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A list of FSM Algorithms and available Implementations in Centralized Graph Transaction Databases

Abstract

In this report, we list the algorithms proposed in the literature of Frequent Subgraph Mining (FSM)
in Centralized Graph Transaction Databases. We categorize FSM algorithms in four categories of their
search and matching strategy which is a�ecting their returned output (i.e., frequent subgraphs). For
each category, we list the algorithms. We �lter algorithms usable in speci�c cases of graphs (i.e., not
applicable to general graphs cases). We enumerate the available software of the algorithms. This report
could be helpful for having a list of FSM algorithms in Centralized Graph Transaction Databases.

Keywords

Graph Mining, Graph Transaction Databases, Centralized Environment, Frequent Subgraph Min-
ing(FSM), FSM Algorithms
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1 Introduction

Graph mining is one of the most important approaches in data mining that transforms graph data
into knowledge [3]. Frequent Subgraph Mining (FSM) is a subcategory of Graph Mining [34]. The
objective of traditional FSM [43] is to extract subgraphs, in a given dataset, whose occurrence counts
(aka frequency) are above a speci�ed threshold (Minimum Support Threshold). The extracted sub-
graphs, called Frequent Subgraphs, are (directly) useful for analysis in areas like, biology, co-citations,
chemistry, semantic web, social science and �nance trade networks [48,80]. They could also be used for
other relevant purposes such as classi�cation, clustering, graph indexing and similarity search [51,80].

In the scope of the CAIR1 project, we are investigating e�cient and e�ective approaches for ag-
gregated search [57] over distributed repositories. One of the building blocks of our approach is graph
indexing. The index data can be provided by resorting to an FSM algorithm [99].

Given that there are many algorithms proposed for FSM in the literature, the �rst task was to
categorize the algorithms according to some relevant and desired features.

A lot of studies [4, 23, 23, 28, 31, 45, 48, 53, 56, 66, 74, 77, 79, 91] in the literature enumerated some of
the existing algorithms, optionally de�ned their categories and/or performed experimental comparison
of them. To our knowledge, there is no study that list all FSM algorithms in Centralized Graph
Transaction databases. In this report, we try to list the maximum number of FSM algorithms in the
literature. Please contact authors if an algorithm is not mentioned in the list.

This report is organized as follows: Section 2 present some classi�cations of FSM algorithms. Section
3.4, contains the list of FSM algorithms classi�ed by four categories of algorithms. Section 4 proposes
a selection of available software usable for general graphs for the four categories. Algorithms known to
be not e�cient are mentioned also. We conclude in Section 5 and present some perspectives.

2 Preliminaries

FSM algorithms can be classi�ed according to three di�erent aspects [?,53]: (i) database setting which
depends on the applications (e.g., Chemical graphs, Social Networks), (ii) nature of input and output
graphs and (iii) the strategy of subgraph search and matching. In what follows, we brie�y explain these
aspects.

2.1 Database Setting

There are two distinct problem formulations for frequent subgraph mining in graph datasets: (i) graph-
transaction setting and (ii) single-graph setting.

2.1.1 Graph-Transaction Setting In this case, the input is a collection of moderate sized graphs
(transactions), and a subgraph is considered frequent if it appears in a large number of graphs. A
subgraph occurrence is counted only once per transaction, independently of the possible multiple
occurrences in the same transaction [43]. Graph Transaction mining is applied in biochemical structure
analysis, program control �ow analysis, XML structure analysis, image processing and analysis [3,48].

2.1.2 Single-Graph Setting This setting involves mining frequent subgraphs in di�erent regions
of one large sized graph. The frequency of a subgraph is based on the number of its occurrences (i.e.,
embeddings) in the large graph. Special support metrics are used, by considering, for example, the
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overlapping of two subgraphs [55]. Single Graph mining is dedicated to applications such as social
networks, citation graphs, or protein-protein interactions in bioinformatics [25].

In this paper, we are interested in algorithms that mine a collection of graphs instead of a single
large garph.

2.2 Nature of Input and Output Graphs

In centralized graph transaction mining, the input graphs which are used in most of the FSM algorithms
are assumed to be labeled (vertices and edges) simple1 connected undirected graphs and the output are
connected subgraphs. There are algorithms developed for speci�c graphs (e.g., complex graphs [65],
unconnected subgraphs [81], vertex labeled graphs [103], see Table 1) rather than the general ones.

Table 1: FSM Algorithms with speci�c graphs

Input Cases Algorithms

Complex graphs MgVEAM [65]
Directed graphs mSpan [60]
Directed Acyclic graphs DIGDAG [83]
Unlabeled graphs The smoothing-clustering framework [12]
Vertex-labeled graphs Cocain [103], TSMiner [49]
Relational graphs CODENSE [39], CLOSECUT & SPLAT [100],

Fp-GraphMiner [87]
Geometric graphs gFSG [55], MaxGeo [9], FREQGEO [76]
Uncertain graphs Monkey [105], RAM [104], MUSE [108]
Output Cases Algorithms

Cliques and quasi-cliques
from dense graphs

CLAN [89], Cocain [103]

Unconnected subgraphs UGM [81]

2.3 Subgraph Search and Matching Strategy

FSM algorithms can be classi�ed according to search strategy : complete and incomplete (or heuristic)
search. Also, they can be classi�ed according to the type of isomorphism test (matching) performed
between the mined subgraphs : exact and inexact matching. We explain these categories in what
follows.

2.3.1 Complete Search The complete search2 algorithms perform a complete mining i.e., it guar-
antees to �nd all frequent subgraphs from the input data, above a minimum frequency threshold [44,54].

1 A simple graph is �an un-weighted and un-directed graph with no loops and no multiple links between any
two distinct nodes� [32]

2 Complete search is also called �exact search� [48,80], we will use, in this paper, only the designation �complete
search�
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a) Exact Matching: It consists in �nding all possible frequent subgraphs as they appear in the
input data [44, 54]. The complete search must return a frequent subgraph (e.g., subgraph (1) shown
in Figure 1) and all of its possible subgraphs that are necessarily frequent as well (e.g., subgraphs (2),
(4), (5), (6) and (7) shown in Figure 1).

Fig. 1: Example of all Frequent Subgraphs (Exact Matching)

b) Approximate Matching: It consists in �nding all frequent subgraphs, with an assumption that
subgraphs having the same structure and di�erent labels, will all be returned as the same subgraph [60].
This is considered as a complete search because all possible frequent subgraphs could be veri�ed in
the output set with the abstraction of labels (edges or vertices). Figure 2 illustrates the approximate
matching where graphs with di�erent edge labels are considered the same. For example, the subgraphs
(2) and (3) in Figure 1 could be represented with the approximate matching by one subgraph (2') in
Figure 2.

Fig. 2: Example of all Frequent Patterns (Approximate Matching)

2.3.2 Incomplete or Heuristic Search The incomplete and heuristic search algorithms discover
a set of frequent subgraphs whose cardinality is greater or lower than the one returned by the complete
search. This category of FSM search is used to : (i) reduce the set of frequent subgraphs (use of ex-
act [98] or approximate matching [17]), or (ii) add more frequent subgraphs than the complete search in
order to consider the innacuracy or uncertainty of the input data (use of approximate matching) [109].

c) Exact Matching: It consists in returning a subset of frequent subgraphs [90] by setting a
supplementary calculable parameter (e.g., maximum size of frequent subgraphs, closed subgraphs,
maximal subgraphs, maximum support threshold) [7, 41,98], besides the minimum support threshold.
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Figure 3 shows an example returning a subset of frequent subgraphs (see all frequent subgraphs, Figure
1) where the set parameter is the maximum size of frequent subgraphs (set to 2 edges).

Fig. 3: Example of a subset of Frequent Subgraphs (Exact Matching)

d) Approximate Matching: It consists in either (i) reducing the output by returning a set of
representative frequent patterns or (ii) enriching the frequent subgraphs output by considering the
inaccuracy or uncertainty of data [47, 109]. For the �rst case, a representative frequent pattern is a
frequent subgraph similar to a set of other frequent subgraphs. In other words, frequent subgraphs
that have some di�erences regarding edges, vertices and labels are represented by one pattern in the
output [5]. For the second case, it consists in adding infrequent subgraphs that are similar to frequent
subgraphs with respect to the structure or labels [1]. For the four subcategories a, b, c and d, there

Table 2: A list of Complete Search & Exact Matching FSM Centralized Algorithms

Algorithm Author Algorithm Author

WARMR [20] ADI-Mine & GraphMiner [90,95]
AGM [43] TSMiner [49]
FARMER [71] FSP [35]
MOLFEA [52] DMTL [6]
AcGM [46] gRed [28]
B-AGM [44,45] FSMA [92]
FSG [54] FREQGEO [76]
MoFa/MoSS [11] SyGMA [21]
DPMine [33] CGM & UGM [81]
gSpan [96,97] gdFil [27]
Topology [38] grCAM [29]
FFSM [40] ADI-Minebio [19]
DSPM [15] Fp-GraphMiner [87]
AGM-H [68] FSMA [30]
GASTON [72,73] LC-Mine framework : [24]
IDFP-tree [67] FGMAC & AC-miner

are respectively 31, 1, 22 and 15 Algorithms. In the following section, we provide the list of a these
FSM algorithms.
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3 A list of FSM Algorithms

For each of the four selected categories, we list the FSM algorithms of the literature. The list of complete
search & exact or inexact matching categories is exhaustive. The list of incomplete search & exact or
inexact matching categories contains the maximum number of found algorithms, some algorithms may
be missing.

Table 3: A list of Complete Search & Inexact Matching FSM Centralized Algorithms

Algorithm Author

mSpan [60]

3.1 Complete Search & Exact Matching

We identi�ed thirty-one algorithms in the literature designed to extract all possible frequent subgraphs
above a minimum support threshold (see Table 2).

3.2 Complete Search & Inexact Matching

We identi�ed one algorithm in the literature designed to extract all possible frequent subgraphs above
a minimum support threshold with an abstraction of edges/vertices (see Table 3).

3.3 Incomplete Search & Exact Matching

To our knowledge, there are twenty-two Algorithms performing an Incomplete Search and Exact Match-
ing (see table 4).

Table 4: A list of Incomplete Search & Exact Matching FSM Centralized Algorithms

Algorithm Author Algorithm Author

SUBDUE [37] CloseGraph [98]
LCGMiner [93] SPIN [41]
CLOSECUT & SPLAT [100] CLAN [89]
Cocain [103] MARGIN [86]
DIGDAG [84] gFSG [55]
MaxGeo [9] LEAP [95]
RP-FP & RP-GD [61] [58] JPMiner [62]
FOGGER [102] MUSK [7]
Al Hasan algorithm3 [8] gdClosed [27]
TGP [59] Takigawa algorithm4 [82]
TD-MG [14] FS^3 [80]

3 Output Space Sampling
4 It proposes to return δ-tolerance closed frequent subgraphs
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3.4 Incomplete Search & Inexact Matching

There are �fteen algorithms performing Incomplete Search and Inexact Matching (see table 5).

Table 5: A list of Incomplete Search & Inexact Matching FSM Centralized Algorithms

Algorithm Author Algorithm Author

SUBDUE [37] MgVEAM [65]
ORIGAMI [5] Monkey [105]
RAM [104] Chen algorithm5 [12]
ISG [85] RING [106]
APGM [47] MUSE [108]
VEAMwP [2] VEAM [1]
Summarization [63] TRS [22]
Framework MUG [18]

In the following section, we propose a usability �ltering of these algorithms in order to help in the
choice of the most useful FSM algorithms and their respective implementations.

4 Selection of available FSM Algorithms' Implementations

The list of FSM algorithms is large and hence selecting suitable candidates is a non-trivial task. The
choice is generally done in the literature implicitly according to the usedness of an algorithm (e.g., the
recent algorithm LC-Mine [24] (2014) is compared with the known gSpan (2002) and FSG (2001). But
there is no experimental justi�cation of the non comparison with more recent algorithms). In order
to justify the selection process, we de�ned a set of criteria : performance reported in the literature,
miscellaneous weaknesses and availability of software. We propose a �ltering for each of the four
categories of algorithms (see Section 2) using the three criteria. When a criterion is ommitted in a
category, this means that we did not found algorithms to �lter for this criterion.

4.1 Complete Search & Exact Matching

4.1.1 Performance of algorithms We found in comparative studies (reported in literature) that
the performance of four algorithms namely WARMR [20], FARMER6 [71], UGM & CGM7 [81] and
MOLFEA [52] is commonly agreed to be the worst. The algorithm FSMA [30] has a very modest
experimentation and has not been compared with any FSM algorithm. Thus, we removed these �ve
algorithms from the list of potential candidates.

4.1.2 Weaknesses We eliminated four algorithms for limitations regarding input graphs (see Table
6). In fact, we intend to compare algorithms that propose general usage. The weakness analysis of the
algorithms produced a list of twenty-three remaining algorithms.

5 The smoothing-clustering framework
6 WARMR and FARMER were both used for itemsets and complex relations
7 MoFa is competitive with UGM&CGM. MoFa has a bad performance compared to Gaston, gSpan, FFSM
[70,91]
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Table 6: Complete Search & Exact Matching FSM Algorithms with speci�c uses

Algorithm Input Graphs Case

FREQGEO [76] Geometric Graphs (2D or 3D)
TSMiner [49] Graphs with unlabeled edges
SyGMA [21] The number of labels has to be small
ADI-MineBio [19] - The input data is relational tables

- Dedicated for speci�c biomedical data

4.1.3 Availability of Software We tried to collect the codes/software of the remaining twenty-
three algorithms from their authors or from available links. Only one-third implementations (7) out
of them are public. The others are unavailable (see Table 7) due to : (i) legal constraint (intellectual
property right); (ii) their code is lost or (iii) no answer is given by authors.8

There are di�erent implementations of the seven remaining algorithms. We list them in Table 8.
We had to eliminate AcGM implementation and four implementations of gSpan, FFSM and Gaston
due to the technical shortcomings (see Table 9). We could have tried to debug the algorithms but the
goal is to list usable as-is implementations.

Table 7: Unavailable Complete Search & Exact Matching FSM algorithms software

Algorithms Unavailability

AGM [43], Topology [38], AGM-H [68], B-AGM [44],
ADI-Mine [88], FSP [35], FSMA [92], LC-Mine frame-
work [24], IDFP-tree [67]

No answer from au-
thors

gRed [28], gdFil [27], grCAM [29] Under intellectual
propoerties

DPMine [33], DSPM [15], Fp-GraphMiner [87] The code is lost

The �nal list of candidate algorithms in Complete Search & Exact Matching category contains
six algorithms with their respective thirteen implementations. An experimental study is proposed for
these implementations in another work.9

4.2 Complete Search & Exact Matching

There is one algorithm in this category. We inspected its availability in the following section.

4.2.1 Availability of Software The algorithm mSpan [60] is unavailable due to no answer given
from authors.

8 1 request and 2 reminders have been sent to authors
9 see https://liris.cnrs.fr/rihab.ayed/ESFSM.pdf for more details

10 ParMol framework could be provided by authors [64,91]
11 No theoretical work is related to this software



8 Technical Report

Table 8: Complete Search & Exact Matching FSM Implementations with Technical Drawbacks

Implementation Technical Drawbacks

gSpan ParSeMis - Quality of Frequent Subgraphs (redundancy)
- Error during the execution

gSpan (Kudo, 2004) - Requiring an additional software (MATLAB)
FFSM Original - Error with Input Files (No answer from authors about

this error)
AcGM Original - No information about Memory Consumption or Run-

time (binary code and no response from authors)
- The output is only the DFS code of frequent subgraphs

Gaston ParSeMis - Error during the execution

4.3 Incomplete Search & Exact Matching

Some algorithms in FSM propose to return a subset of frequent subgraphs in order to reduce the
output. We �lter in the following these algorithms.

4.3.1 Weaknesses Seven algorithms out of twenty-two are useful for speci�c cases only. These
algorithms propose to process (as an input) or to return (as an output) speci�c graphs. For example,
CLAN [89] proposes to return frequent cliques, this case is speci�c to the application of cliques not

Table 9: Available Implementations of Complete Search & Exact Matching FSM algorithms

Algorithm Available software Last
Release

FSG [54] FSG Original v1.37 (PAFI v1.0.1) [50] 2003
gSpan [97] gSpan Original v.6 [94] 2009

gSpan Original 64-bit v.6 [94] 2009
gSpan ParSeMis [36,78] 2011
gSpan (Kudo) [75] 2004
gSpan ParMol 10 2013
gSpan (Zhou)11 [107] 2015
gSpan (Chen) v0.2.2 [13] 2018

MoFa/MoSS MoFa ParMol [64,91] 2013
[11] MoSS ParMol [64,91] 2013

MoFa/Moss Original (Miner v6.13) [10] 2015
AcGM [46] AcGM Original [42] -
FFSM [40] FFSM Original v3.0 [26] 2010

FFSM ParMol [64,91] 2013
Gaston [72] Gaston Original v1.1 [69] 2005

Gaston Original RE v1.1 [69] 2005
Gaston ParMol [64,91] 2013
Gaston ParSeMis [36,78] 2011
Gaston (Condu�) [16] 2017

DMTL [6] DMTL Original v1.0 (g++ 4.8 compiler) [101] 2006
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usable for general cases. Another example is TGP [59] that proposes to return frequent subgraphs of
a speci�c size with no possibility of use of minimum support threshold (see Table 10).

Table 10: Incomplete Search & Exact Matching FSM Algorithms with speci�c uses

Algorithm I/O Graphs Speci�c Case

CLOSECUT&
SPLAT [100]

Input Relational12 graph set

CLAN [89] Output Frequent cliques13

Cocain [103] Output Closed Quasi-cliques
gFSG [55]
MaxGeo [9]

Input Geometric Graphs

DIGDAG [84] Input Directed Acyclic Graphs with distinct labels
TGP [59] Input No minimum support threshold

A minimum size of FS is set
For large graphs, TGP does not work well [59]

4.3.2 Availability of Software We collected eight algorithms software out of �fteen from authors
and available links (see Table 11).

Table 11: Available Implementations of Incomplete Search & Exact Matching FSM algorithms

Algorithm Available software Last
Release

SUBDUE [37] subdue 5.2.2 2011
CloseGraph [98] gSpan ParMol14 2013
SPIN [41] SPIN 2007
LEAP [95] LeapMine 2007
Al Hasan algorithm15 [8] OSS 2011
MUSK [7] Uniform Maximal 2015
Takigawa algorithm [82] deltol gspan 2015
FS^3 [80] randomminer 2014

The rest of algorithms are unavailable for speci�c reasons (see Table 12). The eight selected algo-
rithms have each one implementation.

12 Vertex labels are distinct in each graph
13 fully connected subgraphs
14 CloseGraph is gSpan with the Closed Subgraphs Only option. ParMol framework could be provided by

authors [64,91]
15 Output Space Sampling
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Table 12: Unavailable Incomplete Search & Exact Matching FSM algorithms software

Algorithms Unavailability

LCGMiner [93], MARGIN [86], RP-FP & RP-GD [61]
[58], JPMiner [62], FOGGER [102], TD-MG [14]

No answer from au-
thors

gdClosed [29] Under intellectual
propoerties

4.4 Incomplete Search & Inexact Matching

Some algorithms in FSM propose to return a subset of frequent subgraphs in order to reduce the
output or to return a richer set than the complete one in order to take into consideration uncertainty
and innaccuracy of data. We �lter in the following these algorithms.

4.4.1 Performance of FSM algorithms We detected one algorithm that had limits of perfor-
mance ORIGAMI [5].Its authors [7] cites that �The sampling of maximal frequent graphs in ORIGAMI
is far from uniform, which may result in poor quality representatives�.

4.4.2 Weaknesses Two algorithms are useful in speci�c cases (see Table 13). For example, ISG
with perform on graphs with unique edge labels.

Table 13: Incomplete Search & Inexact Matching FSM Algorithms with speci�c uses

Algorithm Input Graph Case

ISG [85] Graphs with unique edge labels
MUSE [108] Uncertain labeled undirected graphs

4.4.3 Availability of Software We found two available algorithms' software out of the remaining
12 ones (see Table 14). The rest are unavailable for speci�c reasons (see Table 15).

Table 14: Available Incomplete Search & Inexact Matching Implementations of FSM algorithms

Algorithm Available software Last
Release

SUBDUE [37] subdue 5.2.2 2011
APGM [47] APGM 2010

5 Conclusion

A selection is made in this report of FSM algorithms implementations available to be used for general
graphs in Graph Transaction Databases. As a total, �fteen algorithms are freely available as an imple-
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mentation out of sixty eight FSM algorithms. Respectively, 6 and 916 of the Complete and Incomplete
Search category. The choice of one algorithm instead of another is justi�ed by an experimental study
between the software. For complete search algorithms, we provide an experimental comparison of all of
the 13 implementations of the 6 algorithms17. No study proposes to compare all the software at once
for Incomplete search implementations. A further work should consider this.

Table 15: Unavailable Incomplete Search & Inexact Matching FSM algorithms software

Algorithms Unavailability

Monkey [105], Chen algorithm [12], RAM [104], RING
[106], TRS [22], Summarization Framework [63], MUG
[18]

No answer from authors

VEAM [1], VEAMwP [2], MgVEAM [65] Under intellectual
propoerties
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