct).

5 Out-of-core selective reconstruction

P P1

Prep

S1

...

Geometric
convection

Spatial
subsampling

Spatial
partitioning

Local
refinement

P2
Local

refinement

Pn
Local

refinement

S2

Sn

Srep

Out-of-core In-core

Ssimp

Figure 11: The pipeline of our out-of-core selective re-
construction algorithm.

Starting from a large and dense input point set
that cannot be stored in main memory, our goal is
to produce a simplified triangulated surface that fits
into memory. A common strategy to simplify large
unstructured meshes that cannot be entirely loaded into
memory consists in partitioning the input data into
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(a) (b) (c)

Figure 12: Accessible new data vs. inaccessible new
data in 2D. We consider the input point set (a). In (b)
and (c), the two new points in the rectangle are loaded.
In (b), these points cannot be reached with the recon-
struction (bold curve) from Prep (bold points), whereas
they can be reached in (c) where the reconstruction is
finer.

clusters and then processing each one independently
in-core [27, 28, 29]. This strategy does not extend
easily to surface reconstruction from large unorganized
point sets. Since no connectivity information between
the different parts is available, stitching and orientation
issues arise [5]. In our framework, we propose to
circumvent this problem by maintaining some kind of
global connectivity information based on the Delaunay
triangulation of a subset of representative points, and
process each cluster independently through the local
update algorithm. Our algorithm proceeds in three
steps that are schematized in Fig. 11 and summarized
below:

1. The input point set P is filtered through a regular
grid to obtain a subset of representative sample
points Prep and a partition of P into clusters
P1 ∪ P2 ∪ . . . ∪ Pn = P .

2. The Delaunay triangulation of Prep is built and the
classic geometric convection algorithm is run on
this point set.

3. For every subset Pi, the points that it contains are
loaded into memory and then the reconstruction is
locally refined in the corresponding region of space
using the local update and selective reconstruction
algorithms.

While partitioning the input point set in the first step,
we wish to quickly extract a reduced set of represen-
tative points giving an approximate idea of the global
shape. This sample is then used in the second step to
produce a coarse reconstruction. This reconstruction
step builds a discovery relation between a set of Delau-
nay cells that partition the entire data domain. This rela-
tion will be the basis for subsequent local reconstruction
updates. Even if the initial reconstruction is not topo-
logically correct and misses a few small features, this

will not affect the quality of the final result; errors will
be automatically fixed by local updates. However, from
a computational point of view, it is preferable to start
these updates with a sufficiently precise reconstruction.
Indeed, major revisions of the surface may be expen-
sive, both in time and memory. In order to limit them,
the final surface should be accessible from the surface
reconstructed from Prep in the sense that it should be
enclosed in the union of Gabriel half-balls of the shrink-
ing surface (Fig. 12). Note that this condition is not
mandatory to obtain a correct reconstruction. In prac-
tice, we simply filter the input point set on a grid with a
fixed resolution.

The initial filtering and partition step is achieved by
reading the input point set three times. During the first
pass, we compute the smallest axis-aligned bounding
box, which we next subdivide into a regular grid. In
the second pass, for each non-empty grid cell the sam-
ple point that is the closest from the center is computed.
This set of sample points forms the set Prep. During
this pass, we also count how many points fall into each
grid cell. We next define a recursive binary partition of
the grid structure with a user-specified maximum num-
ber of sample points per leaf; each leaf cell represents
a cluster Pi. The maximum population threshold for
each cluster should be set according to the amount of
memory available on the target machine. During the
third pass, the points are distributed among the different
leaf cells. Depending on their number, the content of
the clusters may be written in separate files on disk, or
they may be filled and processed one at a time, which
requires additional reading passes.

In Step 3, for each cluster Pi the set of cells of
the current Delaunay triangulation that conflict with its
points must be determined. To avoid multiple point
locations in the Delaunay triangulation, conflicts are
tested against the smallest axis-aligned bounding box
of the points in Pi. We search for the Delaunay cells
whose circumsphere intersects this bounding box. This
is achieved by first locating the Delaunay cell that con-
tains the center of the box and then extending the con-
flict region by recursively testing the neighboring cells.
The result is a connected set of Delaunay cells that is
used to initialize the local reconstruction update pro-
cess. For spatial search queries, we construct a kd-tree
from all the points inside the conflict region. This set in-
cludes Pi and may also include some points outside Pi

attached to Delaunay cells in conflict with the bounding
box of Pi, which guarantees that the different refined
parts correctly merge together. The local update pro-
cess is then achieved, as described in Section 3.3.

Two steps of the reconstruction process are illustrated
on the LUCY model (14M points) in Figure 13. The
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boundaries of the different parts may be visible in the
final result. However, the method produces no discon-
tinuity in the sampling density. These boundaries can
be completely eliminated by simply enlarging the clus-
ters so that they contain neighboring sample points up to
a distance that depends on the simplification parameter
ρgeom (Fig. 18).

(a) (b)

Figure 13: Two reconstruction steps for the LUCY

model. In (a), the initial surface has been reconstructed
from the representative points (25k) and a first local up-
date step has been performed (bottom-left). In (b), one
more cluster has been loaded and the reconstruction has
been updated.

6 Results and performance

We implemented our extended dynamic surface recon-
struction framework in C++ on a Linux platform us-
ing the Computational Geometry Algorithm Library,
CGAL [30]. We use CGAL for constructing Delaunay
triangulations and rely on filtered predicates for robust
conflict tests.

Here we demonstrate the effectiveness of our
framework on several large point-set models
that were obtained from laser-range scanning

(a) (b)

(c)(d)

Figure 14: Some screenshots of our dynamic recon-
struction interface. In this session, the face of the ST.
MATTHEW model (original: 26M points) was refined.
In (a), the result of an initial reconstruction has been
loaded (time: 4 seconds). In (b), an update region has
been selected and the reconstruction is shown refined
in (c) and (d) (time: 11 seconds).

(Figs. 1, 15, 16, 17, 18, 19). The LUCY and ST.
MATTHEW models were reconstructed using the
out-of-core selective algorithm. For both in-core and
out-of-core reconstruction, the user must provide a
value for the error tolerance ρgeom, which determines
the level of detail. An initial selective reconstruction
is performed, and the result can then be customized
through local update features. We developed a graphic
user interface (Fig. 14) to load a reconstructed simpli-
fied model from disk and interactively change its level
of detail locally using the tool described in [2]. Timings
and memory usage for initial selective reconstructions
as well as for local updates are reported in Table 1. All
the results presented here were obtained on a Pentium
IV 3.0GHz, 2GB RAM workstation. These timings
include the preprocessing time required to build the
kd-tree data structure(s), select the representative and
landmark sample points, and construct the initial De-
launay triangulation(s). Table 2 summarizes the overall
execution profile for different in-core reconstructions.

Simplification performance The size of the initial
simplified models is typically between 1% and 5% of
the size of the original point set, which often suffices
to preserve the shape of scanned objects at a mid-scale
level, and even at fine scale if the point set is very redun-
dant. The method is capable of producing high-quality
simplified models directly, without the need of a subse-
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quent mesh fairing step. The majority of the mesh ver-
tices have valences between five and seven, and most
facets have good aspect ratios.

Computational performance For in-core selective
reconstructions, we set the number of landmark points
to 1 for 2k sample points. The preprocessing time was
less than 12 seconds in all tests. According to our exper-
iments, the accelerated selective reconstruction method
runs up to 20 times faster than the original one. The
computational overhead involved by update operations
in the Delaunay triangulation is largely recovered by the
reduction of spatial search domains. For out-of-core re-
constructions, the LUCY model and the ST. MATTHEW

model were split so that each cluster contained fewer
than 3.5M points; the resulting number of clusters was
8 and 15 respectively. The clusters were slightly en-
larged (2% of the bounding box diagonal) in order to
make their boundaries invisible. The number of initial
representative points was set to 1 for 1k sample points
and the initial reconstruction took less than 10 seconds
in both cases. For each part, the refinement then took
less than 2.5 minutes.

Execution profiles show that evaluating Pog and Qdt
is by far the most costly task in the selective recon-
struction algorithm. While we reduced spatial search
domains, the overall cost of spatial search queries still
remains proportional to the number of facets through
which the surface passes, which is the bottleneck of the
current method. Memory usage is also relatively high
due to the storage of both a kd-tree and a Delaunay tri-
angulation.

In the initial selective reconstruction step, our method
runs slower than the surface reconstruction techniques
with simplification proposed in [7], and also requires
more memory. However, our method can then perform
localized updates at interactive rates, while the recon-
structions in [7] cannot evolve so easily. Our method
does not involve stitching, and our results are guaran-
teed to be combinatorial manifolds. The dynamic ap-
proach is also powerful because it does not require start-
ing from a well-behaved point sample, which is an ad-
vantage for out-of-core surface reconstruction, or even
for streaming surface reconstruction.

7 Conclusions and future work

We have proposed a data structure with a selective re-
construction algorithm that efficiently reconstructs sim-
plified mesh surfaces from millions of sample points in
a dynamic framework. The simplification procedure re-
lies on a local thickness measure that makes sense in
both the continuous and the discrete settings, assum-

ing certain sampling conditions on the input point set.
The reconstructed surfaces can be dynamically refined
or coarsened, benefiting from the same data structure.
We have also proposed an out-of-core selective recon-
struction algorithm that can be scaled for input point
sets that do not fit into memory.

Our method makes dynamic surface reconstruc-
tion practicable for large data sets obtained from
laser range scanning, which may be an alternative to
the standard surface reconstruction-mesh simplification
pipeline. The user can also completely customize the
reconstruction in order to emphasize particular details.
When visualizing a large object, the precision of the re-
construction can be adapted to the viewpoint or to an-
other region of interest at an interactive rate. An ef-
ficient dynamic surface reconstruction framework may
be also useful for processing point set streams on a net-
work, since it does not require random access to the
data.

In the near future, we plan to further improve the
computational performance of our accelerated frame-
work by reducing the number of spatial queries. In-
formation on conflicts could be shared between several
facets in order to save spatial queries. Another research
direction would be to locally relax the global Delaunay
property by choosing approximate candidates and re-
pairing errors on the fly when needed.

We also would like to extend the selective reconstruc-
tion algorithm to resampling, in order to produce piece-
wise smooth surfaces from noisy point sets or sets of
range images, following Ohtake et al. [7], for exam-
ple. Finally, we plan to extend the geometric convection
algorithm to reconstruct surfaces in a streaming fash-
ion. This would be a way to improve the scalability of
the technique and to incorporate the result into an ef-
ficient stream processing pipeline for further geometry
processing.
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