
Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

A geometric convection approach of 3-D reconstruction

Raphaëlle Chaine

Prisme Project, INRIA Sophia-Antipolis, France

Abstract
This paper introduces a fast and efficient algorithm for surface reconstruction. As many algorithms of this kind,
it produces a piecewise linear approximation of a surface S from a finite, sufficiently dense, subset of its points.
Originally, the starting point of this work does not come from the computational geometry field. It is inspired by
an existing numerical scheme of surface convection developed by Zhao, Osher and Fedkiw. We have translated
this scheme to make it depend on the geometry of the input data set only, and not on the precision of some
grid around the surface. Our algorithm deforms a closed oriented pseudo-surface embedded in the 3D Delaunay
triangulation of the sampled points, and the reconstructed surface consists of a set of oriented facets located in
this 3D Delaunay triangulation. This paper provides an appropriate data structure to represent a pseudo-surface,
together with operations that manage deformations and topological changes. The algorithm can handle surfaces
with boundaries, surfaces of high genus and, unlike most of the other existing schemes, it does not involve a global
heuristic. Its complexity is that of the 3D Delaunay triangulation of the points. We present some results of the
method, which turns out to be efficient even on noisy input data.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction : the reconstruction problem

Given a set of points that lie on or near an unknown surface,
we consider the problem of computing a piecewise linear
approximation of this surface. The reconstruction problem
has received considerable attention both in computer
graphics and computational geometry (see the state of the
art report by Mencl and Müller 1 for a good classification
of the existing works). In computer graphics, the early work
by Hoppe et al 2 proposes an implicit approximation of
the surface to be reconstructed. Curless and Levoy 3 have
presented a similar approach dedicated to range images.
Works by Bernardini et al 4 and Gopi et al 5 are closer to
computational geometry approaches which are more combi-
natorial. They output a set of facets from a geometric data
structure such as the Delaunay triangulation of the points.
Historically, the earliest works on reconstruction in compu-
tational geometry were the α-shapes of Edelsbrunner 6 and
the sculpture algorithm by Boissonnat 7. Later on, Amenta
and Bern 8 have proposed the first algorithm (CRUST) with
correctness guarantees under a given sampling condition.
An improved version of this algorithm (COCONE) 9 has
also been described. It is worth mentioning that some exist-

ing algorithms do not necessarily extract the reconstructed
surface from the 3D Delaunay triangulation of the points.
For example, the POWER-CRUST of Amenta et al 10 uses
a power-diagram of the points. Another algorithm is that of
Mencl 11 which produces a triangulated surface by filling
the contours of an extension of the Euclidean minimum
spanning tree of the points. Attene and Spagnuolo 1 also
use this tree and the Gabriel graph of the points to define
new tetrahedra removal operations for sculpture algorithms.
An other interesting approach is that of Boissonnat and
Cazals 12 as they use the Voronoi diagram of the points
to produce an implicit version of the surface. Eventually,
recent approaches of Giesen and John 13 and Edelsbrunner
14 introduce the notion of flow in computational geometry.
The work presented in this paper is of that kind.

The paper is organized as follows. In the second section,
we briefly report on the evolution model proposed by Zhao,
Osher and Fedkiw and the variational formulation associated
to it (2.1). Then, we focus on the “fast tagging (convection)
algorithm” that they have introduced to manage the first lin-
ear term of their evolution equation (2.2). In the third section,
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we establish a few properties of the fast tagging algorithm
(3.1), and we interrelate it with a new Delaunay-based com-
putational geometry algorithm that we introduce (3.2). This
algorithm can be seen as some kind of sculpting algorithm
that does not only produce volumes and that is not based on
a priority-queue (3.3). It deforms a closed oriented pseudo-
surface using a set of geometric and topological operations
that we carefully detail (3.4). The convection process corre-
sponds to the first term of the evolution equation proposed
by Zhao, Osher and Fedkiw only. We propose a possible ex-
tension of our algorithm, which does not explicitly reflects
the second term of the above equation but that resolves unde-
tected pockets (3.5). The fourth section focuses on geometric
properties and further statements that that can be helpful for
a deeper understanding of the presented work (4). Eventu-
ally, we present some experimental results and conclude.

2. Convection model

2.1. Convection model proposed by Zhao, Osher and
Fedkiw

In 15, Zhao, Osher and Fedkiw propose a function E to mea-
sure the distance between a surface Γ and a set of points Σ.
This global distance or energy can be seen as some weighted
area of the surface, where each surface element is weighted
by its distance to its closest point in the data set Σ.

E(Γ) =

(

∫

x∈Γ
d p(x)ds

)1/p

,1 ≤ p ≤∞

where d(x) is the distance from x ∈ IR3 to its closest point
in Σ.

Once this functional energy is defined, Zhao, Osher and
Fedkiw suggest that the reconstruction problem can be
solved by determining a surface which minimizes the global
distance function to the data set Σ. They propose a varia-
tional formulation and an evolution equation to construct this
minimal surface by deformation of a good initial enclosing
approximation of the surface. More details on the way they
extend this model to implicit level set surfaces and the way
they get a partial differential equation can be found in their
article 15.

The evolution proposed runs a gradient descent of the en-
ergy function to be minimized. At each step, every point x of
the surface S(t) evolves towards the interior of the surface,
along the normal direction to S(t) at point x, with a displace-
ment speed that is proportional to :

−∇d(x)·~n+(d(x)K)/p

K denotes the mean curvature of the surface at x and~n is the
inner normal at x. The tension of the surface represented by
the second term (d(x)K)/p is not linear, so that the evolution
process requires a huge number of steps before reaching its
equilibrium. In 2D, a steady state of this evolution equation

is a polygon which has K = 0 everywhere except at the input
data points where d = 0. These steady states do not general-
ize to polyhedra in 3D.

The better the initial approximation of the surface, the
more the non linear -time consuming- effect of the evolution
model is counteracted. In this paper, we focus on the con-
vection model used by Zhao, Osher and Fedkiw to construct
a good initial approximation of the surface. This model is
equivalent to taking into account the first term of the above
equation only. The authors show that this convection model
can be physically motivated, and they solve it with a so-
called “fast tagging (convection) algorithm”. Given a flex-
ible enclosing curve or surface Γ, Zhao, Osher and Fedkiw
put it into a velocity field −∇d(x) created at point x by the
distance function to the data set. In this velocity field, points
of a curve or a surface are attracted towards their closest
point in the data set, except those which are at the same dis-
tance from two or more data points. A curve (resp. surface)
enclosing an area (resp. volume) can locally be considered as
an infinite source of points so that it does not split into points.
At the equilibrium, it reaches a polygon (resp. a polyhedron),
the vertices of which belong to the data set. This is equivalent
to making each point of the surface evolve along the normal
direction to S(t) with a displacement speed corresponding to
the first term ∇d(x)·~n. Each point of the resulting surface
also satisfies the steady state equation : ∇d(x)·~n = 0

2.2. Fast tagging (convection) algorithm

The “fast tagging algorithm” 15 is a fast numerical scheme
that differentiates the interior from the exterior of a convec-
tion resulting surface. Once the distance d has been calcu-
lated at each point of a regular grid, the algorithm tags each
point of this grid as interior (−), exterior (+) or boundary
(♦) : starting from a bounding connected set of points tagged
as exterior (+) (e.g. the points of a bounding box), a priority
queue is built with the set of tagged exterior points that are
adjacent to untagged points.

Let x be the point of the priority queue with the largest
distance value (x is popped) :

• If one untagged neighbor of x has a distance value larger
than d(x), then x is tagged as a boundary point (♦).

• If all the untagged neighbors of x have their distance val-
ues smaller than d(x), they are tagged as exterior (+) and
pushed into the priority queue.

At the end of the algorithm, the remaining untagged points
are the interior points (−). Fig. 1 illustrates the result of the
“fast tagging algorithm” in 2D. Zhao et al show that this al-
gorithm converges and has a complexity O(NlogN), where
N denotes the size of the grid.

The “fast tagging algorithm” is a numerical scheme that
is clearly driven by the geometry. In this paper, we present
a geometric algorithm that produces a similar result with-
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Figure 1: “Fast tagging algorithm” : exterior points are
tagged as +, interior points are tagged as −, boundary
points are tagged as ♦

out using a grid. Related work has appeared in the com-
putational geometry community. Recently, Giesen and John
13 have proposed a general study of the repulsion field
∇d(x), together with a reconstruction algorithm based on
cells composed of points having the same attractor. Their
work stresses the relationship between the considered cells
and the Delaunay triangulation, but the reconstruction ap-
proach based on it cannot deal with surfaces with bound-
aries. A related idea has been developed by Herbert Edels-
brunner 14 that is also suitable for surface with boundaries.
The reconstruction approach presented in our paper is sim-
ilar. It has been developed independently, so that it is based
on a different formalism and is more concerned with surface
evolution and data structure issues.

3. A computational geometry approach to convection

3.1. Geometric properties

In this subsection, we establish geometric properties on the
result of the convection process. More precisely, we want
to bring out that the 2D parts resulting from the convection
process (of an enclosing oriented surface towards a point set
Σ) are composed of triangular oriented facets. These oriented
facets are enclosed in the 3D Delaunay triangulation of Σ.
We also show that they meet a particular geometric property.
There is an equivalent of this result in the 2D case of curve
convection in IR2. We first present this simpler case to make
a comprehensive step towards the 3D case.

Definition 1

• Given 2 points P1 and P2, the half-edge
_

P1P2 denotes the
oriented edge from P1 to P2. An edge can be seen as the
union of 2 coupled half-edges.

• Given an edge e in IR2, the diametrical disk of e is the
union of 2 half-disks respectively supported by the two

corresponding half-edges. The half-disk associated to a

half-edge
_

P1P2 is located on its left hand (see fig. 2).
• Given a set of points in IR2, an edge is said to meet the

Gabriel property, if its associated disk does not contain
any point of the set. Similarly, we consider that a half-
edge meets the Gabriel property if its associated half-disk
is empty of sampled points.

Figure 2: a) edge, b) edge as the union of 2 coupled half-
edges, c) disk associated to an edge, d) half-disk associated
to a half-edge

Lemma 2 Given a curve C enclosing a point set Σ in IR2, the
convection process of C towards Σ converges to a closed ori-
ented pseudo-curve that is composed of a set of half-edges.
These half-edges are enclosed in the 2D Delaunay triangula-
tion of Σ and their associated half-disks are oriented towards
the interior of the curve. Moreover, these half-edges meet
the Gabriel property. In this context, the term pseudo-curve
is used to mean that different parts of the evolving curve can
locally adjoin.

Proof C is a closed bounding curve oriented towards the
data. It can be considered as the union of several pieces of
curve, so that each piece intersects d = 2 adjacent Voronoi
cells only (see Fig. 3).

P
1

P
3

P
2

C
12

C
23

C
31 Pj Pi

C i j

Figure 3: Decomposition of C into pieces going through d =
2 adjacent Voronoi cells only

Let Ci j be the piece of curve that intersects the Voronoi cells
of Pi and Pj . Without loss of generality, we can suppose

that Ci j and
_

PiPj are oriented consistently. Since the Voronoi
cells of Pi and Pj are adjacent, the simplex PiPj is included
in the Delaunay triangulation of the points. We consider the
result of the convection of Ci j towards Σ. Along their inward
normal vectors, the points of Ci j that lie inside the Voronoi
cell of Pi (resp. Pj) are attracted to Pi (resp. Pj). The points
equidistant from Pi and Pj are attracted to the middle of
[PiPj]. This does not mean that moving points will eventu-
ally converge to their (local) attractor. During its evolution,
the attractor of one point can change. Moreover, the points of
Ci j do not evolve any more when they all meet ∇d(x)·~n = 0.
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Figure 4: Attraction towards a half-edge without the Gabriel
property

First case The half-edge
_

PiPj does not meet the Gabriel
property (see Fig. 4). It means that its associated half-disk
contains at least another point of the set. Let Pk be the

point that lies in the half-plane associated to
_

PiPj and that
is connected to Pi and Pj in the Delaunay triangulation †.
Pk is one of the points included in the half-disk associated

to
_

PiPj and the Voronoi center of Pi, Pj and Pk cannot be

located in the half-plane delimited by
_

PiPj (consider the
pencil of circles going through Pi and Pj). It implies that
points of Ci j meet with the Voronoi cell of Pk on their way
to their attractor. When this event occurs, Ci j can in turn be
decomposed as the union of 2 pieces Cik and Ck j , which
intersect the adjacent Voronoi cells of Pi and Pk, and Pk
and Pj respectively. The result of the evolution of Ci j is
composed of the result of the evolution of Cik and Ck j .

Second case The half-edge
_

PiPj meets the Gabriel property.
In that case, no new Voronoi cell is encountered by the
points of Ci j on their way to their attractor. The points of
the curve are attracted by their closest point in the set and
dragged by their neighbors on the curve, so that the result of

the convection of Ci j is the entire half-edge
_

PiPj , supported
by an edge of the Delaunay triangulation.

Termination The above analysis dealt with the local evo-
lution of the curve. There remains the eventuality of auto-
intersections at different parts of the curve during the con-
vection scheme. If ever the curve was to intersect itself at
two coupled half-edges, then it would collapse in this area
with a possible creation of a hole or even the creation of
isolated points. Note that such cross-over do not happen in
the case of a 2D convection (lemma 5 shows that each re-
sulting half-edge has its entire diametrical disk empty : this

† We say that Pk (resp.
_

PiPk and
_

PkPj) is the point (resp. are the

half-edges) hidden by
_

PiPj .

indirectly implies that two coupled half-edges cannot be col-
lapsed). At each step, the curve shrinks towards its interior,
so that the positive area it encloses decreases. This ensures
the termination of the convection scheme.

Definition 3

• Given 3 points P1, P2 and P3, the half-facet
_

P1P2P3 de-
notes the facet supported by P1, P2 and P3 and oriented
towards −−→P1P2 ∧

−−→P1P3. A facet can be considered as the
union of 2 coupled half-facets.

• Given a facet f in IR3, the diametrical ball of f (smallest
ball enclosing f ) is the union of 2 half-balls respectively
included in the 2 half-spaces defined by the 2 half-facets
composing f .

• Given a set of points in IR3, we extend the definition of
the Gabriel property to facets that have their diametrical
balls empty and to half-facets that have their associated
half-ball empty.

Lemma 4 Given a surface S enclosing a point set Σ in IR3,
the 2D parts that are included in the convection result can
be viewed as a set of closed oriented pseudo-surfaces. This
lemma does not address the possibility to get 0-D parts (iso-
lated points) nor 1-D parts. Each obtained pseudo-surface is
composed of half-facets oriented inwards. These half-facets
are embedded in the Delaunay triangulation of Σ and they all
meet the Gabriel property. The term pseudo-surface means
that different parts of the evolving surface can locally share
common geometric information.

Figure 5: Convection of a piece of surface Si jk

Proof S is a closed bounding surface oriented towards the
data. It can be decomposed as the union of several pieces
of surfaces, so that each piece Si jk intersects the adjacent

Voronoi cells of only 3 points Pi, Pj and Pk (Si jk and
_

PiPjPk
being oriented consistently). The intersection of Si jk with
these 3 Voronoi cells can be of 2 kinds (configuration C1 or
C2, see Fig. 5). During the convection process towards the
interior, Si jk can encounter the Voronoi cell of a new point
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(event E1A or E1B on configuration C1, event E2 on configu-
ration C2, see Fig. 5). In that case, Si jk can be decomposed in
further pieces that intersect 3 adjacent Voronoi cells in turn
(follow the dot line in Fig. 5). The result of the evolution of
Si jk is the union of the evolution of these new pieces. If Si jk
does not meet with a new Voronoi cell during the convection

process, it converges either to
_

PiPjPk (result R1 for configu-
ration C1, see Fig. 5), either to the 1D edges PiPj and PjPk
(result R2 for configuration C2, see Fig. 5), depending on
the position of the circumcenter of Pi, Pj and Pk. In the case

where Si jk converges to
_

PiPjPk, the Gabriel property must be

satisfied by
_

PiPjPk : otherwise the evolving Si jk would have

encountered the Voronoi cell of the point hidden by
_

PiPjPk.
Termination The above analysis deals with the local de-
composition and evolution of S. The possibility of locally
stopping this evolution because of global intersections at dif-
ferent parts of the evolving surface cannot be discarded in
3D (see Fig. 21). Half-facets resulting from the local evolu-
tion are embedded in the Delaunay triangulation so that they
can intersect at Delaunay edges only. It implies that global
cross-over occur at the level of (groups of adjacent) half-
facets. The evolving surface is defined as the boundary of
a volume so that an auto-intersection at the level of a half-
facet implies the collapse of the current crossed parts. These
cross-over of the surface can give raise to holes, changes in
the number of connected components, but they can also cre-
ate 1D parts (and perhaps 0D parts) included in the Delau-
nay triangulation. Along the convection process, the surface
shrinks towards its interior so that the positive area it en-
closes decreases. This ensures the termination of the con-
vection scheme.

3.2. A computational geometric algorithm of convection

A computational geometric algorithm of convection can be
derived easily from the previous results. Given a set of points
Σ, the idea is to choose an enclosing surface embedded in
the 3D Delaunay triangulation of the points and to make it
evolve inside this tetrahedrization, by sculpting away some
enclosed tetrahedra. More precisely, the algorithm we pro-
pose consists in making a closed oriented pseudo-surface
shrink inside the 3D Delaunay triangulation of the points,
until it locally fits Σ with half-facets satisfying the Gabriel
property.

The evolving pseudo-surface Sev is initialised with the
convex hull of Σ and it is oriented inwards. Then, this ori-
ented pseudo-surface Sev evolves, subject to geometric and
topological operations that ensure the connectivity restora-
tion between half-facets, whenever a half-facet is shrunk.
Before we detail these operations in subsection 3.4, the de-
formation scheme can roughly be described by the following
algorithm :

SHRINK Algorithm

for each half-facet
_

ABC of the evolving pseudo-surface
Sev do

if
_

ABC does not meet the Gabriel property then

if the coupled half-facets
_

ABC and
_

BAC both belong
to Sev then

- suppress
_

ABC and
_

BAC from Sev
else

- replace
_

ABC with its 3 hidden half-facets
_

ABD,
_

BCD and
_

CAD
end if
- restore the connectivity between half-facets

end if
end for

In this algorithm, the 3 hidden half-facets replacing a half-

facet
_

ABC come from the Delaunay tetrahedron hidden by
_

ABC. The case where the half-facet
_

ABC to be shrunk and
its coupled half-facet

_
BAC both belong to Sev corresponds to

the case where the tetrahedron hidden by
_

ABC is outside the

volume delimited by Sev. Then, the opening of
_

ABC corre-
sponds to a local auto-intersection with a local collapse of
the pseudo-surface.

Fig. 6 illustrates the result of this algorithm in the 2D case.
One can notice that the convection result can locally be com-
posed of coupled half-edges that both meet the Gabriel prop-
erty. We call them thin parts.

Half-facetHalf-facet

Half-facet and its

associated half-disk

Half-facet and its

associated half-disk

Figure 6: Convection towards a 2D points set

There are two versions of the SHRINK algorithm accord-
ing to whether thin parts of the result are kept or not. We
usually want to get rid of these non-manifold parts in case
of volumes (see Fig. 7) but it is necessary to keep them in
the case of surfaces with boundaries (or volume with thin
parts). In this latter case, it is necessary to distinguish signif-
icant from undesirable thin parts. The most natural thing to
do is to pursue and complete the convection process on these
thin parts, starting from their boundary (a thin part boundary
is an edge that is adjacent to (only) 2 coupled half-edges).
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The algorithm extension proposed in section 3.5 was origi-
nally proposed to hollow undetected pockets out but is also
efficient in detecting undesirable thin parts. Note that, in the
case desirable thin parts are kept, it would be possible to re-
trieve a manifold by locally blowing some air in between
coupled half-facets.

Figure 7: Convection towards the Bunny point set, with re-
moval of thin parts

3.3. Comparison with the sculpture algorithm

The SHRINK algorithm can be seen as a generalization of
the sculpture algorithm of Boissonnat 7. Both approaches are
quite different, however. In sculpture algorithms, a weight is
given to each tetrahedron hidden by the evolving surface,
so that each step of the algorithm results in the exudation
of the tetrahedron with the largest weight. The weights cho-
sen must favor the elimination of tetrahedra that lie behind
larger, badly-shaped facets. Such an elimination process is
run under control of a priority queue and under the constraint
of topological genus invariance. The problem is that the or-
der of the facets in the priority queue can be misleading.
It does not take into account the global data configuration.
In some cases, the sculpture process can locally be stopped
to respect topological properties (see Fig. 8), while another
elimination sequence could have driven to a better result.
Veltkamp pointed out this problem in 16. Other sculpting al-
gorithms have been proposed to allow topological changes
17, 18, but they are still dependent on the operations order.

Unlike sculpture algorithms, the SHRINK algorithm is
not based on a global heuristic and does not require a prior-
ity queue. The evolution of the triangulated surface is guided
by a physical scheme and is not subject to topological con-
ditions : the topological genus of the evolving surface can
change several times before the process reaches the equilib-
rium.

3.4. Pseudo-surface : Data structure and operations

In subsection 3.2, we have presented an algorithm that makes
an oriented pseudo-surface evolve, subject to topological

Figure 8: Sculpture result : We have added topological con-
straints and a priority queue to turn our algorithm into a
sculpture algorithm. The weight of a half-facet can be seen
as some measure of the Gabriel property. The original shape
could not be extracted because the algorithm got stuck by
topological constraints.

and geometric operations. We now report on the data struc-
ture corresponding to a pseudo-surface and on the basic op-
erations performed.

On a triangulated surface of a closed object, each facet lies
on 3 different vertices and is adjacent to 3 different facets.
Since the vertices of a triangulated surface are geometrically
distinct, it is easy to retrieve the connectivity between facets
from the geometry of its vertices.

This last remark does not hold for pseudo-surfaces as the
ones produced by our algorithm, since different vertices,
edges or half-facets can share common geometric informa-
tion. The only way to get the connectivity information be-
tween half-facets is to store it into a suitable data structure,
updated at each step of the convection process, thanks to a
set of dedicated operations.

A pseudo-surface is a set of half-facets satisfying the fol-
lowing properties :

• each half-facet is adjacent to 3 other half-facets oriented
consistently (2 or 3 of these half-facets can possibly be
the same),

• each half-facet is incident to 3 different vertices,
• two different, non-adjacent vertices can share a common

geometric information.

Such a pseudo-surface is a cellular complex, but not a sim-
plicial complex : two adjacent half-facets can share more
than one common edge. To retrieve an abstract simplicial
complex, a barycentric subdivision (such as the one de-
scribed by Vegter 23) is required. After this operation, a half-
facet is adjacent to 3 different half-facets, and each vertex is
the center of a topological disk.

During the convection process, a pseudo-surface evolves
so that a half-facet is opened to discover 3 new half-facets
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adjacent to a new vertex, or such that two coupled half-facets
collapse.

It means that the data structure used to represent a pseudo-
surface must support the following operations :

• replacement of a half-facet by its 3 hidden half-facets,
• collapse of 2 coupled half-facets (sharing the same geom-

etry but oriented differently).

The operation of replacing a half-facet by its 3 hidden
half-facets is similar to that of inserting a new vertex into
a facet of a 2D triangulation 24. This operation connects the
3 created half-facets with each other and with the half-facets
adjacent to the deleted one. This is an operation that does
not change the topology of the pseudo-surface. Note that the
inserted vertex can possibly share common geometric infor-
mation with another vertex of the pseudo-surface.

As far as the collapse of 2 coupled half-edges is con-
cerned, there are 8 different configurations, depending on
the number of common vertices and the number of common
edges for the two coupled half-facets. Some of these opera-
tions modify the topological structure of the pseudo-surface.
The collapse operations that involve at least one common
edge are those to be used to pursue the convection process
on thin parts.

3.4.1. 0 common vertex and 0 common edge

The simplest case is the one where the 2 coupled half-facets
to collapse are not connected at all. The collapse of these
two coupled half-facets involves 6 vertices and 6 edges. The
restoration of the connectivity between the remaining half-
facets implies the disappearing of 3 vertices and 3 edges :
they are merged with the vertices and edges sharing the same
geometry (see Fig. 9 ). This operation changes the topologi-
cal structure of the pseudo-surface. It corresponds to a han-
dle creation.

Figure 9: 0 common vertex and 0 common edge : disappear-
ing of 3 vertices and of 3 edges

3.4.2. 1 common vertex and 0 common edge

If the 2 coupled half-facets are only attached on a com-
mon vertex V , their collapse does not change the topolog-
ical structure of the pseudo-surface (Euler characteristic un-
changed). The 4 other vertices fusion by pair, whereas V is
split into 2 vertices (see Fig. 10 –the dot pieces of circle rep-
resent sheets of the pseudo-surface–). 3 edges disappear by
fusionning with edges sharing the same topology.

Figure 10: 1 common vertex and 0 common edge : disap-
pearing of 2 vertices and creation of a new one, disappear-
ing of 3 edges

3.4.3. 2 common vertices and 0 common edge

If the 2 coupled half-facets are connected at 2 different ver-
tices V1 and V2, the collapse operation changes the topolog-
ical structure of the pseudo-surface, but that change can be
of 2 sorts and cannot be characterized locally :

• either a creation of a new connected component,
• either the opening of a handle.

The collapse operation corresponds to the fusion of the
unconnected vertices and to the split of V1 and V2 (see Fig.
11). The 6 six edges fusion by pair.

Figure 11: 2 common vertices and 0 common edge : disap-
pearing of a vertex and creation of 2 others, disappearing of
3 edges

3.4.4. 3 common vertices and 0 common edge

The collapse of 2 coupled half-facets sharing the same ver-
tices can yield 4 sorts of modifications in the topological
structure of the pseudo-surface (the problem of determining
which of this change occur is global) :

• either a creation of 2 new connected components,
• either the opening of a handle, and the creation of a new

connected component,
• either the opening of 2 handles,
• either the opening of 3 handles, and the creation of a new

one.

As far as the connectivity restoration between half-facets is
concerned, the 3 common vertices are split and the 3 pairs of
edges are merged (see Fig. 12).
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Figure 12: 3 common vertices and 0 common edge : creation
of 3 new vertices, disappearing of 3 edges

3.4.5. 2 common vertices and 1 common edge

When the 2 coupled half-facets share a common edge e,
they necessarily share the vertices at the extremity of this
edge. This collapse operation does not change the topologi-
cal structure of the pseudo-surface. The edges different than
e and the 2 vertices that are not adjacent to e are fusionned
by pairs (see Fig. 13). e disappears with the 2 coupled half-
facets.

Figure 13: 2 common vertices and 1 common edge : disap-
pearing of 1 vertex, disappearing of 3 edges

3.4.6. 3 common vertices and 1 common edge

In the case where the 2 coupled half-facets share a common
edge e but also their last vertex V , the collapse operation
changes the topological structure of the pseudo-surface, with
the creation of a new connected component or the opening
of a handle.

The vertex V is split and the pair of edges that are different
than e are fusionned (see Fig. 14). e disappears.

Figure 14: 3 common vertices and 1 common edge : creation
of 1 vertex, disappearing of 3 edges

3.4.7. 3 common vertices and 2 common edges

Two coupled half-facets that share 2 common edges neces-
sarily share all their vertices. The collapse operation does
not change the topological structure of the pseudo-surface in
that case. The two common edges disappear with the vertex
they share. The pair of remaining edge is merged (see Fig.
15).

Figure 15: 3 common vertices and 2 common edges : disap-
pearing of 1 vertex, disappearing of 3 edges

3.4.8. 3 common vertices and 3 common edges

The last collapse case occurs when the 2 coupled half-facets
share all their vertices and all their edges : all these vertices
and edges disappear with the half-facets (see Fig. 16)

This operation changes the topological structure of the
pseudo-surface, with the disappearing of a connected com-
ponent.

Figure 16: 3 common vertices : disappearing of 3 vertices
and 3 edges

3.5. Extension of the convection process

Zhao, Osher and Fedkiw use the convection process to ini-
tialise another process that minimizes an energy function.
Unfortunately, the convection process can be stuck by the
presence of important concavities. These are larger than all
the hidden half-balls that can be raised from the resultant in-
terface between the cavity and the outside (Fig. 17 illustrates
it in 2D). Such cavities are denoted pockets by Edelsbrunner
et al 20.

P

Figure 17: No digging is possible, because of a concavity
larger than the half-ball around its hiding half-facet

Let us see how our scheme could be improved in order
to solve this issue. If the surface is locally sampled finely
enough to reflect the presence of the cavity, the distance
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from the points outside the cavity to their neighbors inside
the cavity should be bounded by a factor of lfs(P), (even if
this factor is not always as fine as desired). It means that one
can expect some constraint of consistency between selected
half-facets and local density, even if the sampling conditions
are not verified everywhere (at the level of a crease edge, for
instance).

Let P be a point of a facet blocking a cavity. If the cavity
is sufficiently sampled to be detectable, the distance from P
to its surface neighbors, on and outside the cavity, should be
small with respect to the size of the blocking facets (see Fig.
17). Furthermore, the distance from P to its surface neigh-
bors can be reflected by the local density of points.

Consequently, we have improved the opening condition,
so that a half-facet that meets the Gabriel property can also
be shrunk if its size is not coherent with the local 3D den-
sity of the sampling (which is also indicative of the distance
to the skeleton). The size of a half-facet is reflected by the
radius of its associated half-ball and the problem remains
to find a good approximation of the density. In practice, we
have approximated the point density around a point by the
distance to its fourth nearest point, keeping in mind that
the mean number of neighbors in a 2D triangulation is 6.
One can argue that it is not a solid solution, but we think
that a better approximation with theoretical coefficients and
thresholds could be computed from the recent works by Er-
ickson 21 and by Boissonnat and Attali 22.

An other extension of the algorithm can be made in order
to reconstruct surface of objects with internal holes. Suppose
that the input data points belong to two unconnected concen-
tric spheres, one can argue that the shrinking algorithm re-
constructs the outer sphere only. The result of the presented
SHRINK algorithm clearly depends on the part of the ob-
ject surface that is reachable by the initial enclosing surface.
However, it is possible to repeat the shrinking process with
the set of unreached points, and so on.

4. Oriented nature of the opening condition

This section can be skipped on a first reading. It contains
statements that can help gaining a better understanding of
computational geometry reconstruction algorithms. It also il-
lustrate the difficulty to translate a concept as “the restrained
Delaunay triangulation” of a surface into a discrete equiva-
lent.

In the convection algorithm presented above, the evolving
pseudo-surface is shrunk through a half-facet if its associ-
ated half-ball is not empty. This means that the half-facets
included in the result have empty associated half-balls, but
not necessarily empty diametrical balls. This also means that
the convection process is locally driven by the internal skele-
ton only. In this section, we study how the convection al-
gorithm evolves if we replace the opening condition by an
orientation-free version of it.

2D point sets

Lemma 5 In the case of convection towards a 2D point set, it
does not change the result to keep the original opening con-
dition or to enlarge it to half-edges whose entire diametrical
disk contains a point. A consequence of that result is that
the evolving curve cannot intersect itself and collapse at two
coupled half-edges.

Proof It is equivalent to prove that each half-edge resulting
from the current oriented algorithm has its entire diametrical

disk empty. Suppose that
_

PjPi is a half-edge of the evolving

curve (or of the result) whose coupled half-edge
_

PiPj does
not meet the Gabriel property (see Fig. 18). Let Ph be the

point hidden by
_

PiPj . By construction, one of the half-edges
_

PhPi or
_

PjPh must have been inserted in the evolving oriented
curve at a previous step of the algorithm. This facet did not
meet the Gabriel property, so that it could be shrunk to dis-

cover
_

PjPi. This is geometrically incompatible with
_

PiPj not
meeting the Gabriel property.

Pi

Pj

Ph

Figure 18: 2D convection property : A discovered half-edge
_

PjPi must have its coupled half-edge meet the Gabriel prop-
erty also, otherwise it could not have been inserted in the
evolving surface

3D point set A well-known result by Amenta and Bern
8 ensures that the global shape of a smooth object surface
can be retrieved from a set of points, when these points form
an ε-sample of the original surface, with ε < 0.1. It means
that the distance between any surface point P and the closest
sampled point is less than ε times the distance lfs(P) to the
medial axis. Under this condition, the “restricted Delaunay
triangulation” constitutes a piecewise linear approximation
of the surface, homeomorphic to it. It is composed of De-
launay facets whose dual Voronoi edges intersect the surface
(ε < 0.1 ensures that the number of intersections between
Voronoi edges and the original surface is less than 1). In
practice, it is sometimes impossible to get an ε-sample —
consider, for instance, the case of surfaces that are locally not
differentiable — and precise reconstruction of crease edges
still remains a problem.

Petitjean and Boyer 19 have proposed a discrete general-
ization of the ε-sample notion, to deal with scattered data
considered independently of any surface. In this generaliza-
tion, a set of points is a discrete ε-sample if :

• a triangulated surface can be built from it,
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• each facet of this triangulation has size (granularity) less
than ε times the distance from its vertices to their furthest
Voronoi vertices.

The facets of such a triangulation belong to the 3D Delau-
nay triangulation of the points and they all meet the Gabriel
property. Given a discrete ε-sample with ε < 1, the authors
also propose an algorithm which constructs a surface as a
set of Gabriel facets in the 3D triangulation of the points.
In practice, point sets rarely meet the conditions required by
Petitjean and Boyer. Their algorithm most often produces
surfaces with boundaries, even when the original surface is
unbounded. It is the case for the "Bunny" point set. To il-
lustrate that, we ran our algorithm with a different opening
condition on the half-facets : a half-facet is shrunk if its en-
tire diametrical ball contains a point. Fig. 19 shows the result
of the contraction process after the suppression of the thin
parts. As one can see, there were not enough Gabriel facets
to stop the progression and the folding up of the surface into
itself. This can be a problem if one wishes to get a closed
surface.

Figure 19: Bunny : Shrinking of half-facets whose entire as-
sociated ball contains a point (thin parts are removed). This
illustrates the convection result when the oriented nature of
the half-facet opening condition is suppressed.

Why, in practice, are there so many half-facets of the re-
sult that meet the Gabriel property but whose entire diamet-
rical ball is not empty ? The point is that the result available
in 2D cannot be extended to the 3D case, and it is easy to ex-
tract configurations of the data where a discovered half-facet
has its associated half-ball empty, but not its entire diametri-
cal ball :

Let
_

ABC be a half-facet of the surface. The half-ball as-
sociated to

_
ABC (let us say in front of

_
ABC) is empty. The

half-ball associated to
_

BAC (let us say behind
_

ABC) can con-

tain a point if the Delaunay tetrahedron ABCD behind
_

ABC
is of the following kind : the circumcenter O of ABCD does

not lie in the half-space associated to
_

ADC (so that
_

ADC can

be shrunk to discover
_

ABC), nor in the half-space associated

to
_

BAC (see Fig. 21).

T
A

B
D C

T'

Figure 20: In front of and behind a half-facet T =
_

ABC

Suppose that a Delaunay tetrahedron such as the one de-
scribed on the above figure is present among a set of points
corresponding to a well sampled surface. If the surface is a

surface with boundary and that both the half-facets
_

ADC and
_

BAC can be reached by the convection process, a cross-over
in the convection process can occur with a possible creation
of a handle if none of the edges AB, BC and CA are bound-
aries (see Fig. 21).

Set of points :
-1 1 0; -1 0 0; -0.5 0 0
1 1 0; 1 0 0; 0 0.4 -0.05
0 1 0; 0 -1 0; 0.5 0 0
-1 -1 0; 1 -1 0; 0 0.4 0.05

Figure 21: Convection towards a 3D point set belonging to a
nearly planar surface ( lfs(P) = ∞). A cross-over occurred
due to the presence of boundaries and a sliver

5. Results

An implementation of the convection algorithm has been
done using CGAL 24. All the results presented here have
been obtained in a few seconds on a Linux platform (In-
tel 4 CPU 2.00GHz 1993 MHz, 768 MBytes RAM,9GBytes
DISK space).

6. Conclusion

In this paper, we have dealt with an existing physical convec-
tion scheme, that we have translated into a geometric algo-
rithm. This approach seems interesting to us, both to fasten
the usual discretization processes and to extract the possi-
bly underlying geometric structure of an evolution equation.
This geometric algorithm is based on the 3D Delaunay trian-
gulation of the points, but one can imagine an implementa-
tion where the latter does not need to be constructed : not all
the Delaunay facets are explored and a convex hull algorithm

c© The Eurographics Association 2003.



Raphaëlle Chaine / Geometric Convection

Figure 22: “Nefertiti” (surface with boundaries, 1128
points, time 0.170 s) and “Mathematical surface”(surface
with boundaries, 6752 points, time 1.100s)

Figure 23: “Plane Engine” (surface with boundaries,
11444 points, time 4.210s)

Figure 24: “Schale” (surface with boundaries, 2714 points,
time 0.399s) and “Triceratops” (surface without boundary,
2833 points, time 0.498s)

coupled with a location data structure could be enough to
determine local density at a point and to determine if a half-
facet encounters the Gabriel property or not. The current re-

Figure 25: “Meca” (surface without boundary, 12594
points, time 2.638s)

Figure 26: “Fish” (surface with thin parts, 54811 points,
time 10.128s)

Figure 27: Other aspects of “Bunny” : undersampled data,
holes below the Bunny basis (surface with open boundaries)

sults of the algorithm could also be improved with a better
approximation of the point density on the surface. Our con-
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vection algorithm compute an oriented pseudo-surface but a
post-processing is possible to convert it into a manifold tri-
angular mesh.
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