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Abstract

We present a method to reconstruct simplified mesh
surfaces from large unstructured point sets, extending
recent work on dynamic surface reconstruction. The
method consists of two core components: an efficient
selective reconstruction algorithm, based on geometric
convection, that simplifies the input point set while re-
constructing a surface, and a local update algorithm that
dynamically refines or coarsens the reconstructed sur-
face according to specific local sampling constraints.

We introduce a new data-structure that significantly
accelerates the original selective reconstruction algo-
rithm and makes it possible to handle point set models
with millions of sample points. Our data-structure
mixes a kd-tree with the Delaunay triangulation of
the selected points enriched with a sparse subset
of landmark sample points. This design efficiently
responds to the specific spatial location issues of the
geometric convection algorithm. We also develop an
out-of-core implementation of the method, that permits
to seamlessly reconstruct and interactively update
simplified mesh surfaces from point sets that do not fit
into main memory.

Keywords: Surface reconstruction, geometric con-
vection, point set simplification, dynamic level of detail
update, out-of-core reconstruction.

1 Introduction

The recent advances in 3D scanning technologies have
led to an increasing need for techniques capable of pro-
cessing massive discrete geometric data. In the last
years, a great deal of work has been carried out on sur-
face reconstruction from datasets with millions of sam-
ple points, including unorganized points sets [BMR∗99,
DGH01b, OBA∗03, OBS05] and sets of range im-
ages [LPC∗00, RCG∗04]. These methods are often used
to produce a triangulated mesh surface, which is a stan-
dard representation for fast visualization and geometry
processing algorithms. However, the data used to gen-
erate these meshes are generally overly dense, due to

uniform grid sampling patterns, and a mesh simplifica-
tion step is required for use in common applications.

Point set simplification techniques offer an alterna-
tive to the standard pipeline by introducing a simplifi-
cation step before the reconstruction process. The for-
mer aim at reducing the redundancy of the input data in
order to accelerate subsequent reconstruction or visu-
alization. Subsampling algorithms decimate the point
set [DGH01a, Lin01, WK04] while resampling algo-
rithms compute new point locations [DGH01c, PGK02,
MD04]. These techniques rely either on oriented nor-
mals and local connectivity information obtained from
k-neighborhoods, or on a global Delaunay triangulation
or Voronoı̈ diagram, which represents a significant part
of a surface reconstruction process that would take all
the points into account.

Several algorithms that perform reconstruction and
simplification in a single framework have been recently
studied. Boissonnat and Cazals [BC01] have proposed
a Delaunay-based coarse-to-fine reconstruction algo-
rithm controlled by a signed distance function to an
implicit surface. Ohtake et al. [OBS05] have devel-
oped an algorithm that resamples a point set using a
quadric error metric, coupled with a specific fast lo-
cal triangulation procedure. In both cases, the result-
ing sampling remains static, and the reconstructed sur-
face cannot be easily updated, especially if the level of
detail needs to be modified afterwards, or if additional
data become available later (e.g. when streaming data
on a network, or during a digital acquisition project).
Allègre et al. [ACA05] have tackled this limitation by
devising a dynamic surface reconstruction framework
in which the reconstruction becomes selective and evo-
lutive. The originality of their approach is to integrate
surface reconstruction, data simplification and dynamic
level of detail update into a single framework. Start-
ing from a dense unorganized input point set, the au-
thors reconstruct a simplified triangulated surface by
means of a Delaunay-based surface reconstruction al-
gorithm called geometric convection [Cha03] coupled
with a local point set subsampling procedure. The De-
launay triangulation is constructed only for the retained
sample points in order to maintain some history of the
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reconstruction process. The reconstructed surface can
then be easily updated by inserting or removing sam-
ple points without restarting the reconstruction process
from scratch. However, the method lacks an efficient
data-structure to handle large data.

In this paper, we extend the dynamic surface recon-
struction framework proposed in [ACA05] to handle
large data efficiently (Fig. 1). We introduce a new data-
structure that significantly accelerates the original selec-
tive reconstruction algorithm and makes it possible to
handle point set models with millions of sample points.
Our data-structure mixes a kd-tree with the Delaunay
triangulation of the selected points enriched with a sub-
set of landmark sample points obtained from the kd-
tree. This design efficiently responds to the specific
spatial location issues of the geometric convection algo-
rithm, while being much less expensive than maintain-
ing a global Delaunay triangulation. We also develop
an out-of-core implementation of the method to recon-
struct simplified mesh surfaces from point sets that do
not fit into main memory. Our method involves neither
stitching nor consistent orientation issues. We demon-
strate the effectiveness of our framework on various de-
tailed scanned statues with several millions of sample
points. Our method can reconstruct high-quality simpli-
fied triangulated surfaces in a few minutes. Geometric
detail can then be recovered or reduced locally when-
ever needed in a few seconds. The method can be useful
for viewpoint-dependent surface reconstruction.

Figure 1: Dynamic surface reconstruction from a large
point set model: the DAVID (3.6M points). A simplified
mesh has been first reconstructed (left, 137k points, 4
minutes on Pentium IV 3GHz). Then, the result has
been locally refined on the right temple and hand (right,
175k points, 28 seconds).

2 Background

In this section, we briefly review the classic geometric
convection algorithm described in [Cha03] and its em-
bedding into a dynamic framework with simplification
and update abilities, as developed in [ACA05]. We fo-
cus on the geometric predicates and queries involved in
the surface reconstruction algorithm, as well as on their
evaluation.

2.1 Geometric convection

The geometric convection algorithm is a surface recon-
struction algorithm that proceeds by filtering the Delau-
nay triangulation of an input point set sampled from a
smooth surface [CG04]. This method has some similar-
ities with the Wrap [Ede02] and Flow Complex [GJ03]
techniques. The filtration is guided by a convection
scheme related to level set methods [ZOF01] that con-
sists in shrinking an enclosing surface under the influ-
ence of the gradient field of a distance function to the
closest sample point. This process results in a closed,
oriented triangulated surface embedded in the Delau-
nay triangulation of the point set, and characterized by
an oriented Gabriel property [Cha03]. This means that
for every facet, the diametral half-ball located inside the
surface, or Gabriel half-ball, contains no sample point.

Let P ⊂ R3 denote the input point set and Ŝ the sur-
face in convection. The convection scheme can be com-
pletely achieved through the Delaunay triangulation of
P by removing the facets that do not meet the oriented
Gabriel property through an iterative sculpting process
that starts from the convex hull. The Ŝ surface is a
closed triangulated surface is maintained at every step,
all the facets oriented inwards, and two self-intersecting
facets can collapse locally, which may change its topol-
ogy. A local study (or a more global solution) is re-
quired to dig into pockets that may locally block the
convection scheme, e.g. based on local granularity. The
algorithm is illustrated on a 2D point set in Figure 2.

The geometric evolution of Ŝ along the convection
process is locally guided by a geometric predicate Pog
and a geometric query Qdt defined as follows:
(Pog) Given an oriented Delaunay facet pqr, test
whether it satisfies the oriented Gabriel property.
(Qdt) Given an oriented Delaunay facet pqr, find the
point s ∈ P such that pqrs forms a Delaunay tetrahe-
dron enclosed in the half-space above the facet.

Assuming that the Delaunay triangulation of the in-
put point set has been constructed, Pog and Qdt are
both evaluated in constant time, and the overall com-
plexity of the algorithm is linear in the number of De-
launay cells traversed by the surface.
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(a) (b) (c) (d)

Figure 2: Geometric convection towards a 2D point set. In (a), an enclosing curve is initialized on the convex hull
of the point set. The current edge, enclosed by a non-empty Gabriel half-ball, forms a Delaunay triangle (dark gray)
with the square point. This triangle becomes external, the curve is updated (b), and it continues to shrink. In (c), an
edge is found to block a pocket; it will be forced. The final result is shown in (d) with some empty Gabriel half-balls.

2.2 Selective reconstruction

In presence of an overly dense input point set, the pur-
pose of selective reconstruction is to produce a sim-
plified triangulated surface that remains close from the
sampled one. An interesting property of the geomet-
ric convection algorithm is that it induces a breadth-
first discovery of neighboring sample points on the sam-
pled surface. Exploiting this property, the algorithm de-
scribed in [ACA05] associates the geometric convection
algorithm with a local subsampling procedure that re-
moves sample points that are not geometrically signifi-
cant, up to an error tolerance, while reconstructing. This
process results in a sampling distribution that is locally
uniform almost everywhere.

Each time a new sample point p ∈ P is incorporated
into the surface in convection Ŝ, its nearest neighbors in
P that do not already belong to Ŝ are successively re-
moved while their distance to p does not exceed a radius
r = min(rgeom, α.rtopo) with rgeom and rtopo defined
as follows:

• rgeom is the distance from p to its first nearest
neighbor pi in P that does not satisfy:

|n(pi) · n(p)| ≥ ρgeom ρgeom ∈ [0,1]

• rtopo is the distance from p to its first nearest
neighbor pj in P that does not satisfy:

|n(pj) ·
p − pj

‖p − pj‖
| ≤ ρtopo ρtopo ∈ [0,1]

where n(x) denotes the unit normal vector at a point
x ∈ P . The ρgeom value limits the normal deviation
from n(p) and controls the level of detail of the re-
construction, whereas the ρtopo value restricts the dec-
imated neighborhood to a topological disk. Note that
only the normal directions are required, not their orien-
tation. If they are not supplied as part of the input data,
these normal directions can be locally estimated by co-
variance analysis. We introduce the α factor, that was
not present in [ACA05], in order to achieve high-quality
simplification without a fairing step. Decimating with

α = 1 results in skinny triangles near sharp features,
where the sampling density increases too rapidly. To
obtain a smooth density gradient, we multiply the r ra-
dius by a factor α = 0.5, which reflects the distance to
the medial axis.

In addition to the previously defined Pog predicate
and Qdt query, the selective reconstruction algorithm
requires a query Qnn that returns the nearest neighbors
of a sample point. If R̂ ⊂ P denotes the set of re-
moved sample points at a given time, then Pog and Qdt
are evaluated within P \ R̂ at that time. Since many
sample points may be discarded, constructing the De-
launay triangulation of the whole input point set may
be uselessly expensive. The authors instead rely on a
triangulated surface data-structure that is initialized by
computing a simplified convex hull based on the above
subsampling procedure. The Pog predicate and the Qdt
query are evaluated on-the-fly during the reconstruction
process, but not in a direct manner. Evaluating Pog
now involves an additional query Qhb that reports the
points in P \ R̂ located inside the Gabriel half-ball of
the facet. The Qdt query also needs a predicate Pct to
test whether a point in P \ R̂ enters in conflict with a
Delaunay tetrahedron.

The question of how to efficiently evaluate Pog, Qdt,
and Qnn arises. A kd-tree data-structure is well-suited
to report the sample points located inside the Gabriel
half-ball of a facet and to search the nearest neighbors
of a sample point. For a facet that does not satisfy Pog,
the search space for Qdt can be reduced to its Gabriel
half-ball. However, these half-balls may contain a great
part of the input point set, especially at the beginning
of the reconstruction process (see Figure 2(a) for exam-
ple). Moreover, when Pog is satisfied and that a pocket
is detected, the search space for Qdt can extend to the
whole half-space above the facet.

The main limitation of the algorithm regarding per-
formance is the lack of visibility of ”what lies ahead”
in the unexplored domain during the convection pro-
cess. To handle large data efficiently, a better localiza-
tion of geometric queries is required. In Section 3, we
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show that performance can be considerably improved
by maintaining a partial Delaunay triangulation of the
data in a dynamic fashion.

2.3 Local update

During the reconstruction process, constructing the
Delaunay triangulation of the retained sample points
makes it possible to locally update the reconstructed
surface by adding or removing sample points in a dy-
namic fashion. This functionality takes advantage of the
discovering relation induced by the convection scheme
on the set of Delaunay cells traversed by the surface.
This relation is stored in the cells that have been vis-
ited. When inserting sample points, these points enter
in conflict with a set of Delaunay cells that form a con-
flict region. This region is retriangulated and the dis-
covering relation between Delaunay cells is restored by
restarting the reconstruction process from its boundary
parts located out of the current surface. The surface can
step back locally when some cells cannot be discovered
anymore. When removing sample points, the cells of
the conflict region are the cells attached to the points to
be removed.

To locally change the level of detail of a reconstructed
surface, a region of interest and a local ρgeom value are
first defined. All the removed sample points in this re-
gion are rehabilitated, and the Delaunay cells whose
circumsphere intersects the region of interest form the
conflict region. The internal Delaunay vertices are re-
moved and the selective reconstruction process restarts
as described above, by taking account of the local sim-
plification parameter.

3 Selective reconstruction from large
point sets

This section describes our extensions to the selective re-
construction algorithm presented in [ACA05], that im-
prove its performance and makes it appropriate for large
datasets. Our first goal is to accelerate the evaluation
of the previously mentioned Pog predicate and Qdt
query. This is achieved by first structuring and reduc-
ing the search space covered by these operations, based
on a partial Delaunay triangulation of the input point
set. Spatial search is then performed through a kd-tree
data-structure with an optimized algorithm. At the end
of the section, we describe an out-of-core selective re-
construction algorithm that mixes the in-core technique
with the local update algorithm to handle point sets that
do not fit into memory.

3.1 Data-structure and accelerated algorithm

Data-structure In Section 2.2, we highlighted a front
visibility issue when running the reconstruction process
without a global Delaunay triangulation. Suppose now
that we incrementally construct the Delaunay triangula-
tion of the retained sample points while reconstructing,
as it is done in anticipation of local update. Every facet
of the shrinking surface is the interface between two
cells; we call front cell the one that is enclosed in the
surface. Front cells are connected to opposite vertices
on the surface and give information about the extent of
the unexplored domain. However, the part of their cir-
cumsphere located inside the surface generally encloses
a larger spatial domain than the Gabriel half-balls. The
Delaunay triangulation of the retained sample points is
therefore not sufficient to reduce the search space for the
spatial queries involved in the convection algorithm: ad-
ditional sample points are required to ”break” big front
cells.

We begin with a set of landmark sample points ob-
tained from a kd-tree structure with a threshold on the
maximum number of points per leaf. In every leaf cell,
the point that is the closest from the centroid is retained
as a landmark (their density will be discussed later).
The Delaunay triangulation D̂ of these points is then
built, and enriched with the corners of an axis-aligned
bounding box. The surface is initialized on the convex
hull, the bounding box here, and is directly supported
by the Delaunay triangulation D̂. The reconstruction
process can then be run benefiting from smaller front
cells that will help to accelerate the evaluation of both
Pog and Qdt. In parallel, spatial search is delegated to
a kd-tree data-structure that stores the whole input point
set, with a specific algorithm that will be described later.

Accelerated algorithm The accelerated algorithm
dynamically updates the Delaunay triangulation D̂ all
along the reconstruction process by inserting retained
sample points and removing unretained landmarks so
that the latter do not affect the final result. We exploit
here the property that the Delaunay cells that become
external to the surface remain until the end of the pro-
cess, which is not the case for internal cells. External
cells are naturally protected from any subsequent ver-
tex insertion or removal.

We continue with the notations of Section 2 to de-
scribe the algorithm. An illustration in 2D is provided
in Figure 3. To check whether an oriented facet pqr of
the surface Ŝ satisfies Pog, we consider its front cell σ
in the current Delaunay triangulation; its circumsphere
is denoted as S. We call front vertex the vertex of σ
that is opposite to the facet; its location is denoted as s.
The Gabriel half-ball of the facet is finally denoted as
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(a) (b) (c)

Figure 3: Accelerated selective reconstruction towards a 2D point set. In (a), an enclosing curve is initialized on a
bounding box. A Delaunay triangulation has been built from its corners and a set of landmarks (filled square points).
The current edge is enclosed by a non-empty Gabriel half-ball: the front vertex lies inside. Then, the point that forms
a Delaunay triangle with the edge is searched within the disk that circumscribes the front cell (the square-dot point).
The point set is then locally decimated around the retained point (cross points). In (b), the retained point has been
inserted in the triangulation and the curve continues to shrink. The facets attached to the corners of the bounding box
are forced. The final result is shown in (c).

B, and the half-space above the plane that supports it as
H. The first step to evaluate Pog is to check whether s
lies inside or outside B.
1. If s ∈ B, then the Pog predicate is not satisfied.
The Qdt query is then performed in (P \ R̂) ∩ S ∩ H,
that corresponds to the set of points that enter in conflict
with σ. If this set is empty, then pqrs forms a Delaunay
tetrahedron in P \ R̂.
2. If s /∈ B, it it not guaranteed that Pog is satisfied. To
evaluate the predicate, we first get all the points in the
set (P \ R̂) ∩ B through Qhb. If this set is not empty,
then Pog is not satisfied and Qdt is next performed in
the set (P \ R̂) ∩ B.
In the case where Pog is satisfied but that a pocket is
detected, then Qdt is performed in the set of points (P \
R̂) ∩ S ∩ H that enter in conflict with σ. If this set
is empty, then pqrs forms a Delaunay tetrahedron in
P \ R̂.
Each time a new Delaunay tetrahedron is formed from
a facet pqr and a point x, then x is inserted into the De-
launay triangulation provided x 6= s, and the surface is
updated. Note that any facet attached to some vertices
of the bounding box should be opened, i.e. the query
Qdt performed, even when the predicate Pog is satis-
fied.

We now discuss the choice of the landmark points.
The main benefit of these points is at the beginning of
the process, where Gabriel half-balls may contain a lot
of sample points. As their size decreases, this benefit
also diminishes, because the density of these points be-
comes insufficient. However, small Gabriel half-balls
can be processed more efficiently. If this density is too
high, then much time may be spent to remove undesired
landmarks. As the final simplification rate highly de-
pends on the shape and on the ρgeom value, the optimal
number of landmarks is not easy to determine. In prac-
tice, choosing one landmark for a few thousands points

(between 1k and 10k) is sufficient to limit the spheres
that circumscribe front cells to a few hundreds points in
the worst case, and get a significant acceleration of the
selective reconstruction process.

3.2 Accelerated spatial search

In the accelerated selective reconstruction algorithm,
the Pog predicate is first evaluated by localizing subsets
of sample points that enter in conflict with front cells or
that fall into Gabriel half-spheres. When the returned
set of points is not empty for a given facet, then the
point that forms a Delaunay tetrahedron with the facet
has to be found (Qdt). Without information about the
structure of the input point set, every point in this set
is a potential candidate and thus needs to be tested. To
reduce the number of tests, we rely on a kd-tree data-
structure.

We first focus on the simple case where a facet of
the surface is such that its front vertex is located inside
the Gabriel half-ball of the facet. We start by searching
for the non-empty leaves of the kd-tree that are likely
to contain points that fall into the region bounded by
the circumsphere of the front cell, restricted to the half-
space defined by the facet; we call C this region. This is
achieved through a depth-first traversal of the kd-tree.
If a kd-tree cell completely lies inside C, then the leaves
of the corresponding sub-tree are returned. The leaves
that intersect C only partially are also returned. Testing
whether a kd-tree cell intersects C involves two predi-
cates: a sphere/box overlap test and an half-space/box
overlap test [AM01]. A counter that gives the number of
remaining points in a leaf avoids testing empty kd-tree
cells.

When non-empty leaves are reported, the next goal
is to obtain the point that forms a Delaunay tetrahedron
with the facet, with an average complexity better than
linear in the number of points contained in the leaves.
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Our algorithm proceeds incrementally, starting with the
sample point that maps to the front vertex of the facet
as candidate. The set of leaves reported for the facet are
stored in a queue denoted as L, and the facet is denoted
as pqr.

1. While L contains more than one element:

(a) Get one point in each kd-tree leaf of L that
falls into C, if existing. Let M denote this set
of points.

(b) Search M for the best point candidate c, that
is the point such that the circumsphere of
pqrc contains no other point of M , based on
Pct.

(c) Remove from L the empty cells and the cells
that do not enter in conflict with tetrahedron
pqrc.

2. Search for the best candidate from the remaining
points.

The case where the facet has its opposite vertex out-
side its Gabriel half-ball is treated in a similar fashion,
except that conflicts are first tested within the reported
leaves that intersect the Gabriel half-ball in order to de-
termine whether the facet satisfies Pog. As soon as the
predicate is found to be unsatisfied or if a pocket is de-
tected, then the search is pursued in order to find the
Delaunay candidate.

The method rapidly discards outlier leaves, i.e. that
are the least likely to contain the good candidate. How-
ever, it is often difficult to decide between the remaining
leaves, since the candidates can ”jump” from a leaf cell
to the other. When the number of remaining leaves stag-
nates, we stop the process and switch to linear search
among the remaining points in order to avoid any com-
putational overhead of testing conflicts between leaf
cells and triangulation cells. In practice, the overall gain
per facet is typically 10% to 20% of conflict tests be-
tween a point and a tetrahedron (Pct).

3.3 Out-of-core reconstruction algorithm

Starting from a large and dense input point set that
cannot be stored in main memory, our goal is to
produce a simplified triangulated surface that fits
into memory. A common strategy to simplify large
unstructured meshes that cannot be entirely loaded into
memory consists in partitioning the input data into
clusters and then processing each one independently
in-core [Lin00, CMRS03, CGG∗04]. This strategy
does not extend easily to surface reconstruction from
large unorganized point sets. Since no connectivity
information between the different parts is available,

stitching and orientation issues arise [DGH01b]. In
our framework, we propose to circumvent this problem
by maintaining some kind of global connectivity
information based on the Delaunay triangulation of a
subset of representative points, and process each cluster
independently through the local update algorithm. Our
algorithm proceeds in three steps:

1. We filter the input point set P through a regular
grid to obtain a subset of representative sample
points Prep and a partition of P into clusters
P1 ∪ P2 ∪ . . . ∪ Pn = P .

2. We build the Delaunay triangulation of Prep and
run the classic geometric convection algorithm on
this point set.

3. For every subset Pi, we load the points that it con-
tains into memory and then locally refine the re-
construction in the corresponding region of space
using the local update and selective reconstruction
algorithms.

While partitioning the input point set in the first step,
we want to quickly extract a reduced set of represen-
tative points giving an approximate idea of the global
shape. This sample is then used in the second step to
produce a coarse reconstruction. We do not need a pre-
cise downsampling because the interest is not for the
reconstruction itself, but rather for the discovering re-
lation between Delaunay cells that partition the whole
data domain. This relation will be the basis for subse-
quent local reconstruction updates. Even if the initial
reconstruction is not topologically correct and misses
some small features, this will not affect the quality of
the final result; errors will be automatically fixed by lo-
cal updates. However, from a computational point of
view, it is preferable to start these updates with a suffi-
ciently precise reconstruction. Indeed, some major revi-
sions of the surface may be expensive, both in time and

(a) (b) (c)

Figure 4: Accessible new data vs. inaccessible new data
in 2D. We consider the input point set (a). In (b) and (c),
the two new points in the rectangle are loaded. In (b),
these points cannot be reached with the reconstruction
(bold curve) from Prep (bold points), whereas they can
be reached in (c) where the reconstruction is finer.
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memory. In order to limit them, the final surface should
be accessible from the surface reconstructed from Prep

in the sense it should be enclosed in the union of Gabriel
half-balls of the shrinking surface (Fig. 4). Note that
this condition is not mandatory to get a correct recon-
struction. In practice, we simply filter the input point
set on a grid with a fixed resolution.

The initial filtering and partition step is achieved by
reading the input point set three times. During the first
pass, we compute the smallest axis-aligned bounding
box, that we next subdivide into a regular grid. In the
second pass, we compute for each non-empty grid cell
the sample point that is the closest from the center. This
set of sample points forms the set Prep. During this
pass, we also count how many points fall into each grid
cell. We next define a recursive binary partition of the
grid structure with a user-specified maximum number of
sample points per leaf; each leaf cell represents a cluster
Pi. The maximum population threshold for each clus-
ter should be set according to the amount of memory
available on the target machine. During the third pass,
the points are distributed among the different leaf cells.
Depending on their number, the content of the clusters
may be written in separate files on disk, or they may be
filled and processed one at a time, which requires addi-
tional reading passes.

In Step 3, we have to determine for each cluster Pi

the set of cells of the current Delaunay triangulation
that enter in conflict with its points. To avoid multi-
ple point locations in the Delaunay triangulation, con-
flicts are tested against the smallest axis-aligned bound-
ing box of the points in Pi. We search for the Delau-
nay cells whose circumsphere intersects this bounding
box. This is achieved by first locating the Delaunay cell
that contains the center of the box and then extending
the conflict region by recursively testing the neighbor-
ing cells. The result is a connected set of Delaunay cells
that is used to initialize the local reconstruction update
process. For spatial search queries, we construct a kd-
tree from all the points inside the conflict region. This
set includes Pi and may also include some points out-
side Pi attached to Delaunay cells in conflict with the
bounding box of Pi, which guarantees that the different
refined parts correctly merge together. The local update
process is then achieved as described in Section 2.3.

Two steps of the reconstruction process are illustrated
on the LUCY model (14M points) in Figure 5. The
boundaries of the different parts may be slightly per-
ceivable in the final result. However, the method pro-
duces no discontinuity in the sampling density. These
boundaries can be completely eliminated by simply en-
larging the clusters so that they contain neighboring
sample points up to a distance that depends on the sim-

plification parameter ρgeom.

(a) (b)

Figure 5: Two reconstruction steps for the LUCY model.
In (a), the initial surface has been reconstructed from
the representative points (25k) and a first local update
step has been performed (bottom-left). In (b), two more
clusters have been loaded and the reconstruction has
been updated.

4 Experimental results and perfor-
mance

We have implemented our extended dynamic surface
reconstruction framework in C++ on a Linux platform
using the Computational Geometry Algorithm Library,
CGAL [CGA]. We make use of CGAL for constructing
Delaunay triangulations and rely on filtered predicates
for robust conflict tests.

We demonstrate the effectiveness of our framework
on several large point set models that were obtained
from laser range scanning (Figs. 1, 7, 8, 9, 10, 11). The
LUCY and ST. MATTHEW models were reconstructed
through our out-of-core selective algorithm. For both
in-core and out-of-core reconstruction, the user has to
provide a value for the error tolerance ρgeom, that de-
termines the level of detail. An initial selective recon-
struction is performed, and the result can be next cus-
tomized through local update features. We have devel-
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(a) (b)

(c)(d)

Figure 6: Some screenshots of our dynamic recon-
struction interface. In this session, the face of the ST.
MATTHEW model (original: 26M points) was refined.
In (a), the result of an initial reconstruction has been
loaded (time: 4 seconds). In (b), an update region has
been selected and the reconstruction is shown refined
in (c) and (d) (time: 11 seconds).

oped a graphic user interface (Fig. 6) to load a recon-
structed simplified model from disk and interactively
change its level of detail locally using the tool described
in [ACA05]. Timings and memory usage for initial
selective reconstructions as well as for local updates
are reported in Table 1. All the results presented here
were obtained on a Pentium IV 3.0GHz, 2GB RAM
workstation. These timings include the preprocessing
time required to build the kd-tree data-structure(s), se-
lect the representative and landmark sample points, and
construct the initial Delaunay triangulation(s). Table 2
summarizes the overall execution profile for different
in-core reconstructions.

Simplification performance The size of our initial
simplified models is typically between 1% and 5% of
the size of the original point set, which often suffices
to preserve the shape of scanned objects at a mid-scale
level, and even at fine scale if the point set is very redun-
dant. The method is capable of producing high-quality
simplified models directly, without the need of a subse-
quent mesh fairing step. The majority of the mesh ver-
tices have valences between five and seven, and most
facets have good aspect ratios.

Computational performance For in-core selective
reconstructions, we set the number of landmark points
to 1 for 2k sample points. The preprocessing time was

less than 12 seconds in all our tests. According to our
experiments, our accelerated selective reconstruction
method runs up to 20 times faster than the original one.
The computational overhead due to update operations
in the Delaunay triangulation is largely amortized by
the reduction of spatial search domains. For out-of-core
reconstructions, the LUCY model and ST. MATTHEW

model were split so that each cluster contains less than
3.5M points; the resulting number of clusters was re-
spectively 8 and 15. The number of initial representa-
tive points was set to 1 for 1k sample points and the
initial reconstruction took less than 10 seconds in both
cases. For each part, the refinement then took less than
2.5 minutes.

Execution profiles show that evaluating Pog and Qdt
is by far the most expensive task in the selective re-
construction algorithm. While we have reduced spa-
tial search domains, the overall cost of spatial search
queries still remains proportional to the number of
facets through which the surface passes, which repre-
sents the bottleneck of the current method. Memory us-
age is also relatively high due to the storage of both a
kd-tree and a Delaunay triangulation.

In the initial selective reconstruction step, our method
runs slower than the surface reconstruction techniques
with simplification proposed in [OBS05], and is also
more memory demanding. However, our method can
then perform localized updates at interactive rates,
while the reconstructions in [OBS05] cannot evolve so
easily. Our method does not involve stitching, and our
results are guaranteed to be combinatorial manifolds.
The dynamic approach is also powerful because it does
not require to start from a well-behaved point sample,
which is an advantage for out-of-core surface recon-
struction, or even for streaming surface reconstruction.

Model name BIMBA ASIAN THAI
DRAGON STATUE

ρgeom 0.8 0.65 0.65
Preprocessing 8.7 6.5 4.2
Evaluation of Pog and Qdt 54.9 66.8 74.0
Evaluation of Qnn 30.7 20.2 13.3
Vertex insertion/removal 5.7 6.5 8.5

Table 2: Execution profile for three selective recon-
structions. For each model, the column reports the per-
centages of overall time spent to accomplish the tasks
listed on the left.

5 Conclusions and future work

We have proposed a new data-structure with a selec-
tive reconstruction algorithm that permits to efficiently
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In-core reconstructions
Model Selective reconstruction Local update Mem. usage

name #points ρgeom #points time #points time
BIMBA 1,873,832 0.65 31,643 0:47 – – 380 MB

0.8 57,630 1:01 – – 395 MB
ASIAN DRAGON 3,609,600 0.65 185,504 2:48 177,324 0:14 778 MB

DAVID 3,617,008 0.6 137,025 2:06 174,628 0:28 754 MB
THAI STATUE 5,001,964 0.65 571,600 6:21 – – 1,367 MB

Out-of-core reconstructions
Model Selective reconstruction Local update Mem. usage

name #points ρgeom #points time #points time
LUCY 14,027,872 0.85 550,877 17:40 – – 765 MB

ST. MATTHEW 26,034,562 0.5 116,846 31:12 130,549 0:11 836 MB

Table 1: Performance of our dynamic surface reconstruction framework for various input point sets. Computational
timings are given in minutes:seconds and include preprocessing (construction of kd-trees and initial Delaunay tri-
angulations). Memory usage corresponds to the maximum amount of memory used during the reconstructions, in
megabytes. All tests were performed on a Pentium IV 3.0GHz, 2GB RAM workstation.

reconstruct simplified mesh surfaces from millions of
sample points in a dynamic framework. The recon-
structed surfaces can be dynamically refined or coars-
ened benefiting from the same data-structure. We have
also proposed an out-of-core selective reconstruction al-
gorithm scalable for input point sets that do not fit into
memory.

Our method makes dynamic surface reconstruc-
tion practicable for large datasets obtained from laser
range scanning, which may represent an alternative to
the standard surface reconstruction-mesh simplification
pipeline. The user can also completely customize the re-
construction in order to emphasize some particular de-
tails. When visualizing a large object, the precision of
the reconstruction can be adapted to the viewpoint or to
another region of interest at interactive rate. An efficient
dynamic surface reconstruction framework may be also
useful for processing point set streams on a network,
since it does not require random access to the data.

In a near future, we plan to further improve the com-
putational performance of our accelerated framework
by reducing the number of spatial queries. Some infor-
mation about conflicts could be shared between several
facets in order to save some spatial queries. Another
research direction would be to locally relax the global
Delaunay property by choosing approximate candidates
and repairing errors on-the-fly when needed. We are
also investigating a way to extend the dynamic frame-
work to reconstruct simplified surfaces in a streaming
fashion.
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Figure 7: Reconstruction of the BIMBA model (1.9M
points) with ρgeom = 0.65 (left, 98% of points re-
moved) and ρgeom = 0.8 (right, 97% of points re-
moved).
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