
The HybridTree: Mixing Skeletal Implicit

Surfaces, Triangle Meshes and Point Sets

in a Free-form Modeling System

Rémi Allègre ∗, Eric Galin, Raphaëlle Chaine, Samir Akkouche

LIRIS CNRS, Université Claude Bernard Lyon 1, France

Abstract

In this paper, we present a hybrid modeling framework for creating complex 3D
objects incrementally. Our system relies on an extended CSG tree that assembles
skeletal implicit primitives, triangle meshes and point set models in a coherent
fashion: we call this structure the HybridTree. Editing operations are performed
by exploiting the complementary abilities of implicit and polygonal mesh surface
representations in a complete transparent way for the user. Implicit surfaces are po-
werful for combining shapes with Boolean and blending operations, while triangle
meshes are well-suited for local deformations such as FFD and fast visualization.
Our system can handle point sampled geometry through a mesh surface reconstruc-
tion algorithm. The HybridTree may be evaluated through four kinds of queries,
depending on the implicit or explicit formulation is required: field function and gra-
dient at a given point in space, point membership classification, and polygonization.
Every kind of query is achieved automatically in a specific and optimized fashion
for every node of the HybridTree.

Key words: shape modeling, implicit surfaces, triangle meshes, point sets,
blending, free-form deformations

∗ Corresponding author.
Email addresses: remi.allegre@liris.cnrs.fr (Rémi Allègre),

eric.galin@liris.cnrs.fr (Eric Galin), raphaelle.chaine@liris.cnrs.fr
(Raphaëlle Chaine), samir.akkouche@liris.cnrs.fr (Samir Akkouche).

URL: http://liris.cnrs.fr/remi.allegre (Rémi Allègre).

Preprint submitted to Elsevier Science 10 May 2006

1 Introduction

For the purpose of modeling complex free-form shapes, a large number of
geometric representation have been developed, each with specific properties
and limitations. For certain modeling operations, some surface representations
are thus more advantageous than others. Our goal is to overcome this kind
of restriction by mixing multiple shape representations into a single coherent
modeling framework that takes benefit from the complementary advantages
of the different models. We focus here on three fundamental representations:
implicit surfaces, triangle meshes and point sets.

Implicit surfaces [1,2] are powerful for representing objects of complex geome-
try and topology. They naturally lend themselves for blending [3] and CSG
Boolean operations, and can be deformed by space warping techniques [4].
Pasko et al. [5] and later Wyvill et al. [6] have proposed two hierarchical mo-
dels that incorporate Boolean, blending and warping operations in a unified
system. We have contributed to develop the BlobTree model [6] that is char-
acterized by a combination of skeletal primitives, rather than R-Functions, in
a tree data-structure. The BlobTree has proven to be an intuitive and effec-
tive tool for modeling and animating complex and realistic organic shapes [7].
However, in this framework as in most implicit modeling frameworks, local de-
formations are difficult to implement and are restrictive. Visualizing complex
implicit surfaces is also a computationally expensive task.

In contrast, triangle meshes can be efficiently visualized thanks to common
graphic hardware. These surfaces can be edited interactively by a variety of
powerful tools, such as free-form deformations [8] or Laplacian editing [9],
that provide very intuitive local control over geometry. However, combining
parametrically defined surfaces with Boolean operations is a complicated task,
which is prone to topological inconsistencies. Polygonal meshes also do not
naturally blend themselves together.

Point sampled geometry, that can be obtained from scanning devices, can be
efficiently visualized and edited through point-based implicit surface models,
such as Moving Least Squares [10]. This kind of representation is strongly
dependent on the sampling density of the input point set and extrapolating
reliable topological information can be a hard task. A connectivity structure
can be provided by a surface reconstruction process [11].

In this paper, we describe a hybrid shape representation mixing implicit
and polygonal mesh representations for incremental modeling of complex 3D
shapes. This paper extends and improves the framework presented in [12] in
several ways. Our model is characterized by a tree data-structure that com-
bines skeletal implicit surfaces, triangle meshes and point set models by means

2

of Boolean, blending and warping operations, including free-form deforma-
tions. We call our model the HybridTree, which may be seen as a generalization
of the BlobTree [6]. We evaluate this structure on-the-fly through three funda-
mental queries: field function, gradient and point membership classification,
and a polygonization process. The originality of our model relies in the evalua-
tion system that dynamically switches from one surface model to the other so
as to use the most suitable representation for every type of editing operation.
The core of our current implementation is a dual skeletal implicit/triangle
mesh representation for every node. Each kind of node in the HybridTree is
evaluated automatically in a specific and optimized fashion, depending on the
formulation required by each operation. To handle point set models, we rely
on an intermediate mesh representation that is obtained through the recon-
struction technique proposed in [13].

In our system, the user can perform Boolean, blending and warping on either
skeletal implicit, triangle mesh or point set data without worrying about the
nature of the objects that are manipulated. Point sets are a new feature of
our model that allows us to directly deal with digitally acquired objects. This
paper develops improved methods for evaluating our model more efficiently,
e.g. through point membership classification queries. We also present a new
local polygonization technique for blending nodes that allows to reduce com-
putation time significantly for objects that blend together. All the algorithms
are described in detail with performance analysis.

The remainder of this paper is organized as follows. In Section 2, we provide
an overview of related shape modeling frameworks. Section 3 describes the
architecture of our system and present how implicit and mesh representations
are combined together. We explain in Section 4 how fundamental queries are
performed on the HybridTree, and detail our polygonization algorithms in
Section 5. Applications to complex shape modeling are discussed in Section 6.
Eventually, in Section 7, we conclude and present future work.

2 Related work

Modeling complex 3D shapes, either from scratch and/or from existing sur-
faces, e.g. acquired with scanning devices, is an active research area in Ge-
ometric Modeling and Computer Graphics. Conversion techniques from one
model to the other make it possible for objects in different representations to
coexist and interact in the same environment through a unified representation.
Recent developments in implicit, mesh and point set modeling have lead to
new interesting solutions to tighten the gap between these three kinds of repre-
sentations, from the surface editing point of view. The strategy that consists
in combining the abilities of implicit and mesh models into a single hybrid

3

model has received attention only recently for efficient geometry processing
and shape modeling.

2.1 Conversion techniques

Techniques to translate geometry from the implicit to the polygonal mesh re-
presentation or from the polygonal mesh to the implicit representation have
been extensively studied, but still remain a challenging research field. In the
Computer Graphics community, state-of-the-art implicit surface meshing tech-
niques include 3D-space cell decompositions [14,15], particle systems [16], and
surface marching methods [17,18]. Recent work in Computational Geometry
focused on how to produce a mesh approximation of an implicit surface with
guaranteed topology and geometry [19,20,21]. A polygonal mesh surface can
be converted into an implicit surface either through surface reconstruction
techniques from point sets [22,23,24] or from triangle meshes [25,26].

2.2 Implicit surface editing

In recent work, discrete implicit representations have been proposed as a
general-purpose model for editing complex shapes. The level set framework
proposed by Museth et al. [27] is based on a distance field sampled at the ver-
tices of a voxel grid. The system provides conversion algorithms from many
other representations, including point sets and polygonal meshes, and a wide
range of editing tools. This model is memory consuming and the quality of
the result is dependent on the resolution of the grid. The Adaptively Sam-
pled Distance Fields introduced by Frisken et al. [28] rely on a hierarchical
structure that provides local control over geometric error. In constrast, the
framework in this paper manipulates a continuous implicit representation and
preserves existing surfaces when possible. As other implicit surface models,
these representations also do not accommodate large deformations.

A hybrid system based on the the F-Rep model by Pasko et al. [5] that mixes
volumetric and function implicit representations has been studied in [29]. The
proposed framework relies on a conversion to voxel representation so as to
make both representations to interact in a unified fashion.

Schmitt et al. [30] have proposed a framework for local deformation of
functionally-defined implicit surfaces. They rely on specific skeletal elements
and field functions to simulate free-form deformations. This approach is not
as intuitive as mesh deformation tools and does not offer as many degrees of
freedom.

4

2.3 Mesh surface editing

Surface mesh editing has been recently enriched with new techniques based
on differential coordinates. The Laplacian representation encodes the location
of each vertex relatively to its neighborhood, which provides an approxima-
tion of the Laplacian of the underlying surface. Sorkine et al. [9] developed
local deformation and blending tools that preserve geometric details. All op-
erations require to solve least-squares systems, which can be achieved at in-
teractive rates for not too dense meshes. A similar approach based on the
discrete Poisson equation was introduced by Yu et al. [31]. Their technique is
formulated by manipulation of the gradients of the mesh. The mesh surface
is retrieved by solving the least-squares system resulting from discretizing the
Poisson equation with Dirichlet boundary conditions. In both methods, mesh
blending requires to solve a vertex matching problem between correspond-
ing mesh boundaries. The meshes that are blended together should have near
equal edge length, which may require an initial remeshing process.

Kanai et al. [32] have proposed a method for cutting and pasting mesh parts.
After selection of mesh parts of interest, the correspondence between boundary
vertices is first established. A registration process is applied between the two
boundaries and a B-spline function is used to interpolate vertex locations
smoothly. Using this technique, Funkhouser et al. [33] developed a new kind
of ”data-driven” mesh modeling framework. Starting from a mesh model, the
user can select parts to edit thanks to an interactive segmentation algorithm,
and then query a mesh database for similar parts. The desired parts can be
extracted from the retrieved models and then merged smoothly with the base
mesh.

Polygonal mesh blending is also closely related to shape interpolation and
morphing techniques [34]. A source polygonal mesh and a target one can be
locally interpolated so as to achieve local blending effects. Related work in
this domain include the work by Alexa [35], in which Laplacian coordinates
are linarly interpolated. Xu et al. [36] proceed by non-linear interpolation of
gradient fields by solving Poisson equations defined on meshes. This approach
involves numerous parameterization and remeshing issues [37,38]. The very
limitation of mesh blending based on morphing methods is that the source
and target models should have the same topology.

2.3.1 Point-based modeling

Due to the recent advances of 3D digital acquisition, shape modeling from
point-sampled geometry has also attracted particular attention for a few years.
The Moving Least Squares implicit surface model introduced by Levin [39] has

5

proven abilities for both interactive surface editing [10] and physical simula-
tion [40]. Its major interest is that it can handle digitally acquired surfaces
without preliminary surface reconstruction step. Explicit information about
topology is not maintained, which has advantages for some operations. When-
ever neighborhood information is needed, connectivity relations based on k-
neighborhoods are computed on-the-fly using a spatial search data-structure.
However, establishing correct connectivity relations is not always a trivial
problem, that depends on the sampling distribution of the points on the input
surfaces [41,42]. Moreover, the sampling density has to be updated frequently
to maintain a coherent surface, which requires surface reconstruction steps.
While the original Moving Least Squares fitting technique used to be capable
of representing smooth surfaces only, an extended model proposed by Fleish-
man et al. [43] can now handle sharp features robustly, but at the expense of
decreased performance.

The variational technique presented in [44] generates an implicit surface from
point-sets via an interpolation scheme based on compactly supported radial
basis functions. The resulting shapes can be locally controlled in an intuitive
way by acting on the constraint points. The evaluation may be performed
at interactive rates using an octree data-structure. However, this approach
remains computationally demanding when manipulating dense point sampled
geometry, and sharp features are difficult to handle in this framework.

2.3.2 Hybrid modeling techniques

Depending on the surface representation, some operations cannot be per-
formed easily in a direct way. In some cases, this issue can be addressed with
the help of an intermediate representation. Over the past few years, hybrid
models have been investigated by several authors for this purpose. In the field
of geometry processing, some specific problems may be efficiently solved us-
ing a hybrid modeling approach [45]. For shape modeling, this approach has
attracted attention for mesh deformation and blending. Several implicit mo-
dels have been used to deform meshes [46,47,48]. Decaudin [49] and Singh and
Parent [50] introduced mesh blending techniques based on an intermediate
implicit representation that requires the input meshes to be star-shaped or
locally star-shaped. In the first method, the resulting shape is completely re-
triangulated, while the second one only retriangulates blending regions using
the Marching Cubes algorithm [14].

6

3 The HybridTree

The HybridTree model relies on a tree data-structure whose leaves can hold
either complex skeletal implicit primitives as described in [51], triangle meshes
with manifold topology or point set models. Those models are combined by
Boolean, blending and warping operations located at the nodes of the tree.
Warping nodes include affine transformations, Barr deformations [52] and free-
form deformations [8]. Constructive operations are binary whereas warping
operations are unary operations.

Figure 1 shows the HybridTree structure of a winged snake-woman model.
The snake-woman model (a) has been entirely built from skeletal implicit
primitives. Using Boolean difference, only the body has been conserved, which
has been then blended with the Igea point set model (b) so as to obtain the
result in (c). The wings of a mesh model of the Victory of Samothrace (d)
have been extracted by intersecting the model with a box. The wings and the
modified snake-woman model have been finally blended together in (e).

Blend

Intersection

Implicit surface

Implicit surface

Point set

Triangle mesh

(134k points)

(1 point)

(250 splines)

(187k triangles)

Implicit surface
(1 box)

Difference

Blend

(a)

(b)

(d)

(c)

(e)

Fig. 1. The HybridTree structure of a winged snake-woman model.

The evaluation of the HybridTree is achieved in an incremental way by recur-
sively traversing the tree data-structure. The architecture of our evaluation
system is presented in Figure 2. Each pole corresponds to a geometric represen-
tation that provides the set of operations for which it is the most well-suited.
Arrows depict the gateways from one model to the other, that correspond to
conversion procedures. Starting from an implicit, mesh or point set object, it
is first converted on-the-fly into the required representation before applying
a given operation. The gateways available in our current implementation are
depicted by solid arrows in the diagram. Skeletal implicit surfaces and triangle
meshes are currently the core of our system. Every node of the HybridTree can
generate both a potential field in space and a triangle mesh. Point sets mo-

7

dels are plugged through a surface reconstruction technique that produces a
triangle mesh representation. The completeness of the system is thus achieved
by transitivity. Conversion from the point set representation to the implicit
one could be performed directly using Moving Least Squares or variational
techniques. However, these techniques are not compatible with our skeletal
implicit model, that requires the signed distance function to the surface to be
reliably evaluable everywhere in space. Depending on the sampling density,
converting a triangle mesh into a point set model may require a resampling
process, as proposed in [19], that is not currently included in our system. Con-
version from a skeletal implicit surface into a point set is the object of current
work.

Point sets

Fast
visualization

Free−form
Deformations

Point membership
classification

Skeletal implicit surfaces Triangle meshes
Blending

Fig. 2. The HybridTree’s evaluation system.

We convert point set models into triangle meshes using the convection-driven
surface reconstruction technique developed by Allègre et al. in [13], that offers
user control over the level of detail of the resulting mesh. An application of
this technique is illustrated in Figure 3. The input point set on the left has
134,344 points, uniformly distributed on the surface. The center and right
images show the reconstruction results. Given a prescribed level of detail, the
points set has been automatically simplified while reconstructing the surface
so that the resulting mesh only incorporates 31,126 vertices (76% decimation)
and 62,323 triangles. The result was obtained in 64 second on a Pentium IV
3.0GHz - 1GB RAM workstation.

Fig. 3. Illustration of the surface reconstruction technique on the Igea model. Left:
original point set (134,344 points); Center and right: reconstructed mesh (31,126
vertices, 62,323 triangles).

The HybridTree is evaluated through three fundamental queries and a poly-
gonization process that are implemented in a specific fashion for each kind of

8

node. Field function queries at a given point in space are performed when-
ever the implicit formulation is required. We essentially rely on the implicit
formulation to achieve blending operations. Gradient queries allow to obtain
the exact normal at sample points. Some operations only require to know
whether a point lies inside or outside the surface, such as Boolean operations.
Instead of evaluating the sign of the field function explicitely, we developed
specific methods to perform accelerated point membership queries. The last
query type in our framework is an incremental polygonization process that is
invoked at a given node if the mesh formulation is needed, for local deforma-
tions or visualization. Local results are combined into a coherent fashion by
binary operations.

Notations

An implicit surface is mathematically defined by a field function f : R3 → R
as the points in space that satisfy the equation:

S = {p ∈ R3|f(p) = T}

where T is a threshold level.

The field function of a node A will be denoted as fA, and the corresponding
gradient as ∇fA. We will call cA(p) the point membership function of A at
point p, that can take three different values {1, 0,−1} depending on p respec-
tively lies inside, on, or outside the surface of A. The notation MA will refer
to the mesh of the surface of A, and the bounding box of the object A will be
denoted as BA.

4 Fundamental queries

In the following paragraphs, we detail how the field function, gradient and
point membership are evaluated for the different kinds of node in the Hybrid-
Tree.

4.1 Skeletal implicit primitives

Skeletal implicit primitives are built around a geometric object called skele-
ton. The field function for a given skeleton is evaluated analytically using the

9

following formulation:

f(p) = g ◦ d(p)

where d : R3 → R+ denotes the Euclidean distance to the skeleton, and
g : R+ → R refers to the potential field function. The latter is a compactly
supported radial basis function that is parameterized by a maximum field value
I ∈ R reached on the skeleton, and a radius of influence that will be denoted
as R ∈ R+. The associated region of influence, characterized by non-zero field
values, will be denoted as Ω. In our system, we use polynomial potential field
functions of the form:

g(r) =


I

(
1− r2

R2

)n

, n ≥ 2 if r ∈ [0, R]

0 otherwise

The corresponding inverse potential field functions g−1 : R → R+ is defined
as follows:

g−1(t) =


R

√
1−

(
t

I

) 1
n

, n ≥ 2 if 0 < t ≤ I or I ≤ t < 0

0 otherwise

Normals can be obtained directly from the gradient of the field function∇f(p)
which is evaluated as follows:

∇f(p) = g′ ◦ d(p)∇d(p)

Since d(p) is the Euclidean distance function,∇d(p) is computed as the vector
between the orthogonal projection of p onto the skeleton and p.

The HybridTree implements a wide range of complex skeletal primitives in-
cluding curve, surface and volume skeletons as described by Barbier et al.
in [51]. Figure 4 shows a bottle built using surface of revolution, spline, circle
and hollow cylinder skeletons.

Every type of primitive implements a specific algorithm that computes the
distance d(p) to its skeleton analytically in an optimized fashion. Although
the computation of the distance between a point in space and a simple skeleton
such as a point or a line segment is straightforward and computationally effi-
cient, algorithms become more sophisticated as the complexity of the skeletons
increases. Some detailed algorithms can be found in Schneider and Eberly [53]
and Barbier and Galin [54].

10

Union

Blend Blend

Blend

Fig. 4. A bottle model built using complex skeletal implicit primitives.

For implicit surfaces, point membership classification is usually obtained
through an evaluation of the field function and comparing its value to the
threshold level. Since we manipulate skeletal implicit primitives, we do not
need to compute the full field function for point membership queries. The T
level surface of these primitives may indeed be defined by sweeping a sphere
of constant radius rT = g−1(T) along the boundary of the skeleton. This iso-
surface exists if and only if rT ≥ 0. Therefore, for a given point p in space,
the point membership function c(p) may be defined as follows:

c(p) =


−1 if 0 ≤ rT < d(p)

1 if 0 < d(p) < rT

0 otherwise

The radius rT is computed once for each primitive. For volume skeletal primi-
tives, the location of query points with respect to the interior of the skeleton
is obtained analytically as part of the computation of the distance d(p).

Skeletal implicit primitives are defined only by a few parameters, which yields
particularly low storage cost. Complex skeletons are also easier to control
than a combination of simple primitives, but distance evaluations are more
computationally demanding. A basic acceleration technique consists in pre-
computing and caching some results required for several evaluations, e.g. along
a ray [51]. When the evaluation of f(p) and ∇f(p) are both required, common
intermediate results are also computed only once. At global scale, every pri-
mitive is equiped with a bounding box that allows to save useless evaluations.

4.2 Polygonal meshes

For a polygonal mesh, the field function is computed using the same formula-
tion as for skeletal implicit primitives. The distance function dM from a point
p ∈ R3 to a triangle mesh M is defined as the minimal Euclidean distance

11

between p and any triangle T of the boundary of M:

dM(p) = min
T ∈M

d(p, T)

The implicit surface generated by the skeletal mesh for a given threshold T
is a rounded surface S which differs for the original mesh M. This surface
may be defined by sweeping a sphere of constant radius rT = g−1(T) along
the boundary of M (Figure 5, left). To make the boundary of M and the T
level surface to correspond independently from the field function parameters,
we incorporate the threshold as an offset in a pseudo-distance function which
is defined as follows:

d(p) =


dM(p) + rT if p is outsideM

rT − dM(p) if p is insideM and dM(p) < rT

0 otherwise

Our distance function guarantees that the isosurface and the mesh boundary
mesh are the same for any value of T , as shown in Figures 5(right) and 6(right).

S

M

Ω

rT

R− rT

S

R

rT

Fig. 5. The distance offset mechanism on a 2D polygon. On the left, the basic
distance formula is used. The effect of our distance function is illustrated on the
right.

The user keeps control on every parameter of the field function, and can pre-
cisely control the range of the blend between two objects. The radius of in-
fluence of the mesh, which falls from R to R − rT , is rescaled so that the
distance offset is hidden. If the user specifies a radius of influence R, the field
function is evaluated with a radius of influence R′ such that R′ − r′T = R,
where r′T = g−1(T) depends on R′ and I. For our potential field functions, we
have:

r′T
R′ =

rT

R
=

√√√√
1−

(
T

I

) 1
n

12

that only depends on fixed parameters. We then compute R′ as follows:

R′ =
R(

1− rT

R

)

Blend

Fig. 6. The Stanford Bunny mesh model (69,674 triangles) blended with an implicit
sphere. The result on the left uses the distance dM(p) whereas the model on the
right has been computed using our pseudo-distance function d(p).

The gradient of the field function ∇d(p) is evaluated as follows:

∇d(p) =


∇dM(p) if p is outsideM

−∇dM(p) if p is insideM and dM(p) < rT

0 otherwise

As for implicit primitives, ∇d(p) is computed as the vector between the or-
thogonal projection of p onto the mesh M and p, that can be obtained as
part of the computation of d(p).

Computing the minimum distance between a point p and all the triangles T
of the mesh M is computationally expensive. Acceleration techniques have
been widely studied, not only in the Computer Graphics community [55]. Our
framework implements an algorithm inspired by Johnson and Cohen’s lower-
upper bound strategy [56]. We rely on a bounding box hierarchy based on a
Binary Space Partition tree, which is traversed breadth-first for each point-to-
mesh distance query. For each node we compute a lower and an upper bound
of the minimum point-to-mesh distance, which yields efficient space-pruning.
Moreover, we use the fact that the potential field falls to zero beyond the
distance R from the mesh boundary so as to reject more useless point-to-mesh
distance computations.

As illustrated in Figure 7, the effectiveness of our optimization varies accor-
ding to the geometry of M and the size of R. We measured the time taken
to perform 1003 point-to-mesh distance queries for different meshes, with an

13

increasing radius of influence. For each mesh, vertex coordinates were normal-
ized to fit in a unit bounding box. Query points correspond to a regular 3D
sampling of this box. Solid line timings take the radius of influence optimiza-
tion into account, while dashed line timings do not. It can be observed that
a lot of time is saved when R is small regarding the overall size of the mesh.
Only a very reduced set of bounding boxes of the hierarchy have to be tested
in this case. The benefit of our acceleration then decreases as R increases, and
the running times tend to stabilize.

Simplified Dragon (2,730 triangles)
Bunny (69,674 triangles)

Victory (187,072 triangles)
Gargoyle (20,000 triangles)

 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.025

 240

 220

 200

 180

 160

 140

 120

 100

 0
 10
 20

 40

 60

 80

Ti
m

e
(s

ec
on

ds
)

Radius of influence
 0.05

Fig. 7. Timings for 1003 point-to-mesh distance queries (computations performed
on a Pentium IV 3.0GHz - 1GB RAM workstation).

The given timings do not take into account the time taken to build the boun-
ding box hierarchy. Preprocessing times are given in Table 1, that also indicates
the depth of the bounding box hierarchy for all the models we tested. The leaf
boxes contain at most 4 triangles so as to avoid too much bounding box tests.

Model #Triangles Depth Pre. Time

Simplified Dragon (a) 2,730 23 0.05

Gargoyle (b) 20,000 22 0.39

Bunny (c) 69,674 28 1.31

Victory (d) 187,072 25 4.82

(a) (b)

(c) (d)

Table 1
Number of triangles, depth of the bounding box hierarchy and preprocessing timings
for four different mesh models.

14

The cost of point-to-mesh distance computations could be even more reduced
using a triangle fan decomposition of the mesh [57], that allows to save some
redundant operations by factorizing computations between neighboring trian-
gles in each triangle fan.

Point membership classification is obtained by computing the number of in-
tersections between a ray and the mesh using the bounding box hierarchy.
In order to reduce the number of cells to be traversed, the direction and the
orientation of the ray are chosen so that the distance between the query point
and the intersection point between the ray and the mesh bounding box is
minimized.

4.3 Blending operations

In our system, we propose two kinds of formulations for blending two surfaces :
one global and one local. Let A and B denote two models that blend together.
Global blending between two objects is functionally defined as originally pro-
posed by Blinn [3]:

fA+B = fA + fB

Figure 8 shows two mesh models blended together using our global blending
operation. The major drawback of this basic approach is the well-known un-
wanted blending problem [58]. As shown on the right image in Figure 8, the
right wing is undesirably blended with the Bunny’s right ear.

Blend

A

B

Fig. 8. Global blending between two mesh models: the Stanford Bunny (69,674
triangles) and a wing pair (8,170 triangles).

To perform blending with better local control, we have implemented a new
local blending operation adapting the local blending technique described by
Pasko et al. in [59]. This operation has three children. The first two, denoted
as A and B, represent the two models that will be partially blended together,
whereas the third, denoted as C, represents the region of space where blending
will occur.

15

In our system, C is characterized by a potential field that is defined as a union
of implicit primitives denoted as Ci. Such a combination makes it possible to
build complex blending regions with predictible results. The field function fC

characterizes the blending region and is used to scale the amount of blending
between the two sub-trees A and B. The values taken by the field functions
fCi

should range between 0 and 1. At a given point in space p, if fC(p) = 0
then only union occurs, which is the case for any point outside the region of
influence of C. In contrast, if fC(p) = 1, full blending takes place normally.

The evaluation of the local blending operation is performed as follows. We first
compute the potential field value resulting from the blending of the children
nodes fA+B(p) = fA(p) + fB(p), and the field function value fA∪B(p). We
define the resulting field function as a weighted average:

fA+B(p) = fC(p) fA+B(p) + (1− fC(p)) fA∪B(p)

Primitives build from a volume skeleton are very useful to define regions in
space where full blending occurs. In Figure 9, the local blending region C is
defined as the union of two implicit cylinders.

Local Blend

A

B

C

Fig. 9. Local blending. Two implicit cylinders define the blending region between
the Bunny and the wing pair.

For both blending techniques, the gradient is obtained by deriving the field
functions. For point membership classification, we distinguish positive and
negative potential fields. A model A will be said to generate a positive potential
field if one of its primitive is such that I > 0. Conversely, a model A will be
said to generate a negative potential field if and only if every primitive it
consits of is such that I < 0.

Let A and B two models that globally blend together such that A and B
both generate a positive potential field. Point membership classification is
then achieved as follows:

(1) If p is located inside BA ∩ BB, then evaluate v = fA+B(p).
(a) If v < T , p lies inside the surface: return 1.
(b) Else, if v > T , p lies outside the surface: return −1.
(c) Else, p is on the surface: return 0.

16

(2) Else, if p belongs to BA\BB (resp. BB\BA), then query point membership
on A (resp. B) and return the result.

(3) Else, p lies outside the surface: return −1.

For local blending nodes such that A, B and C generate positive potential
fields, the previous algorithm is slightly modified. In Step 1, we consider the
bounding box BC of the local blending region and evaluate fA+B. In Step 2,
we consider the boxes BA \ BC and BA \ BC .

For global blending nodes such that A generates a positive potential field and
B generates a negative potential field, the previous algorithm is modified as
follows: In Step 2, if p belongs to BB \ BA, then p is outside the surface. If p
belongs to BA \ BB, then point membership is queried on A. If both A and B
generate negative potential fields, p lies outside the surface: −1 is returned.

Let us finally consider a local blending nodes such that C generates a negative
potential field. If p is located inside BC , then p lies outside the surface: 1 is
returned. Otherwise, if p belongs to BA \ BC (resp. BB \ BC), then point
membership is queried on A (resp. B) and the result is returned.

4.4 Boolean operations

The min and max functions prescribed in [6] for union and intersection pro-
duce gradient discontinuities in the potential function. This results in visible
unwanted normal discontinuities on the surface.

Contrary to min and max functions, R-Functions define a field function with
Cn continuity almost everywhere in space, except on the surface, which avoids
unwanted discontinuities. The functions prescribed in [5] operate on field func-
tions that have an infinite support, whereas our model operates on field func-
tions that have a compact support. Moreover, R-Functions have been designed
for implicit surfaces characterized by a null threshold value: T = 0.

We have adapted those functions to our model by incorporating the threshold
value as an offset in the previous equations. A weighting coefficient appears so
as to guarantee that the resulting field function still has a compact support.
We have:

fA∪B = T +
1

2−
√

2

[
(fA − T) + (fB − T) +

√
(fA − T)2 + (fB − T)2

]

fA∩B = T +
1

2 +
√

2

[
(fA − T) + (fB − T)−

√
(fA − T)2 + (fB − T)2

]

17

Although min and max functions on the one hand, and R-Functions on the
other hand produce different potential fields in space, both representations
produce the same implicit surface if the Boolean nodes are located at the top
of the tree structure. In this case, the computation of the min and max is
computationally inexpensive compared to R-Functions. In contrast, we use
the modified R-Function equations to create a continuously differentiable po-
tential field if blending nodes are located above Boolean operations in the
HybridTree. Our system automatically adapts the function used to evaluate
Boolean operations depending on the context during the evaluation. Figure 10
illustrates the two union operations.

Blend

R−UnionUnion

Blend

Fig. 10. With the Union operation (left), the discontinuity of the field function
produced by the max function is propagated to the blending region. This problem
is fixed with the R-Union continuous function (right).

For Boolean operations defined using the min and max functions, the gradient
at a given point in space is the gradient of the minimum or maximum con-
tributing field function between the two input models. Using the R-Function
formulation, the gradient is simply derived from the field functions.

Point membership classification is obtained through the standard operations
of Boolean algebra. For instance, the point membership classification for a
difference operation between two models A and B is performed as follows:

(1) If cA(p) = 1, then:
(a) If cB(p) = −1, then return 1.
(b) Else, if cB(p) = 0, then return 0.
(c) Else, return −1.

(2) Else, if cA(p) = 0 and cB(p) ∈ {0, 1} then return 0.
(3) Else, return −1.

4.5 Warping operations

In our system, the shape of a surface can be distorted by locally warping space.
Our warping operations include affine transformations and Barr’s twist, ta-
per and bend deformations [52]. We also handle free-form deformations [8],
denoted as FFD, so as to perform local deformations. Throughout the fol-
lowing paragraphs, A will denote the child object of a warping node, w a

18

space transformation that maps R3 into R3, and w−1 the corresponding in-
verse transformation.

4.5.1 Barr deformations

When the implicit formulation is required, twist, taper and bend deformations
are applied as warp functions. The resulting field function is defined using the
inverse warp function as follows:

fw(p) = fA ◦ w−1(p)

The gradient of the field function may be evaluated as:

∇fw(p) = JT
w−1(p)×∇fA ◦ w−1(p)

where JT
w−1(p) denotes the transpose Jacobian matrix of the inverse warp

function w−1 at p. For these deformations, the closed form expressions of w−1

and JT
w−1(p) can be easily computed. The detailed equations can be found

in [52] (it should be noted that there are some mistakes in the formulas related
to the inverse bend transformation).

Point membership classification is achieved by computing the location w−1(p)
of the query point p in the unwarped space and then querying point member-
ship on A as follows:

cw(p) = cA ◦ w−1(p)

Figure 11 shows an application of the twist operation to two blended implicit
cylinders.

Blend Twist

Fig. 11. Twist operation applied to two blended implicit cylinders.

4.5.2 Free-form deformations

Free-form deformations have been first introduce by Sederberg and Parry
in [8], and then have been extended by several authors [60,61,62]. Applying

19

local deformations in the implicit formulation is not straightforward as there
is no easy way of computing an analytical formulation for w−1. In our frame-
work, the field function for FFD operations is evaluated using an intermediate
mesh representation. The algorithm proceeds as follows:

(1) Generate the mesh MA of A.
(2) Apply the deformation to MA by transforming the vertices of MA ac-

cording to w.
(3) Evaluate the field function using the distance to the deformed mesh MA.

FFD nodes hold a mesh representation of their own resulting surface using this
method. Subsequent field function, gradient and point membership queries are
performed directly on this mesh without further recursion down to the subtree.
If A is a single primitive, the field function is evaluated using the potential
field function of A. If the local deformation extends to several primitives, their
local blending properties are replaced by a new potential field function that is
associated with the computed mesh. Therefore, these nodes should be located
at the lowest levels of the tree in order to preserve these local properties if
they are involved in further operations.

Figure 12 illustrates our free-form deformation tool, applied to the bottle
model of Figure 4. Before applying the deformation, this model has been first
polygonized as described in Section 5.

FFD

Fig. 12. Free-form deformation applied on the implicit bottle model of Figure 4.

4.5.3 Affine transformations

Affine transformations can be applied to implicit surfaces as warp functions.
The resulting field function can be defined using the inverse transformation
in the same way as for Barr deformations. However, this requires to evaluate
w−1 for every queries on the subtree. Benefitting from the distributivity of
affine transformations over Boolean and blending operations, Fox et al. [63]
prescribed to remove affine transformation nodes and directly integrate them
into the parameters of the primitives. In their method, the process is blocked
by warping nodes. In our system, we have extended the algorithm to our local
blending nodes and optimized it so that Euclidean similarities, including rigid

20

transformations plus uniform scaling, can be cast through Barr and FFD nodes
either. For these three operations, affine transformations are transmitted to
both the arguments and space parameters of the operation.

Let a{N} denote an affine transformation operation with child node N . Our
algorithm proceeds as follows for each kind of node:

• If N is a primitive, we have:

a{N} = N ′

where N ′ is the transformed primitive.
• If o{A, B} is a Boolean or a global blending operation with child nodes A

and B, we have the following equivalence:

a{o{A, B}} = o{a{A}, a{B}}

• If o{A, B, R} is a local blending operation with child nodes A, B and C, we
have:

a{o{A, B, C}} = o{a{A}, a{B}, a{C}}

• Let FFDG{N} a FFD operation with parameter G denoting the grid in
which the child node N is embedded to be deformed. If a is an Euclidean
similarity, we have:

a{FFDG{N}} = FFDG′{a{N}}

where G ′ is the transformed grid.
• Let wF{N} a Barr operation with child node N that is performed in a local

frame F . Is a is an Euclidean similarity, we have:

a{wF{N}} = wF ′{a{N}}

where F ′ denotes the transformed local frame.

Figure 13 illustrates the transmission of a rotation to a complex object through
a FFD node.

5 Polygonizing the HybridTree

The resulting surface of a HybridTree may be triangulated using standard
implicit surface meshing techniques, thanks to the previously defined field
functions. However, these techniques rely on many evaluations of the potential
field function, which is computationally demanding in the general case. In

21

G

FFDG ′

A A
′

G ′

FFDG

a

Fig. 13. Transmission of a rotation through a FFD node.

particular, sampling the field function of a mesh primitive is an expensive
task that is clearly unprofitable if the mesh surface only interacts locally with
other primitives.

For efficient meshing, we developed an incremental approach that preserves
existing mesh surfaces as much as possible and optimizes the mesh generation
for every kind of node using specific meshing algorithms. Local meshes are
merged together at blending and Boolean nodes to form the resulting mesh
surface. The following paragraphs detail our meshing methods for skeletal
implicit primitives and for the different editing operations.

5.1 Skeletal implicit primitives

In our system, every implicit primitive automatically generates its mesh re-
presentation very efficiently for a target level of detail. For every kind of skele-
ton, we developed a specific and optimized meshing procedure that outputs a
manifold mesh characterized by an almost uniform sampling distribution and
regular connectivity (Figure 14).

Fig. 14. Meshes obtained by direct meshing (left) vs. Marching Cubes results (right)
for identical target edge length. From left to right: point, circle and box skeletons.

As mentioned previously, the T level surface of a skeletal implicit primitive

22

can be described by sweeping of a sphere of constant radius rT = g−1(T)
along the skeleton. This isosurface corresponds to a 2d-manifold and will be
polygonized if and only if rT > 0. For most primitives, this surface can be
defined as a patchwork of simple surface pieces such as portions of sphere or
cylinder, planes, disks, which facilitates direct meshing. After having identified
the different components for a given primitive, we sample each part iteratively
while establishing consistent connectivity relations. The level of detail is fixed
by the choice of a maximum edge length. During the sampling process, we
take benefit from symmetries whenever possible. For instance, we just need to
sample an octant of a sphere for a point primitive [64]. The sampled geometry
is then replicated with respect to symmetry axes or symmetry planes. For
a box primitive, we need to sample an octant of a sphere, a quadrant of a
cylinder and a rectangle.

Primitive Direct meshing Marching Cubes

Time #Triangles Time #Triangles #Cells

Point 4 57,800 567 75,356 1663

Circle 1 57,000 353 87,280 1163

Box 4 84,780 765 105,912 1393

Table 2
Polygonization timings (in milliseconds) and number of triangles for both direct
meshing and Marching Cubes for a fine target resolution (computations performed
on a Pentium IV 3.0GHz - 1GB RAM workstation).

In comparison to standard implicit surface triangulation algorithms like the
Marching Cubes algorithm [14,15], timings demonstrate that our direct mesh-
ing approach accelerates the polygonization process up to 200 times and pro-
duces up to 30% fewer, better shaped triangles. Figure 14 shows the meshes of
point, circle and box primitives produced by our algorithms which compares
favorably to the mesh outputs of the Marching Cubes algorithm [14] for the
same level of detail. Computation timings and number of triangles are given
in Table 2 for a finer sampling resolution. The Marching Cubes algorithm we
employed relies on a brute-force voxel decomposition of space.

5.2 Blending operations

We generate the mesh at blending nodes using the implicit representation of
the surface. The computation of each sample point on the isosurface is an
expensive task that requires several field function evaluations. To save compu-
tational time and preserve existing mesh surfaces, we restrict the computation

23

of new sample points to blending regions. Wherever two objects do not over-
lap very much, we observed that it is better to generate the meshes of these
objects before combining them rather than computing the overall mesh from
scratch.

In the following paragraphs, we describe our meshing algorithms for global
and local blending nodes. For the global case, we will first assume that the
objects that blend together are associated with positive potential fields, which
is the most common situation. The algorithm for blending nodes involving
negative potential fields will be exposed subsequently.

5.2.1 Global blending

In [12], we proposed to use the Marching Triangles technique to generate the
mesh in blending regions. This technique works well for smooth surfaces with
smooth gradient variations, but often fails at producing satisfying results in
other cases, particularly in the presence of sharp features. We develop here an
alternative approach based on the Marching Cubes technique [14]. We present
two kinds of algorithms that differ in the way they process a HybridTree. The
first node-based algorithm recursively traverses the tree data-structure, every
node generating the mesh of its own subtree as prescribed in [12]. The second
algorithm, called primitive-based, is more independent from the tree structure
and focuses on the interactions between primitives.

Node-based algorithm

Let A and B to objects that globally blend together into an object C. We
suppose that A and B generate positive potential fields. If A and B are only
partially blended, then we create the mesh of C after the meshesMA andMB.
We use the Marching Cubes algorithm to generate the mesh in the blending
region. Otherwise, the whole mesh of C is generated by applying the Marching
Cubes algorithm from scratch. In both cases, Marching Cubes sample points
are computed by evaluating the local field function fA+B(p).

To determine the most favorable approach, we estimate how much the models
A and B overlap, i.e. which proportion of volume each one shares in the
blending region. Between A and B, blending occurs in the regions of space
where fA and fB are both positive. These blending regions are enclosed in
the intersection of BA and BB. We introduce a ratio ρ called overlapping ratio
such that 0 ≤ ρ ≤ 1, which is computed as follows:

ρ =
VA∩B

min(VA, VB)

24

where VA, VB and VA∩B denote the volume of the bounding boxes BA, BB and
BA ∩ BB respectively. Let 0 ≤ ρ0 ≤ 1 denote a fixed threshold. Without loss
of generality, assume VA ≤ VB. Our algorithm then proceeds as follows:

(1) If ρ > ρ0, then:
(a) If VA

VB
≤ ρ0, then apply the Marching Cubes algorithm in the box that

bounds BA ∪ BB.
(b) Else:

• Create the mesh MB of B.
• Remove the triangles of MB that have at least one vertex pi

such that pi ∈ BA.
• Apply the Marching Cubes algorithm in BA.

(2) Else:
(a) Create the meshes MA and MB of A and B respectively.
(b) Remove the triangles of MA and MB that have at least one vertex

pi such that pi ∈ BA ∩ BB.
(c) Apply the Marching Cubes algorithm in BA ∩ BB.

We invoke a crack fixing algorithm after each local Marching Cubes meshing
process in order to bridge the narrow gap between boundary triangles and
output a closed manifold mesh. Our algorithm creates new triangles from
the boundary edges. For one given pair of contours, we identify the closest
neighbors from one side to the other and corresponding vertices are connected
together. This technique works well if the meshes MA and MB have triangles
of almost the same size and if corresponding boundaries are very close to
each other. The second condition is achieved by clipping the triangles of MA

and/orMB that intersect the bounding box of the blending region against this
box [65]. When the lengths of the facing edges are too different, the boundary
triangles are refined locally in order to make the scale of the boundary edges
compatible.

Before launching the polygonization process, we evaluate the ratio ρ for termi-
nal blending nodes and propagate the information up the tree structure. We
cluster consecutive blending nodes whose child nodes strongly overlap along
the same branch so as to treat them in one single Marching Cubes pass at the
highest possible level of the branch, out of efficiency. The clustering process
along a branch stops as soon as a non-blending node is encountered.

The user can provide a value for ρ0 or directly specify which method should be
used for each blending operation involved in a tree. We choose ρ0 = 0.5 as a
default threshold, which appears as a good guess in most cases. The motivation
for this choice is illustrated in Figure 15. We compared the time taken to
polygonize two blended implicit spheres using our local approach and a global
Marching Cubes polygonization for random locations of the two primitives. It
can be observed on the diagram that our node-based local approach is up to

25

Global Marching Cubes

 0.4

 0.5

 0.6

 0.3

 0.2

 0.1

 0 0.6 0.5 0.4 0.3 0.2 0.1 0 0.7 0.8 0.9 1

Local approach

Overlapping ratio

Ti
m

e
(s

ec
on

ds
)

Fig. 15. Polygonization time vs. overlapping ratio for 103 polygonization queries
of two blended implicit spheres with varying locations in space. The top-left image
shows a mesh result for the global Marching Cubes and the bottom-left image shows
a mesh result for the local approach.

five times faster when the overlapping ratio is less than 0.5.

Based on the analysis of the bounding box hierarchy, this approach is particu-
larly simple and systematic. However, its performance clearly depends on the
structuration of the HybridTree. Some blending mesh parts generated from
different blending subtrees may be locally destroyed and remeshed several
times due to a non optimal binary tree structure. This limitation could be
compensated by a restructuration of the tree, but this kind of optimization
is known to be computationally expensive [51], and would not improve every
configurations, as illustrated by the model in Figure 16. Here, the blending
node would be globally polygonized using Marching Cubes although blending
only occurs locally.

A

B

C

Blend

Union

A B C

Fig. 16. A HybridTree configuration for which our node-based polygonization tech-
nique for blending nodes is not optimal.

The difficulty is in fact intrinsic to the binary tree representation that cannot

26

explicitely describe the interactions that occur between more than two primi-
tives. To cope with non optimal HybridTree structures, we propose to extend
our first algorithm in the spirit of the space decomposition approach intro-
duced by Fox et al. in [63] that focuses on how primitives interact in space
rather than on the global tree structure.

Primitive-based algorithm

We distinguish two kinds of regions of space: the regions RP that are influ-
enced by a single primitive (Figure 17(a), light gray), and the regions R+

where blending occurs (Figure 17(a), dark grey). Our goal is to polygonize
primitives using direct meshing in regions RP and to apply the Marching
Cubes algorithm in a single pass in regions R+. For this purpose, the Hybrid-
Tree is embedded in a regular grid and we rely on a modified Marching Cubes
algorithm to compute sample points in the bounding boxes of the blending
regions.

(b)

B

C

AA

B

C

A

B

C

(a)

Fig. 17. Our primitive-based optimized local meshing approach.

Let {Pj}, j = 1..n denote the set of primitives involved in a tree, with bounding
boxes Bj. We define the overlapping ratio ρi for a primitive Pi as follows :

ρi =
VO(Bi)

V (Bi)

where V (Bi) denotes the volume of Bi and VO is the amount of volume of Bi

that is shared with the bounding boxes of the other primitives, i.e.:

VO(Bi) = V

 ⋃
j 6=i

Bi ∩ Bj



27

where V (∪n
k=1Bk) is computed using the inclusion-exclusion formula:

V

(
n⋃

k=1

Bk

)
=

n∑
l=1

(−1)l+1
∑

m1<m2<...<ml

V (Bm1 ∩ Bm2 ∩ . . . ∩ Bml
)

Let G denote a regular grid in which the HybridTree is embedded. All the grid
cells are first initialized to ”0”. We proceed as follows for all primitives Pi:

(1) Compute the set {Bi∩Bj}, j 6= i, Bi∩Bj 6= ∅, such that the first common
ancestor A of Pi and Pj is a blending node and Pj is not a right descendent
of a difference operation located below A.

(2) Align Bi and every box Bi ∩ Bj, j 6= i on the grid G.
(3) Compute ρi.
(4) If ρi < ρ0 then:

(a) Create the mesh Mi of Pi.
(b) Remove the triangles of Mi that have at least one vertex pi such

that pi ∈ ∪j 6=iBj.
(c) Mark ”1” all cells of G that lie in ∪j 6=iBj.

(5) Else, mark ”1” all cells of G that lie in Bi.

Our modified Marching Cubes algorithm then computes sample points along
the edges of ”1” cells and triangulates these cells.

Using this method, more implicit primitive mesh parts are obtained by direct
meshing and more existing mesh parts can be preserved. In Figure 17(b), the
regions that are polygonized using the direct meshing strategy are depicted
with a bold contour. Figure 18 shows three different mesh outputs of the re-
stored Igea model from Figure 23. In this model, several implicit primitives
are locally blended with the reconstructed mesh model of the Igea point set,
yielding a configuration that is similar to the one in figure 16. The polygoniza-
tion results were obtained by applying the global Marching Cubes algorithm
(left), then our node-based algorithm (center), and finally our primitive-based
algorithm (right). Computational timings are reported in Table 3, that also
shows the number of new sample points computed on the surface through the
Marching Cubes technique. For this model, our primitive-based algorithm is
two times faster than our node-based algorithm.

The computation of the intersection boxes between every pair of primitives
is achieved in time O(n2), where n denotes the number of primitives. For a
given primitive, the overlapping ratio is evaluated in time O(n2) in the worst
case. As a consequence, the performance of our primitive-based algorithm may
decline over a set of primitives that are all tightly blended together. However,
in practice, the number of primitives that effectively contribute to the final
potential field at a given point in space is generally small compared to the
overall number of primitives involved in a particular model.

28

Global Marching Cubes Node−based algorithm Primitive−based algorithm

Fig. 18. Several polygonization results for the restored Igea model from Figure 23.

Method Polyg. time #Sample points M.C. #Triangles

Global M.C. 1,533.02 54,420 108,836

Node-based 19.82 8,299 61,980

Primitive-based 9.67 2,592 58,458

Table 3
Polygonization timings (in seconds), number of new sample points computed by
the Marching Cubes technique and number of triangles for global Marching Cubes,
node-based and primitive-based meshing (computations performed on a Pentium
IV 3.0GHz - 1GB workstation).

Our primitive-based method also requires to store a grid of size m3 with only
1 bit per cell. For a grid with 3003 cells, which was the maximum in our
tests, this represents less than 3.5 megabytes of main memory. The time for
traversing the set of cells is negligible against the polygonization process. If
more precision is needed or if memory is a critical resource, then the node-
based approach may be more profitable.

5.2.2 Negative blending

Suppose that A generates a positive potential field and B a negative one. In
this case, our algorithm proceeds as follows:

(1) Create the mesh MA of A.
(2) Remove the triangles ofMA with at least one vertex pi such that pi ∈ BB.
(3) Apply the Marching Cubes algorithm in BB and invoke the crack fixing

algorithm to close the gap.

29

5.2.3 Local blending

Here we suppose that A and B generate positive potential fields, which is not
required for C. The polygonization local blending nodes is achieved as follows:

(1) Create the meshes MA and MB of A and B respectively.
(2) Compute the mesh MD of the union D between A and B.
(3) Remove the triangles of MD that have at least one vertex pi such that

pi ∈ BA ∩ BC or pi ∈ BA ∩ BC .
(4) Apply the Marching Cubes algorithm in BR and invoke the crack fixing

algorithm to close the gap.

5.3 Boolean operations

Computing the mesh resulting from Boolean operations is achieved as per-
formed by standard B-Rep modelers. Our approach takes advantage of the
dual implicit/mesh representation of the HybridTree. We rely on the implicit
representation of the child nodes to perform point membership classification
efficiently. The algorithm may be written as follows for any of the union, in-
tersection or difference operations:

(1) Create the meshes MA and MB of A and B respectively.
(2) If BA and BB overlap, then compute the resulting mesh surface using the

point membership function of A and B for point membership classifica-
tion.

To determine whether two triangles overlap and clip them properly, we use
the fast and robust triangle-triangle overlap test proposed by Guigue and
Devillers [66].

5.4 Warping operations

We first create the mesh MA of the child node A. Then the deformation is
applied to the mesh MA by simply changing the coordinates of the vertices of
the mesh pi into w(pi) so as to obtain the deformed mesh. Translation, rota-
tion and uniform scaling preserve the aspect ratio of the triangles, whereas non
uniform scaling or twisting, tapering and bending may stretch the triangles
into flat triangles. In those cases, we apply a simple local remeshing process
based on edge collapse [67] and vertex insertion to get better shaped triangles.

30

6 Results and discussion

In this section, we present some complex models created by combining and
deforming skeletal implicit models built from hundreds of implicit primitives,
and meshes and point sets with tens of thousands of elements. Table 4 re-
ports the timings for polygonizing the final models (in seconds), as well as the
overall number of triangles. The given preprocessing timings take into account
the time taken to build the bounding box hierarchy for mesh models and the
initialization of the Marching Cubes grid when the second local meshing al-
gorithm is used for blending nodes. These timings do not include the time
needed to reconstruct a mesh model from an input point set when involved
in our hybrid models. For the Igea point set that we used, the time taken
to produce a triangle mesh was 64 seconds. Measures were performed on a
Pentium IV 3.0GHz - 1GB RAM workstation.

Figure Preproc. time Polyg. time #Triangles

1, 19 4.63 63.85 171,562

9 1.72 48.16 105,467

20 0 14.02 121,271

21 1.97 21.24 94,862

22 6.85 56.35 269,698

23 1.58 9.12 58,458

Table 4
Preprocessing and polygonization timings (in seconds) and number of triangles for
polygonizing several complex hybrid models.

6.1 Free-form modeling

The winged snake-woman Figures 1 and 19 show blending and Boolean
operations applied to implicit and mesh input models. The original snake-
woman (Figure 1(a)) is an implicit model built from 250 spline implicit pri-
mitives blended together, which is stored in our own library of models. The
body has been first blended with a mesh of the Igea model (62,323 trian-
gles) that was automatically reconstructed from the point set in Figure 3, and
with the wings of the Victory of Samothrace (16,340 triangles). The mesh
creation process first invokes the polygonization of the implicit snake-woman
model. The Marching Cubes algorithm is used as all implicit primitives are
overlapping much. The resulting mesh consists of 121,524 triangles, and took
6 seconds to generate. The head has been removed using Boolean difference

31

with an implicit sphere primitive, and the body has been blended with the
Igea model using our local meshing method. The wings were extracted from
the Victory of Samothrace mesh model by intersecting the original model with
an implicit box. The wings and the modified snake-woman model have finally
been blended together using the local meshing method.

Fig. 19. The winged snake-woman model of Figure 1.

The bowl The bowl in Figure 20 has been created using blending operations.
The interior of the Igea model has been carved using a negative potential field
generated by a cylinder implicit primitive. Handles built from two implicit
circle primitives have then been added using our local blending operation.

Blend

Blend

Fig. 20. A bowl created from the Igea model.

The bottle The bottle in Figure 21 has been create from the implicit bottle
model of Figure 4 that incorporates 5 complex skeletal implicit primitives. We
first applied our Free-Form Deformation tool, which necessitates the polygo-
nization of the bottle model. Additionally, 12 holes have been created using
Boolean differences with implicit spheres.

The Victory Figure 22 shows a statue model based on the Victory of
Samothrace mesh model (187,072 triangles), that has no head and no arms.
We picked up the arms of the original snake-woman implicit model, that con-
sist of 18 implicit spline primitives each, and we have blended them locally

32

Union

FFD

Difference

Fig. 21. Bottle with holes.

with the Victory of Samothrace mesh model using implicit spheres located
at each shoulder. We have blended the resulting surface locally with the Igea
head using an implicit cylinder placed around the neck. We have finally com-
pleted our custom Victory model by adding a shepherd’s crook in the right
hand.

Union

Union

Blend

Union

Blend

Blend

Fig. 22. A Victory model.

6.2 Virtual restoration of artwork

Our model is well-suited for modeling complex shapes either from existing
models or from scratch. It could also be advantagely used for the purpose
of digital preservation of cultural heritage artwork, which has become a very
challenging research domain. Our HybridTree structure can be efficiently used
to simulate restoration or natural phenomena [68] effects on digitized pieces
of artwork and it naturally maintains the history of every operation, which is
useful for archiving purposes.

Figure 23 shows a virtual restoration process on the Igea model using the
HybridTree. We were interested in filling in the ridges on the right of the chin

33

and on the left cheek, and restoring the nose, exactly as a specialist could
do. We used our blending tools to simulate cementing in a very intuitive and
realistic way.

We have manually placed implicit spline primitives along each ridge and one
implicit point primitive at the tip of the nose. The parameters of the potential
field functions have also been set by hand for each primitive. The primitives
have been then blended with the Igea mesh model so as to produce the final
mesh representation. We have built an independent subtree for the set of
primitives of the chin and the another for the nose. The former has been
polygonized using the Marching Cubes algorithm, as the primitives overlap
much. Then, the resulting mesh has been blended with the Igea model using
the local method. The same approach has been used for the nose.

Fig. 23. Virtual restoration stages of the Igea Greek artifact. The initial recon-
structed Igea mesh is on the left. In the center image, material has been added to
fill in some cavities. On the right is shown the partially restored model.

6.3 Discussion

Performance Our system can handle complex implicit primitives and
polygonal meshes of up to 25,000 triangles at interactive rates. Free-form de-
formations as well as local blending may be performed interactively for not
too fine resolutions. Boolean operations combining small implicit primitives or
meshes compared to the overall size of the final object may also be performed
at interactive rates.

The conversion step between triangles meshes and implicit surfaces is a critical
limiting factor regarding computational performance. The computation of the
potential field function generated by a mesh at a given point in space remains
computationally expensive, despite our acceleration technique. Experiments
demonstrate that a field function query performed on a complex mesh can
have a cost in time that is up to several hundreds times the cost of the same
evaluation performed on a point primitive.

For interactive shape design or animation, the evaluation could be accelerated

34

by sampling the potential field on a regular grid and caching computed field
values [69]. An approximation of the surface can be retrieved by tricubic in-
terpolation. This approach involves an increased cost in memory and possible
loss of geometric and topological information.

Storage The HybridTree data-structure significantly reduces the amount
of memory needed for storing complex models. Contrary to Level Set [27]
or Adaptive Distance Fields models [28], we do not store any voxel grid or
octree, which saves memory. The use of complex implicit skeletal primitives
enables us to design complex shapes with a very compact representation. The
snake-woman model represented in Figure 1 was created by blending a few
hundred spline skeletal primitives together. The corresponding HybridTree
representation takes less than 64 kilobytes in memory.

Shape control The ability to combine mesh models and skeletal implicit
surfaces in a coherent framework not only extends the range of models that
can be created but also permits us to have a tight control when editing our
models.

The implicit surface representation enables blending of meshes of arbitrary
topology and geometry. This compares favorably with other specific mesh
blending methods such as [50] or [32] that impose some geometric or topolog-
ical restrictions. Moreover, our local blending technique provides fine control
on the way shapes blend together. The designer may simply tune the radius
of influence for mesh or implicit primitives so as to control the geometry of
the blend with other objects. The implicit representation also provides means
of creating negative blending between shapes, which is useful for simulating
carvings. Eventually, our Free-Form Deformation tool enables very intuitive,
non restrictive local deformations on hybrid models.

7 Conclusion and future work

In this paper, we have proposed a new hybrid shape representation. Our mo-
del combines skeletal implicit surfaces, triangle meshes and point set models
in a coherent framework. The HybridTree’s evaluation system is designed to
exploit the complementary advantages of these geometric models. The core of
our current system is based on a dual skeletal implicit/triangle mesh represen-
tation. Editing operations are performed in the most suitable representation
in a totally transparent way for the user. The mesh representation is useful for
fast visualization and free-form deformations, and the implicit one lend them-
selves for Boolean, and local and global blending. The HybridTree is evaluated

35

through field function, gradient, point membership classification and polygo-
nization queries that are optimized for every kind of node.

In the near future, we plan to extend the integration of the point set represen-
tation into the HybridTree. This representation, that avoids the management
of connectivity relations, could be interesting for interactive visualization. We
will also investigate the automatic management of levels of detail in the Hy-
bridTree. We think that it should be possible to combine skeletal implicit pri-
mitives with levels of detail as presented in [70] with multiresolution meshes
and subdivision surfaces. Another interesting research field would be to bring
unicity in the representation of the information and achieve reversibility in
the evaluation process.

Acknowledgements

This work is part of the Art3D project (ACI Masses de données) and is sup-
ported by the Ministère de l’Éducation Nationale, de la Recherche et de la
Technologie (MENRT) and by the Centre National de la Recherche Scien-
tifique (CNRS).

The snake-woman implicit model is courtesy Tiphaine Accary. The model of
the Victory of Samothrace is provided courtesy of Pascal Lefebvre-Albaret
from Technodigit. Other point set and mesh models are courtesy of Stanford
Scanning Repository and Cyberware Inc.

References

[1] C. Bajaj, J. Blinn, J. Bloomenthal, M.-P. Cani-Gascuel, A. Rockwood,
B. Wyvill, G. Wyvill, Introduction to Implicit Surfaces, Morgan-Kaufmann,
1997.

[2] L. Velho, J. Gomes, L. H. Figueiredo, Implicit Objects in Computer Graphics,
Springer Verlag, New York, 2002.

[3] J. F. Blinn, A generalization of algebraic surface drawing, ACM Transactions
on Graphics 1 (3) (1982) 235–256.

[4] B. Crespin, C. Blanc, C. Schlick, Implicit Sweep Objects, in: Proc. Eurographics,
Vol. 15, 1996, pp. 165–174.

[5] A. Pasko, V. Adzhizev, A. Sourin, V. Savchenko, Function Representation in
Geometric Modeling: Concepts, Implementation and Applications, The Visual
Computer 11 (8) (1995) 429–446.

36

[6] B. Wyvill, E. Galin, A. Guy, Extending The CSG Tree. Warping, Blending
and Boolean Operations in an Implicit Surface Modeling System, Computer
Graphics Forum 18 (2) (1999) 149–158.

[7] A. Barbier, E. Galin, S. Akkouche, Controlled Metamorphosis of Animated
Objects, in: Proc. Shape Modeling International, 2003, pp. 184–196.

[8] T. W. Sederberg, S. R. Parry, Free-Form Deformation of Solid Geometric
Models, in: Proc. SIGGRAPH, 1986, pp. 151–160.

[9] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H.-P.
Seidel, Laplacian Surface Editing, in: Proc. Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing, 2004, pp. 179–188.

[10] M. Pauly, R. Keiser, L. P. Kobbelt, M. Gross, Shape Modeling with Point-
Sampled Geometry, ACM Transactions on Graphics 22 (3) (2003) 641–650.

[11] F. Cazals, J. Giesen, Delaunay Triangulation based Surface Reconstruction:
Ideas and Algorithms, Tech. Rep. 5393, INRIA (November 2004).

[12] R. Allègre, A. Barbier, E. Galin, S. Akkouche, A hybrid shape representation
for free-form modeling, in: Proc. Shape Modeling International, 2004, pp. 7–18.

[13] R. Allègre, R. Chaine, S. Akkouche, Convection-Driven Dynamic Surface
Reconstruction, in: Proc. Shape Modeling International, IEEE Computer
Society Press, 2005, pp. 33–42.

[14] W. E. Lorensen, H. E. Cline, Marching Cubes : A high Resolution 3D surface
reconstruction algorithm, Computer Graphics (Proc. SIGGRAPH) 21 (4)
(1987) 163–169.

[15] L. P. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel, Feature Sensitive Surface
Extraction from Volume Data, in: Proc. SIGGRAPH, 2001, pp. 57–66.

[16] A. P. Witkin, P. S. Heckbert, Using particles to sample and control implicit
surfaces, Computer Graphics 28 (2) (1994) 269–277.

[17] A. Hilton, A. J. Stoddart, J. Illingworth, T. Windeatt, Marching Triangles:
Range image fusion for complex object modelling, in: IEEE International
Conference on Image Processing, 1996, pp. 381–384.

[18] S. Akkouche, E. Galin, Adaptive Implicit Surface Polygonization using
Marching Triangles, Computer Graphics Forum 20 (2) (2001) 67–80.

[19] J.-D. Boissonnat, S. Oudot, Provably Good Surface Sampling and
Approximation, in: Proc. Symposium on Geometry Processing, 2003, pp. 9–
18.

[20] J.-D. Boissonnat, S. Oudot, An effective Condition for Sampling Surfaces with
Guarantees, in: Proc. Symposium on Solid Modeling and Applications, 2004,
pp. 101–112.

37

[21] J.-D. Boissonnat, D. Cohen-Steiner, G. Vegter, Isotopic Implicit Surface
Meshing, in: Proc. ACM Symposium on Theory of Computing, 2004, pp. 301–
309.

[22] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface
Reconstruction from Unorganized Points, Computer Graphics (Proc.
SIGGRAPH) 26 (2) (1992) 71–78.

[23] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, T. R. Evans, Reconstruction and Representation of 3D Objects with
Radial Basis Functions, in: Proc. SIGGRAPH, 2001, pp. 67–76.

[24] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H.-P. Seidel, Multi-level Partition
of Unity Implicits, ACM Transactions on Graphics 22 (3) (2003) 463–470.

[25] G. Turk, J. F. O’Brien, Modelling with Implicit Surfaces that Interpolate, ACM
Transactions on Graphics 21 (4) (2002) 855–873.

[26] C. Shen, J. F. O’Brien, J. R. Shewchuk, Interpolating and Approximating
Implicit Surfaces from Polygon Soup, ACM Transactions on Graphics 23 (3)
(2004) 896–904.

[27] K. Museth, D. E. Breen, R. T. Whitacker, A. H. Barr, Level Set Surface Editing
Operators, ACM Transactions on Graphics 21 (3) (2002) 330–338.

[28] S. F. Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones, Adaptively Sampled
Distance Fields: A General Representation of Shape for Computer Graphics,
in: Proc. SIGGRAPH, 2000, pp. 249–254.

[29] V. Adzhiev, M. Kazakov, A. Pasko, V. Savchenko, Hybrid System Architecture
for Volume Modeling, Computers & Graphics 24 (1) (2000) 194–203.

[30] B. Schmitt, A. Pasko, C. Schlick, Shape-Driven Deformations of Functionally
Defined Heterogeneous Volumetric Objects, in: Proc. ACM Graphite 2003, 2003,
pp. 127–134.

[31] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H.-Y. Shum, Mesh Editing with
Poisson-based Gradient Field Manipulation, ACM Transactions on Graphics
(Proc. SIGGRAPH) 23 (3) (2004) 644–651.

[32] T. Kanai, H. Suzuki, J. Mintani, F. Kimura, Interactive Mesh Fusion Based on
Local 3D Metamorphosis, in: Proc. Graphics Interface ’99, 1999, pp. 148–156.

[33] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, D. Dobkin, Modeling by Example, ACM Transactions on
Graphics (Proc. SIGGRAPH) 23 (3) (2004) 652–663.

[34] M. Alexa, Recent Advances in Mesh Morphing, Computer Graphics Forum
21 (2) (2002) 173–196.

[35] M. Alexa, Differential Coordinates for Local Mesh Morphing and Deformation,
The Visual Computer 19 (2–3) (2003) 105–114.

38

[36] D. Xu, H. Zhang, Q. Wang, H. Bao, Poisson Shape Interpolation, in: Proc.
ACM Symposium on Solid and Physical Modeling, 2005, pp. 267–274.

[37] V. Kraevoy, A. Sheffer, Cross-Parameterization and Compatible Remeshing of
3D Models, ACM Transactions on Graphics (Proc. SIGGRAPH) 23 (3) (2004)
861–869.

[38] J. Schreiner, A. Asirvatham, E. Praun, H. Hoppe, Inter-Surface Mapping, ACM
Transactions on Graphics (Proc. SIGGRAPH) 23 (3) (2004) 870–877.

[39] D. Levin, Mesh-Independent Surface Interpolation, Geometric Modeling for
Scientific Visualization.

[40] M. Mueller, R. Keiser, A. Nealen, M. Pauly, M. Gross, M. Alexa, Point-
Based Animation of Elastic, Plastic, and Melting Objects, in: Proc. ACM
Siggraph/Eurographics Symposium on Computer Animation, 2004, pp. 141–
151.

[41] M. Pauly, N. Mitra, L. Guibas, Uncertainty and Variability in Point Cloud
Surface Data, in: Proc. Symposium on Point-Based Graphics, 2004, pp. 77–84.

[42] R. Kolluri, Provably Good Moving Least Squares, in: Proc. ACM-SIAM
Symposium on Discrete Algorithms, 2005, pp. 1008–1018.

[43] S. Fleishman, C. T. Silva, D. Cohen-Or, Robust Moving Least-squares Fitting
with Sharp Features, ACM Transactions on Graphics (Proc. SIGGRAPH) 24 (3)
(2005) 544–552.

[44] P. Reuter, I. Tobor, C. Schlick, S. Dedieu, Point-based Modelling and Rendering
using Radial Basis Functions, in: Proc. ACM Graphite 2003, 2003, pp. 111–118.

[45] L. P. Kobbelt, M. Botsch, Freeform Shape Representations for Efficient
Geometry Processing, in: Proc. Shape Modeling International, 2003, pp. 111–
115.

[46] K. Singh, R. Parent, Implicit Surface Based Deformations of Polyhedral
Objects, in: Proc. Implicit Surfaces, 1995.

[47] B. Crespin, Implicit Free-Form Deformations, in: Proc. Implicit Surfaces, 1999,
pp. 17–23.

[48] P. Decaudin, Geometric Deformation by Merging a 3D-Object with a Simple
Shape, in: Proc. Graphics Interface, 1996, pp. 55–60.

[49] P. Decaudin, A. Gagalowicz, Fusion of 3D Shapes, in: Proc. Computer
Animation and Simulation, 1994, pp. 1–14.

[50] K. Singh, R. Parent, Joining Polyhedral Objects using Implicitly Defined
Surfaces, The Visual Computer 17 (7) (2001) 415–428.

[51] A. Barbier, E. Galin, S. Akkouche, Complex Skeletal Implicit Surfaces with
Levels of Detail, Journal of WSCG 12 (1) (2004) 35–42.

39

[52] A. H. Barr, Global and Local Deformations of Solid Primitives, Proc.
SIGGRAPH 18 (3) (1984) 21–30.

[53] P. Schneider, D. H. Eberly, Geometric Tools for Computer Graphics, Morgan
Kaufman Series in Computer Graphics and Geometric Modeling, 2002.

[54] A. Barbier, E. Galin, Fast distance computation between a point and cylinders,
cones, line swept spheres and cone-spheres, Journal of Graphics Tools 9 (2)
(2004) 31–39.

[55] A. Guéziec, Meshsweeper: Dynamic Point-to-Polygonal-Mesh Distance and
Applications, IEEE Transactions on Visualization and Computer Graphics 7 (1)
(2001) 47–61.

[56] D. Johnson, E. Cohen, A Framework for Efficient Minimum Distance
Computation, in: Proc. Conf. Robotics and Automation, 1998, pp. 3678–3683.

[57] E. Galin, S. Akkouche, Fast Processing of Triangle Meshes using Triangle Fans,
in: Proc. Shape Modeling International, 2005, pp. 326–331.

[58] M.-P. Cani, M. Desbrun, Animation of Deformable Models using Implicit
Surfaces, IEEE Transactions on Visualization and Computer Graphics 3 (1)
(1997) 39–50.

[59] G. Pasko, A. Pasko, M. Ikeda, T.Kunii, Bounded Blending Operations, in: Proc.
Shape Modeling International, 2002, pp. 95–104.

[60] S. Coquillart, Extended Free-Form Deformation: A Sculpturing Tool for 3D
Geometric Modeling, in: Proc. SIGGRAPH, 1990, pp. 187–196.

[61] P. Borrel, D. Bechmann, Deformation of n-dimensional objects, in: Proc. Solid
Modeling and Applications, 1991, pp. 351–369.

[62] R. MacCracken, K. I. Joy, Free-form Deformations with Lattices of Arbitrary
Topology, in: Proc. SIGGRAPH, 1996, pp. 181–188.

[63] M. Fox, C. Galbraith, B. Wyvill, Efficient Implementation of the Blobtree for
Rendering Purposes, in: Proc. Shape Modeling International, 2001, pp. 306–314.

[64] J. Ahn, Fast Generation of Ellipsoids, Graphics Gems V (1995) 179–190.

[65] T. A. Möller, Fast 3D Triangle-Box Overlap Testing, Journal of Graphics Tools
6 (1) (2001) 29–33.

[66] P. Guigue, O. Devillers, Fast and Robust Triangle-Triangle Overlap Test Using
Orientation Predicates, Journal of Graphics Tools 8 (1) (2003) 25–32.

[67] H. Hoppe, Progressive Meshes, in: Proc. SIGGRAPH, 1996, pp. 99–108.

[68] A. Martinet, E. Galin, B. Desbenoit, S. Akkouche, Procedural Modeling of
Cracks and Fractures, in: Proc. Shape Modeling International, 2004, pp. 346–
349.

[69] R. Schmidt, B. wyvill, E.Galin, Interactive Implicit Modeling With Hierarchical
Spatial Caching, in: Proc. Shape Modeling International, 2005, pp. 104–113.

40

[70] A. Angelidis, M.-P. Cani, Adaptive Implicit Modeling using Subdivision Curves
and Surfaces as Skeletons, in: Proc. Solid Modeling and Applications, 2002, pp.
45–52.

41

	1 Introduction
	2 Related work
	2.1 Conversion techniques
	2.2 Implicit surface editing
	2.3 Mesh surface editing

	3 The HybridTree
	4 Fundamental queries
	4.1 Skeletal implicit primitives
	4.2 Polygonal meshes
	4.3 Blending operations
	4.4 Boolean operations
	4.5 Warping operations

	5 Polygonizing the HybridTree
	5.1 Skeletal implicit primitives
	5.2 Blending operations
	5.3 Boolean operations
	5.4 Warping operations

	6 Results and discussion
	6.1 Free-form modeling
	6.2 Virtual restoration of artwork
	6.3 Discussion

	7 Conclusion and future work
	References

