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‘ Reconstruction of a simplified mesh

Figure 1. Our reconstruction framework, illustrated on thei®fLE HECATE model. Starting from a dense input point set, we reconstruct a simplified
mesh (center). Benefiting from the connectivity of this initial reconstruction, we can make it to evolve dynamically so as to refine the approximation
locally. This refinement can be achieved either in an automatic fashion, for example in order to improve the quality of the elements of the mesh, or
interactively, in order to add or remove sample points. Here, the draped dress has been locally enhanced (right).

Abstract 1. Introduction

) i ) Shape modeling from point-sampled geometry has re-

In this paper, we introduce a flexible framework for the gjyeqd considerable attention in the past few years, due to
reconstruction of a surface from an unorganized point set, he recent advances of 3D digital acquisition and the in-
exte_nding the_geometric con_vection gpproach introc_;luced bycreasing number of application domains. Today’s range
Chaine B]. Given a dense input point cloud, we first x-  gcanning devices are able to produce highly detailed digital
tract a triangulated surface that interpolates a subset of the g rface models that can contain millions of sample points.
initial data. We compute this surface in an output sensitive 1q produce efficient shape representations for interactive vi-
manner by decimating the input point set on-the-fly during g ,qjization or further geometry processing, the complexity
the reconstruction process. Our simplification procedure ¢ these models has to be reduced.
relies on a simple criterion that locally detects and reduces  £rom a dense input point set, we consider the problem of
oversampling. If needed, we then operate in a dynamic fash-;omnuting a simplified piecewise linear surface. This goal
ion for local refinement or further simplification of the re- .5 pe achieved by first reconstructing an initial mesh, and
constructed surface. Our method allows to locally update {an simplifying this mesh. However, the time and mem-
the reconstructed surface by inserting or removing sam- oy costs can be prohibitive if connectivity relations have
ple points without restarting the convection process from i, he established for all points of the input point set. An-
scratch. This iterative correction process can be controlled o sojution consists in first simplifying the input point
interactively by the user or automatized given some specificset, and then reconstructing. The goal of point set simpli-
local sampling constraints. fication algorithms is to extract the relevant data of a dense

input point set so as to accelerate a subsequent surface re-

Keywords: surface reconstruction, point set simplification, construction process. Most of these algorithms are not de-
geometric convection, dynamic correction. signed to perform both point set simplification and surface



reconstruction in a single stage, and do not compute theirputed from natural neighbor interpolation of a random sub-
result in an output sensitive manner. The coarse-to-fine sur-set of the input point set with oriented normals. This subset
face reconstruction algorithm by Boissonnat and CaZls [ is iteratively enriched till the result fits a geometric error.
is a notable exception. One limitation of this work isthatthe ~ Resampling algorithms rely on a global or local esti-
refinement is not achieved in a complete dynamic fashionmated representation of the true surface to compute new,
when a consistent orientation for normals has to be deter-well chosen point locations. This representation is com-
mined. For the purpose of multiresolution shape modeling, puted from the input point seiB, 18, 17, 19]. Boissonnat
when transmitting point samples over networks, or during and Oudot §, 7] have recently revisited Chew’s Farthest
the 3D acquisition process, updating the reconstructed surPoint sampling techniquel] to generate optimal feature
face on-the-fly by incorporating or removing points dynam- size-dependent triangulations for a fixed implicit or polyhe-
ically can be useful. dral surface. The authors reconstruct a mesh surface coarse-
In this paper, we introduce a dynamic framework for the to-fine from a point set using a Moving Least Squares im-
reconstruction of a simplified triangulated surface from a plicit surface representation.
set of unorganized points sampled from a smooth surface
in R3. We build upon Chaine’s geometric convection al- 1.2. Overview
gorithm [9]. As many surface reconstruction algorithms in
the Computational Geometry communi8},[this algorithm
outputs a triangulated surface embedded in the 3D Delau-
nay triangulation (or DT for short) of the input point set.
Unlike in the original method, we do not require a global
3D DT of the entire input point set. Given a geometric error
tolerance, we produce a piecewise linear approximation of
the original surface that interpolates only a relevant subse
of the input data. We compute this surface in an output sen
sitive manner by decimating the input point set on-the-fly
during the reconstruction process. Our simplification pro-
cedure involves a simple criterion that locally detects and

Let P = {p,} be a set of sample points that lie on or
near a smooth surfacgembedded ilR3. We suppose that
P is sufficiently dense in the sense this point set forms a
e-sample ofS for some constart > 0 [2]. This point set
can be locally oversampled w.r.t. the local feature size, i.e.
the shortest distance to the medial axis. In our framework,
fwe need an (unoriented) normal direction at every sample
“pointp € P. If normals are not supplied as part of the
input data, we estimate the normal direction at a ppiby
fitting a least squares planepaand itsk nearest neighbors
in a preprocessing step. For a reliable estimation, a locally
: . . ) Cniform sampling distribution is require@][ We recall the
can k_Je cystomlzed Ina second Stage either to refine the ap@eometric convection algorithm in Section 2. We proceed
proximation, or to ellrr_unate ur_u_jeswable fef_atures_. One keyin two stages, as illustrated in Figute
feature of our method is the ability to dynamically insert and he first stage (Section 3), we compute a linear ap-
remove sample points without restarting the reconstruction * _In t © ge ' P P
process from scratch, taking benefit from the current recon_proxmatlo_n of.5 that interpolates a SubSﬂI of P w.rt.
structed surface Thi,s iterative process can be automatize geometnc error to]ergnge >0 pr-escnbed by the user.

' ach time a new point is inserted in the reconstructed sur-

given some specific local sampling constraints or controlled face, we decimate the input point set in a small neighbor-

interactively. hood around. We achieve this simplification in a feature-
sensitive manner thanks to a normal-based error metric. The
1.1. Related Work result is a consistent triangulated surface embedded in the
3D DT of P’. For this reconstruction, we do not require
Our work is closely related to surface reconstruction and to compute the 3D DT ofP explicitly. We only need to
surface resampling problems. We focus here on point setcompute the 3D DT of”’ in prevision of the second stage.
simplification techniques and sampling algorithms that out- e In the second stage (Section 4), corrections can be ap-

put a mesh approximation. plied dynamically to the reconstructed surface. We propose
There are mainly two kinds of algorithms for simplify- a refinement algorithm to improve the quality of the trian-
ing a dense point setsubsamplingand resamplingalgo- gles and give the possibility to the user to customize the

rithms. Subsampling algorithms output a decimated point result by adding or removing details. For this purpose, we
set that is a subset of the original point set. This can beintroduce an algorithm to locally update the reconstructed
achieved fine-to-coarse by iterative point removal opera- surface by inserting or removing sample points. We store
tions [12, 15, 1, 19, or in a coarse-to-fine fashion, using the history of the reconstruction process by maintaining the
a Farthest Point Sampling Strateghf]. Boissonnat and 3D DT of the set of points that actually belongs to the re-

Cazals p] have proposed a coarse-to-fine reconstruction al- constructed surface.

gorithm controlled by a signed distance function to the re-  In Section 5, we present some experimental results. We
constructed surface. This signed distance function is com-conclude and discuss future work in Section 6.
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Figure 2. Convection towards a 2D point set. In (a), the pseudo-curve is initialized to the convex hull of the point set. The current edge, enclosed
by its (dashed) nonempty half-circle, forms a Delaunay triangle (dark gray) with the dark gray point. This triangle becomes external, and the pseudo-
curve is updated consistently in (b), where two other Delaunay triangles have been opened. The pseudo-curve evolves as long as the oriented Gabriel
property is not met for any of its oriented edges. In (c), an edge is found to block a cavity. The result in (d) contains coupled oriented edges (the
‘tail’ at the bottom right of the shape).

2. The geometric convection algorithm reconstruction process. It supports topological changes and
allows to maintain a consistent mesh at every step of the
The geometric convection algorithr@][is based on the  convection scheme.
convection model introduced by Zhao, Osher and Fed-

kiw [20]. From a point set” sampled from a surfacé Algorithm From the above theorem is derived an algorithm

the latter solve the reconstruction problem by computing a that extracts the reconstructed surfaérom the 3D DT of

closed surface that minimizes a global distance function to £+ The idea is to shrink an initial piecewise-linear pseudo-
the input point set. A convection scheme is used to com- surface (or just pseudo-surface for short) through this trian-

pute an initial approximation af. This approximation is gulation, which is equivalent to make it convect through the

obtained by shrinking a surfac¥ that enclose®. At each v_elocity field —Vd(x). Fi_gureZ illustrates the reconstruc-

step, every poin of S’ evolves along the normal direction 110N Process on a 2D point set.

n(x) of S’ at pointx, with displacement speed proportional The pseudo-surface is initialized with the boundary of

to —Vd(x) - n(x) whered(x) is the distance betweenand the convex hull ofP, all facets oriented inwards. If an ori-

its closest point inP. ented facet does not meet the oriented Gabriel property, it
Zhao et al. 0] compute the convection result on a regu- IS removed from the pseudo-surface to be replaced by three

lar grid with a so-called fast tagging algorithm. Chaieg [  other ’hidden’, consistently oriented facets of the Delaunay

translates the convection scheme into Computational Ge-etrahedron it belongs to. An oriented facet can be opened

ometry terms, yielding an efficient, purely data-dependent towards a point location that is already attached to a vertex

surface reconstruction algorithm. This work is built on the of the current pseudo-surface. Two oriented facets of the
following theorem. pseudo-surface with identical geometry are said tcde

pled — they necessarily have opposite orientations. When

one of two coupled oriented facets of the pseudo-surface

does not meet the oriented Gabriel criterion, both are re-

moved and are said twllapse which can involve topolog-

ical changes of the pseudo-surface. All facets are processed
separately, following a breadth-first traversal.

Theorem (proved in Chaineq]) Given a closed surface
S’ enclosing a point seP, the convection of’ through
the velocity field-Vd(x) converges to a closed, piecewise
linear pseudesurface. All the facets of this pseudo-surface
are Delaunay facets oriented consistently towards the

interior of the shape that meet amiented Gabriel property The convection stops as soon as every oriented facet
meets the oriented Gabriel property. In presence of con-
An oriented Delaunay facef is said to meet theri- cavities larger than the Gabriel half-spheres raised from the

ented Gabriel propertjf the half of its minimum enclosing ~ Pseudo-surface, the basic convection process stops prema-
Sphere located on the positi\/e Sideﬁ)ﬁoes not contain turely. If the point sample correctly reflects the local fea-
any point of P in its interior. The termpseud@surface ture size, the pseudo—surface is further shrunk through these
means that different parts of this surface can be pinchedPocketsby detecting inconsistencies between the size of
together, i.e. can locally share common geometric infor- blocking facets and local density. A more global solution
mation, while remaining topologically independent. More for this problem can be derived from a topological persis-
formally, a piecewise-linear pseudo-surface can be definedtence criterion14, 8].

as the geometric embedding of an orientable manifold The resulting pseudo-surface is a combinatorial mani-
polyhedral complex such that the geometric images of two fold, that can contain coupled oriented facets calieid
vertices, edges of facets are either identical or disjoint. Thisparts These thin parts are not always significant, so it is
structure can represent the evolving surface all along theimportant to identify desirable ones. This is achieved by



pursuing the convection process in 2D on these thin parts,Cy,p,. A point that fulfills both criterieCycon, andCiop, is

starting from their boundary. eliminated, and the growing stops as soon as one of these
] ) ] ] ) ] conditions is not met. The distance betwgeand the far-

Complgxﬂy The complexity of this algorlthm IS domlnated thest point that fulfills bOtmgeom andOtopo will be called

by the time to compute the 3D D_T (_)f the input point set. It yacimation radiusf p.

can be computed incrementally in il N log V), where Our geometric criterion (Figd) relies on a normal-based

N is the size of the input point set]]. For alocally uni-  grror metric. A pointp, fulfills the geometric approxima-
form e-sample, the number of tetrahedra is almost linear (jo criterion if and only if the following condition is met:

w.rt. N [4]. Remaining operations correspond to a partial
breadth-first traversal of the 3D DT. (Cyeom) In(p;) - n(p)| > p

The basic convection process does not requiregéotyal
Delaunay-related information such as the poRsthat can where( < p < 1 .
be needed to obtain an estimation of the local feature size_ 1€ topological criterion must guarantee that the ball
for example. Only the pocket detection could benefit from 5(P) bounding the decimation region arourl con-
such a global information, but the proposed local solution NS only sample points that belong to the local surface
gives satisfactory results in practice. The 3D DT allows to nelghborhqod ofp on 5. This criterion is designed to
directly identify the points towards which oriented facets Prevent orle,nted facets from having an h'alf—sphere that
open during the convection process. For redundant inloutencroaches another part of the surface, which would result

point sets, time and memory are wasted unnecessarily, sinc{gﬁl a_topologically in_correct_ re_constru_ctio_n. As iIIu_strated
not all points are relevant. For our purpose of reconstructing'" Figure 4, we derive an intrinsic criterion. A poir;
a simplified triangulated surface, we investigate a way to

fulfills the topological criterion if and only if the following
avoid the computation of the 3D DT of the entire point set. condition is met:

| o (Ciopo)  IN(py) - TP
3. Reconstruction and simplification 1P =i
where0 < p’ < 1is a value that depends on the sampling
The first stage of our framework consists in constructing conditions. IfP = S, the idea is that if3(p) touches an
a mesh from the input point cloud while simplifying it. To other part ofS at a sample poirp,, 3(p) becomes tangent
fit our simplification purpose, we couple the geometric re- to S at p; so that iip,) andpp, are collinear. The trans-
construction algorithm with a subsampling procedure. We position to the discrete setting is straightforward, provided
take benefit of the locality property of the convection pro- P reflects the local feature size. Depending on the input
cess to avoid the computation of the 3D DT Bf Next, type, theoretical bounds fgr could be derived. In prac-
we describe our decimation scheme. Then, we present thdice, we found thap’ = 0.95 generally gives satisfactory
complete reconstruction algorithm and take a look at someresults. Figuré illustrates the effect of this criterion on the

| <p

properties of the reconstructed surface. screwdriver model.
. . n(p)
3.1. Decimation scheme Ip b
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Let P., denote the set of points interpolated by the /XK( | ShEe o
evolving pseudo-surface at a given time. If a new sam- g ) ®o50°

ple pointp is inserted into the evolving pseudo-surface, we
remove some redundant points Bf— P, located in its Figure 3. Decimation of the point set in the neighborhoodpof
surface neighborhood following an isotropic region grow- A pointp; with a normal that makes an angle less than,.. with

ing strategy. We grow the neighboring region aroynily n(p) satifies the conditio®ycorm.-

adding its nearest neighbors in the order of their distance

to p. The idea is to mak@ a good representative of the .

geometric information hold by the sample points to be re- 3.2. Reconstruction

moved in its neighborhood, given an error tolerapce 1.

A good representativeneans that the set of facets that will We extend the original convection algorithm by in-
be incident to this point will have to correctly approximate troducing the previously described decimation scheme to
the surface both geometrically and topologically, at global produce a simplified reconstruction. Our algorithm does
scale. We thus define two kinds of sub-sampling criteria not compute the 3D DT of the input point set explicitly.
to control the decimation process: ogeometric approxi-  We shrink a pseudo-surface mesh arodhtdy computing
mationcriterion Cyc..,, and onetopological diskcriterion required Delaunay tetrahedra on-the-fly, while eliminating



(b) (d)

Figure 6. Convection with simplification towards a 2D point set. In (a), the pseudo-curve is first initialized to the convex hull of the point set. The
black points have been eliminated while computing the convex hull. The current edge forms a Delaunay triangle with the dark gray point. In (b), the
two black points in the neighborhood of the selected point are found to lie below the prescribed error tolerance. These points are removed and the
pseudo-curve is updated in (c). The pseudo-curve evolves as long as the oriented Gabriel property is not met for any of its oriented edges. The final
result is shown in (d).

Figure 4. lllustration of the topological disk criterion. Herp;

is the first point that does not belong to the topological disk con-
structed fronp. The angle between the normdky) and the edge
pp; should be small ifP is sufficiently dense.

Figure 7. Two reconstructions of the ®HRODITE model (left,
46K points) with different values gf. With p = 0.9, the surface is
approximated by 3.5K points (center). Wjth= 0.98, the surface
is approximated by 10.8K points (right).

Quick Hull algorithm. Each time a new sample point is
added to the convex hull, we call our decimation procedure
on this sample point. We then start from this mesh for the
convection process.

Let pgr be an oriented facet of the pseudo-surface. To

Figure 5. Reconstruction of the SREWDRIVER model with sim-

plification (k = 6, p = 0.98). The reconstruction on the left does deCiqe Whether th_is facet should be 0per_1ed or not towa_rds
not uses our topological criterion. On the right, the topological cri- a point of P, it suffices to check whether its meets the ori-
terion is enabled. ented Gabriel criterion. We first report all points Bflo-

cated in the Gabriel half-spheté of pgr.

o If the criterion is not verified, we check whether the two
coupled oriented facetsqr andqpr both belong toS.,.

If it is the case, the two coupled oriented facets collapse
and the connectivity is restored between their neighboring
facets P]. Otherwise, we have to find the pom& HN(P—

R) such thapgrs forms a Delaunay tetrahedron. This point

Data-structures We represent the evolving surface by a is the one that maximizes the radius of the circumsphere
pseudo-surface mesh data-struct@etat is not supported S of pars. The sphereS is a medial sphere that satisfies
by an explicit 3D DT of the input point set. We delegate the Delaunay empty ball criterion. We call the decimation
spatial searching to ad-tree data-structure that stores the Procedure orsif s does not belong to the pseudo-surface.

input point setP. We require this data-structure to perform Then, we just replaceqr by the oriented trianglesgs, grs
point locations efficiently. andrps, which can be achieved by a simple vertex insertion.

o If pgr satisfies the oriented Gabriel property, we rely on
Algorithm We first initialize the pseudo-surfacg., by normals to detect and pursue the convection process through
computing an approximate convex hull éf using the pockets. Let p denote the unit normal to the oriented facet

irrelevant sample points. We will denote &sthe set of
points eliminated during the reconstruction process, i.e.
R = P — P'. In the two following paragraphs, we present
our data-structures and detail our algorithm.



f. If the greatest value between; - n(p)|, |ny - n(q)|, tion region for every input sample point without simplify-
and|n; - n(r)| is less thar0.5, we consider thaf blocks a ing, but we prefer to compute this radius only for retained
pocket. In this case, we search for the paistich that the ~ sample points. We improve the quality of the mesh that re-
tetrahedromqrs forms a Delaunay tetrahedron. We call the sults from the reconstruction process in a second stage, that
decimation procedure @if sdoes not already belongtothe we develop in the following Section.

pseudo-surface, and then inseiito pgr as previously.

The convection stops as soon as every oriented facet of
the pseudo-surface meets the oriented Gabriel property and
does not pass the pocket detection test. Our reconstruction
algorithm is schematized in 2D in Figue Figure7 il-
lustrates our technique on thePARODITE point set with
different values of the tolerance parameter

3.3. Sampling density and regularity of the mesh

Figure 8. Optimal (a) vs. non-optimal (b) neighborhood configu-
ration. Every sample point is represented with its circular decima-

The sampling density and regularity of the resulting  tionregion.
mesh are controlled both by the radius of the decimation
region around sample points and by the order in which the . .
convection processes them. We provide here some elementd- Dynamic correction
of explanation, but not a complete study.

Our simplification procedure is closely related to the ge-
ometry of the whole surface, but not directly guided by the
local feature sizeZ]. The radius of decimation is another
geometric measure that quantifies the local thickness of th
surface. The growth of a decimation ball around a sample
point in regions with important curvature changes is stopped
by the Cyconm, cCriterion, that only depends on the local sur-

face variations. The radius of a decimation ball built around . . .
. . . insertions or deletions? How to update the pseudo-surface
a sample point on a less curved part is determined'y,

) . . ) -
for a sufficiently permissive criteriofl,.om, i.e. by the dis- in a dynamic fashion after these points have been chosen?

tance to the opposite side of the surface. For triangle-quality improvement, we devise a simple
The final sampling distribution can be explained by the 9réedy refinement algorithm inspired from Chew's algo-
order in which sample points are incorporated into the nthm [1_0]' recently revisited by Boissonnat and Oude}t [
evolving pseudo-surface. An oriented facet that does notUNlike in the latter method, we do not resample a smooth
match the oriented Gabriel property tends to open towards2PProximation of the surface, but simply reinsert some sam-
a point that forms a neighborhood edge with one of its three PI€ POINts that have been eliminated in the first stage till a
vertices, except in the case where the entered Delaunay ceffM00th density gradient is achieved on the whole mesh and
corresponds to a branching of the medial axis. The neigh-an aspect ratio criterion is met for every triangle of the re-

borhood graph on the pseudo-surface thus results from Lonstructed surface. For user-controlled detail insertion or
breadth-first propagation around existing vertices that is in- SUPPression, we propose to restart the convection process in

duced by the geometric convection process. a prescribed region with a value of the parametenodu-

This way of processing yields regular connectivity in lated according to a potential field function.
regions that exhibit no important change in curvature 1o achieve sample point insertions or deletions in the
(Fig. 8(a)). In smooth regions, it can also be observed reconstructed surface, we have designed an efficient algo-
that retained points are distributed uniformly around a given fithm that 'reinflates’ the pseudo-surface in an altered re-
one. However, strong curvature variations induced, for gion and restarts the convection process only locally. This
example, by the presence of sharp features such as edgedgorithm requires the computation of the 3D DT/fdur-
or corners, produce long and skinny triangles coupled with ing the first stage, and supports either one or several inser-
high valence vertices, which can be inadequate for furthertion or deletion operations at a time.
mesh processing (Fig(b)). When growing the decima- In the following paragraphs, we first describe our al-
tion region around a sample point, we have no cheap meangorithm for local update of the pseudo-surface. Then, we
to anticipate on these variations. Sharp features could bepresent our methods for improving the quality of the trian-
detected earlier by precomputing the radius of the decima-gles and for interactive refinement.

The purpose of the correction stage is to refine the ini-
tial reconstructed surface by inserting or removing sample
epoint:s. This functionality first serves the purpose of improv-
ing the quality of bad shaped triangles. Second, we want to
provide the user with means of locally changing the level
of detail of the reconstruction. Two kinds of questions nat-
urally arise: Which points are good candidates for further



4.1. Local update of the pseudo-surface not unique in the sense there may exists several equivalent
configuration of the discovering relation depending on the

Let us recall that a pseudo-surfasé that interpolates ~ order in which Delaunay tetrahedra are opened. Given a

a subset”’ of the original input point seP is embedded  Cell C> discovered from a cell’; and rediscovered from

in the 3D DT of P’. At the end of the convection process, @ cell Cs, the discovering and the rediscovering relations

every oriented facet o’ meets the oriented Gabriel prop- an be switched if and only ", is not an ascendant 6f;

erty w.r.t. P’. When a poinp is inserted (resp. removed) in (Fig. 10).

the 3D DT, the latter is modified onlgcally in a connected

region spanned by the set of cells in conflict witi{resp.

incident top). We exploit this locality property to update C

the convection result without restarting the convection pro-

cess from the convex hull of the point set. Figrgives a G,

simple example on a 2D point set, where one new sample

point is inserted.

Discovering relation.

0 ° ° ° e b 2 o ° ° o Rediscovering relation.
o OO OO o OO OO y OO O.
[e) o} o
o d d Figure 10. Equivalence between two cell configurations in 2D.
The discovering and rediscovering relations can be switched pro-
° ° ] T ] 2 vided there is no cycle creation.
Q
o . 28
o0 . . .
< %o When points are inserted into or removed from the 3D
O . . - .
d o7 %o DT, some cells disappear, that we will call calisconflict
s d in both cases. These are replacedng cells resulting
5 4 from the local retriangulation. This alters the integrity of
o, % the discovering relation. The external cells that do not dis-
oo appear and that were previously discovered from a conflict

. . cell become roots of the discovering relation, though they
Figure 9. Local update of a pseudo-surface in 2D. The top row infini I h I | h 1
illustrates the initial reconstruction process. In the bottom trow, are not infinite cells. T ese cells are Ca_ legohan cells.

a new (black) sample point is inserted. The conflict region is To restart the convection process, we reinflate the pseudo-
bounded by the' dark contour. The DT is updated and the final surface so that it encloses the conflict region (Bigy(a)).
pseudo-surface is shown bottom-right. The newly created cells then become internal. The pseudo-
surface is composed of facets oriented towards the interior
of the surface, that are of three types:
X X e Therestart facetsthat are oriented towards new internal
pseudo-surface lies on the convex hull of the point$af . : ; :

A o cells and that previously encoded discovering or rediscov-
All the Delaunay cells of?’ areinternal except the infinite . :

1 . . ering relations.
cells* that areexternal During the convection process, the . .
. e Thereversable faceighat are oriented from new internal
pseudo-surface evolves and the cells it goes through become
. i . Cells towards orphan cells.
external. An external cell’; is said to have beeatliscovered
! .~ . e The other facets.

from a cellC; if C; becomes external when the facet inci- The update process consists in coherently restoring the
dent toC; andCs, oriented toward€’s, is opened by the P P y 9

convection process. A cdll; can be discovered onlynce gfgggeg m?hfljtlggtre%girg,:/ngérni r;i\;v C?::igon:g%é?suzgr'lni)e
In the case a facet oriented from a @}l towards a celt’s ' Dy P P ) ] P

: A described through the following three steps:

's pushed towards a cefl, that has already been discov- We first launch the convection process from the restart
ered, it means that the pseudo-surface locally has coupled” P

facets betweens andCs that collapse. The cefl; is said acets and resrict it to_ the conflict region. The psgudo-
: surface stops temporarily at the boundary of this conflict re-
to have beemediscoveredrom the cellCs.

The graph that represents the discovering relation be_gion, on standby of an opportunity to re-establish a discov-

tween cells is a forest of rooted treBs= UD; where each ?ancr:a%soa:rreegsllce (gi:'nc?r;fligggtg’ivarfls(;?)e outside. These
tree D; is rooted on an infinite cell. A given foreg? is P y 9. :

2. This step deals with orphan cells. We have to restore
1These cells are artifically created so that the facets of the convex hull the connect|V|ty_ betW.een.C?”S so that these orphan cells get
are incident to two cells. discovered, while maintaining a forest. Care must be taken

At the beginning of the initial convection process, the




initial pseudo-surface
conflict region

facets from being incident to small facets and so, ensures
a smooth gradient of density over the whole mesh.

The idea of the refinement algorithm is to 'break’ every
triangle of S’ that does not meet one of the above condi-
tions. In Chew'’s algorithm, an interesting idea for produc-
ing well-shaped triangles is to create a new sample point
equidistant from the three vertices of a facet with bad as-

/\ orphan cell

reversable facets temporary facet

(@ (b) pect ratio. In our framework we extend this idea consider-
ing the reconstructed pseudo-surfateand the remaining
Figure 11. Convection through a conflict region in 2D. The con- set of pointsR Let f denote a facet that does not péss

flict region is bounded by the dashed curve. In (a), the convection . .. .
starts from two entry points, corresponding to discovering and re- or Cgen, and |eth be its minimal enclosing sphere. For

discovering relations. Gray cells are orphan cells. In (b), the con-  every such facet, our algorithm proceeds by inserting’in
vection through the conflict region has stopped. One temporary  the pointsof ;N R that is the nearest from the intersection
facet appears. point betweers’ and the line that supports the dual Vordno
edge off. The algorithm stops either when both conditions
Cor andCye,, are met or wheSy N R is empty. Our current
to avoid the creation of cycles while re-establishing the dis- implementation does not take boundaries of thin parts into
covering relation. If that is not possible for a given orphan account, but it could be easily extended. Figlgillus-
cell, this cell cannot be external with the new point set con- trates one level of refinement for theeARODITE model.
figuration and the pseudo-surface will be reversed locally.

Let C denote an orphan cell. Suppose there exists a cell
C, adjacent ta”, outside the evolving pseudo-surface and
such thatC' could be opened fron®;. If C is not an as-
cendant ofC; for the discovering relation, we create a dis-
covering relation betweefi; andC. Now thatC has been
discovered, the facets that separ&térom the interior of
the pseudo-surface could be discovered by the convection
process. These facets are pushed into the temporary set.

If one of the candidate cell to ki, is a new cell (i.e. in-
side the retriangulated region), then it is chosen rather than
the others. If there is no cell candidate to disco@erthe
cell C' becomes internal and the pseudo-surface backtracks
consistently. If a celC; was discovered frord, then it be-
comes an orphan cell (if not infinite) that will be processed  rigre 12, Triangle quality improvement for the AiRoODITE
in turn. The connectivity of the discovering relation is then model. Starting from an initial reconstruction with= 0.95 (left),

restored. the refinement was performed with= 0.8 and~ = 0.5 (right).
3. The last step consists in launching the convection process
from the remaining facets in the temporary set. 4.3. Interactive refinement
4.2. Triangle quality improvement Our interactive refinement technique consists in rescal-
ing the value of the parameterlocally and to update the
Let f be an oriented facet of’. We call r,,;,, (resp. reconstructed surface according to the new local sampling

Tmaz) the minimum (resp. maximum) decimation radius of conditions. By being more or less restrictive locally on the
the three vertices of. We define the following two refine-  normal variation, we allow to add details or remove some
ment criteria: features with an intuitive control. We have implemented a
o ] simple brush tool based on a potential field function param-
* (Cur) f meets the criterion if the ratio between the ra- gterized by a center, a radius- and a maximum intensity
dius of the circumcircle of and the length of its short- p. atc. For every point samplp is computed a local er-

est edge is less than a positive constant ror tolerancep;,.(p) that depends on the distance between
o (Cucn) f meets the criterion ifix > +, wherey is a candp. We define this local error tolerance as follows:
positive constant. pe—p

2
o _ _ o Proc(P) = p+ —5— (r" —[p—c[")
CriterionC,,- aims at guaranteeing a minimal aspect ra- r
tio for every triangle inS’. Criterion Cy.,, prevents big wheren > 2 is an integer constant. This function



smoothly varies in a monotonically fashion between
(reached ip = c), andp (reached ifjp—c|| > 7). If p. > p,
more points will be inserted. Otherwise, some points will
be removed. Th€? nature of this function ensures a con-

tinuous density gradient between the altered region and the

remaining of the reconstructed surface.

To refine the reconstruction, we reinflate the pseudo-
surface in the region of influence of the tool, and restart
the convection process in this region regarding the new lo-

cal simplification parameters. Figurgsl3and14illustrate
our interactive refinement tool on various point sets.

Figure 13. Interactive refinement of the Isis model. The original
model exhibits hieroglyphs on the back that are not captured for a
too small value ofp (left, center-top). Our interactive refinement
tool allows to make them to appear (center-bottom, right).

Figure 14. Interactive customization of the&EA model. The orig-

inal point set has 134K points. The reconstruction on the left has
only 17K points. The ridge on the left cheek was interactively re-
moved to obtain the result on the right.

5. Results and discussion

We have implemented our dynamic reconstruction
framework on a Linux platform using the Computational
Geometry Algorithm Library, CGAI2. We require CGAL'S

2hitp://lwww.cgal.org

Figure 15. Reconstruction of a noisy point set. In (a) is shown a
reconstruction of the original &1 model with 622K points, with-

out simplification. In (b) is shown a simplified reconstruction ob-
tained with our method, witlk = 18 andp = 0.94 (43K points).

Our normal-based error metric based on a local normal estimation
acts as a noise filter.

filtered predicates for robust point location and computation
of Delaunay tetrahedra.

We demonstrate the effectiveness of our framework on
several point set models that were obtained from laser range
scanning (Figsl, 5, 14, 7), including a particularly noisy
point set (Fig15). If normal directions are not supplied, the
user has to give a value for the size of thaeighborhood.

A value for the geometric error tolerangeis required.
The reconstruction stage then works automatically. The
correction stage can be either skipped or run given user-
defined parameters. The triangle-quality improvement pro-
cedure requires a maximum tolerated aspect ratand/or

a minimum density factofy. Interactive correction neces-
sitates defining the brush tool properties and areas of in-
terest picked on the reconstructed surface. Table 1 reports
the overall timings and final number of points for the ini-
tial reconstruction stage and for the correction stage. All
the results presented here were obtained on a Pentium IV
3.2GHz, 1GB RAM workstation. Reconstruction timings
take into account the incremental generation of the 3D DT
of the simplified point set. This generation takes less than 5
seconds for all the point sets we tested.

Our approach for locating points that form a Delaunay
tetrahedron in Gabriel half-spheres is not currently optimal,
which results in relatively high computation times. Some
facets, in particular on the convex hull, may have a Gabriel
half-sphere that contains a great part of the input point set.
Since the intersection between these half-spheres are not al-
ways empty, some point samples can be tested many times
before they become part of the surface or they are elimi-
nated. This search could be improved in several ways. We
could benefit from the 3D DT of the points inserted in the
surface to improve the locality of the point locations or fur-
ther exploit the normals to guess the position of the next
candidate to insertion.



Model Reconstruction Correction

name #points | p  #points time | #points  time
TRIPLE HECATE 90,180 | 0.98 28,718 281 34,310 120
SCREWDRIVER 27,152| 0.98 7,944 49 - -
APHRODITE 46,096 | 0.90 4,507 67 7,644 42
Isis 187,644 | 0.95 8,368 96| 10,994 38
IceA 134,344 | 0.98 17,232 102| 17,104 24

RAM 622,716 | 0.94 43,498 1,472 - -

Table 1. Performance of our reconstruction framework for various
point sets. Computational timings are given in seconds for both
initial reconstruction and correction steps.

6. Conclusion and future work

In this paper, we have presented a new framework for
reconstructing a surface from an unorganized point set that

(2]

(3]

(4]

(5]

(6]

takes only relevant sample points into account. In a first [7]
stage, we construct a triangulated surface that interpolates

only a relevant subset of the input data. We decimate the
input point set on-the-fly during the reconstruction process.
The sampling density is controlled by local geometric and

(8]

topological constraints. If needed, we then make correc- [9]

tions to the reconstructed surface, which requires the 3D DT
of the simplified point set. We improve the quality of the

triangles by a refinement algorithm and enable interactive [10]

insertion of details or further simplification. These correc-
tions are achieved in a dynamic fashion, without restarting
the reconstruction process from scratch, which makes ourl

reconstruction framework very flexible.

Future work will first include the search for a more effi-
cient, dedicated data-structure for point locations. We could

(12]

then extend our algorithm to automatically produce a mul- [13]

tiresolution decomposition of an input point set. This de-
composition could be used for progressive reconstruction
with our dynamic update procedure. For non-uniformly dis-
tributed point sets, it could be interesting to incorporate a re- [
laxation procedure into our algorithm. The question of giv-
ing guarantees on the sampling density of the output point

set also certainly deserves further investigation.
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