A Declarative Approach to Linked Data Anonymization

Companion appendix

Remy Delanaux®, Angela Bonifati', Marie-Christine Rousset?3, and Romuald Thion!

L Université Lyon 1, LIRIS CNRS, 69100 Villeurbanne, France
[name] . [surname] Quniv-lyonl.fr
2 Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, 38000 Grenoble, France
[name] . [surname] @imag.fr
3 Institut Universitaire de France, 75000 Paris, France

1 Full proofs

For the sake of conciseness we write @ = (Z,G) for the query SELECT Z WHERE G(Z, 7). Similarly,
we write delete(H, W) for the function to the deletion query DELETE H WHERE W, that is

delete(H, W) = ADB. Result(DELETE H WHERE W, DB))

Lemma 1 (BGP queries are monotonic). Let Q1 = (T,G1) and Q2 = (T, G2) be two queries
(with identical heads) and Q1 C Q2, then for all DB and DB’ such that DB C DB, it is the case
that Ans(Q2, DB) C Ans(Q,,DB’).

Proof. Writing ¢ : Q1 < Q2 and // : DB < DB’ the inclusion morphisms, any morphism
i : Q2 = DB can be extended to a morphism ¢/ o pot: Q1 — DB’ which is identical to u on
(Q1’s variables.

We now provide a slightly extended version of the main Algorithm where H is not a renaming
of G* but any of subset with a morphism 7 : G < H. Indeed, there is no need to traverse all
GT but only an H such that Core(G¥) C H C G*.

Algorithm 1: Find delete operations to satisfy a unitary privacy policy

Input : a unitary privacy policy P = {P} with P = (z¥ GF)
Input : a utility policy & made of m queries U; = (2, GY)
Output: a set of operations ops satisfying both P and U

1 function find-ops-unit (P, U):

2 Let H C G'P with an additional 5 : G'* < H where G’ is a renaming of G¥;
3 Let ops := 0;

a forall (s,p,0) € H do

5 Let ¢ := true;

6 forall G]-U do

7 forall (s',p',0') € Gg do

8 if Jo such that o(s,p,0) = o(s',p’,0’) then
9 | c:=false;
10 end
11 end
12 end
13 if ¢ then
14 | ops := ops U {DELETE {(s,p, 0)} WHERE H };
15 end
16 end
17 return ops;

18 end




Lemma 2 (Boolean satisfiability). Let Q = (z,G) be a query, let DB € BGP be a graph
and let H be a subset of G together with a morphismn: G — H, then Ans((Z,G), DB) = ) if and
only if Ans({(), H), DB) =0

Proof. Let us denote the inclusion H C G by its canonical inclusion morphism ¢ : H — G. We
prove the only if direction by contraposition. Assume that there is an answer in Ans({(), H), DB).
By the definition of Ans, there is at least one morphism p : H — DB. By composing p and
1 we obtain a morphism pon : G — DB, thus Ans({Z,G), DB) is not empty. We prove the
if direction by contraposition similarly. Assume that there is an answer in Ans({(Z, G), DB) and
call it v : G — DB. By composing v and ¢ we obtain a morphism from vo¢: H < DB, thus
Ans({(), H), DB) is not empty.

Lemma 3 (Soundness for privacy). Let Q = (Z,G) be a query, let H be G renamed with fresh
variables and (s,p,0) € H. For all DB € BGP, the following equality holds:

Ans((Z, G), Result(DELETE {(s,p,0)} WHERE H, DB)) = ()

Proof. Let DB’ = delete({(s,p,0)}, H)(DB) the graph obtained after deletion. By Lemma 2} it
is equivalent to prove that Ans(((), H), DB’) = {) that is, to prove that there is no morphism
v: H — DB’. For the sake of contradiction, assume that such a v exists. Let’s consider the triple
v(s,p,0) € DB’. On the other hand, DB’ = DB\ {u(s,p,0) | p: H < DB} by the definition of
delete, but picking u = v shows that v(s,p,0) ¢ DB’, a contradiction.

Theorem 1 (Correction of Algorithm find-ops-unit). Let P = (27, GT) be a query and let
U = {U;} be a set of m queries U; = (z§,GY). Let O =find-ops-unit (P,U). For all oy € O,
for all DB € BGP, it is the case that Ans(P,0,(DB)) = 0 and Ans(Uj, 0, (DB) = Ans(U;, DB)
for all U; € U, in other words, both P and U are satisfied by each operation o.

Proof. The privacy query P is satisfied because the delete operation created at Line [14] of Algo-
rithm (1] is of the form required by Lemma [3| for all choice of (s,p,0) € H made in the main loop
at Line 4| So the proof amounts to check that all U; are satisfied, i.e., that Ans(G;J,ok(DB) =
Ans(GY, DB) for all U; € U. One inclusion is clear by the monotonicity of BGP queries (Lemma
because o, (DB) C DB, thus the end of this proof is to show that Ans(GY, DB) C Ans(GY', o,.(DB))
for all Gg.

Let j € [1.m] and a € Ans(GY, DB) an answer of GY on DB. By definition of Ans, a = u(zY)
for some pu : GY < DB, we show that y is a morphism into o, (DB) as well so a € Ans(GY', o, (DB))
and the proof is complete.

Let consider t' = (¢',p/,0') € Géj, for the sake of contradiction, assume that u(t') ¢ ox(DB),
that is u(t') € DB\ ox(DB). By construction in Algorithm [If and by the definition of the delete
operation DB\ ox(DB) = DB\ delete({(s,p,0)}, H)(DB) = DB\ DB\ ((J{v(s,p,0) | v: H —
DB}) = (U{v(s,p,0) | v: H < DB}). Thus u(t') € DB\ ox(DB) implies that u(t') = (v)(t) for
some t = (s,p,0) € H and v: H — DB. As p and v have distinct domains thanks to the renaming
of G| they can be combined into the morphism ¢ such that o(t') = o(t) defined by o(v) = u(v)
when v € dom(p), o(v) = v(v) when v € dom(v) and o(v) = v otherwise. But this is precisely the
condition at Line |8 so o ¢ O. We obtained the desired contradiction so a € Ans(U}, or(DB))
and the proof is complete.



Algorithm 2: Find delete operations to satisfy policies

Input : a privacy policy P made of n queries P; = (zf GF)

Input : a utility policy & made of m queries U; = (i’?, G?)

Output: a set of sets of operations Ops such that each sequence obtained from ordering
any O € Ops satisfies both P and U

1 function find-ops(P,U):

2 | Let Ops = {0};

3 for P, € P do

4 Let ops; :=find-ops-unit (P;,U);

5 Ops :={0OU{0'} | O € Ops A0 € ops; };

6 end

7 return Ops;

8

end

Theorem 2 (Correction of Algorithm find-ops). Let P be a privacy policy made of n
queries P, = (27, GF) and let U be a utility policy made of m queries U; = (:EJU,GJU> Let O =
find-ops(P,U) and DB an RDF graph. For any set of operations Oy € O, and for any ordering
Sy of O, YP; € P,Ans(P;, Si(G)) =0 and YU; € U, Ans(U;, G) = Ans(U;, Sk(G)), that is both P
and U are satisfied by each sequence Sk.

Proof. First of all let us note that Oy is either () when some ops; is empty or it is of the form
Oy = {o1,...,0,} with n = |P|. Indeed, the loop at Line [3|is executed once for each P;, so at
line |5} either one ops; is empty and thus Ops = §) because {O U {0’} | O € Ops Ao’ € B} = 0, or
all ops; # () an each Oy, € Ops contains exactly one operation for each P;.

By construction of Algorithm [2| and by Theorem [I] each o € Oy, satisfies at least one of the P;
and all U; and each P; is satisfied by at least one o € Op. Thus any choice of an ordering S}, of
Oy, is such that all P; are satisfied.



	A Declarative Approach to Linked Data Anonymization

