
Simplification and Streaming of GIS Terrain for Web Clients

Fabien Cellier1,2, Pierre-Marie Gandoin1,3, Raphaëlle Chaine1,2, Aurélien Barbier-Accary4, and Samir Akkouche1,2

1Université de Lyon, CNRS
2Université Lyon 1, LIRIS, UMR5205, F-69622, France
3Université Lyon 2, LIRIS, UMR5205, F-69676, France

4ATOS Worldline, France

Abstract

The application needs in 3D visualization culminate today, in par-
ticular in the field of geographic information systems (GIS), as
evidenced by the popularity of applications like Google Earth or
Google Map. Meanwhile, the popular success of mobile devices
like smartphones or tablets and the explosion of cloud computing
directly related to ubiquitous networks accelerates the gradual shift
from the traditional desktop application development to web and
specialized mobile application development. But if the latest tech-
nologies centered around HTML5 facilitate the development of rich
internet applications (RIA), the gap in resources between a desktop
computer and a smartphone requires still an important conceptual
and algorithmic work when one aims to design web applications
offering a user experience similar to desktop applications. In this
paper, we propose a method of terrain simplification suitable for
data compression and streaming, and therefore ideal for the GIS vi-
sualization in a web browser. Based on new parallel algorithms, this
method was designed to exploit the multi-core architectures of the
latest CPU and GPU, within the constraints of the latest HTML5
API (WebGL, WebSockets, WebCL). It offers the main advantage of
working on irregular grids, which allows to modelize highly non-
uniform terrains (containing for instance roads and buildings) that
may be unprojectable (plain 3D and not only 2.5D).

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Viewing Algorithms H.3.4 [Information
Storage and Retrieval]: Systems and Software—Information Net-
works;

Keywords: 3D visualization, Terrain rendering, GIS, Web, We-
bGL, WebCL

Links: DL PDF

1 Introduction

Geometric data visualization is a field of computer graphics partic-
ularly active because of its many industrial applications. Among
these applications, the visualization of terrain models occupies a

e-mail: firstname.lastname@liris.cnrs.fr, aurelien.barbier-
accary@atos.net

prominent place, as evidenced by the abundant literature on the sub-
ject since the 1980s, and the popularity of applications like Google
Earth. Recent developments in technology — growing power of
GPU on one hand, new languages and frameworks for efficient web
development on the other hand —, offer new possibilities for terrain
visualization within web browsers.

Indeed, the shift to cloud computing and the latest HTML5 API
now allow web browsers to be considered as true operating sys-
tems. However, javascript engines performances are still weak
compared to languages like Java or C++. Therefore, the arrival
in browsers of WebGL and WebCL frameworks, respective ports of
OpenGL and the GP/GPU framework OpenCL with performances
comparable to their original models, offers fundamental technologi-
cal complements. Indeed, the combination HTML5/WebGL/WebCL
makes possible the creation of web applications offering virtually
the same functionalities as traditional desktop softwares.

Our initial goal was to develop methods and tools contributing to
the creation of a 3D geographic information system (GIS) exe-
cutable in a web browser. More specifically, we wanted to propose
to the IGN (French National Geographic Institute) a solution that
integrates perfectly with the Géoportail [IGN 2012], their present
geographic data visualization website, similar to Google Earth but
with very detailed and diversified data.

It is within this context that we propose here a new method of paral-
lel simplification, compression and streaming for 3D data visualiza-
tion from geographic information systems. This method is based on
the latest advances in both hardware (our algorithms are parallel to
exploit the architecture of the latest CPU and GPU) and software
(they have been designed to use the HTML5 API built into mod-
ern web browsers). Among the advantages of our method, we can
cite the handling of irregular meshes containing buildings, roads or
other 3D submodels, a consideration of server load problems with
the possibility of using static files for streaming, and a number of
parallel operations proportional to the size of the mesh.

While there exists a lot of articles on the 3D terrain visualization,
most of them consider only one aspect of our needs: that is to say
either the quality of visualization, the data compression or the effi-
cient transfer over the network. In this section, we discuss the work
that we consider most relevant in relation to our needs, and we in-
vite the reader to refer also to the survey by Pajarola [Pajarola and
Gobbetti 2007] to get a more complete view of the domain.

The Geometry Clipmaps [Losasso and Hoppe 2004] are based on
the hierarchical organization and the manipulation of a fixed grid
whose center depends on the point of view. It might be possible
to use this method for streaming by adding wavelet compression
(a classic image compression tool) and by exploiting the Geometry
Images [Gu et al. 2002], which allow storage of 3D elements into an
image. Despite this, the method does not meet our initial require-
ments for the following reasons: first, the grid being semi-regular,
there is a constant number of triangles on the screen, and these tri-
angles are uniformly distributed, and not according to the informa-
tion distribution. Moreover, even if this method is very quick and

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf


efficient, the resolution of the displayed data depends only on the
distance from the camera to the object, making it difficult to set a
visible on-screen error below a given threshold s when the render-
ing conditions do not allow to display multiple triangles in the grid
formed by s. For example, to obtain an error less than the pixel size
with this method, it would be necessary to display several triangles
per pixel.

The BDAM [Cignoni et al. 2003] presents an alternative method
based on a division of space in binary tree, with constraints on the
tree so as not to create cracks. This division generates patches,
that is to say areas containing triangles, and the method simplifies
pairs of patches by performing edge collapses based on the QEM
[Garland and Heckbert 1997]. Unfortunately, no solution is pro-
posed to stream data over a network: each data refinement requires
a complete reconstruction of the model, which is adapted to the per-
formance of a hard disk on a local machine, but inappropriate for a
broadcast through the network.

The idea of the binary tree with constraints was then extended in
the C-BDAM [Gobbetti et al. 2006; Bettio et al. 2007], in which
compression by a Neuville wavelet is substituted for the simplifi-
cation by edge collapse. The wavelet principle is advantageous for
the efficiency of its compression and its intrinsic ability to multi-
resolution visualization. In order to remove the limitation of C-
BDAM to 2.5D (thus allowing, for example, the inclusion of small
objects into the model), it would be possible to replace the Neuville
wavelet by that of Lounsbery (a 2D surface wavelet). However, al-
though the wavelets and the semi-regular grids are well suited when
the representation is mainly composed of low frequencies, they be-
come ineffective in presence of these very high frequencies.

All theses works can be implemented today as web applications,
as shown by projects like OpenScalesGL [Cellier 2012], a terrain
viewer prototype running in web browsers, on smartphones as well
as desktop computers, and based on a method derived from Hoppe’s
Geometry Clipmaps. Of course, this still requires some adjust-
ments to reflect the constraints inherent in WebGL, the specificities
of javascript and web browsers and the heterogeneity of clients.
But the main problem of these solutions is that they do not handle
irregular grids, and therefore do not permit efficient modeling of
data containing high density variations, such as terrains with roads,
buildings, or other small 3D objects.

In this paper, we propose to couple the binary tree partitioning
method of BDAM and C-BDAM with an original method of parallel
simplification that can be done on GPU and does not require use
of a regular grid. The triangle simplification approach we propose
is based (like the BDAM ) on the quadric error metric, or QEM
[Garland and Heckbert 1997]. The distance between the original
and simplified models at a vertex P is estimated by the sum of the
quadratic distances from P to the planes attached to P , namely the
planes formed by the triangles of the original model that contain P .
This metric has the distinction of being relatively effective in time
and space complexity since the quadratic distance to a set of planes
can be described by a simple triangular matrix QP .

Lindström showed [Lindstrom and Turk 1998] that it was possible
to improve these results with two changes: during the fusion of
two points, it suffices to consider the planes of the current mesh
instead of the original mesh ones; besides, by adding to the simpli-
fication process a constraint ensuring a constant volume, the results
are more faithful to the original model (regarding the Hausdorff
metric). However, this simplification is much more costly in terms
of time and space complexity and remains sequential, like the QEM.

The problem of mesh visualization performed by the GPU was also
addressed by Hu et al. [Hu et al. 2009], but this work does not
aim to compute new mesh versions but rather to visualize view-

dependent intermediate meshes: the content of these intermediate
meshes is computed in a preprocessing step, then the algorithm load
them in the GPU memory.

Other recent methods use ray casting to visualize terrain models
[Dick et al. 2009] or buildings [Cignoni et al. 2007]. However they
still require a lot of power on the client side and are only suitable
for 2.5D surfaces or for rectangular objects like simple buildings.

In continuation of his initial work, Garland proposed to introduce
parallelism into his original QEM method [Garland and Shaffer
2002], through a two-step simplification that merges in parallel
points that are in the same cell of an octree, before using the sequen-
tial simplification of the original method to refine and smooth the
last fusions performed in parallel. However, while parallel and im-
plementable on GPU, this method is incompatible with data stream-
ing. Indeed, it builds and encodes the transition from an original
mesh to a simplified mesh without detailing the intermediate steps,
contradicting the concept of streaming, which is based on the cod-
ing and transmission of differences between two successive ver-
sions of a mesh. A solution would consist in providing the mesh
as a regular grid (the octree), then let the client perform the fi-
nal fusions using the original sequential simplification algorithm.
However, this would prevent the handling of irregular triangula-
tions, which is not satisfactory in our application context.

In this paper, we propose to couple the partitioning method of the
BDAM [Cignoni et al. 2003] to an original algorithm of parallel
simplification that can be implemented on GPU and does not re-
quire the use of a regular grid. Our solution improves the perfor-
mances of the BDAM simplification, adds a compression feature
compatible with the out-of-core visualization and the streaming,
and offers the ability to handle plainly 3D objects (and not only
2.5D terrain models).

2 Parallel Simplification

Our primary goal was to develop a parallel simplification algorithm
capable to exploit the last CPU and GPU architectures, whose trend
for several years is to increase the number of execution cores. Like
the BDAM and many other methods for 3D visualization, we have
chosen to perform a mesh simplification by successive contractions,
or collapse, of its edges (see Fig. 1). And to control the error
induced by these edge collapses, the quadric error metric, or QEM
[Garland and Heckbert 1997] has been selected.

The QEM related to vertex P is represented by the quadratic dis-
tance from P to all planes adjacent to P in the original mesh M . In
the Garland’s definition, a plane P of M is adjacent to a point P of
a simplified version of M if P contains a triangle with one vertex
which belongs to the set of ancestors of P , that is to say the points
involved in the successive fusions that led to the creation of P .

The first advantage of this metric is that all the information neces-
sary to process a point P , namely the distance to the set of planes
formed by the triangles adjacent to P (according to Garland’s def-
inition), may be stored in the form of a triangular matrix QP of
size 4 × 4, that is to say 10 coefficients by vertex only. This is
true at any level of the mesh hierarchy thanks to the following re-
markable property: the result of the fusion of points P and P ′

whose matrices are respectively QP and QP ′ is a point P ′′ such
that QP ′′ = QP + QP ′ . By its nature, the QEM does not depend
on the order in which the points are merged. This greatly facili-
tates parallelism, since the impact of a suboptimal fusion can be
bounded. Indeed, thanks to this metric, the point resulting from
a fusion that generates significant errors will naturally be penal-
ized for future fusions with respect to points produced by fusions
whose associated error is smaller. This property is fundamental be-



cause the parallelism we have introduced requires to perform edge
collapses in which the error is not always minimal throughout the
whole mesh but only locally, as we shall see a little further.

It should be noted that Lindström, as discussed in the previous sec-
tion, has proposed a method [Lindstrom and Turk 1998] that results
in better quality simplified meshes but is not adapted to parallelism.
Indeed, this solution is based on a conservation of the volume be-
tween the different versions of the mesh, which implies in particu-
lar to include in the error the volume difference between a model
and its simplified version. Thus, the same simplified model may
have different error values depending on the fusion order, which is
contrary to the properties needed by a parallel algorithm. It would
be possible to change the Lindström’s method to make the results
independent of the collapse order, but this would require to store
additional information on each edge, in the form of a matrix similar
to QP . This would involve a substantial additional memory cost,
making the method impractical for very large meshes.

Pv

Pi

P
C

Pv

Pi

R

fusion of P and C

by collapse of (PC)

Figure 1: Example of a reversible fusion between P and C. We
define the 1-ring of the fusion as the union of P and C 1-rings minus
P and C themselves (ie. the vertices in orange in this figure). The
position of R may be set to P or C or another position depending
on QR.

The solution we propose is derived from two observations: first,
as we have seen, the order in which the points are merged do not
influence the error metric, and second, the influence of an edge col-
lapse does not exceed the 1-ring of the fusion, ie. the immediate
neighbors of the two merged points.

To achieve the parallel fusions, we use four arrays whose respective
elements are instances of the following data structures:

typedef struct { // 1. Vertex ///////////////////////////
float x, y, z; // coordinates

// index of the incident edge that is candidate
// for the fusion:
unsigned int candidateEdge;

// index of one triangle incident to the point,
// to access the 1-ring:
unsigned int triangle;

// initial valence (an integer for padding):
unsigned int valence;

// QEM matrix coefficients:
float a, b, c, d;
float e, f, g;
float h, i;
float k;

} Vertex; // 16 x 4 bytes per point

typedef struct { // 2. Index ////////////////////////////
unsigned int vertex; // vertex index

// index which refers to the vertex that stores the
// split description:
unsigned int child;

// used to reconstruct the binary tree and to ensure
// the same order during simplification and refinement:

unsigned int parent;

unsigned int padding; // for padding only
} Index; // 4 x 4 bytes per point

typedef struct { // 3. Triangle /////////////////////////
unsigned int a, b, c; // vertex (and not index) indices

// edge indices (edgeX is opposite to vertex X):
unsigned int edgeA, edgeB, edgeC;

unsigned int padA, padB; // for padding only
} Triangle; // about 8 x 4 x 2 bytes per point

typedef struct { // 4. Edge /////////////////////////////
unsigned int trgA, trgB; // adjacent triangles

float error; // error generated by the edge collapse

// position of the resulting point:
float rX, rY, rZ;

unsigned int padA, padB; // for padding only
} Edge; // about 8 x 4 x 3 bytes per point

Coordinates of the vertices are stored together with a reference to
the incident edge that could be a candidate for the collapse. The
vertices, edges and triangles also correspond to a description of the
surface with a direct access to the 1-ring from the vertex. We have
also added an index structure used as a vertex handle containing
the binary tree generated by the collapse and allowing to work with
pointers rather than vertex instances. Note that these data structures
have been designed to handle manifold meshes, with or without
boundaries.

The valence field of the Vertex structure is used when the point
comes from a fusion of vertices (by edge collapse). It stores the
valence of the new vertex, ie. its number of neighbors just after the
fusion. As discussed in the next section, this value is fundamental
for the decompression algorithm.

The array of indices (instances of the Index structure) has a dual
purpose. It first allows to exchange element positions without copy-
ing all the information associated to a point, which is useful for the
sorting step detailed after the algorithm description. In addition,
it describes, through the child field, the binary tree structure asso-
ciated with the simplification algorithm. Note that only one child
field is necessary because the second child is stored in the Vertex
structure of the non-prioritary merged point (the point C in our no-
tation, see Fig. 1), with other information needed by the decom-
pression and detailed in the next section. Finally, it allows, through
the parent field, to easily differentiate deleted points from retained
ones.

The Edge structure is used to store the error associated with each
fusion, and the resulting position of the point. It accelerates the
search of the best candidate for a given edge collapse, avoiding sys-
tematically recalculating each matrix QP and retesting each edge
after any fusion. The size of the structures is padded to reach the
smallest multiple of 16 bytes, thus ensuring an alignment adapted
to the aimed hardware architecture, namely the GPU, which oper-
ates on 4 float arrays for 3D applications. A further point to note is
the absence of pointer in our structures: the goal is to be consistent
with the upcoming WebCL standard which will probably prohibit
the use of pointers for security reasons.

With these four arrays, the simplification is done according to the
following algorithm:

• Initialization :

1. In parallel, for each point: the initial matrix QP ,
that describes the equation of quadratic distance to the
planes incident to P , is computed.



2. S, the maximum error threshold allowed for a fusion, is
fixed (typically, S is user-defined)

• While the number of points in the model exceeds the target
number of points:

– If the number of fusions is 0: the threshold S is in-
creased

– Else:

1. Simplification:

(a) In parallel, for each point P : the index of
edge E incident to P whose collapse would
generate the minimal error is stored (or infi-
nite if this minimal error is greater than S)

(b) In parallel, for each point P : if P and C are
reciprocal candidates for a fusion, they switch
to the state "fusion requested"

(c) In parallel, for each point P : If P requests
a fusion (with C) AND no neighbors of
P (other than C) request a fusion with a
smaller error AND P has priority over C, ie.
index(P ) < index(C):

i. The coordinates of P are replaced by those
of R (the point resulting from the fusion) in
the Vertex array

ii. QP is updated with QP +QC

iii. The information allowing to reverse the fu-
sion is stored in QC (see Note 1)

iv. For each triangle T in the 1-ring of the fu-
sion:

- If T is incident to only one merged vertex:
the informations of T are updated (in the
Triangle array)

- Else, if T is incident to two merged ver-
tices: T is deleted by setting its vertex in-
dices to -1 (see Note 2)

v. The 1-ring of the fusion is traversed to up-
date the Edge array for the edges incident to
the new vertex

vi. The Index array is updated, namely the child
field of the index corresponding to P and the
parent field of the index corresponding to C

2. Sort: the Index array is sorted in parallel (bitonic
sort), in order to ensure an identical state during
simplification and refinement stages.

Notes :

1. To reverse the fusion of the two vertices P and C, it is neces-
sary to store the following information: the positions of P and
C, their valences, the indices of Pi and Pv , which constitute
with P and C the two triangles that collapse in the fusion (see
Fig. 2), and a configuration bit. In addition, it is necessary
to store the position in the Index array of the element corre-
sponding to P . We will see in detail in the next section how
this information is used to perform the reverse operation, ie.
the vertex split. Besides, since the point C is removed from
the mesh, its V ertex and Edge data structures can be used
freely for this storage.

2. Note that if the triangle T is incident to a vertex involved in a
collapse, then all its vertices belong to the 1-ring of the fusion
complemented by the points C and P . But since the 1-ring
of a fusion is blocked by our algorithm and cannot merge,
it is impossible that two vertices of the same triangle would
merge separately. Consequently, the 2 points have necessarily
merged together and T collapsed.

The sorting step is necessary to ensure an identical vertex position
in the memory during the coding and the decoding. It also helps to
separate the retained points from the removed ones after the sim-
plification. For this, the Index array is ordered by the index of the
parent (ie. the point R, result of the fusion, but parent for the split),
then by the index of the vertex itself. At the end of this parallel
sorting, there exists only one element in the array that has no par-
ent (ie. that has not yet been merged), and whose next element in
the array is a removed point. We will call this element the pivot of
the array. Note that the intrinsic design of the bitonic sort [Batcher
1968], which handles pairs of elements in parallel, allows to save a
traversal of the Index array: indeed, the pivot position, and therefore
the number of points still present in the mesh after the simplifica-
tion, is detectable at no additional cost during the final step of the
sorting.

Note that the algorithm detailed above is nothing but a parallel de-
sign of the following process: for each point P , we look into its
2-ring without boundary edges whose collapse results in the mini-
mal error e such that e < S. In fact, it is also possible to combine
the steps (a), (b) and (c) of the algorithm in a single step. To do so,
it suffices to ensure that no point in the 1-ring of P has an apparent
possibility of fusion with a smaller error. In the event that such a
rival fusion seems to exist, it is not possible to verify that the points
P and C′ are really reciprocal candidates, since the step (b) has
not been done previously. So it can happen in this case that some
fusions are rejected unnecessarily, which slightly degrades the per-
formances of parallelism, without jeopardizing the stability of the
algorithm, which is guaranteed by the notion of priority.

It is also worth noting that all the update computations are done
by the process attached to P , while at first glance it might seem
reasonable to let some computations on the process attached to C
(the non-prioritary candidate to the fusion which is then removed).
However, in the presence of a first parallelism at the point level,
it did not seem advisable to add complexity to the algorithm by
splitting the update into two asynchronous processes.

We observed experimentally that the simplification of a flat surface
modelized by a regular grid was only 3 times faster than the se-
quential implementation of the QEM [Garland and Heckbert 1997].
This can be explained by the fact that a point P can have in this case
several equivalent candidates (ie. candidates holding the same er-
ror value) for the fusion. Then, a random or arbitrary choice of the
candidate may prevent some fusions, however legitimate, as shown
in Fig. 2. In many methods, in case of candidates of equal priority,
it is customary to choose the one that will produce the best quality
triangles. However, this criterion would require to compute all the
fusions, and moreover, it would not decide in the particular case of
a regular grid. Instead, we set up a subgrid G, giving priority to
fusions within the same cell of G, which artificially increases the
number of configurations similar to that of Fig. 2: each point P
chooses its candidate according to the associated errors, then, be-
tween tied candidates, the priority will be given to the point that
lies within the same cell as P and whose coordinates are minimal.
Thus, during the parallel fusion of points in a plane for instance,
each point will tend to choose its top left neighbor, except the points
lying at the top left corner of a cell of G (like the point D in Fig. 2),
for which the fusion will take place. Thus, by defining the subgrid
G, the number of parallel fusions is increased: one moves from a



unique fusion for an entire area, to a fusion for each cell of G.

A

B

C

D

Figure 2: In this planar regular grid, the fusion of B and A results
in the same error as the fusion of B and C. In this case, one can for
instance impose to select the candidate with minimal coordinates:
B chooses C and A chooses B. In this configuration, only C and
D are reciprocal candidates and thus merge, because D is at the
top left corner of the plane. To limit these cases that degrade the
efficiency of the parallelism, we have implemented a subgrid which
artificially increases the number of top left points.

It should be noted that this parallelization involves fusions based
on a local minimum and therefore generates suboptimal results. In-
deed, for the same maximum error (the threshold S), we obtain a
simplified mesh containing more points than with global minima.
However, as mentioned earlier, the QEM metric is not sensitive to
the fusion order, and the errors of the suboptimal fusions do not add
up. Thus, our parallel simplification yields a result that has only 10
to 15% extra points compared to the original method, for execu-
tion times about 10 times lower than those obtained with the refer-
ence implementation (QSlim), on a computer with an Intel Core 2
duo 9200 CPU (2.8Ghz, 2 cores) and an Nvidia Quadro FX 2700M
GPU.

In some cases, it may be desirable to stop the simplification when
a target number of points is reached. But knowing the number of
points deleted in the sorted Index array is equivalent to know the
position of the first point deleted (next to the pivot), hence the im-
portance of the sorting performed at the end of each simplification
step.

One drawback of our solution is that simplifications need to be done
on all the mesh simultaneously. In fact, one modification to the
mesh would introduce new minima wich will change the tree cre-
ated by the algorithm. Nevertheless, some meshes have too many
simplices to be processed in memory, that is why we use the same
tiling as performed by the BDAM.

Finally, the complexity of our solution is n ∗ log2n, where n is the
number of vertices, thanks to the bitonic sort. So each parallel task
has a complexity of n ∗ log2n when the sequential algorithm has a
complexity equal to the size of the heap that handles the simplifi-
cation, namely n ∗ logn. We could obtain better performances by
replacing the bitonic sort with a radix sort. However, since the radix
sort is not stable, the algorithm would no longer be well adapted to
streaming.

The figure 3 shows the result obtained by the original sequencial
QEM simplification method, compared to our parallel algorithm.
The visual differences between the two versions of this 3D model
are not significant, as is the case for most smooth models.

The figure 5 illustrates the influence of the error treshold on the
final simplified mesh. This parameter defines the maximum error
that is tolerated during the simplification, which allows the user to
specify the accuracy of the resulting mesh. Here, the model is a
digital elevation model of 2 millions vertices and the simplification

has been stopped at 500k vertices. On the top of the figure, no
maximum error has been set and the result is obtained with only
10 successives simplification steps. On the bottom, the treshold
has been set to zero and the algorithm needs 18 iterations. We can
observe that in this case, the algorithm discards almost all collapses
outside the sea to preserve the accuracy of the model. This treshold
is useful in particular when a single simplified version of the model
is needed: setting the maximum error to a high value yields more
regularity in terms of point density and increases the efficiency of
the parallelism during the simplification.

3 Compression and Streaming

The parallel simplification algorithm we just presented is an essen-
tial element of our method for terrain compression and progressive
visualization. It must now be inserted into a reversible compression
process compatible with the concept of streaming. In addition, for
application purposes, it is fundamental that the refinement process
also benefits from parallelism. Indeed, while simplification is gen-
erally performed once only and can therefore be handled by thick
clients, the refinement, on the contrary, will be typically performed
on web thin clients.

As shown by Hoppe [Hoppe 1996], a mesh simplification by edge
collapse is reservible. Thus it is always possible to recover the orig-
inal mesh from a version simplified by our method. However, in
order to preserve the original mesh connectivity, two requirements
must be met: 1. the order in which fusions that are dependent are
performed during the simplification must be precisely reversed dur-
ing the refinement; 2. the split of R can be performed only if all the
neighbors of R (ie. the points in its 1-ring) are the same as at the
time R was created, at the end of the corresponding fusion.

In our case, the only operation performed during the refinement is
the vertex split. This is why a point can never see its valence de-
crease but only increase, each time one of its neighbors is split in
turn. Therefore, only the valence vR of a point R at the time of
its creation (after a fusion) is required by the decoder: during de-
compression, a point R will be candidate to a split when its valence
reaches vR. Although our algorithm allows to compute and display
as much as desired intermediate states, we chose to move from a
coarse representation to a finer one by batch, approximately dou-
bling the number of points at each stage, thus leaving aside the pos-
sibility of a continuous refinement of the model. This increases the
volume of information to be transmitted and therefore the compres-
sion efficiency. Of course, this principle of batched point splits is
possible only if the two constraints mentioned above are observed.

The advantage of using the valence is that it allows the viewer to
identify in parallel points that are candidates for a split: these can-
didates are all the points R whose current valence is equal to the
valence vR they had at the time of their creation. Note that regard-
ing the compression, the valence distribution, close to a Gaussian
distribution, is well suited to an entropy compression of the devia-
tions from the median.

However, to restore the original connectivity between the points
after a split, it is also necessary to know the two edges that will
form the two new triangles (represented by (RPv) et (RPi) in Fig.
1), and the way P and C are connected to the triangles of the R 1-
ring, in order to disambiguate the configurations described in Fig.
4.

Regarding the model geometry, the positions of the two points P
and C created by a split will be expressed from the position of the
parent point R. It is also possible to constrain the position of point
R to the set consisting of the two merged points P and C com-
plemented by their middle point. In addition to the benefits gained



Figure 3: On the left, a 3D mesh obtained by the sequential simplification algorithm; on the right, by our parallel method.

Pv

Pi

P

C

Pv

Pi

P

C

Figure 4: Two possibilities for a point split. Without a disambigua-
tion bit, it is impossible to choose between these two configurations
during the refinement phase. (Note that if the mesh is manifold, only
these two cases are possible.)

in terms of entropy compression, we observed that in the case of
buildings or other simple geometric shapes, this constraint gener-
ates very few errors. Of course, this observation is less relevant for
the terrain models themselves where it is preferable to transmit less
points but with a more precise position. Therefore, in the latter case,
it is better to choose an optimal positioning to reduce the number of
points transmitted and therefore the number of triangles to display
for a fixed error treshold and a given volume of transferred data. So
the choice of using the optimal positioning or the constrained one
depends on the model and will be set for the whole simplification.

Ultimately, to reverse each fusion, the decompression algorithm
needs the following information:

• During decompression, P and C will be generated from R.
It is therefore natural to transmit the positions of these two
points from that of their common parent. So the respective
distances of P and C to R are stored: 2 × 3 floats for a
precise positioning, or, in case of constrained positioning, 3
floats (x, y, z) plus a bit specifying whether R is the middle

of (PC) or coincides with one of the two points;

• Similarly, to encode the respective valences for which the two
new points P and C will become in turn candidates for a split,
we store the respective differences from the R valence, ie. two
integers DVP et DVC ;

• The indices of edges Pi and Pv among the 1-ring of R;

• One bit to specify the way P and C are connected to the tri-
angles of the 1-ring of R (see Fig. 4).

It is recalled that, in our implementation, all this information is writ-
ten into the memory space previously dedicated to the matrix QC

of the deleted point. Indeed, during the fusion, the point P whose
index is minimal remains and is updated with the result of the fu-
sion (the point R). The other point, C, is removed from the mesh
and updated with the information necessary to perform the split of
R. This information could be stored in the Vertex structure only,
but to save a few casts, it is distributed between the Vertex and Edge
structures as follows:

typedef struct { // 1. Vertex ///////////////////////////
// difference between R and P (to retrieve P position):
float x, y, z;

// edge index, provides extra integer storage:
unsigned int candidateEdge;

// index of the previous child of P:
unsigned int triangle;

unsigned int valence; // not used

// old QEM coefficients,
// a is used to specify configuration (see figure 3):
float a, b, c, d;
float e, f, g;
float h, i;
float k;

} Vertex;



typedef struct { // 4. Edge /////////////////////////////
// differences between split valences:
// trgA stores v(P) - v(R) and trgB stores v(C) - v(R)
unsigned int trgA, trgB;

float error; // not used

// difference between R and C (to retrieve C position):
float rX, rY, rZ;

// indices of the edges Pv and Pi among 1-ring of R:
unsigned int padA, padB;

} Edge;

Naturally, in order for the streaming to work, it is necessary that
the order of points during the refinement on client side be identical
to that of the simplification. To ensure this consistency, we have
chosen to reorder the points after each simplification stage. Once
the array is sorted, removed points are located at the end. Thus, the
simplification algorithm can be repeated with all elements of the
array from the indices 1 to p, p being the pivot, ie. the last point to
be kept by the simplification batch.

When the fusions are completed, a second treatment is performed
on the Index array to create binary files describing the decompres-
sion of the mesh, which in turn are compressed by an entropy al-
gorithm (for instance the gzip or deflate algorithms provided by the
HTTP protocol). This second step has two objectives:

• Specify the information that the client cannot deduce alone:
identify the points that reached their split valence but for
which the split is not desirable as it would introduce too little
information. One bit for each candidate for a split is necessary
to specify whether the split should be done or not.

• Define the granularity of the decompression steps: indeed,
it is possible to achieve continuous decompression or, con-
versely, to define split batches. Limiting the number of
batches increases the amount of information sent over the net-
work for each query (or stored in a file), and therefore in-
creases the compression efficiency.

After the entropy decompression which opens each visualization
step, it is of course possible to update the mesh in parallel. In par-
ticular, in the case of web viewers, and with the arrival of WebCL,
the parallel version of the update is essential since it allows to over-
come the poor performance of javascript compared to native lan-
guages such as C, even when the device has moderate GPU power.

However, for a C++ client application, with a Core 2 duo 9200M
CPU, a Nvidia 2700M GPU, and triangle buffers of 32k points
(the maximum size for a good compatibility with WebGL, whose
current limit is 64k points), it appeared that performing the opera-
tions sequentially was the most effective solution in terms of speed
and memory management of the GPU. This observation can be ex-
plained from the current limitations of GPU regarding the speed of
data transfer from the CPU memory, and will probably be no longer
valid as soon as WebGL accepts large buffers.

Finally, the decompression algorithm running on the client during
the mesh refinement can be written as follow:

1. In parallel, for each point R: if the valence of R is equal to
the split valence vR:

• The point R is added to the buffer of candidates. This
operation being parallel, the buffer of candidates will
not be ordered. However, it is worth noting that, al-
though the addition is done in parallel, knowing the
memory pointer in the candidate array and ensuring its

Size of Size
Model the connectity per

information vertex
France (resolution 1km) 1.90 Mo 15.2 bits

Asian Dragon 2.08 Mo 16.6 bits
Armadillo 1.97 Mo 15.8 bits

Table 1: Experimental results for the size of the mesh connectivity
(ie. the whole coding sequence without the point placement infor-
mation). For each model, five levels of detail are coded: 1M, 500k,
250k, 125k and 62500 vertices.

unicity requires a synchronous function (atomic_inc in
OpenCL).

2. The candidates are sorted in parallel (bitonic sort) according
to their indices, to ensure that their order is the same as in the
simplification stage.

3. In parallel, for each point R candidate for a split: If R holds
an error too large (this information is read in the stream), then
the split is performed:

• The two points P and C created by the split are added
to the mesh (with their own respective split valences vP
and vC )

• The two new triangles (PiPC) and (PvCP ) are added
to the mesh

• The 1-ring of R is traversed to update the triangles by
replacing R with P or C

Currently, we face the same problem as Hu et al. [Hu et al. 2009]:
in practice, the addition of points in the buffer of candidates is per-
formed sequentially. However, as Hu et al., we remain confident
that rapidly, the mechanisms provided by the GPU should resolve
this particular problem. (It is interesting to note that our compres-
sion method can also be useful in conjunction with the work of Hu
et al. to allow an out-of-core progressive visualization of 3D mod-
els through the network.)

In terms of compression, the experimental results obtained by our
method for the connectivity costs are shown in Tab. 1. When we
compare these results with the state of the art, there is still place for
improvement: the best mesh compression methods obtain around
15 bits per vertex including the geometry information, as showed
for instance in the comparative results of [Jamin et al. 2009]. Nev-
ertheless, those methods address only compression: using a visu-
alization algorithm based on triangle strips is far less efficient re-
garding the execution times and do not provide the multiresolution.
On the contrary, the compression methods that take into account vi-
sualization aspects obtain rates around 30 bits per vertex or more,
which is comparable to our results.

4 Conclusion and Perspectives

We have presented a parallel algorithm to simplify irregular meshes,
which is compatible with streaming and compression. This method,
used in conjunction with the partitioning scheme in binary tree pro-
posed in the BDAM [Cignoni et al. 2003], provides a complete vi-
sualization solution offering a configurable number of intermedi-
ate states, particularly suitable for geographic information systems,
and implementable in traditional desktop applications as well as in
a web browser. This solution is based on local consideration and
therefore reduces the information needed to refine the simplified
meshes. Indeed, the stream from the server to the viewer consists



of a minimal compact data structure that allows the client, after de-
compression, to reconstruct in parallel the original model.

Among the perspectives of our work, the parallelization of the
streaming is prominent. Indeed, since our solution uses entropy
coding, it is necessary, each time a patch data has been read over
the network, to decompress the stream sequentially before tackling
the parallel refinement. This constraint constitutes an important
bottleneck for the method, and it would be interesting to work on
the possibility to parallelize the decompression step, and maybe the
data transfer itself.

Another improvement would consist in replacing the entropy com-
pression of the HTTP protocol by an arithmetic encoder driven by
a statistical modeller adapted to our output format and data. Nev-
ertheless, it shall be ensured that this optimized encoder does not
have a significant impact on decompression times.

In all our treatments, we have chosen to use the segmentation of
the BDAM method to cut the model into patches easily stored and
transmitted over the network. The major issue of this principle of
tiling is to prohibit certain fusions in order to avoid the creation of
cracks in the mesh. Therefore, the choice of patch size and position
influences significantly the model simplification. In our next work,
we will study the possibility of a segmentation method that respects
the topology and affects as little as possible the choice of merged
points.

In the near future, we also wish to address the problem of texture
handling, to include them effectively in the current method, both in
terms of compression and streaming.

Finally, the solution presented in this paper is not compatible with
today’s lighter mobile devices (smartphones whose CPU has very
limited resources or which do not have GPU). However, we remain
convinced that this incompatibility is very temporary, thanks to the
rapid changes in mobile hardware technology.

References

BATCHER, K. E. 1968. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer
conference, ACM, New York, NY, USA, AFIPS ’68 (Spring),
307–314.

BETTIO, F., GOBBETTI, E., MARTON, F., AND PINTORE, G.
2007. High-quality networked terrain rendering from com-
pressed bitstreams. In Proceedings of the twelfth international
conference on 3D web technology, ACM, New York, NY, USA,
Web3D ’07, 37–44.

CELLIER, F., 2012. Openscalegl:
http://openscales.org/news/openscalesgl-announce.html.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2003. BDAM – batched
dynamic adaptive meshes for high performance terrain visual-
ization. Computer Graphics Forum 22, 3 (September), 505–514.
Proc. Eurographics 2003.

CIGNONI, P., DI BENEDETTO, M., GANOVELLI, F., GOBBETTI,
E., MARTON, F., AND SCOPIGNO, R., 2007. Ray-casted
blockmaps for large urban models streaming and visualization,
Sept.

DICK, C., KRUEGER, J., AND WESTERMANN, R. 2009. Gpu
ray-casting for scalable terrain rendering. In Proceedings of Eu-
rographics 2009 - Areas Papers, 43–50.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifi-
cation using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’97, 209–216.

GARLAND, M., AND SHAFFER, E. 2002. A multiphase approach
to efficient surface simplification. In Proceedings of the confer-
ence on Visualization ’02, IEEE Computer Society, Washington,
DC, USA, VIS ’02, 117–124.

GOBBETTI, E., MARTON, F., CIGNONI, P., DI BENEDETTO, M.,
AND GANOVELLI, F., 2006. C-bdam - compressed batched dy-
namic adaptive meshes for terrain rendering, sep. To appear in
Eurographics 2006 conference proceedings.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. ACM Trans. Graph. 21, 3 (July), 355–361.

HOPPE, H. 1996. Progressive Meshes. ACM Press/ACM SIG-
GRAPH, New York, H. Rushmeier, Ed., 99–108.

HU, L., SANDER, P. V., AND HOPPE, H. 2009. Parallel view-
dependent refinement of progressive meshes. In Proceedings
of the 2009 symposium on Interactive 3D graphics and games,
ACM, New York, NY, USA, I3D ’09, 169–176.

IGN, 2012. Géoportail: http://www.geoportail.fr.

JAMIN, C., GANDOIN, P.-M., AND AKKOUCHE, S. 2009. CHuMI
Viewer: Compressive Huge Mesh Interactive Viewer. Computer
& Graphics 33, 4 (Aug.).

LINDSTROM, P., AND TURK, G. 1998. Fast and memory efficient
polygonal simplification. In Proceedings of the conference on
Visualization ’98, IEEE Computer Society Press, Los Alamitos,
CA, USA, VIS ’98, 279–286.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. ACM Trans. Graph. 23, 3
(Aug.), 769–776.

PAJAROLA, R., AND GOBBETTI, E. 2007. Survey of semi-regular
multiresolution models for interactive terrain rendering. Vis.
Comput. 23, 8 (July), 583–605.



Figure 5: Impact of the error treshold on the simplification of a DEM, from 2 millions vertices to 500k vertices.


