A Declarative Approach to Linked Data Anonymization Companion appendix

Remy Delanaux¹, Angela Bonifati¹, Marie-Christine Rousset^{2,3}, and Romuald Thion¹

 ¹ Université Lyon 1, LIRIS CNRS, 69100 Villeurbanne, France [name].[surname]@univ-lyon1.fr
² Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, 38000 Grenoble, France [name].[surname]@imag.fr
³ Institut Universitaire de France, 75000 Paris, France

1 Full proofs

For the sake of conciseness we write $Q = \langle \bar{x}, G \rangle$ for the query SELECT \bar{x} WHERE $G(\bar{x}, \bar{y})$. Similarly, we write delete(H, W) for the function to the deletion query DELETE H WHERE W, that is

 $delete(H, W) = \lambda DB$. Result(DELETE H WHERE W, DB))

Lemma 1 (BGP queries are monotonic). Let $Q_1 = \langle \bar{x}, G_1 \rangle$ and $Q_2 = \langle \bar{x}, G_2 \rangle$ be two queries (with identical heads) and $Q_1 \subseteq Q_2$, then for all DB and DB' such that $DB \subseteq DB'$, it is the case that $\mathsf{Ans}(Q_2, DB) \subseteq \mathsf{Ans}(Q_1, DB')$.

Proof. Writing $\iota : Q_1 \hookrightarrow Q_2$ and $\iota' : DB \hookrightarrow DB'$ the inclusion morphisms, any morphism $\mu : Q_2 \hookrightarrow DB$ can be extended to a morphism $\iota' \circ \mu \circ \iota : Q_1 \hookrightarrow DB'$ which is identical to μ on Q_1 's variables.

We now provide a slightly extended version of the main Algorithm where H is not a renaming of G^P but any of subset with a morphism $\eta: G^P \hookrightarrow H$. Indeed, there is no need to traverse all G^P but only an H such that $\mathsf{Core}(G^P) \subseteq H \subseteq G^P$.

Algorithm				

Input : a unitary privacy policy $\mathcal{P} = \{P\}$ with $P = \langle \bar{x}^P, G^P \rangle$					
Input : a utility policy \mathcal{U} made of m queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$					
Output: a set of operations <i>ops</i> satisfying both \mathcal{P} and \mathcal{U}					
1 function find-ops-unit(P, U):					
2 Let $H \subseteq G'^P$ with an additional $\eta: G'^P \hookrightarrow H$ where G'^P is a renaming of G^P ;					
3 Let $ops := \emptyset$;					
4 forall $(s, p, o) \in H$ do					
5 Let $c := true;$					
6 forall G_i^U do					
7 foral $(s', p', o') \in G_j^U$ do					
8 if $\exists \sigma$ such that $\sigma(s, p, o) = \sigma(s', p', o')$ then					
9 $c := false;$					
10 end					
11 end					
12 end					
13 if c then					
14 $ops := ops \cup \{ \texttt{DELETE} \{ (s, p, o) \} \text{ where } H \};$					
15 end					
16 end					
17 return ops;					
18 end					

Lemma 2 (Boolean satisfiability). Let $Q = \langle \bar{x}, G \rangle$ be a query, let $DB \in \mathbf{BGP}$ be a graph and let H be a subset of G together with a morphism $\eta : G \hookrightarrow H$, then $\mathsf{Ans}(\langle \bar{x}, G \rangle, DB) = \emptyset$ if and only if $\mathsf{Ans}(\langle \langle \rangle, H \rangle, DB) = \emptyset$

Proof. Let us denote the inclusion $H \subseteq G$ by its canonical inclusion morphism $\iota : H \hookrightarrow G$. We prove the *only if* direction by contraposition. Assume that there is an answer in $\operatorname{Ans}(\langle \langle \rangle, H \rangle, DB)$. By the definition of Ans, there is at least one morphism $\mu : H \hookrightarrow DB$. By composing μ and η we obtain a morphism $\mu \circ \eta : G \hookrightarrow DB$, thus $\operatorname{Ans}(\langle \bar{x}, G \rangle, DB)$ is not empty. We prove the *if* direction by contraposition similarly. Assume that there is an answer in $\operatorname{Ans}(\langle \bar{x}, G \rangle, DB)$ and call it $\nu : G \hookrightarrow DB$. By composing ν and ι we obtain a morphism from $\nu \circ \iota : H \hookrightarrow DB$, thus $\operatorname{Ans}(\langle \langle \rangle, H \rangle, DB)$ is not empty.

Lemma 3 (Soundness for privacy). Let $Q = \langle \bar{x}, G \rangle$ be a query, let H be G renamed with fresh variables and $(s, p, o) \in H$. For all $DB \in BGP$, the following equality holds:

Ans
$$(\langle \bar{x}, G \rangle, \text{Result}(\text{DELETE } \{(s, p, o)\} \text{ WHERE } H, DB)) = \emptyset$$

Proof. Let $DB' = \text{delete}(\{(s, p, o)\}, H)(DB)$ the graph obtained after deletion. By Lemma 2, it is equivalent to prove that $\text{Ans}(\langle\langle\rangle, H\rangle, DB') = \emptyset$ that is, to prove that there is no morphism $\nu : H \hookrightarrow DB'$. For the sake of contradiction, assume that such a ν exists. Let's consider the triple $\nu(s, p, o) \in DB'$. On the other hand, $DB' = DB \setminus \{\mu(s, p, o) \mid \mu : H \hookrightarrow DB\}$ by the definition of delete, but picking $\mu = \nu$ shows that $\nu(s, p, o) \notin DB'$, a contradiction.

Theorem 1 (Correction of Algorithm find-ops-unit). Let $P = \langle \bar{x}^P, G^P \rangle$ be a query and let $\mathcal{U} = \{U_j\}$ be a set of *m* queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$. Let $O = \texttt{find-ops-unit}(P, \mathcal{U})$. For all $o_k \in O$, for all $DB \in \textbf{BGP}$, it is the case that $\mathsf{Ans}(P, o_k(DB)) = \emptyset$ and $\mathsf{Ans}(U_j, o_k(DB)) = \mathsf{Ans}(U_j, DB)$ for all $U_j \in \mathbf{U}$, in other words, both *P* and \mathcal{U} are satisfied by each operation o_k .

Proof. The privacy query P is satisfied because the delete operation created at Line 14 of Algorithm 1 is of the form required by Lemma 3 for all choice of $(s, p, o) \in H$ made in the main loop at Line 4. So the proof amounts to check that all U_j are satisfied, i.e., that $\operatorname{Ans}(G_j^U, o_k(DB) = \operatorname{Ans}(G_j^U, DB)$ for all $U_j \in \mathbf{U}$. One inclusion is clear by the monotonicity of BGP queries (Lemma 1) because $o_k(DB) \subseteq DB$, thus the end of this proof is to show that $\operatorname{Ans}(G_j^U, DB) \subseteq \operatorname{Ans}(G_j^U, o_k(DB))$ for all G_j^U .

Let $j \in [1..m]$ and $a \in \mathsf{Ans}(G_j^U, DB)$ an answer of G_j^U on DB. By definition of $\mathsf{Ans}, a = \mu(\bar{x}_j^U)$ for some $\mu : G_j^U \hookrightarrow DB$, we show that μ is a morphism into $o_k(DB)$ as well so $a \in \mathsf{Ans}(G_j^U, o_k(DB))$ and the proof is complete.

Let consider $t' = (s', p', o') \in G_j^U$, for the sake of contradiction, assume that $\mu(t') \notin o_k(DB)$, that is $\mu(t') \in DB \setminus o_k(DB)$. By construction in Algorithm 1 and by the definition of the delete operation $DB \setminus o_k(DB) = DB \setminus \text{delete}(\{(s, p, o)\}, H)(DB) = DB \setminus DB \setminus (\bigcup \{\nu(s, p, o) \mid \nu : H \hookrightarrow DB\}) = (\bigcup \{\nu(s, p, o) \mid \nu : H \hookrightarrow DB\})$. Thus $\mu(t') \in DB \setminus o_k(DB)$ implies that $\mu(t') = (\nu)(t)$ for some $t = (s, p, o) \in H$ and $\nu : H \hookrightarrow DB$. As μ and ν have distinct domains thanks to the renaming of G^P , they can be combined into the morphism σ such that $\sigma(t') = \sigma(t)$ defined by $\sigma(v) = \mu(v)$ when $v \in \operatorname{dom}(\mu), \sigma(v) = \nu(v)$ when $v \in \operatorname{dom}(\nu)$ and $\sigma(v) = v$ otherwise. But this is precisely the condition at Line 8 so $o_k \notin O$. We obtained the desired contradiction so $a \in \operatorname{Ans}(U_j^U, o_k(DB))$ and the proof is complete. Algorithm 2: Find delete operations to satisfy policies

Input : a privacy policy \mathcal{P} made of n queries $P_i = \langle \bar{x}_i^P, G_i^P \rangle$ **Input** : a utility policy \mathcal{U} made of m queries $U_j = \langle \bar{x}_i^U, G_j^U \rangle$ Output: a set of sets of operations Ops such that each sequence obtained from ordering any $O \in Ops$ satisfies both \mathcal{P} and \mathcal{U} 1 function find-ops(\mathcal{P}, \mathcal{U}): Let $Ops = \{\emptyset\};$ $\mathbf{2}$ for $P_i \in \mathcal{P}$ do 3 Let $ops_i := find-ops-unit(P_i, \mathcal{U});$ 4 $Ops := \{ O \cup \{o'\} \mid O \in Ops \land o' \in ops_i \};$ $\mathbf{5}$ end 6 7 return Ops;s end

Theorem 2 (Correction of Algorithm find-ops). Let \mathcal{P} be a privacy policy made of n queries $P_i = \langle \bar{x}_i^P, G_i^P \rangle$ and let \mathcal{U} be a utility policy made of m queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$ Let $\mathcal{O} =$ find-ops $(\mathcal{P}, \mathcal{U})$ and DB an RDF graph. For any set of operations $O_k \in \mathcal{O}$, and for any ordering S_k of O_k , $\forall P_i \in \mathcal{P}$, $Ans(P_i, S_k(G)) = \emptyset$ and $\forall U_j \in \mathcal{U}$, $Ans(U_j, G) = Ans(U_j, S_k(G))$, that is both \mathcal{P} and \mathcal{U} are satisfied by each sequence S_k .

Proof. First of all let us note that O_k is either \emptyset when some ops_i is empty or it is of the form $O_k = \{o_1, \ldots, o_n\}$ with $n = |\mathbf{P}|$. Indeed, the loop at Line 3 is executed once for each P_i , so at line 5, either one ops_i is empty and thus $Ops = \emptyset$ because $\{O \cup \{o'\} \mid O \in Ops \land o' \in \emptyset\} = \emptyset$, or all $ops_i \neq \emptyset$ an each $O_k \in Ops$ contains exactly one operation for each P_i .

By construction of Algorithm 2 and by Theorem 1 each $o \in O_k$ satisfies at least one of the P_i and all U_j and each P_i is satisfied by at least one $o \in O_k$. Thus any choice of an ordering S_k of O_k is such that all P_i are satisfied.