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Abstract. In this paper, we evaluate the impact of a declarative frame-
work for privacy-preserving publishing relying on SPARQL queries for
specifying both privacy policies and anonymization operations.
We focus on the performance and the utility loss on this anonymization
framework on RDF data. We first discuss and select utility measures
to compare the original graph to its anonymized counterpart. We then
define a method to generate new privacy policies from a reference one
by inserting incremental modifications. We finally study the behavior of
the framework on various real-world and synthetic RDF graphs.
We show that our anonymization technique is effective with reasonable
runtime on quite large graphs (several million triples) and is progressive:
the more specific the privacy policy is, the lesser its impacts are. We
finally discuss the structural graph-based measurement and analyze its
relevance.

1 Introduction

RDF is a graph-based data model accepted as the W3C standard for the Linked
Open Data (LOD). The LOD cloud is rapidly growing and contains 1,231 RDF
graphs connected by 16,132 links (as of June 2018).1 Since 2007, the number
of RDF graphs published in the LOD has grown by two orders of magnitude.
Nevertheless, the participation of many organizations and institutions to the
LOD movement is hindered by privacy and identity leakage concerns. Personal
data are ubiquitous in many of these data sources and recent regulations about
personal data, such as the EU GDPR2, make these organizations reluctant to
publish their data in the LOD.

While there has been some effort [5,11] to bring data anonymization tech-
niques from the relational database world to the LOD, such as variations of
k-anonymity [13,8,9], most of the state of the art is either based on differen-
tial privacy techniques for relational data [3,7], or access control techniques for
LOD [6,14,12,10].

We want to study how the query-based, data-independant approach pre-
sented in [2] fares in actual, concrete anonymization contexts using real RDF

1 See https://lod-cloud.net/
2 See https://eugdpr.org/

https://lod-cloud.net/
https://eugdpr.org/
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Fig. 1: Graphical representation of the G graph

graphs and tangible privacy constraints. While a static, sound anonymization
approach is good in theory, it may raises other issues in practice, notably how to
deal performance issues and how big is the utility loss depending on the graph or
the privacy constraints provided to the algorithm. To evaluate this, we will focus
on designing and performing experiments to evaluate the utility loss of such a
static RDF anonymization soluion, and study the various factors affecting the
results of such experiments.

The paper is organized as follows: we present in Section 2 the formal back-
ground of this anonymization framework and the safety model it is based on.
Section 3 details the objectives and means of our evaluation, and Section 4 de-
tails the experimental software and hardware setup used for the experiments.
Finally, after a detailed study of the results of each experiment in Section 5, we
conclude the paper in Section 6 with other possible evaluation directions.

2 Background: the safety model

For the sake of brevity, we do not recall all the formal definitions of RDF graphs
and SPARQL queries and we refer the reader to [4] for classical definitions. An
RDF graph is a finite set of RDF triples of the form (s, p, o) where s is called the
subject (the source of the edge), p the predicate (the label of the edge) and o the
object (the target of the edge). Let us consider for instance the following RDF
graph G that is made of four triples, see Figure 1 for a graphical representation:

:bob :seenBy :mary. :mary :member :service1.

:ann :seenBy :mary. :service1 :hasDept :oncology.

The declarative query language for RDF graphs is named SPARQL. Intu-
itively a (basic) SPARQL query is a graph pattern to be found in the database.
For instance the following query P looks for people seen by a member of a service
in a hospital having an oncology department. The answers to P on G, written
Ans(P,G) are the constants :bob and :ann.

SELECT ?x WHERE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology.}

The SPARQL standard also defines update operations which are written
DELETE D(x̄) INSERT I(ȳ) WHERE W (z̄). Their semantics is to find the answers
of W in the database, then from these answers to delete the D pattern and to
insert the I pattern. For a sequence of update operations, we write O(G) to
denote its application on the G graph.

The framework developed in [2] is a follow-up of the one in [1], extended to
define safety as follows. Intuitively, an RDF graph G is safely anonymized by
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operations O according to a privacy policy P expressed as a set of SPARQL
queries if it does not disclose any new query result when it is joined with any
external RDF graph G′ even if the latter does not satisfy the privacy policy. This
a quite strong requirement that captures the following idea. If one considers that
a SPARQL query P ∈ P is to be protected, then (i) all its answers on G must
contain some anonymous blank nodes, no answer should be precise; (ii) the
addition of external linked data cannot help to obtain precise answers.

Definition 1 (Safe anonymization instance). Let G be an RDF graph, let
O be a sequence of update queries called anonymization operations and let P
be a set of queries called privacy queries. We say that (G,O,P) is safe iff for
every RDF graph G′, for every P ∈ P and for every tuple of constants c̄, if
c̄ ∈ Ans(P,O(G) ∪G′) then c̄ ∈ Ans(P,G′).

We first show that deleting triples may guarantee some privacy but not safety
as defined above. Example 1 shows that the problem for safety comes from a
possible join between an internal and an external constant. This can be avoided
by replacing some critical constants by so called blank nodes, as shown in Exam-
ple 2. Blank nodes are part of the RDF standard and are basically anonymous
nodes in the graph.

Example 1. Let O1 be the update query that deletes all the triples instances
of the :seenBy property. The resulting anonymized RDF graph O1(G) is the
following:

:mary :member :service1. :service1 :hasDept :oncology.

However, O1 is not safe since the union of O1(G) with an external RDF graph
G′ containing the triple (:bob, :seenBy, :mary) will provide :bob as an answer
(which is not an answer of P against G’ alone).

Example 2. Consider the following update query O2:

DELETE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

INSERT {_:b1 :seenBy _:b2. _:b2 :member _:b3. _:b3 :hasDept :oncology}

WHERE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

The result RDF graph O2(G) is made of the following triples where all nodes’
identifiers but :oncology are replaced by blank nodes:

_:b1 :seenBy _:b2. _:b2 :member _:b3.

_:b4 :seenBy _:b2. _:b3 :hasDept :oncology.

O2(G) is safe. In addition, since all the occurrences of the join variables are
replaced by the same blank nodes, its structure is preserved, notably, the number
of answers Ans(P,G) is preserved, i.e., |Ans(P,G)| = |Ans(P,O2(G))| .

We now define data-independent safety for a sequence of anonymization oper-
ations independently of any RDF graph and its related computational problem.
Given a set of SPARQL queries P to protect, the data-independent Safety
problem consists in finding a sequence of SPARQL update operations O ensur-
ing that (G,O,P) is safe for any given G.
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Definition 2 (Safe sequence of anonymization operations). Let O be a
sequence of anonymization operations, let P be a set of privacy queries, O is
safe for P iff (G,O,P) is safe for every RDF graph G.

Problem 1. The data-independent Safety problem.
Input : P a set of privacy queries
Output: A sequence O of update operations such that O is safe for P.

A solution to the Safety problem is to generate operations as the ones in
Example 2. In a paper currently under review [2], we have shown that Algorithm
1 presented in the companion appendix computes sound solutions to the Safety
problem. As exemplified in Example 2, we also proved that counting queries are
preserved through the anonymization process.

Our approach therefore creates anonymized versions of any given RDF graph,
by generalizing specific parts of the graph which may break some links between
entities.

3 Goals and measurements

Our objective is to test this anonymization framework in plausible contexts, and
evaluate how it fares in terms of practical usability. To do so, we identify relevant
utility measurements, as opposed to the theoretical guarantees granted by the
framework’s algorithm. Indeed, the preservation of the cardinality of answers is
guaranteed [2], but to what extent is the structure of the graph preserved once
anonymized?

We also want to test the framework on real-world data, as it will provide
an idea of how difficult it is to define privacy policies on real-world graphs, and
how efficient is the anonymization process. The generation of anonymization
operations is independent of the size of the graph, but how long is it to apply
these operations on a given graph?

After a careful study of possible and popular measures used in the database
literature (RDF databases, relational database, graph databases), we settle on
three measurements that compare the original graph G and its anonymized ver-
sion G′ = O(G) where O = find-safe-ops(P) are the operations generated
from a privacy policy P. The dimensions are as follows:

performance we measure the running time of the anonymization process.
precision loss we measure the number of blank nodes added by anonymization

operations and a variant of the RDFprec measurement [11] which is an RDF-
based measure introduced to assess k -anonymity algorithms;

structural loss we compute a distance between degree distributions of the origi-
nal graph and its anonymized version [9], notably the Earth’s Mover distance
(or Wasserstein distance);

Note that this running time measurement is different from the measures
in [1,2], as they were used to measure the duration of the operation genera-
tion, while we want to measure how long lasts the actual application of these
operations on a given RDF graph.
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Our precision loss measurement is a [0, 1] value computed by the following
formula:

Prec =
number of blank nodes added by the anonymization

total number of IRIs in the original graph

It provides a precision value relative to the contents of the original graph, and
how destructive was our anonymization in replacing some of the graph’s IRIs by
blank nodes. The Wasserstein distance between two degree distributions of the
same size and sum is the “minimum work” necessary to transform one distribu-
tion into the other. Here, this distance represents the amount of nodes moved
times the distance by which it is moved. This measurement is useful in the sense
that it allows us to see structural differences in the graph, for example if a lot of
”core” nodes (with a lot of incoming and outgoing edges) have been modified.
This type of changes may not perceptible when computing simple precision val-
ues, while computing such a distance captures more abstract changes like this
one.

Many RDF graphs amounts to several hundred millions of triples, and per-
forming any editing operation on them could potentially account for a long time,
so we need to take this into account in our evaluation. We will therefore mea-
sure how long it takes for our hardware and software configuration to run the
whole anonymization operation sequence on a given graph, and how the input
of the algorithm (and therefore the content of this sequence) affects the running
time. Note that the generation of anonymization operations itself is negligible
compared to the cost of applying the operations.

Eventually, all these measurements will be performed on various privacy poli-
cies to test their influence on the algorithm results. These values will be computed
depending on the privacy policy’s specificity, i.e. how many results its queries
return on the original graph. The actual computation of privacy policies with
various specificity values will be detailed in the following section.

4 Experimental setup

We selected multiple RDF graphs of various purposes, sizes and structures:
smaller and bigger sets of data, real-world data as well as synthetic data for
benchmarking. The criteria to select them were (i) their availability as usable
data dumps; (ii) the fact that they presented explicit, named entities such as
users or products, to mimic sensitive data; (iii) the simplicity and readability of
their schema and vocabulary, to put ourselves in the role of a real-world Data
Protection Officer designing privacy policies.

For each graph, we have also defined a reference privacy policy called golden
privacy policy. The details regarding each graph and their associated golden pri-
vacy policies are reported in Table 1. The indicators are (i) the cardinality of the
graph (number of triples) with the number of IRIs (the number of different iden-
tifiers appearing in subject, predicate or object position) as well as the number
of (anonymous) blank nodes already in the graph; (ii) the cardinality (number
of queries) and size (total number of triples) of each golden privacy policy P.
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Table 1: Summary of the various graphs used in our experiments.

Graph
Number
of triples

Number
of IRIs

Number of
blank nodes

Privacy policy
cardinality

Privacy
policy size

TCL3 6,443,256 13,672,913 1,237,805 7 19
Synthetic transportation data based on real graphs

Drugbank4 517,023 1,218,501 0 2 6
Real-world data about approved drugs

(Swedish) Heritage5 4,970,464 12,421,192 0 2 6
Real world Europeana Swedish heritage data

To provide a numerical value modeling this input, we define the notion of
policy specificity : a policy is more specific (or less general) than another if the
sum of the results of its queries is smaller.

The golden privacy policy of each RDF graph is manually written with plausi-
ble queries based on the semantics and vocabulary of each graph. Golden privacy
policies provide a simple representation of what a data provider could seem-
ingly want to hide from their data. In a real-life scenario, these privacy policies
should be defined by the privacy officer in charge of defining the public part
of the database to be published. For example, the chosen queries for the TCL
graph aim at hiding the given name, family name, postal address, birth date and
subscription details of any user existing in the graph. Full privacy policies (as
SPARQL queries) are reported in the companion appendix available online6.

To assess the resulting utility after anonymization, we need to create muta-
tions of the golden privacy policies. The type of mutation considered here the
replacement of a variable in a policy query’s body by a constant, the resulting
mutated privacy policy will therefore be more specific. The idea is to measure
the utility loss on the anonymized graph as a function of the specificity of the
privacy policy: a mutated privacy policy should be less destructive: indeed, as
the mutated applies only to more specific cases, lesser blank nodes should be
introduced. In the case of an extremely specific privacy policy, for instance when
it hides only a completely instantiated subgraph without variables, no blanks
nodes should be introduced. Note that these experiments only make sense if the
privacy policy’s queries return answers on the original graph.

For each graph, we generate a finite set of mutations of the original golden
privacy policy by running t times m random successive mutations on this original
policy (if possible), creating at most t×m points where utility can be measured.
The parameters are therefore t, the number of parallel copies of the golden
privacy policy (decide arbitrarily to have enough values to plot) and a number

3 Generator program: https://github.com/RdNetwork/DataLyon2RDF/ / Original
data portal: https://data.grandlyon.com/

4 http://wifo5-03.informatik.uni-mannheim.de/drugbank/
5 General Europeana portal: https://pro.europeana.eu/page/linked-open-data
6 https://perso.liris.cnrs.fr/remy.delanaux/papers/APVP2019 appx.pdf

https://github.com/RdNetwork/DataLyon2RDF/
https://data.grandlyon.com/
http://wifo5-03.informatik.uni-mannheim.de/drugbank/
https://pro.europeana.eu/page/linked-open-data
https://perso.liris.cnrs.fr/remy.delanaux/papers/APVP2019_appx.pdf
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(a) TCL (m = 11) (b) Drugbank (m = 4) (c) Heritage (m = 8)

Fig. 2: Specificity depending on mutation depth (t = 7)

m of mutations to apply in each copy. This way, we create t different threads
of random incremental mutations in order to explore the impact of specificity.
Formally, the specificity of a mutated privacy policy P ′ of a base golden privacy
policy P on a graph G is defined as specificity(P′) = |Ans(P′,G)|/|Ans(P,G)|.
The boxplots on Figure 2 describes how policy specificity evolves with mutation
depth; i.e., how many successive mutations we need to perform on a privacy
policy before its queries start having no results on the graph anymore. In the
case of the TCL graph, 11 mutations is a fitting threshold, as shows on Figure 2.
The figure shows that the mutation process nicely covers the whole spectrum of
selectivity, from 0 (a privacy policy with very few or no variables that return
almost no results on G) to 1 (the original golden privacy policy).

Each mutated privacy policy has its own specificity, and we compute a nor-
malized value between 0 and 1 by dividing by the specificty of the original,
non-mutated privacy policy. This will form the x-axis of our experiments.

The experiments were generated and performed using Python 2.7, using RDF
graphs stored on a Virtuoso version 07.20.3230 on a Linux Ubuntu 18.04.1 server.
The server is a 16GB RAM with 2 VPCU virtual machine running in Openstack.

5 Results

We present the results for the TCL, Drugbank and Swedish Heritage graphs.
Experiments on other graphs, notably the well known LUBM benchmark7, are
still ongoing.

The running time depends on the size of graph and of the privacy policy.
Indeed, the bigger the policy and its queries are, the longer the operation se-
quence will be. Table 2 indicates for each graph the length of anonymization
sequence, that is the number of updates to apply, and the maximum running
time of the anonymization operations across all mutations. While the number of
operations generated can become high, only a few will cost time: the ones deal-
ing with the subgraphs patterns with many occurrences in the graph. Anyway,

7 http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/
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Table 2: Running time of anonymization operations.

Graph
Number

of operations
Algorithm
duration (s)

Anonymization
duration (s)

TCL 16 0.207 3.5
Drugbank 6 0.012 1.7

Swedish Heritage 14 0.013 53.6

we show that the running time is quite decent. Indeed, our approach uses only
standard SPARQL update queries which are efficiently processed by optimized
RDF databases such as Virtuoso. We also report the performance results of the
operation generation algorithm, similarly to the ones computed in [2].

To analyze the precision loss and the progressiveness of our approach, we
measure the number of blank nodes introduced by the anonymization process.
Results displayed on Figures 3a to 3c show that this number grows linearly with
the policy specificity: the lesser precise the privacy policy is in its selection of
data, the more blank nodes will be inserted in the graph.

(a) TCL (b) Drugbank (c) Swedish Heritage

(d) TCL (e) Drugbank (f) Swedish Heritage

Fig. 3: Loss of precision depending on the privacy policy specificity for each
graph.

As a relative precision measurement, we use the RDFprec variant to measure
how this addition of blank nodes impacts the graph as a whole. Here, RDFprec
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(a) TCL graph (b) Drugbank graph (c) Swedish Heritage graph

Fig. 4: Distance between degree distributions of the original graphs and the
anonymized graph depending on the privacy policy specificity

counts the fraction of non blank nodes in the graph. We can observe on Figures 3d
to 3f that precision is very dependent on the input: if the privacy policy covers
only a specific part of the whole data (e.g. only the subscription data in a graph
dealing with transportation, and containing data regarding subway lines, bus
stops, etc.) its impact is quite small. This explains why in the case of the TCL
graph (Figure 3a), this precision value only drops by a very low margin (99.9%
to 99.4%). Nevertheless, the trend is identical: precision drops when the privacy
policy gets more general. It drops to 85% in the case of the Swedish Heritage
graph, and 96% for the Drugbank graph. This confirms that in general, using
plausible privacy policy semantics, the number of IRIs lost in the anonymization
process is not huge.

However, we notice that figures 3c and 3f on the Swedish Heritage graph
have a quite large spread on the x = 0 line. Indeed, the privacy policy forbids
the disclosure of quite general pieces of information such as the description and
the time of objects in the graph. The anonymization process thus leads to many
replacements by blank nodes.

We then compute the Wasserstein distance measurement between degree dis-
tributions to assess the effect of the anonymization on the graphs’ structures. The
results displayed on Figure 4 show that for the TCL graph the distance exhibits
a clear raising tendencies: the more stringent the privacy policy is, the farther
the anonymized graph is. However, the Swedish Heritage and Drugbank graphs
have a very straightforward structure and fairly simplistic policies: this creates
very few different specificity values, but where the distance can vary greatly de-
pending on how prevalent are the edited nodes in the graph. The identification
of another metric that captures the preservation of structures applicable to RDF
graphs is still ongoing, as well as the design of more intricate policies.

6 Conclusion

The results of the various experiments we performed on this anonymization
framework exhibit and confirm three main points regarding its output. First,
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the use of native SPARQL elements let us achieve a satisfying running time
even anonymizing large graphs, with plausible input policies. The fact that the
anonymization algorithms only delete graph patterns that are necessary for sat-
isfying the given privacy policy highlights the fact that the anonymized graph
still have a decent usability and do not lose much data. Finally, our exploration
on how to measure the structural impact of such an anonymization confirm that
more thorough work is necessary to find an adequate measurement, as the dis-
tance between degree distribution quickly show its limits with simple policies
and on graphs where highly frequent patterns are impacted.

Possible extensions include testing with other graphs with different charac-
teristics (density, degree distribution, size...), experimenting other types of policy
mutation (such as finer generalizations or specifications or deleting triples from
policy queries), or developing other utility loss measurements.
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