
RDF graph anonymization robust
to data linkage

Companion appendix

Remy Delanaux1, Angela Bonifati1, Marie-Christine Rousset2,3, and
Romuald Thion1

1 Université Lyon 1, LIRIS CNRS, Villeurbanne, France
[name].[surname]@univ-lyon1.fr

2 Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, Grenoble, France
[name].[surname]@imag.fr

3 Institut Universitaire de France, Paris, France

1 Additional illustrative examples

We use the same example graph G and policy P as in the main paper, with the
privacy policy stating that IRIs of people seen by a member of a service in a
hospital having an oncology department should not be disclosed.

SELECT ?x WHERE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology.}

G that is made of the following triples:

:bob :seenBy :mary. :mary :member :service1.

:ann :seenBy :mary. :service1 :hasDept :oncology.

Example 1 illustrates the strategy consisting in replacing only one constant
per triple by a blank node so as to break chains in the RDF graph likely to enable
mappings from join terms in the privacy query. As shown by the example, this
strategy does not guarantee safety for all the anonymization instances. Then,
Example 2 shows that it is sometimes mandatory to replace all the constants
in some critical triples by blank nodes in order to guarantee safety. While the
latter might seem a pervasive operation, it still preserves some utility, such as
the possibility of evaluating joins and counting queries.

Example 1. Let O2 be the following update query:

DELETE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

INSERT {_:b1 :seenBy ?y. _:b2 :member ?z. _:b3 :hasDept :oncology}

WHERE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

Applying the anonymization operation O2 to G results in the anonymized RDF
graph O2(G) made of the following triples:

_:b1 :seenBy :mary. _:b2 :member :service1. _:b3 :hasDept :oncology.

2 Remy Delanaux et al.

O2(G) is a safe anonymization, since it is impossible to force the mapping
from the query path {?y :member ?z. ?z :has dept :oncology} to O2(G)
because of the distinct blank nodes. Then the only way to find a mapping is to
have a corresponding path in G′. But, the union with O2(G) will just produce
:b1 as answer to the privacy query, which is not a constant.

Now, let O3 be the following update query:

DELETE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

INSERT {_:b1 :seenBy ?y. ?y :member _:b2. _:b2 :hasDept :oncology}

WHERE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

Like O2, O3 replaces only one constant per triple by a blank node, as shown
in the result O3(G):

_:b1 :seenBy :mary. :mary :member _:b2. _:b2 :hasDept :oncology.

In contrast with O2(G), O3(G) is not safe (while still preserving privacy), as its
union with an external RDF graphG′ containing the triple (:bob, :seenBy, :mary)
would return the constant :bob as an answer to the query P .

Example 2. Since Example 1 shows that replacing only one constant per triple
may not guarantee safety, we have to consider update queries replacing all the
constants in some triples by blank nodes, like the following update query O4:

DELETE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

INSERT {_:b1 :seenBy _:b2. _:b2 :member _:b3. _:b3 :hasDept :oncology}

WHERE {?x :seenBy ?y. ?y :member ?z. ?z :hasDept :oncology}

The result RDF graph O4(G) is made of the following triples:

_:b1 :seenBy _:b2. _:b2 :member _:b3. _:b3 :hasDept :oncology.

Similarly to O2(G), it can be shown that O4(G) is safe. In addition, since all
the occurrences of the join variables are replaced by the same blank nodes, the
result of the counting query Count(P) is preserved i.e. it returns the same value
as when evaluated on the original RDF graph G. This is not true anymore if we
apply the following update query O5 which breaks all join terms:

DELETE {?x :seenBy ?y. ?y’ :member ?z. ?z’ :hasDept :oncology}

INSERT {_:b1 :seenBy _:b2. _:b3 :member _:b4. _:b5 :hasDept :oncology}

WHERE {?x :seenBy ?y. ?y’ :member ?z. ?z’ :hasDept :oncology}

In fact O5(G) is more general than O4(G), i.e., O4(G) |= O5(G).

All these examples show the necessity of studying the different strategies to
produce safe anonymization operations according to some desired utility, which
we address in the main paper.

RDF graph anonymization robust to data linkage 3

2 Proofs

2.1 Technical lemmas

First a classical fact on the monotonicity of conjunctive queries.

Lemma 1. Let GP and GP ′ be graph patterns with GP ⊆ GP ′. Moreover, let
G and G′ be RDF graphs with G ⊆ G′. The following inclusions hold for all sets
x̄ of variables of GP .

Ans(〈x̄, GP ′〉, G) ⊆ Ans(〈x̄, GP 〉, G) ⊆ Ans(〈x̄, GP 〉, G′)

Proof. Let c̄ ∈ Ans(〈x̄, GP ′〉, G). By definition, there exists some µ such that
µ(x̄) = c̄ and µ(GP ′) ⊆ G and in particular µ(GP) ⊆ µ(GP ′). By the transitivity
of inclusion, both inclusion holds.

Now, we show by induction on the length of chains that subgraphs forming a
partition of a connected component must be connected together through a join
term.

Lemma 2. Let GP1 and GP2 be a partition of a same connected component
GP , then there exists a triple t1 ∈ GP1 and a triple t2 ∈ GP2 with a (join) term
in common.

Proof. Since GP1 and GP2 are not empty, there exists a triple t1 ∈ GP1 and
a triple t2 ∈ GP2. Assume that t1 an t2 do not have a constant or variable in
common in subject or object position. We proceed by contradiction.

Let c1 be a constant or a variable in t1 and let c2 be a constant or variable of
t2. Since c1 and c2 appear in the same connected component GP , there exists a
path of length n from c1 to c2, i.e., there exist chains p1, . . . , pn and c1, . . . , cn+1

such that c1 = c1, c2 = cn+1 and for every i ∈ [1, n] either (ci, pi, ci+1) ∈ GP or
(ci+1, pi, ci) ∈ GP .

Let k the greatest index such that all triples (ci, pi, ci+1) or (ci+1, pi, ci) with
i ≤ k are in GP1. If k = n, then ck+1 = c2 and c2 is common to two triples in
GP1 and GP2, a contradiction. Otherwise, if k < n, then (ck+1, pk+1, ck+2) or
(ck+2, pk+1, ck+1) is in GP2 and ck+1 is common to two triples in GP1 and GP2,
a contradiction again.

2.2 Proof of Theorem 1

The proof of Theorem 1 is based on two separate lemmas. First we deal with the
case where the privacy query is not boolean with only one connected component.
We show that replacing critical terms (i.e., result variables, join variables and
join constants in subject or object position) with blank nodes guarantees that
(G,O, {P}) is safe for any graph G.

4 Remy Delanaux et al.

Lemma 3. Let (G,O, {P}) be an anonymization instance where P = 〈x̄, GP 〉
is a query made of a unique connected component and at least one distinguished
variable. For all critical term x of GP , for all triple τ ∈ GP where x appears, for
each anonymization mapping µ s.t. µ(τ) ∈ O(G) if µ(x) ∈ B, then (G,O, {P})
is safe.

Proof. The main idea is to prevent linking O(G) and G′ together by using blank
nodes. The key assumption that blank nodes from different graphs are disjoint.

We proceed by contradiction. Suppose that (G,O, {P}) is not safe, thus
there exists a graph G′, a tuple of constants c̄ ∈ Ans(P,O(G) ∪ G′) with c̄ 6∈
Ans(P,G′). Therefore by the definition of Ans, there exists a mapping µ such
that µ(x̄) = c̄ and µ(GP) ⊆ O(G) ∪ G′ but µ(GP) 6⊆ G′. Let GP1 be the
antecedent of µ(GP) ∩ O(G), that is, GP1 is the largest subgraph of GP such
that µ(GP1) ⊆ O(G). Let GP2 be its complement, GP2 = GP \GP1.

If GP1 = ∅, we are done, because this contradicts the assumption µ(GP) 6⊆
G′. Thus, there is some τ ∈ GP1. Now, if GP2 = ∅, then all variables x ∈ x̄
appear in GP1, by hypothesis on O(G), µ(x) ∈ B, but µ(x) ∈ c̄ forbids µ(x) to
be a blank for all x, as x̄ is not empty by hypothesis, we obtain a contradiction.
Thus there is some τ ′ ∈ GP2. So both GP1 and GP2 are non empty and thus
form a partition of GP .

By Lemma 2, there exist τ1 ∈ GP1 and τ2 ∈ GP2 with a join variable or a
join constant in common, let x be this join variable or constant. By assumption,
if µ(τ1) ∈ O(G) then µ(x) is a blank node of O(G). However, blank nodes are
local, so the blank nodes of O(G) are disjoint from those of G′, contradicting
that µ(τ2) ∈ G′ with µ(x) being a blank node of G′.

Note that it is important to consider anonymization mappings that can re-
place IRIs and literals, and not only variables. Indeed, the common node ob-
tained by Lemma 2 may be either a variable, an IRI or a literal.

Now we deal with the corner case where the privacy query has no result
variable. Indeed, in that particular case, replacing all critical variables and con-
stants by blank nodes is not enough because such a transformation preserves the
existence of images of boolean queries.

Lemma 4. Let (G,O, {P}) be an anonymization instance where P = 〈∅, GP 〉
is a query with only one connected component. Assume that (G,O, {P}) already
satisfies the conditions of Lemma 3. If there exists some triple pattern τ ∈ GP
with no image in O(G) by any anonymization mapping, then (G,O, {P}) is safe.

Proof. When the query is boolean, the safety condition amounts to check that
if there exists an instance of GP is O(G)∪G′, then there must be an instance of
GP in G′ alone. Basically, we have to enhance the proof of Lemma 3 to cover the
case where x̄ = ∅. Assume that we have the same set up until we have proved
that GP1 is not empty. With the new condition added in the current, there exists
some triple pattern τ ′′ ∈ GP1 with no image in O(G), thus µ(GP1) 6⊆ O(G) and
GP2 cannot be empty. The rest of the proof is similar.

RDF graph anonymization robust to data linkage 5

Lemma 5. Let A1 = (G,O, {Q1}) and A2 = (G′, O, {Q2}) be two safe anonymiza-
tion instances where Q1 = 〈x̄1, GP1〉 and Q2 = 〈x̄2, GP2〉 are two queries made
of exactly one connected component without common terms or variables. The
anonymization instance (G,O, {Q}) with Q = 〈x̄1 ∪ x̄2, GP1 ∪ GP2〉 is safe as
well.

Proof. Assume that there is some c̄ ∈ Ans(Q,O(G) ∪ G′) for an arbitrary G′

where c̄ = c̄1 ∪ c̄2 where c1 (resp. c2) is the restriction of c̄ to the image of x̄1

(resp. x̄2).

As A1 (resp. A2) is safe, any tuple of constants c̄1 (resp. c̄2) found when
evaluating Q1 (resp. Q2) on O(G) ∪ G′ already exists in G′. Therefore there
exists a mapping µ1 such that µ1(x̄1) = c̄1 and µ1(GP1) ⊆ G′ (resp. µ2 s.t.
µ2(x̄2) = c̄2 and µ2(GP2) ⊆ G′). Since GP1 and GP2 are disjoint, they constitute
two different connected components of GP1 ∪GP2. We can create a mapping µ′

such that µ′(GP1 ∪ GP2) ⊆ G′ using µ1 for the variables of Q1 and µ2 for the
variables of Q2. Finally, c̄ = c̄1∪c̄2 = µ1(x̄1)∪µ2(x̄2) = µ′(x̄1)∪µ′(x̄2), therefore,
c̄ is an answer of Q over G which concludes the proof.

Now we can assemble all the pieces to obtain the proof of Theorem 1 that
we recall here:

Theorem 1. An anonymization instance (G,O,P) is safe if the following con-
ditions hold for every connected component GPc of all privacy queries P ∈ P:

(i) for all critical term x of GPc, for all triple τ ∈ GPc where x appears, for
each anonymization mapping µ s.t. µ(τ) ∈ O(G), µ(x) ∈ B holds;

(ii) if GPc does not contain any result variable, then there exists a triple pattern
of GPc without any image in O(G) by an anonymization mapping.

Proof. To show that (G,O,P) with P = {P1, . . . , Pn} is safe we have to show
that each (G,O, {Pi}) is safe. The conditions of Theorem 1 are exactly those
of Lemma 3 and Lemma 4 for each connected component P j

i of Pi, thus each

(G,O, {P j
i }) is safe.

Consider c̄ ∈ Ans(Pi, O(G) ∪ G′). Let GPi = body(Pi) and let GP j
i =

body(P j
i). By the definition of Ans, there exists a mapping µ such that µ(x̄) = c̄

and µ(GPi) ⊆ O(G) ∪ G′. By definition GP j
i ⊆ GP i holds, thus by the mono-

tonicity of queries (Lemma 1), µ(GP j
i) ⊆ O(G) ∪ G′ holds as well for each

connected component GP j
i . Since each P j

i is safe, there exists µj such that

µj(GP j
i) ⊆ G′ for each GP j

i . As the subgraphs GP j
i are connected components,

they cannot share terms. By induction on the number of connected components,
using repeatedly Lemma 5, we can construct an anonymization mapping µ′ such
that µ′(GP j

i) ⊆ G′ for all GP j
i , but GPi =

⋃
GP j

i , so µ′(GPi) ⊆ G′. We are now
left to prove that µ′(x̄) = c̄. For each variable x ∈ x̄, there is a unique connected
component GP jx

i where x appears and c̄ is nothing else but
⋃

x∈x̄ µ
jx(x).

6 Remy Delanaux et al.

Algorithm 1: Find update operations to ensure safety

Input : a set P of privacy conjunctive queries Pi = 〈x̄i, GPi〉
Output : a sequence O of operations which is safe for P

1 function find-safe-ops(P):
2 Let O = 〈 〉;
3 for Pi ∈ P do
4 forall connected components GPc ⊆ GPi do
5 Let I := [];
6 forall (s, p, o) ∈ GPc do
7 if s ∈ V ∨ s ∈ I then I[s] = I[s] + 1;
8 if o ∈ V ∨ o ∈ I ∨ o ∈ L then I[o] = I[o] + 1;

9 Let x̄c := {v | v ∈ x̄i ∧ ∃τ ∈ GPc s.t. v ∈ τ};
10 Let Tcrit := {t | I[t] > 1} ∪ x̄c;
11 Let SGPc = {X | X ⊆ GPc ∧X 6= ∅ ∧X is connected} ordered by

decreasing size;
12 forall X ∈ SGPc do
13 Let X ′ := X and x̄′ = {t | t ∈ Tcrit ∧ ∃τ ∈ X s.t. t ∈ τ};
14 forall x ∈ x̄′ do
15 Let b ∈ B be a fresh blank node;
16 X ′ := X ′[x← b];

17 O := O + 〈DELETE X INSERT X ′ WHERE X isNotBlank(x̄′)〉
18 if x̄c = ∅ then
19 Let τ ∈ GPc // non-deterministic choice

20 O := O + 〈DELETE τ WHERE GPc〉

21 return O;

2.3 Proof of Theorem 2

Theorem 2. Let O = find-safe-ops(P) be the sequence of anonymization op-
erations returned by Algorithm 1 applied to the set P of privacy queries: O is safe
for P. The worst-case computational complexity of Algorithm 1 is exponential in
in the size of P.

Proof. The main idea is to show that the conditions of Theorem 1 are satisfied
when O is executed on G. Let P be a privacy policy with queries Pi = 〈x̄i, GPi〉,
let O = find-safe-ops (P) and let G be an arbitrary RDF graph. For each
connected component GPc ⊆ GPi of each privacy query Pi, Algorithm 1 gener-
ates

– a sequence of operations at Line 17, mimicking condition (i) of Theorem 1;
– a non-deterministic delete operation at Line 20, mimicking condition (ii).

Conditions (i) and (ii) encapsulated in Theorem 1 correspond respectively to
Lemmas 3 and 4. If we show that for each connected component GPc Algorithm 1
generates a sequence of operation satisfying conditions (i) and (ii), the safety of
O for P will follow from Theorem 1.

RDF graph anonymization robust to data linkage 7

First of all, in Algorithm 1, please remark that by construction Tcrit is the
set of critical terms. Also, please note that the order of operations is relevant.
Indeed, Lemmas 3 and 4 are cumulative: the second one relies on the first one.
For GPc a connected component of the privacy query Pi = 〈x̄i, GPi〉, let x̄c be
the subset of variables from x̄i that appear in GPc. We consider both conditions
separately.

Condition (i) We have x̄c 6= ∅. The generated operations O = 〈O1, . . . , Op〉
are only those from Line 17, the operations at Line 20 is not triggered. Let
x be a join variable and let GPx ⊆ GPc the (unique) subset of GPc where x
appears. Let GP ′x be the largest subset of GPx with an image in O(G), call
µ the mapping s.t., µ(GP ′x) ⊆ O(G). We have to show that µ(x) ∈ B. Let
m = |GP ′x| be the cardinality of GP ′x. There exists one operation Ok ∈ O of the
form Ok = DELETE Xk INSERT X ′k WHERE Xk isNotBlank(x) which is triggered
by µ when k = m, that is when Xk = GP ′x in the loop at Line 12. If there is no
such Ok, the condition is vacuously satisfied as GP ′x = ∅. The operation Ok is
exactly the replacement of all µ(x) by the fresh blank b of Line 15 thus µ(x) ∈ B
and the condition (i) is satisfied, hence the safety of O for Pi by Lemma 3.

Note that the construct isNotBlank(x) ensures that Ok is unique in O if it
exists, indeed, if µ(x) ∈ B for some k, no other other Ol with l ≥ k is triggered
by the definition of update queries. Hence, this condition is not needed to ensure
safety but ensures that the operation in O do not destruct too much information.

Condition (ii) Now GPc is a query with no result variable. The operation
DELETE τ WHERE GPc at Line 20 deletes all occurrences of τ such that µ(τ) ∈ G
thus, the condition (ii) required by Lemma 4 is satisfied and GPc is safe.

For the worst-case complexity, the size considered is defined here as size(P) =
ΣPi∈P |GPi|. The loop at Line 12 is executed exactly 2n − 1 times where n is
the size of the largest connected component of Gi. Thus considering for instance
P = {P} where P ’s body is made of a single component of cardinality n, the
loop generates an exponential number of operations at Line 17.

2.4 Proof of Theorem 3

Theorem 3. The worst-case computational complexity of Algorithm 2 is poly-
nomial in the size of P. Let O and O′ be the result of applying respectively
Algorithm 1 and Algorithm 2 (with the same non deterministic choices) to a set
P of privacy queries: for any graph G, (G,O′,P) is safe and G |= O(G) and
O(G) |= O′(G).

Proof. The proof of the safety of Algorithm 2 is similar to Theorem 2, the only
difference lies at Condition (i), the operations for Condition (ii) being the same.
The actual difference between Algorithm 1 and Algorithm 2 is that the latter
generates a fresh blank node triple by triple breaking multiple occurrences of
join variables instead of preserving them. Indeed, for each join variable x of the
connected component GPc under scrutiny, the operation generated at Line 17,

8 Remy Delanaux et al.

Algorithm 2: Find update operations to ensure safety modulo sameAs

Input : a privacy policy P of queries Pi = 〈x̄i, GPi〉
Output : a sequence of operations O safe modulo sameAs for P)

1 function find-safe-ops-sameas(P):
2 Let O = 〈 〉;
3 for Pi ∈ P do
4 forall connected components GPc ⊆ GPi do

/* [...Lines 3 to 10 identical to find-safe-ops...] */

10 Let x̄′ := {v | v ∈ x̄i ∧ ∃τ ∈ GPc s.t. v ∈ τ};
11 Let Tcrit := {t | I[t] > 1} ∪ x̄′;
12 forall τ ∈ GPc do
13 forall x ∈ Tcrit do

/* Every occurrence of a critical x is replaced by

a different blank node */

14 G′ := {τ [x← []]};
15 Let v ∈ V a fresh variable;
16 G′′ := {τ [x← v]};
17 O := O + 〈DELETE G′′ INSERT G′ WHERE G′′ isNotBlank(x̄′)〉;

/* [...End of algorithm identical to find-safe-ops...] */

18 return O;

call it Oc, replaces it with a fresh blank node. There is exactly one such Oc

for each GPc, thus the output of Algorithm 2 is polynomial: the source of the
exponential complexity of Algorithm 1 has been eliminated. Indeed, the loop at
Line 12 do not browse the subsets SGPc ⊆ GPc anymore but only its elements
τ ∈ GPc.

Recall that for two graphs with blank nodes A |= B amounts to show that
there exists some substitution µ of blank nodes to terms such that ν(B) ⊆ A.
The point is thus to exhibit such a mapping.

First of all, if G′ ⊆ G then clearly G |= G′ (pick ν as the identity), so
the property holds for all delete operations in O which are common to both
Algorithm 1 and Algorithm 2. Theses operations being the very same ones when
the same non-deterministic choices are made by the two algorithms.

It is left to show that the update operations (which are not mere deletions)
guarantee G |= O(G) as well. The argument is the core of the proof of Theorem 4:
Algorithm 1 constructs a bijective µ renaming of join IRIs to blank nodes with
inverse µ−1

1 with µ−1
1 (O(G)) = G which implies that G |= O(G).

We are left to prove that O(G) |= O′(G). For Algorithm 2, we observe that
the renaming is not a function anymore because the same literal that occurs
multiple times is mapped to different blank nodes. However, by construction as
each occurrence of a critical τ is replaced by a fresh blank node, there exists some
µ−1

2 from blank nodes to IRIs such that µ−1
2 (O′(G)) = G. So now, construct µ−1

3

such that dom(µ−1
3) = dom(µ−1

2) defined by µ−1
3 = µ1 ◦ µ−1

2 which maps each

RDF graph anonymization robust to data linkage 9

blank node generated by O′ to the one obtained by O. The mapping µ−1
3 is such

that µ−1
3 (O′(G)) = µ1(µ−1

2 (O′(G))) = µ1(G) = O(G) thus O(G) |= O′(G).

2.5 Proof of Theorem 4

Theorem 4. Let O = find-safe-ops({P}) be the output of Algorithm 1 ap-
plied to a privacy query P with no boolean connected component. For every RDF
graph G, O(G) satisfies the the condition Ans(Count(P), O(G)) ≥ Ans(Count(P), G).

Proof. The conditions of Theorem 4 are those of Lemma 3. The sufficient condi-
tion to ensure safety is thus to replace critical IRIs and variables by blank nodes:
no DELETE operation is performed. The key point to prove Property 4 is that
INSERT operations produced by Algorithm 1 are in fact a one-to-many renaming
of IRIs to blank nodes. Indeed in the update query produced ate Line 17, each
critical term is replaced by a fresh blank node, but no two different IRIs are
mapped to the same one.

2.6 Proof of Theorem 5

Theorem 5. Let O be the result of applying Algorithm 1 to a set P of privacy
queries: for any set sameAs of explicit :sameAs links, O is safe modulo sameAs
for P.

Proof. The proof is similar to the proof of Theorem 2, the only case of interest
being that of condition (i), the rest is similar. Let G be the RDF graph to
anonymize, G′ be an external graph, and P = 〈x̄, GP 〉 be a privacy query. Let c̄
be a tuple of constants such that c̄ ∈ AnssameAs(P,O(G) ∪G′).

By Definition 11 ∃(b0, : sameAs, b′0), ..., (bn, : sameAs, b′n) ⊆ closure(sameAs)
statements, such that c̄ ∈ Ans(P, (O(G) ∪G′)[bi ← b′i]).

Consider the largest subset GP1 ⊆ GP such that µ(GP1) ⊆ O(G)[bi ← b′i]
and its complement GP2 = GP \GP1 ⊆ G′[bi ← b′i]. With an argument similar
to the proof of Lemma 3, GP1 and GP2 constitute a partition of GP so there
must exist τ1 ∈ GP1 and τ2 ∈ GP2 with a join term variable or IRI call it x.
Thus, there exist terms bk and b′k such that µ(x) = b′k for some k with (bk :
sameAs, b′k) ∈ closure(sameAs). On the one hand, bk is a term of O(G)[bi ← b′i]
because τ1 ∈ G1, on the other hand bk is a term of G′[bi ← b′i] because τ1 ∈ G2.

We have to show that (bk : sameAs, b′k) cannot be found in closure(sameAs).
Recall that closure(sameAs) is the reflexive, symmetric and transitive closure of
sameAs. The proof is by structural induction on the proof of (bk : sameAs, b′k) ∈
closure(sameAs), consider the last deduction rule used to conclude that (bk :
sameAs, b′k) ∈ closure(sameAs):

Case (bk : sameAs, b′k) ∈ sameAs. The operation at Line 17 of Algorithm 1 en-
sures that bk is a fresh blank of O(G) which cannot appear in G′ or in sameAs
since blank nodes are only local to the graph they appear in, a contradiction.

Case (bk : sameAs, bk) ∈ closure(sameAs) by reflexivity. This is the nominal
case of Lemma 3 with an argument similar to the previous one.

10 Remy Delanaux et al.

Case (bk : sameAs, b′k) ∈ closure(sameAs) by symmetry. A contradiction again
by the inductive hypothesis (b′k, : sameAs, bk) ∈ closure(sameAs).

Case (bk : sameAs, b′k) ∈ closure(sameAs) by transitivity. By hypothesis there
exists b′′k such that (bk : sameAs, b′′k) ∈ closure(sameAs) and (b′′k : sameAs, b′k) ∈
closure(sameAs). Here the contradiction is on (bk : sameAs, b′′k) ∈ closure(sameAs).

3 Reference privacy policies

3.1 TCL graph

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

SELECT ?user ?name

WHERE {

?user foaf:givenName ?name .

}

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

SELECT ?user ?surname

WHERE {

?user foaf:familyName ?surname .

}

PREFIX vcard: <http :// www.w3.org /2006/ vcard/ns#>

SELECT ?user ?address

WHERE {

?user vcard:hasAddress ?address .

}

PREFIX tcl: <http :// localhost/>

SELECT ?user ?birth

WHERE {

?user tcl:birthday ?birth .

}

PREFIX datex: <http :// vocab.datex.org/terms#>

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

PREFIX tcl: <http :// localhost/>

SELECT ?name ?surname ?startSubDate

WHERE {

RDF graph anonymization robust to data linkage 11

?user a tcl:User .

?user foaf:givenName ?name .

?user foaf:familyName ?surname .

?user datex:subscription ?subDate .

?tabDate datex:subscriptionStartTime ?startSubDate .

}

PREFIX datex: <http :// vocab.datex.org/terms#>

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

PREFIX tcl: <http :// localhost/>

SELECT ?name ?surname ?endSubDate

WHERE {

?user a tcl:User .

?user foaf:givenName ?name .

?user foaf:familyName ?surname .

?user datex:subscription ?subDate .

?tabDate datex:subscriptionStopTime ?endSubDate .

}

PREFIX datex: <http :// vocab.datex.org/terms#>

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

PREFIX tcl: <http :// localhost/>

SELECT ?name ?surname ?subType

WHERE {

?user a tcl:User .

?user foaf:givenName ?name .

?user foaf:familyName ?surname .

?user datex:subscription ?subDate .

?tabDate datex:subscriptionReference ?subType .

}

3.2 Swedish Heritage graph

PREFIX dc: <http :// purl.org/dc/elements /1.1/> .

PREFIX dcterm: <http :// purl.org/dc/terms/> .

SELECT ?c ?t ?m

WHERE {

?s dc:creator ?c .

?s dcterm:spatial ?t .

?s dcterm:temporal ?m .

}

12 Remy Delanaux et al.

PREFIX dc: <http :// purl.org/dc/elements /1.1/> .

PREFIX dcterm: <http :// purl.org/dc/terms/> .

SELECT ?c ?d ?m

WHERE {

?s dc:creator ?c .

?s dc:description ?d .

?s dcterm:temporal ?m .

}

3.3 Drugbank graph

PREFIX dbank: <http :// www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/> .

SELECT ?b

WHERE {

?d a dbank:drugs.

?d dbank:affectedOrganism ?o .

?d dbank:brandedDrug ?b.

}

PREFIX dbank: <http :// www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/> .

SELECT ?b

WHERE {

?d a dbank:drugs.

?d dbank:affectedOrganism ?o .

?d dbank:brandName ?b.

}

