
Technical Report

An updated dashboard of Complete Search

FSM Implementations in Centralized

Graph Transaction Databases

Rihab AYED, Mohand-Saïd HACID, Ra�qul HAQUE and Abderrazek JEMAI

An updated dashboard of Complete Search FSM Implementations

Author's Address
Université Claude Bernard, Lyon 1 (UCBL)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
43, boulevard du 11 Novembre 1918
69622 Villeurbanne cedex
France
Email: rihab.ayed@liris.cnrs.fr

Copyright c©2016 by the CAIR Project.
This work was carried out as part of the CAIR Project (Contextual and Aggregated Information Retrieval) under the Agence
Nationale de la Recherche (ANR) at the Université Claude Bernard Lyon 1 (UCBL). It may not be copied nor reproduced
in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted
for non-pro�t educational and research purposes provided that all such whole or partial copies include acknowledgment of the
authors and individual contributors to the work; and all applicable portions of the copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a license with payment of a fee to the UCBL. All rights reserved.

An updated dashboard of Complete Search FSM Implementations

Abstract

In this report, we present and analyze the results of an experimental study regarding the Frequent
Subgraph Mining algorithms implementations. We evaluated the 6 most known and available algo-
rithms. We used datasets from the state of the art and metrics. The idea of this evaluation campaign
came when we started looking for a Frequent Subgraph Mining algorithm for indexing large graphs
databases for aggregated search.1

Keywords

Graph Mining, Graph Transaction Databases, Centralized Environment, Frequent Subgraph Min-
ing(FSM), FSM Algorithms, Complete Search

1 https://www.irit.fr/CAIR/fr

Table of Contents

1 Introduction . 1
2 Contributions . 1
3 Preliminaries . 2

3.1 Database Setting . 2
3.1.1 Graph-Transaction Setting . 2
3.1.2 Single-Graph Setting . 2

3.2 Nature of Input and Output Graphs . 2
3.3 Subgraph Search and Matching Strategy . 2

3.3.1 Complete Search . 3
3.3.2 Incomplete or Heuristic Search . 4

4 Selection of candidate FSM algorithms. 5
4.1 List of FSM Algorithms . 5
4.2 Performance of FSM Algorithms . 6
4.3 Weaknesses . 7
4.4 Availability of Software . 8
4.5 Experimental Setting in Literature . 8

4.5.1 Datasets . 9
4.5.2 Memory Resources . 9
4.5.3 Evaluation Metrics . 9

5 A brief description of candidate FSM algorithms . 10
5.1 FSG . 10
5.2 gSpan . 10
5.3 MoFa/MoSS . 11
5.4 FFSM . 11
5.5 Gaston . 11
5.6 DMTL . 11

6 The Experimental Study with FSM Implementations . 12
6.1 Experimental Setup . 12

6.1.1 Input of Implementations . 12
6.1.2 Used Resources . 14
6.1.3 Implementations settings . 15
6.1.4 Evaluation Metrics . 16

6.2 An Intra-Algorithm Performance Study . 17
6.2.1 gSpan Implementations . 17
6.2.2 Gaston Implementations . 22

6.3 Comparison with the State of the Art . 25
6.3.1 GSpan Comparison . 26
6.3.2 Gaston Comparison . 28
6.3.3 FSG Comparison . 29
6.3.4 DMTL Comparison . 31
6.3.5 FFSM Comparison . 31
6.3.6 MoFa Comparison . 32

An updated dashboard of Complete Search FSM Implementations

6.4 An Inter-Algorithms Performance Study . 33
6.4.1 Number of Frequent Subgraphs . 33
6.4.2 Runtime . 37
6.4.3 Memory Consumption . 40
6.4.4 Bottleneck experiments . 45

6.5 Discussion . 47
6.5.1 Impacts of the Environment variations on the results . 49
6.5.2 Reducing the set of Frequent Subgraphs and other options of FSM

Implementations . 53
7 Conclusion . 54
8 Acknowledgments . 55

An updated dashboard of Complete Search FSM Implementations 1

1 Introduction

Graph mining is one of the most important approaches in data mining that transforms graph data
into knowledge [3]. Frequent Subgraph Mining (FSM) is a subcategory of Graph Mining [28]. The
objective of traditional FSM [36] is to extract subgraphs, in a given dataset, whose occurrence counts
(aka frequency) are above a speci�ed threshold (Minimum Support Threshold). The extracted sub-
graphs, called Frequent Subgraphs, are (directly) useful for analysis in areas like, biology, co-citations,
chemistry, semantic web, social science and �nance trade networks [41,73]. They could also be used for
other relevant purposes such as classi�cation, clustering, graph indexing and similarity search [44,73].

In the scope of the CAIR1 project, we are investigating e�cient and e�ective approaches for ag-
gregated search [51] over distributed repositories. One of the building blocks of our approach is graph
indexing. The index data can be provided by resorting to an FSM algorithm [90].

Given that there are many algorithms proposed for FSM in the literature, the �rst task was to
categorize the algorithms according to some relevant and desired features. The existing studies [23,
47, 66, 72, 73, 83] devoted to benchmarking FSM algorithms are not satisfactory for our requirements
for the following reasons: (i) conclusions about algorithms found in these studies do not explicitly
consider the e�ect of the variability of inputs on the performance results. The variability includes the
following: the tested real datasets characteristics (size, density) and the minimum support threshold
interval (low values, high values) ; (ii) two di�erent implementations of a given algorithm - by original
authors and the third party implementers - reported di�erent performance results ; (iii) the most recent
experimental comparisons (2014) [8,19,72,73] is concerned only with four (4) algorithms at most. These
algorithms are relatively old (2001 - 2007). About thirteen new algorithms of the same category have
been proposed since 2007 ; (iv) there is no comparison of the currently available FSM algorithms in
the literature ; (v) implementations of some algorithms are re�ned without any experimental study on
their performances (e.g., gSpan (2002) [88] release v.6 2009).

2 Contributions

From the set of all complete search FSM algorithms for centralized graph transaction databases pro-
posed so far, we selected a subset. The selection obeys a well-founded approach.

We conducted an experimental study of the selected algorithms using datasets from the state of the
art. Only algorithms provided with usable implementations are considered and di�erent implementa-
tions of one algorithm are included in the study. We analyzed the behavior of the algorithms according
to the following parameters: (i) execution time, (ii) memory consumption and (iii) the number of fre-
quent subgraphs. We analyze the behavior of the algorithms by varying two input parameters: datasets
and minimum support threshold. We categorize datasets according to their size: (i) small, (ii) medium
and (iii) large. We categorize the minimum support threshold into : low or high. We used only real
datasets. We left out synthetic datasets due to the fact that synthetic datasets are generated randomly
and they could display features that are not easy to compare. According to [83] "by considering the
average of the results of these kind of datasets, no valid conclusion can be made". Also, we study the
use of some environment variations (used OS, labeling strategy and format of datasets) to test their
e�ect on the experimental results. We compared our found results with the literature.

This report is organized as follows: Section 3 present some notions of the FSM �eld. Section 4,
contains our theoretical study of FSM algorithms. Section 6 describes the evaluation of the selected
FSM algorithms and discusses the results. We conclude in Section 7 and present some perspectives of
further FSM studies.

2 Technical Report

3 Preliminaries

FSM algorithms can be classi�ed according to three di�erent aspects [45,47]: (i) database setting which
depends on the applications (e.g., Chemical graphs, Social Networks), (ii) nature of input and output
graphs and (iii) the strategy of subgraph search and matching. In what follows, we brie�y explain these
aspects.

3.1 Database Setting

There are two distinct problem formulations for frequent subgraph mining in graph datasets: (i) graph-
transaction setting and (ii) single-graph setting.

3.1.1 Graph-Transaction Setting In this case, the input is a collection of moderate sized graphs
(transactions), and a subgraph is considered frequent if it appears in a large number of graphs. A
subgraph occurrence is counted only once per transaction, independently of the possible multiple
occurrences in the same transaction [36]. Graph Transaction mining is applied in biochemical structure
analysis, program control �ow analysis, XML structure analysis, image processing and analysis [3,41].

3.1.2 Single-Graph Setting This setting involves mining frequent subgraphs in di�erent regions
of one large sized graph. The frequency of a subgraph is based on the number of its occurrences (i.e.,
embeddings) in the large graph. Special support metrics are used, by considering, for example, the
overlapping of two subgraphs [50]. Single Graph mining is dedicated to applications such as social
networks, citation graphs, or protein-protein interactions in bioinformatics [20].

In this report, we are interested in algorithms that mine a collection of graphs instead of a single
large garph.

3.2 Nature of Input and Output Graphs

In centralized graph transaction mining, the input graphs which are used in most of the FSM algorithms
are assumed to be labeled (vertices and edges) simple2 connected undirected graphs and the output are
connected subgraphs. There are algorithms developed for speci�c graphs (e.g., complex graphs [57],
unconnected subgraphs [74], vertex labeled graphs [94], see Table 1) rather than the general ones.

3.3 Subgraph Search and Matching Strategy

FSM algorithms can be classi�ed according to search strategy : complete and incomplete (or heuristic)
search. Also, they can be classi�ed according to the type of isomorphism test (matching) performed
between the mined subgraphs : exact and inexact matching. We explain these categories in what
follows.

2 A simple graph is �an un-weighted and un-directed graph with no loops and no multiple links between any
two distinct nodes� [26]

An updated dashboard of Complete Search FSM Implementations 3

Table 1: FSM Algorithms with speci�c graphs

Input Cases Algorithms

Complex graphs MgVEAM [57]
Directed graphs mSpan [53]
Directed Acyclic graphs DIGDAG [76]
Unlabeled graphs The smoothing-clustering framework [13]
Vertex-labeled graphs Cocain [94], TSMiner [42]
Relational graphs CODENSE [32], CLOSECUT & SPLAT [91], Fp-

GraphMiner [79]
Geometric graphs gFSG [50], MaxGeo [10], FREQGEO [68]
Uncertain graphs Monkey [96], RAM [95], MUSE [98]
Output Cases Algorithms

Cliques and quasi-cliques
from dense graphs

CLAN [81], Cocain [94]

Unconnected subgraphs UGM [74]

3.3.1 Complete Search The complete search3 algorithms perform a complete mining i.e., it guar-
antees to �nd all frequent subgraphs from the input data, above a minimum frequency threshold [37,48].

a) Exact Matching: It consists in �nding all possible frequent subgraphs as they appear in the
input data [37, 48]. The complete search must return a frequent subgraph (e.g., subgraph (1) shown
in Figure 1) and all of its possible subgraphs that are necessarily frequent as well (e.g., subgraphs (2),
(4), (5), (6) and (7) shown in Figure 1).

Fig. 1: Example of all Frequent Subgraphs (Exact Matching)

b) Approximate Matching: It consists in �nding all frequent subgraphs, with an assumption that
subgraphs having the same structure and di�erent labels, will all be returned as the same subgraph [53].
This is considered as a complete search because all possible frequent subgraphs could be veri�ed in
the output set with the abstraction of labels (edges or vertices). Figure 2 illustrates the approximate
matching where graphs with di�erent edge labels are considered the same. For example, the subgraphs
(2) and (3) in Figure 1 could be represented with the approximate matching by one subgraph (2') in
Figure 2.

3 Complete search is also called �exact search� [41,73], we will use, in this report, only the designation �complete
search�

4 Technical Report

Fig. 2: Example of all Frequent Patterns (Approximate Matching)

3.3.2 Incomplete or Heuristic Search The incomplete and heuristic search algorithms discover
a set of frequent subgraphs whose cardinality is greater or lower than the one returned by the complete
search. This category of FSM search is used to : (i) reduce the set of frequent subgraphs (use of ex-
act [89] or approximate matching [15]), or (ii) add more frequent subgraphs than the complete search
in order to consider the innacuracy or uncertainty of the input data (use of approximate matching) [99].

c) Exact Matching: It consists in returning a subset of frequent subgraphs [82] by setting a
supplementary calculable parameter (e.g., maximum size of frequent subgraphs, closed subgraphs,
maximal subgraphs, maximum support threshold) [6, 34,89], besides the minimum support threshold.
Figure 3 shows an example returning a subset of frequent subgraphs (see all frequent subgraphs, Figure
1) where the set parameter is the maximum size of frequent subgraphs (set to 2 edges).

Fig. 3: Example of a subset of Frequent Subgraphs (Exact Matching)

d) Approximate Matching: It consists in either (i) reducing the output by returning a set of
representative frequent patterns or (ii) enriching the frequent subgraphs output by considering the
inaccuracy or uncertainty of data [40, 99]. For the �rst case, a representative frequent pattern is a
frequent subgraph similar to a set of other frequent subgraphs. In other words, frequent subgraphs
that have some di�erences regarding edges, vertices and labels are represented by one pattern in the
output [4]. For the second case, it consists in adding infrequent subgraphs that are similar to frequent
subgraphs with respect to the structure or labels [2].

For the four subcategories a, b, c and d, there are 31, 1, 22 and 15 algorithms respectively.4 to have
the list of all FSM algorithms in centralized graph transaction databases.

4 Please refer to https://liris.cnrs.fr/rihab.ayed/ACFSM.pdf

An updated dashboard of Complete Search FSM Implementations 5

In our work, we are interested in algorithms that perform a complete search (subcategories a,
b). Our main objective is to identify an e�cient FSM algorithm for generating subgraphs which will
be used to index large repositories. The incomplete search algorithms (subcategories c, d) that are
available and usable for general purposes5 propose to return : (i) closed subgraphs ([75, 89]), (ii)
maximal subgraphs [6, 34], (iii) signi�cant subgraphs [86], (iv) sample of �xed size subgraphs [73] or
(v) approximate subgraphs [40]. The closed and maximal subgraphs could not be used for the purpose
of indexing [90]. The sampling and approximation of subgraphs can be used for indexing. However, we
did not select probabilistic or approximation algorithms to avoid the impact of their output set (i.e.,
frequent subgraphs) on our indexing approach.

To the best of our knowledge, no exhaustive list of Complete search FSM algorithms has been
provided so far. Also, there is no study that cites all the currently available FSM implementations. In
the next section, we provide a list of all algorithms and highlight their availability and usefulness. We
will �nally select a few of them.

4 Selection of candidate FSM algorithms

In this section, we describe our approach and criteria for selecting candidate algorithms. To establish
our selection process, we de�ned a set of criteria which includes: performance reported in literature,
availability of implementation, and miscellaneous weaknesses. We also point out the ambiguities, found
in state of the art regarding the most e�cient algorithm to use. We provide details of the experiments
settings reported in literature, in order to make our further experimental choices understandable.

4.1 List of FSM Algorithms

We identi�ed thirty-two algorithms (in the literature) designed to extract all possible frequent sub-
graphs above a minimum support threshold (see Table 2).

Before studying the performance and availability of these algorithms, we investigated their usage.
We de�ne the usage of an algorithm in accordance with three facets: (i) the number of experiments6

performed with the algorithm for centralized graph transaction datasets, (ii) the number of real datasets
used for testing, and (iii) the most recent experiment (i.e., paper7) with the algorithm. In Table 3, E,
D and R denote these facets, respectively. We found that eleven out of the thirty two algorithms are
relatively more popular. Table 3 shows that the most tested algorithms in the literature are: gSpan [88],
Gaston [64], FSG [48] and FFSM [33].

Additionally, Table 3 illustrates that the recent FSM algorithms (e.g., LC-Mine [19]) are compared
with the least recent algorithms (e.g., gSpan [88], FSG [48]), instead of the most recent ones. Questions
are raised in the FSM �eld about the availability and performances of each algorithm among the 32
ones proposed.

In the following sections, we discuss the outcome of our investigations in terms of performance,
availability and miscellaneous weaknesses.

5 https://liris.cnrs.fr/rihab.ayed/ACFSM.pdf
6 We counted the number of distinct authors experiments. Authors that experimented the algorithm in many
papers are counted once

7 original paper of the algorithm is not considered

6 Technical Report

Table 2: An exhaustive list of FSM Centralized Algorithms (Complete Search)

Algorithm Author Algorithm Author

WARMR [17] ADI-Mine & GraphMiner [82,86]
AGM [36] TSMiner [42]
FARMER [63] FSP [29]
MOLFEA [46] DMTL [5]
AcGM [39] gRed [23]
B-AGM [37,38] FSMA [84]
FSG [48] mSpan [53]
FREQGEO [68] SyGMA [18]
MoFa/MoSS [12] CGM & UGM [74]
DPMine [27] gdFil [22]
gSpan [87,88] grCAM [24]
Topology [31] ADI-Minebio [16]
FFSM [33] Fp-GraphMiner [79]
DSPM [14] FSMA [25]
AGM-H [59] LC-Mine framework: FG-

MAC & AC-miner
[19]

GASTON [64,65] IDFP-tree [58]

Table 3: The usage of Centralized FSM algorithms (Complete Search)

Algorithm (year) E D R (year)

gSpan (2002) [88] 25 25 [58] (2015)
Gaston (2004) [64] 11 14 [73] (2014)
FSG (2001) [48] 9 11 [19] (2014)
FFSM (2003) [33] 5 10 [72] (2014)
AcGM (2002) [39] 4 3 [73] (2014)
MoFa (2002) [12] 3 6 [74] (2009)
FSP (2007) [29] 2 3 [72] (2014)
ADI-Mine (2004) [80] 2 3 [81] (2006)
FSMA (2008) [84] 2 0 [79] (2011)
MOLFEA (2001) [46] 2 2 [38] (2005)
WARMR (1998) [17] 2 1 [64] (2004)
LC-Mine (2014) [19] 1 10 -
The remaining 20
algorithms

1 <5 -

4.2 Performance of FSM Algorithms

Studies in the literature reported that the performance of four algorithms, namely WARMR [17],
FARMER8 [63], UGM & CGM9 [74] and MOLFEA [46], is commonly poor. Also, we found that
FSMA algorithm [25] was experimented moderately and was not compared with any FSM algorithm.

8 WARMR and FARMER were both used for itemsets and complex relations
9 MoFa is competitive with UGM&CGM. MoFa has a poor performance compared to Gaston, gSpan, FFSM
[62,83]

An updated dashboard of Complete Search FSM Implementations 7

Therefore, we removed these �ve algorithms from the list of potential candidates. It is worth noting that

Table 4: Contextual performance of FSM algorithms

a) Is Gaston or gSpan a more e�cient algorithm?

Gaston is the fastest graph mining algorithm com-
pared to gSpan and FSG [64]

For the large dataset NCI and for low support
threshold, Gaston was slower than gSpan [83]

Gaston RE is the best memory consumer over
Gaston, FFSM and gSpan [66]

gSpan is the best memory consumer comparing to
Gaston and FFSM [83]

b) Is FFSM more e�cient than gSpan ?

FFSM outperformed gSpan [33]
FFSM achieves a considerable performance gain
over gSpan [69]

gSpan was slightly faster than FFSM. GSpan was
the best algorithm regarding its memory require-
ments compared to FFSM, MoFA, Gaston [83]
gSpan is almost as competitive as Gaston and
FFSM, at least with not too big fragments [19]

c) Is FSG an e�cient algorithm to use?

gSpan outperforms FSG by an order of magnitude
in terms of runtime [87]. AcGM is faster than FSG
[39]

gSpan and FSG are placed among the most e�-
cient graph miners in their respective categories
[19]

we found ambiguities in several experiments of well-known FSM algorithms. This led to a confusion
in terms of choosing the best candidates. Table 4 shows some examples of ambiguities, including: (i)
no general conclusion determines which of the two algorithms FFSM and gSpan is the most e�cient
one (see case b in Table 4); (ii) the performance comparison of Gaston and gSpan depends on the
dataset (e.g., Large NCI dataset [83]) and the used implementation (Gaston or Gaston RE) (case a
shown in Table 4). The contexts of the experiments (e.g. FSM implementation, the support threshold
interval, datasets characteristics) were not de�ned adequately in order to have a complete view of
the algorithms' performance. In Section 6, we conduct such an analysis, and provide a choice of an
algorithm with the speci�cation of its performance cases.

4.3 Weaknesses

We removed four algorithms for limitations regarding input graphs (see Table 5). In fact, we intend to
compare algorithms that propose generic usage. The analysis of the algorithms weaknesses allowed to
keep a list of twenty-three algorithms.

Table 5: FSM Algorithms with speci�c uses

Algorithm Input Graphs Case

FREQGEO [68] Geometric Graphs (2D or 3D)
TSMiner [42] Graphs with unlabeled edges
SyGMA [18] The number of labels has to be small
ADI-MineBio [16] - The input data is relational tables

- Dedicated for speci�c biomedical data

8 Technical Report

4.4 Availability of Software

We tried to collect the implementations of the twenty-three algorithms. However, only one-third imple-
mentations (7 out of 23) are publicly available. According to our study, the reasons of unavailability are
(see Table 6): (i) legal constraint (intellectual property right), (ii) codes are lost and (iii) no response
from the authors following our requests.10

There are di�erent implementations of the seven algorithms. Table 8 shows the variants. AcGM
and four implementations of gSpan, FFSM and Gaston were removed from the list due to technical
shortcomings (see Table 7 for the details). We could have tried to debug the algorithms but our main
objective is to use and compare existing implementations as such without making any changes.

Table 6: Unavailable FSM algorithms

Algorithms Unavailability

AGM [36], Topology [31], AGM-H [59], B-AGM [37],
ADI-Mine [80], FSP [29], FSMA [84], mSpan [53], LC-
Mine framework [19], IDFP-tree [58]

No answer from au-
thors

gRed [23], gdFil [22], grCAM [24] Under intellectual
propoerties

DPMine [27], DSPM [14], Fp-GraphMiner [79] The code is lost

The �nal list of candidate algorithms contains six algorithms with thirteen implementations. We
performed an experimental study with these implementations.

Table 7: FSM Implementations with Technical Drawbacks (Complete Search)

Implementation Technical Drawbacks

gSpan ParSeMis - Quality of Frequent Subgraphs (redundancy)
- Error during the execution

gSpan (Kudo, 2004) - Requiring an additional software (MATLAB)
FFSM Original - Error with Input Files (No answer from authors about

this error)
AcGM Original - No information about Memory Consumption or Run-

time (binary code and no response from authors)
- The output is only the DFS code of frequent subgraphs

Gaston ParSeMis - Error during the execution

4.5 Experimental Setting in Literature

We found di�erent experimental settings in literature used for testing FSM algorithms. In this section,
we brie�y describe these settings.

10 1 request and 2 reminders have been sent to authors
11 ParMol framework could be provided by authors [56,83]
12 No theoretical work is related to this implementation

An updated dashboard of Complete Search FSM Implementations 9

4.5.1 Datasets The largest datasets - for experimenting FSM implementations in centralized en-
vironment - found in the literature does not exceed 274 860 graphs with an average graph size (|T|)
that contains a maximum of 50 edges and a maximum of 90 labels (|N|) for vertices and 4 for edges.
For the most dense datasets, the average graph size does not exceed 3636 vertices and 206 747 edges
where the number of graphs (|D|) is 11. The largest dense datasets contain a maximum of 1178 graphs
with an average graph size not exceeding 360 vertices and 910 edges. Table 9 shows the largest, most
dense and largest dense datasets characteristics. Synthetic datasets do not exceed 100 000 graphs. A
dense synthetic dataset contains (generally) a maximum of 400 vertices and 1000 edges.

For evaluationg FSM implementations in a distributed environment, we found real datasets that
can contain 46 703 496 graphs [54] and synthetic datasets that can contain 100 000 000 graphs [8].

4.5.2 Memory Resources The maximum size of main memory used in most of the experiments
found in the literature does not exceed 4 GB except for (i) gSpan, Gaston, FFSM, FSG and AcGM
in [66] with 10 GB, (ii) gSpan and Takigawa Algorithm [75] with 48 GB and (iii) gSpan and Gaston [73]
with 128 GB.

4.5.3 Evaluation Metrics Typically, three common metrics have been used to compare implemen-
tations: (i) execution time, (ii) memory consumption and (iii) number of extracted frequent subgraphs.
More detailed metrics about subtasks e�ciency and the quality of subgraphs (e.g., the execution time
of the subtasks [66], the sub-optimality [83], the number of duplicate candidates [24]), were used as
well.

Table 8: Available Implementations of FSM algorithms (Complete Search)

Algorithm Available versions Last
Release

FSG [48] FSG Original v1.37 (PAFI v1.0.1) [43] 2003
gSpan [88] gSpan Original v.6 [85] 2009

gSpan Original 64-bit v.6 [85] 2009
gSpan ParSeMis [30,70] 2011
gSpan (Kudo) [67] 2004
gSpan ParMol 11 2013
gSpan (Zhou)12 [97] 2015

MoFa/MoSS MoFa ParMol [56,83] 2013
[12] MoSS ParMol [56,83] 2013

MoFa/Moss Original (Miner v6.13) [11] 2015
AcGM [39] AcGM Original [35] -
FFSM [33] FFSM Original v3.0 [21] 2010

FFSM ParMol [56,83] 2013
Gaston [64] Gaston Original v1.1 [61] 2005

Gaston Original RE v1.1 [61] 2005
Gaston ParMol [56,83] 2013
Gaston ParSeMis [30,70] 2011

DMTL [5] DMTL Original v1.0 (g++ 4.8 compiler) [92] 2006

10 Technical Report

Table 9: Characteristics of Tested Centralized Graph Transaction Datasets in the Literature

Dataset Type (Name) |D| |T| |N|

Largest dataset (DS3) [8] 274860 40-50 (e) -
Most Dense dataset (US Stock
Market) [81,93,94]

11 3636 (v)
206747 (e)

-

Largest Dense dataset (DD) [19] 1178 284 (v)
716 (e)

82 (v)
1 (e)

In our work, we do not consider potential di�erences induced by optimization techniques that were
used in di�erent implementations. We only focus on three variables: the number of discovered/extracted
frequent subgraphs, the execution time and the memory consumption.

5 A brief description of candidate FSM algorithms

In this section, we brie�y explain the algorithms that we retained following our analysis in the previous
section. An FSM algorithm can be considered as e�cient according to its strategies [41]: (i) graph rep-
resentation structure (e.g., adjacency list, adjacency matrix, hash table, tries), (ii) subgraph candidate
generation (i.e., extending, joining or combinational) by using a search approach (i.e, apriori with
breadth-�rst search or pattern-growth with depth-�rst search), (iii) canonical graph representation
for �ltering duplicates (i.e., the two main representations are CAM : Canonical Adjacency Matrix or
M-DFSC : Minimum DFS Code), (iv) subgraph isomorphism detection strategy to compute the sup-
port (i.e., keeping embedding of patterns or explicit subgraph isomorphism). We de�ne the selected 6
algorithms in our study mainly according to these features.

5.1 FSG

FSG (Frequent Subgraph Discovery) [48] uses adjacency lists for storing graphs [47]. It uses an apriori
approach. It requires a large amount of memory because it employs BFS and generates a large volume
of candidate patterns. Consequently, it scans many times the database and examines a large number
of candidates [58]. It uses the CAM canonical representation [83]. It generates candidates using the
level-wise join technique. It uses transaction list for support counting. It has a bad performance on
graphs with many vertices and edges of identical labels and could be ine�cient for mining large-sized
subgraph patterns.13

5.2 gSpan

GSpan (Graph-based Substructure Pattern Mining) [88] uses adjancency matrix. It uses M-DFSC as
a canonical representation. It uses a DFS lexicographic ordering to construct a tree-like lattice over
all possible patterns, resulting in a hierarchical search space called a DFS code tree [19]. It performs a
rightmost path expansion as subgraph extension [83] which means that the k subgraphs are generated
by one edge expansion from the k-th level of the DFS tree. Unlike embedding list saving algorithms,
gSpan saves transaction list for each discovered pattern which saves on memory usage. GSpan, with
some minor changes, can accommodate to directed graphs [41].

13 http://web.ecs.baylor.edu/faculty/cho/4352/

An updated dashboard of Complete Search FSM Implementations 11

5.3 MoFa/MoSS

MoFa (Molecular Frequent Miner) or MoSS (Molecular Substructure miner) [12] is a specialized miner
for molecular data. It enables to �nd frequent molecular substructures and discriminative fragments.
However, it can also work on arbitrary graphs. The algorithm is inspired by the Eclat algorithm14

for frequent item set mining. MoFa stores graphs in adjacency matrices. It follows the pattern growth
approach. It uses a rightmost path extension. New subgraphs are built by extending old subgraphs
with an edge (and a node if necessary). It uses embedding lists to remove duplicates [56]. It is able to
mine directed graphs [41].

5.4 FFSM

FFSM (Fast Frequent Subgraph Mining) [33] is based on gSpan. It uses adjacency matrix for graphs.
It follows pattern-growth approach. FFSM uses the CAM representation for canonical graph represen-
tation [83]. The CAM tree of the database is built dynamically using two matrix operations of join and
extension [22]. FFSM completely avoids subgraph isomorphism testing by maintaining an embedding
set for each frequent subgraph [33]. The embedding lists allow to avoid excessive subgraph isomor-
phism tests and therefore avoid exponential runtime. However, as a trade-o�, FFSM faces exponential
memory consumption instead [19]. FFSM cannot be used in the context of directed graphs due to its
use of triangle matrices [41,83].

5.5 Gaston

Gaston (GrAph/Sequence/Tree extractiON) [64] is based on gSpan. It uses a hash table representation
which justi�es its performance over the other algorithms [47]. It follows the pattern-growth approach.
Also, Gaston is the fastest among other algorithms [64] due to the fact that it performs subgraph
extension using a quick-start principle where paths and trees are considered at �rst, and general
graphs with cycles are enumerated at the end [47]. To detect the duplicate subgraphs, a well-known
algorithm, namely Nauty [55] is used to handle the NP-complete subgraph isomorphism problem [29].
Gaston scans the database only once because it uses embedding lists stored in main memory [52].
Gaston cannot be used in the context of directed graphs unless considering major changes [41,83].

5.6 DMTL

DMTL (Data Mining Template Library) [5] is a library for frequent pattern mining. It o�ers imple-
mentations to mine four type of patterns - itemsets, sequences, trees and graphs - in a uni�ed platform.
It performs the joining of two patterns to generate one or more new candidates. It counts support by
using a vertical representation of patterns named Vertical Attribute Table (VAT) (i.e., a list of trans-
actions in which the pattern occurs). This vertical representation is typically faster than the horizontal
representation of the database due to I/O cost reduction. The joining of patterns is associated with a
back end operation : the intersection of two VAT tables of patterns.

14 Eclat webpage: http://www.borgelt.net/eclat.html

12 Technical Report

6 The Experimental Study with FSM Implementations

In this section, we present the results of our experiments. We provide the description of our experimental
setting. We split our study into : (i) intra-algorithm study where various implementations of a given
algorithm are compared, (ii) a comparison of results (for each algorithm) with those of state of the
art and (iii) inter-algorithms study where implementations of several algorithms are compared. We
conclude this section by a �nal selection of the most e�cient algorithms and some learned lessons
regarding the performance of FSM algorithms.

6.1 Experimental Setup

Our experimental settings include: (i) the inputs of implementations (i.e., datasets and minimum
support threshold), (ii) the used resources, (iii) information about implementations settings, and (iv)
the metrics used to evaluate the e�ciency of the implementations.

6.1.1 Input of Implementations There are two inputs: the tested datasets and the minimum
support threshold.

Datasets To the best of our knowledge, about thirty-one real datasets with four di�erent formats
(TXT, SDF, SMILES, XML) were tested with FSM implementations. However, the available FSM
implementations accept only the TXT format, except for ParMol and MoSS Original that accept other
formats. For instance, ParMol is able to parse TXT and SDF. MoSS Original parses only chemical
formats of data (e.g., SDF, SMILES). Selecting the datasets which were used the most for the experi-
ments reported in literature is an important issue ; because it would enable us to compare the results
with existing studies.

We conducted our experiments with twelve available datasets of the two most used formats (TXT,
SDF). For all implementations, the default choice was TXT format except for MoFa Original imple-
mentation. SDF datasets were converted to TXT format using ParMol parsers [1]. Table 10 displays
the datasets we collected for experiments. In the table, |E| denotes the number of FSM experiments
(i.e., papers) in the literature performed on the dataset, F is the original format of the dataset, S is
the dataset size on disk in KB, |D| is the number of graphs in the dataset, |T| is the average size of a
graph by vertex(v)/edge(e) count, |N| is the number of labels (vertex/edge) in the dataset and |M| is
the maximum size of a graph by vertex/edge count.

We use the term �Large datasets� (Small, Dense, Medium) to refer to the largest datasets in the
FSM literature. However, typically the term �Large� refers to a huge volume of data which is not the
case in this context. We selected the PTE dataset used in 22 FSM experiments, the HIV/AIDS dataset
(all releases) used in twenty experiments. We found two available HIV releases: AID2DA99 (October
1999) and AIDS (unknown release). The dataset HIV-CA (all releases) was used in eleven experiments.
We found an available HIV-CA release (March 2002) that was used in six experiments.

The rest of the datasets (shown in Table 10) were selected due to their: (i) availability, (ii) format
(i.e., TXT or SDF) compatible with the FSM implementations, and (iii) characteristics (e.g., dense,
large, medium). In some cases, we carried out the following tasks on some datasets: (i) correcting the
parsing errors (NCI250 dataset) with potential graph elimination (AID2DA99, CAN2DA99 datasets),
(ii) conversion from SDF to TXT format (e.g., AID2DA99), (iii) grouping a set of �les into one dataset
�le (AIDS, NCI145, NCI330 datasets), (iv) converting string vertex labels to integer ones (DS3 dataset).

An updated dashboard of Complete Search FSM Implementations 13

Table 10: Available Datasets used in the Literature

Dataset |E|F S |D| |T| |N| |M|
Small datasets

PTE15 [61,85] 22 TXT 169.7 340 27(v)/ 27(e) 66(v)/ 4(e) 214(v)/ 214(e)
HIV-CA [85] 6 TXT 285.2 422 40(v)/ 42(e) 21(v)/ 4(e) 189(v)/ 196(e)

Medium Datasets

NCI145 [77] 1 TXT 9 900 19 553 30(v)/ 32(e) 53(v)/ 3(e) 110(v)/ 116(e)
NCI330 [77] 1 TXT 9 700 23 050 25(v)/ 27(e) 57(v)/ 3(e) 120(v)/ 132(e)
CAN2DA99
[60]

4 SDF 266000(SDF)/ 14500(TXT) 32 553 26(v)/ 28(e) 66(v)/ 3(e) 229(v)/ 236(e)

AIDS [77] 1 TXT 26 200 56 213 28(v)/ 30(e) 62(v)/ 4(e) 222(v)/ 247(e)
AID2DA99
[60]

4 SDF 111000(SDF)/ 18500(TXT) 42 682 26(v)/ 28(e) 62(v)/ 3(e) 222(v)/ 247(e)

Large Datasets

NCI250 [60] 1 SDF 960000(SDF)/ 89600(TXT) 250 251 21(v)/ 23(e) 82(v)/ 3(e) 252(v)/ 276(e)
DS3 16 1 TXT 101 700 273 324 22(v)/ 24(e) 83(v)/ 3(e) 99(v)/ 99(e)

Dense Datasets

PS17 1 TXT 2 975 90 67(v)/ 256(e) 21(v)/ 3(e) 76(v)/ 320(e)
DD [77] 1 TXT 13 100 1 178 284(v)/ 716(e) 82(v)/ 1(e) 5748(v)/ 14267(e)

Very Dense Datasets

PI18 1 TXT 3 500 3 81607 (e) 2154 (v)/ 1
(e)

136264 (e)

We used the available codes of ParMol software [1] with small modi�cations to perform these tasks.
We eliminated graphs from two datasets CAN2DA99 (4 deleted graphs) and AID2DA99 (7 deleted
graphs) due to �le19 errors (for examples, see Figure 4).

For the DS3 dataset, the labels of vertices are either strings (e.g., 1u, 33e) or integers. For ParMol
implementations, we modi�ed this dataset because its TXT parser considers integer labels only. We
named this modi�ed dataset DS3M. Additionally, gSpan Original and Gaston Original implementa-
tions parse the DS3 by taking the integer part of labels (e.g., 1e -> 1). This is because gSpan Original
and Gaston Original work also with integer labeled datasets. FSG Original is the only implementation
able to parse string and integer labeled TXT datasets.

Minimum Support Threshold (MST) Di�erent implementations of FSM algorithms use di�erent
internal minimum frequency (integer) because of the conversion of the minimum support threshold
(�oat). The conversion is done by carrying out one of these options: (i) Truncation (denoted by L), (ii)
Truncation+1 (denoted by H), and (iii) Rounding (denoted by L/H). Table 11 shows the conversion
strategy (denoted by C) of FSM solutions and the input type of minimum threshold values: a relative
value (i.e., support) (S), an absolute value (i.e., frequency) (F) or both (e.g., ParMol implementations
allow both input types, see Table 11). Later in this report, we compared the implementations of the
same strategy (L or H).

19 Please refer to: http://c4.cabrillo.edu/404/ct�le.pdf for a basic SDF �le format

14 Technical Report

Fig. 4: Examples of SDF �le errors - AID2DA99 dataset

6.1.2 Used Resources All of our experiments were performed using a machine with 4 GB of
memory and a Quad core processor except for the experiment with a very dense dataset PI (see Table
12). For experimenting the PI dataset we used a di�erent machine with 7 GB of memory and a Quad
core processor. We used Linux OS for deploying all FSM solutions. The Windows OS was used only
to estimate the e�ect of varying the OS on the performance results (see Section 6.5.1).

16 the packages of gSpan and Gaston contain the PTE dataset
17 DS3 is provided by authors [8]
18 PS is provided by authors [73]
19 PI is provided by authors [7]

Table 11: Algorithms' strategy of Minimum Support/Frequency Input

Algorithm
Implementation

S F C

gSpan Original v.6 2009 x Truncation
gSpan-64bit Original v.6 2009 x (L)
gSpan (Keren Zhou, 2015) x
ParMol (Gaston, gSpan, FFSM,
MoFa, MoSS)

x x Truncation+1 (H)

MoFa Original v6.13 x x
Gaston Original v1.1 x
Gaston Original RE v1.1 x -
DMTL Original x
FSG Original (PAFI v1.0.1) x Rounding (L/H)

An updated dashboard of Complete Search FSM Implementations 15

Table 12: Machine Characteristics

Cases Default Very dense
datasets case

Processor Intel Core i3 Quad Core
2.40GHz 3.2GHz

RAM
Hard Disk

4 GB
192.8 GB

7 GB
226 GB

OS Default : Ubuntu (14.04) : All Software
Windows 7 : ParMol and MoFa Original

6.1.3 Implementations settings Theoretically, complete search FSM algorithms return all fre-
quent subgraphs that are above a speci�ed minimum support threshold. However, in practice, the
available FSM solutions of complete search algorithms produce a lower number of graphs compared
to the complete set. According to the contacted authors of ParMol and gSpan Original, this happens
because of other internal thresholds and rounding e�ects de�ned in the implementation.

Table 13 shows the type of implementation of FSM algorithms, and programming language used
for implementing these solutions. For Java based solutions, we used the default Java Heap Space (1
GB) and increased it when required (up to 3.8 GB). We ran each solution three times for each support
value. The results that are reported in this report are the mean of the three executions. Some of the
solutions (gSpan Original, gSpan (Keren Zhou), ParMol) propose optional multi-threading execution.
We used single thread in our experiments.

Table 13: Frameworks characteristics

Programming Java ParMol, MoFa Original
Language
(Open Source)

C++ gSpan (Zhou, 2015), Gaston
Original v1.1, Gaston Orig-
inal RE v1.1, DMTL Origi-
nal

Binary Code - gSpan Original v.6, gSpan
Original 64-bit v.6, FSG
Original

Java
con�gurations

Java Heap
Space(JHS)

1GB (default)

Increased JHS 3.8GB
JVM 1.8.0_65-b17
IDE Eclipse Mars 4.5.1 (64bits)

Number
of Runs

3

The execution time is composed of parsing time and the time to extract frequent subgraphs. It is
worth noting that FSG Original is the only implementation which does not provide information about
parsing time. Thus, in this case, we estimated the parsing time by using an external time calculation
function (see Table 14).

16 Technical Report

For some solutions, we found only binary codes (see Table 13); they do not return information
about the memory consumption. In these cases, we tried to deduce the limit of memory consumption
by testing the lowest support threshold values that could be reached by the solution. We veri�ed that
the failure at low support values is due to a lack of memory (by resorting to a machine with 128 GB
of memory).

ParMol algorithms and MoFa Original are set by default to return only closed frequent subgraphs.
We set o� this option. Additionally, by default, ParMol is not set to parse TXT format. However, there
is a TXT parser (LineGraphParser) in the ParMol package [1]. We used it for our TXT datasets. For
ParMol implementations, we set the following arguments : graphFile (i.e., graph input), outputFile
(frequent subgraphs output), minimumFrequencies (minimum support), memoryStatistics set to true
(memory consumption) and debug set to 1 (subtasks runtime). It is worth noting that adding some
arguments (i.e., memoryStatistics argument) can change the performance of the implementations (see
Section).

MoFa Original v6.13 parses chemical datasets (e.g., SDF, SLN). Therefore, we tested it only with
3 SDF format datasets. Also, the software proceeds to a special modi�cation of edge labels (conversion
of found Kekule representations20 into aromatic bonds 21 [12]). We ran two versions of the software :
(a) with Kekule Representation conversion step and (b) without conversion.

Abbreviations of implementations will be used further in experimentation results. They are as
follows, SO : gSpan Original v.6 (2009), SO64 : gSpan-64bit Original v.6 (2009) SP : gSpan ParMol,
SK : gSpan (Keren Zhou, 2015), GO : Gaston Original v1.1, GR : Gaston Original RE v1.1, GP:
Gaston ParMol, D: DMTL Original, F : FSG Original, FF : FFSM ParMol, MFP : MoFa ParMol,
MSP : MoSS ParMol, MOa : MoFa Original with Kekule Representation Conversion, MOb : MoFa
Original without Kekule Representation Conversion and P : all ParMol implementations.

Table 14: Our Estimated Parsing Time of the FSG Algorithm

Dataset Parsing Time (sec)

HIV-CA 0.5
PTE 0.3
AID2DA99 11
CAN2DA99 8
AIDS 15
NCI145 5
NCI330 5
NCI250 52
DS3 57
DD 7
PS 13

6.1.4 Evaluation Metrics We use the three common metrics as in the literature (see Section
4.5.3): (i) the execution time, (ii) the memory consumption, and (iii) the number of returned frequent
subgraphs. The solutions will be compared between each other considering one of the three metrics.

20 Alternating between labels 1 and 2 in a chemical ring
21 relabeling edges by label 4

An updated dashboard of Complete Search FSM Implementations 17

In the following, Comp will denote the qualitative comparison between two implementations, Di�
will denote a quantitative interval corresponding to the di�erence (e.g., runtime) between two imple-
mentations at the lowest and the highest support value. The symbol ≈ will indicate that the versions
have approximately equal values. The symbol (F) will indicate that the versions have �uctuation in
performance (i.e., one version can be better than another in a run and be worse in another run).

6.2 An Intra-Algorithm Performance Study

In this section, we compare di�erent implementations of one algorithm in order to use the best imple-
mentations in a further comparison with the other algorithms. There are three algorithms with more
than one implementation, namely gSpan, Gaston and MoFa/MoSS (see Table 8). Only gSpan and Gas-
ton implementations are evaluated in this Section. MoFa/ MoSS implementations will be evaluated
with all the other algorithms (see Section 6.4).

6.2.1 gSpan Implementations We tested four implementations of gSpan: Two original implemen-
tations provided by authors of gSpan [88] (gSpan Original v.6 2009, gSpan 64-bit Original 2009) and
an third-party implementations (gSpan ParMol, gSpan (Keren Zhou, 2015)).

Table 15: Number of FS by gSpan (L strategy) - HIV-CA

Min Sup SP (L) SO/SO64 SK

4% - 6825311 -
5% 905299 905298 723603
6% 293406 293404 250518
7% 65260 65259 60183
8% 28559 28558 26304
9% 17512 17511 15945
10% 15973 15972 14486
15% 4476 4476 4152
20% 937 936 915
25% 248 248 239
30% 124 124 120
40% 60 60 56
45% 39 39 35
50% 32 32 29
60% 19 19 16

Number of Frequent Subgraphs GSpan (Keren Zhou, 2015) is able to run with only small datasets
(e.g., HIV-CA or PTE). It was not able to run with larger datasets (e.g., AID2DA99, CAN2DA99) or
dense datasets (e.g., DD). In addition, gSpan (Keren Zhou, 2015) generates signi�cantly fewer frequent
subgraphs than, the two other solutions (ParMol, Original) (see Table 15). The two versions of gSpan
Original (v.6 and 64bit v.6) generate the same number of frequent subgraphs except for the NCI330

18 Technical Report

Table 16: gSpan Original vs gSpan Original 64bit : Number of Frequent Subgraphs Comparison

Support In-
terval

Comp Di�

NCI330

5% SO = SO64 -
6%, 8% SO > SO64 15, 4
9% - 90% SO = SO64 -

The rest of datasets

SO = SO64

dataset (for 6% and 8% minimum support threshold, there is a di�erence respectively of 15 and 4
graphs, see Table 32).

Typically, gSpan ParMol (L) and gSpan Original (v.6, 64-bit v.6) generate the same number of
frequent subgraphs. Sometimes, it can produce one or two graphs in more or less than gSpan Original
(v.6, 64-bit v.6) (e.g., HIV-CA dataset, see Table 15). Additionally, in some exceptional cases, such
as for PTE dataset, with low support threshold 1.5% and 2%, gSpan Original generates 53 and 49
(respectively) more graphs than the gSpan ParMol version (see Table 17).

It is worth noting also that gSpan algorithm implemented by Original authors and in ParMol,
can compute the frequent subgraphs di�erently. For example, for NCI330 dataset with 6% MST, the
two implementations of gSpan generate 4 subgraphs with di�erent frequency22 values. However, the
frequency values are close (e.g., the frequency values for a selected frequent subgraph out of the 4 are
4990 and 5107 for SO and SP, respectively).

Memory Consumption In our experiment, we found that gSpan (Keren Zhou, 2015) required con-
siderably more memory than gSpan ParMol (see Table 18). Also, it was not able to reach the same
low support thresholds as gSpan Original v.6, due to high memory consumption (see Table 19).

For low support threshold, gSpan-64bit Original v.6 required more memory than gSpan (Keren
Zhou, 2015), and signi�cantly more than gSpan Original v.6 and gSpan ParMol. For example, gSpan
Original-64bit could run with a threshold greater or equal to 8% for the HIV-CA dataset, while gSpan
Original could run with 4% successfully (see Table 19). The lowest MST we used for this experiment
is 1.5%.

GSpan-64bit Original and gSpan (Keren Zhou, 2015) could not run with low support threshold
values (see Table 19), unlike gSpan ParMol and gSpan v.6 Original. GSpan Original v.6 is the only
implementation that could reach the lowest minimum support threshold (e.g., 4% for the HIV-CA
dataset and 1.5% for the DD dataset, see Table 19).

Runtime Our experiments show that gSpan (Keren Zhou, 2015) is the fastest algorithm for high
support threshold values (see Figures 5 & 6). However, this version could not be used in the context
of dense datasets (e.g., dataset DD) or datasets that are not small in size (number of graphs) (e.g.,

22 The frequency is the number of occurrences of the subgraph, it is the absolute value, while the support is
the relative value.

An updated dashboard of Complete Search FSM Implementations 19

Table 17: gSpan Original vs gSpan ParMol : Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di� Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Medium Datasets Large Datasets

HIV-CA AID2DA99, CAN2DA99 NCI250

5% - 20% SO > SP 1 - 1 SO = SP 2% - 90%
\{3%}

SO = SP -

30% - 90% SO = SP - AIDS 3% SO > SP 931
PTE 1.5% - 2% SO < SP 2 - 1 DS3M

1.5% - 3% SO < SP 53 - 1 3% - 90% SO = SP - 5%, 20% SO < SP 1, 1
4% - 90% SO = SP - NCI330 3% - 90%

\{5%, 20%}
SO = SP -

Dense Datasets 4%, 6% SO > SP 1142 , 15 Dense Datasets

DD 5% - 90%
\{4%,6%}

SO = SP - PS

4% - 90% SO = SP - NCI145 80% - 90% SO = SP -
2% - 90%
\{3%}

SO = SP -

3% SO < SP 1

AID2DA99, CAN2DA99). In addition, this version generated, signi�cantly fewer frequent subgraphs
than the other versions (see Table 15).

Table 18: Examples of Memory Consumption of two gSpan versions (L strategy)

Implementation Memory
(GB)

Number
of FS

1.5% (PTE)

SP (L) 1.1 721 249
SK 48 698 934

5% (HIV-CA)

SP (L) 2.01 905 299
SK 87 723 603

Table 19: Minimal Support threshold value reached by gSpan versions (L strategy)

Small Dense Medium Large

Dataset

P
T
E

H
IV

-C
A

D
D

C
A
N
2
D
A
9
9

N
C
I3
3
0

N
C
I2
5
0

Version Min Support Threshold Reached

SP 1.5% 5% 4% 2% 4% 2%
SO 1.5% 4% 1.5% 1.5% 3.5% 2%
SK 2.5% 7% - - - -
SO64 3% 8% 20% 3% 5% 4%

20 Technical Report

Fig. 5: gSpan Runtime (Low Support Threshold) - HIV-CA

Tables 20, 21 and 22 show the runtime comparison between the rest of the gSpan implementations
for datasets and support threshold intervals. The di�erence between execution times (Di�) is men-
tioned in seconds by an interval corresponding to the runtime di�erence of the lowest and the highest
support value. For example, with the minimum support value 2%, gSpan Original v.6 consumes about
241 seconds more than gSpan Original v.6 64-bit for the AID2DA99 dataset and 5 seconds more for
90% (see Table 20). Our experiments also show that gSpan-64bit Original v.6 is faster than gSpan

Fig. 6: gSpan Runtime (Low Support Threshold) - PTE

Original v.6 for all the tested datasets. However, for low support threshold values (e.g., 8% - 15% for
HIV-CA, see Table 20), it required much more memory compared to gSpan Original. For further lower
support values (e.g., < 8% for HIV-CA), it was unable to run due to high memory consumption.

Furthermore, our experiments reveal that gSpan ParMol (L) is faster than gSpan Original v.6 for
small and medium datasets (e.g., AID2DA99, see Table 21). It can be slower if the support threshold
is very low (e.g., 2% for NCI145). For low and medium support values, gSpan ParMol (L) is slower
than gSpan Original v.6 for large (e.g., NCI250) and dense (e.g., DD) datasets (see Table 21). GSpan-
64bit Original v.6 was faster than gSpan ParMol for dense and large datasets for all reached low and

An updated dashboard of Complete Search FSM Implementations 21

Table 20: gSpan Implementations Runtime Comparison (gSpan Original versions)

Support
Interval

Comp Di� (sec) Support
Interval

Comp Di�
(sec)

Support
Interval

Comp Di�
(sec)

Small Datasets Medium Datasets Large Datasets

HIV-CA AID2DA99 DS3

8% SO < SO64 4 2% - 90% SO > SO64 241 - 5 5% - 90% SO > SO64 123 - 27
9% - 15% SO ≈ SO64 - AIDS NCI250

20% - 90% SO > SO64 0.1 - 0.083 2% - 90% SO > SO64 1008 - 6.7 4% - 90% SO > SO64 200 - 24
PTE CAN2DA99 Dense Datasets

2.94% SO < SO64 4 3% - 80% SO > SO64 187 - 4.1 DD

3% - 90% SO > SO64 7 - 0.004 NCI145 20% - 30% SO ≈ SO64 1
5% - 90% SO > SO64 251 - 2.7 40% - 90% SO > SO64 2

NCI330 PS
5% - 90% SO > SO64 45 - 2.5 80% - 90% SO > SO64 3 - 0.04

medium support threshold values (see Table 22). It was slower than gSpan ParMol for medium and
small datasets and low support threshold values except for the NCI330 dataset. It had a competitive
performance compared to gSpan ParMol for high support threshold values.

Summary

� Of all gSpan solutions, gSpan Original v.6 is the most e�cient one in terms of memory consumption
for very low support threshold values. GSpan ParMol failed to achieve the search for some low

Table 21: gSpan Implementations Runtime Comparison (gSpan ParMol vs. gSpan Original)

Support
Interval

Comp Di� (sec) Support
Interval

Comp Di� (sec)

Small Datasets Medium Datasets

HIV-CA AID2DA99

5% SO < SP 109 1.5% - 90% SO > SP 850 - 3.4
6% - 10% SO > SP 91 - 2.4 AIDS

15% SO ≈ SP - 1.5% - 90% SO > SP 4636 - 4
20% - 80% SO < SP 0.4 - 0.27 CAN2DA99

PTE 2% - 80% SO > SP 837 - 2.54
1.5% - 7% SO > SP 321 - 0.08 NCI145

8% - 90% SO < SP 0.23 - 0.34 2% SO < SP 169
Large Datasets 3% - 90% SO > SP 1558 - 1.8

NCI250 NCI330

2% - 70% SO < SP 2089 - 1.5 4% - 5% SO < SP 292 - 16
80% - 90% SO > SP 3 - 5 6% - 90% SO > SP 6.6 - 1.5

Dense Datasets Dense Datasets

DD PS

4% - 90% SO < SP 5882 - 11 80% SO > SP 13
90% SO < SP 0.7

22 Technical Report

Table 22: gSpan Implementations Runtime Comparison (gSpan ParMol vs. gSpan Original 64bit)

Support
Interval

Comp Di� (sec) Support
Interval

Comp Di� (sec) Support
Interval

Comp Di� (sec)

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99 NCI145

8% - 10% SO64 > SP 8 - 2 2% SO64 > SP 90 5% - 9% SO64 > SP 125 - 13
15% SO64 ≈ SP - 3% - 4% SO64 (F) SP 16/38 - 1 10% - 50% SO64 (F) SP 9 - 0.4
20% - 90% SO64 < SP 0.5 - 0.35 5% - 9% SO64 < SP 25 - 4 60% - 90% SO64 < SP 0.03 - 0.9

PTE 10% - 90% SO64 (F) SP 4 - 1.5 NCI330

3% - 4% SO64 > SP 6 - 1.45 AIDS 5% - 8% SO64 < SP 61 - 5.5
5% - 6% SO64 ≈ SP - 2% - 60% SO64 > SP 712 - 0.1 9% - 60% SO64 > SP 1.25 - 0.3
7% - 90% SO64 < SP 0.3 - 0.34 70% SO64 ≈ SP - 70% - 90% SO64 < SP 0.4 - 1

Dense Datasets 80% - 90% SO64 < SP 3 - 2.1 Large Datasets

DD CAN2DA99 NCI250

20% - 90% SO64 < SP 64 - 14 3% - 5% SO64 > SP 43 - 6 4% - 90% SO64 < SP 1020 - 18
PS 6% - 40% SO64 (F) SP 6 - 0.7

80% SO64 > SP 10 60% - 80% SO64 < SP 0.34 - 1.5
90% SO64 < SP 0.8

threshold values (e.g., HIV-CA 4%) and gSpan-64bit Original failed earlier (e.g., HIV-CA 8%).
The failures are mainly due to memory consumption. However, gSpan Original v.6 was able to
complete the execution successfully (e.g., HIV-CA 4%).

� GSpan-64bit Original v.6 can be used in a context where support threshold values are not low and
the required execution time is critical.

� Instead of gSpan Original v.6, the open source implementation gSpan ParMol can be used for
better runtime performance if the dataset is small or medium, not dense, and the support values
are not too low.

6.2.2 Gaston Implementations There are three implementations of Gaston: two (Gaston Original
v1.1, RE v1.1) are from original authors [64] and the other one (Gaston ParMol) is from a third-party
implementer [83]. The implementations are written in two di�erent programming languages (see Table
13). It is worth noting that according to [64,66], Gaston Original v1.1 is much faster and requires much
more main memory than Gaston Original RE v1.1 due to the use of di�erent structures for counting
the occurrences of a graph.

Number of Frequent Subgraphs In general, Gaston Original versions (v1.1, RE v1.1) generate
the same number of frequent subgraphs. However, there could be some exceptions such as the ones
we found for the DD (under 20%) and PS (under 80%) datasets. For example, for the 2% MST of
DD dataset, Gaston Original v1.1 produced 1359 frequent subgraphs more than Gaston v1.1 RE (see
Table 23).

Gaston Original (v1.1, RE v1.1) (H) and Gaston ParMol produced a di�erent number of frequent
subgraphs. This is shown in Table 27 where Di� denotes the di�erence, in terms of frequent subgraphs,
produced by the two implementations for the lowest and the highest support values.

An updated dashboard of Complete Search FSM Implementations 23

Table 23: Gaston Original vs Gaston Original RE : Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di�

Dense Datasets

DD

2% - 20% GO > GR 1359 - 4
30% - 90% GO = GR -

PS

60% - 80% GO > GR 17013 - 45
90% GO = GR -

Rest of Datasets

GO = GR

Unlike Gaston ParMol, Gaston Original versions (v1.1, RE v1.1) do not include frequent subgraphs
with single vertex (0 edges). With PTE dataset, for 1.5% MST, Gaston Original versions (v1.1, RE
v1.1) (H) generated, 57 946 frequent cyclic graphs, 282 724 frequent trees and 2268 frequent paths.
Gaston ParMol generated 57 951 frequent cyclic graphs, 284 294 frequent trees and 2234 frequent paths.
The di�erence in the number of frequent subgraphs between Gaston ParMol and Gaston Original (v1.1,
RE v1.1) needs to be explained by the authors.

Memory Consumption Typically, Gaston ParMol consumed more memory for all datasets and
produced di�erent numbers of frequent subgraphs compared to Gaston Original versions (see Table
25, Figure 8). However, for relatively high values of support threshold and small datasets (e.g., above
6% MST for PTE, and 20% MST for HIV-CA), Gaston ParMol required fewer memory than Gaston
Original versions (see Figure 7).

Gaston Original RE v1.1 was proposed by Nijssen et al. in order to reduce the memory consumption
of Gaston Original v1.1. We found that Gaston Original RE, when it is able to run, had in fact a linear

Table 24: Gaston Implementations: Number of Frequent Subgraphs Comparison (Gaston ParMol vs Gaston
Original) - (L/H strategy)

Support In-
terval

Comp Di� Support In-
terval

Comp Di� Support In-
terval

Comp Di�

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99/CAN2DA9923 NCI330

6% - 7% GP < GO 32 - 34 2% - 90% GP > GO 10 - 3 4% - 90% GP > GO 90 - 1
8% - 90% GP > GO 8 - 3 AIDS Large Datasets

PTE 2% GP < GO 5 NCI250

1.47% - 2.94% GP < GO 4324 - 10 3% - 90% GP > GO 8 - 2 60% - 90% GP > GO 3 - 1
3% GP = GO - NCI145 Dense Datasets

4% - 90% GP > GO 16 - 1 2% - 90% GP > GO 1443 - 1 DD
6% - 90% GP > GO 4 - 18 4% - 5% GP < GO 49 - 21

PS
80% - 90% GP > GO 7399 - 8

24 Technical Report

Fig. 7: Memory Consumption of Gaston - PTE

memory consumption lower than Gaston Original (see Figures 7 and 8) for all the tested datasets
except for the dense DD and PS datasets.

However, for very low support threshold values (e.g., 3% for NCI330, 6% for HIV-CA) or for
relatively large datasets (e.g., DS3, NCI250), Gaston Original RE produced an exception and hence
the operation was terminated. For the same cases, Gaston Original completed successfully (see Table
26).

Fig. 8: Memory Consumption of Gaston Original versions - AID2DA99

Runtime The results show that for all used datasets, the runtime performance of Gaston Original
v1.1 was the best among all Gaston versions. Gaston Original RE v1.1 required less memory than
Gaston Original v1.1, as a trade-o�, it was slower (see Figure 9). For the dense DD and PI datasets,
Gaston Original RE required more time and memory than Gaston Original with a di�erent number of
frequent subgraphs.

Summary

� Gaston ParMol consumed the highest amount of memory amongst all Gaston versions (except for
small datasets and high support values), yet it is the slowest solution (e.g., for AID2DA99 dataset,

An updated dashboard of Complete Search FSM Implementations 25

Fig. 9: Gaston Runtime - AID2DA99

see Figure 9) and it produced a number of frequent subgraphs di�erent from what Gaston Original
versions produced.

� Gaston Original RE v1.1 can be used to save the memory (despite the consumed time) for the
following cases: (a) support threshold values not too low (e.g., above 6% MST for HIV-CA) and
(b) datasets that are not large (e.g., smaller than DS3, NCI250) and not dense (e.g., less than DD).
If neither (a) nor (b) are veri�ed, then (c) the provided RAM memory should be large enough to
handle the mining task. If none of the cases (a) and (b), or (c) are true, then Gaston Original v1.1
has to be used.

� Gaston Original v1.1 should be used for applications where runtime is critical.

6.3 Comparison with the State of the Art

In this section, we compare our results regarding the six algorithms with the results we found in
state of the art. The comparison shows the similarities and di�erences between the results. According

Table 25: Examples of Memory Consumption and Number of Frequent Subgraphs of Gaston versions

Implementation Memory
(MB)

Number
of FS

3% (PTE)

GO (H) 7 18 121
GR (H) 4 18 121
GP 25 18 121

2% (AID2DA99)

GO (H) 554.916 25 197
GR (H) 56.300 25 197
GP 1729.857 25 206

5% (DD)

GO (H) 251812 795623
GR (H) 50964 795717
GP 876978 795696

26 Technical Report

to our understanding, di�erences might occured due to di�erent machine characteristics and di�erent
implementation releases (e.g., gSpan v.5, gSpan v.6). It is worth noting that we eliminated some graphs
from the datasets AID2DA99 and CAN2DA99. Therefore, our versions of these datasets contain slightly
fewer number of graphs (7 and 4 graphs, respectively) than the ones tested in state of the art; we believe
this could have an impact on the outcome and so on results.

Fig. 10: Comparison of our Runtime (Left) with the Literature [22�24] (Right) - gSpan ParMol
(AID2DA99)

6.3.1 GSpan Comparison Our experiment with gSpan Original v.6 (2009) generated a number of
frequent subgraphs that is di�erent (superior) from the result found in [47,64,66] for the datasets PTE
and HIV-CA (see Table 27). However, the same result was produced by gSpan Original reported in [8]
for the DS3 dataset and the result found in [89] is approximately24 the same for the dataset HIV-CA.

24 The results are given in a graphical form, we could not deduce a more precise conclusion

Table 26: Limits of Memory Consumption (KB) of Gaston versions for low support threshold

Version/
Dataset

GO (L) GR (L) GP

Min Sup 4% 6% 7% 6%

HIV-CA 15456 Segmentation
Fault

3956 183400

Min Sup 1% 3% 3.5% 4%

NCI330 238512 Segmentation
Fault

46072 676437

Min Sup 2% 90% 60%

NCI250 2759732 Segmentation Fault 2557084
Min Sup 2% 90% 50%

DS3M 3067400 Segmentation Fault Out Of
Memory

Min Sup 1% 1.5% 2% 3.5%

DD 66944 Killed 2744180 2114479

An updated dashboard of Complete Search FSM Implementations 27

Table 27: Number of Frequent Subgraphs in our Experiment and Nijssen
et al. Experiment [64,66] - gSpan - PTE

Our experiments Nijssen
et al.

Min Sup SP (L) SP (H) SO SK SO
(L/H)

2% (6.7) 344513 136981 344464 338284 136949

3% (10.2) 22786 18146 22785 22200 22758

4% (13.59) 8776 5955 8776 8706 5935

5% (17.0) 3627 3627 3627 3607 3608

6% (20.4) 2343 2138 2343 2326 2326

7% (23.8) 1861 1786 1861 1845 1770

8% (27.19) 1339 1240 1339 1323 1323

9% (30.6) 1065 993 1065 1049 977

10% (34.0) 860 860 860 844 844

20% (68.0) 199 199 199 190 190

30%
(102.00001)

75 75 75 68 68

Considering the runtime performance, gSpan Original v.6 (2009) was slightly slower than gSpan
Original - reported in [8, 47, 64, 66] for PTE, HIV-CA and DS3 datasets. The result reported in [89]
for HIV-CA dataset was approximately similar to ours. According to our understanding, the di�erence
regarding runtime could be due to di�erent machine characteristics and to the number of generated
frequent subgraphs.

Regarding the impact of the di�erences between the gSpan versions (2002-2009), Xifeng Yan - the
author of gSpan Original explained the following: �They are the same, except the new one supports
more labels and it is running on a 64 bit system�... �The new version supports multi-threads, and more
labels. Therefore, it consumes more memory (50%-100%)...�

Our experiment with gSpan ParMol for PTE dataset produced the same number of frequent sub-
graphs as in [22]. For AID2DA99 dataset, our result was considerably faster (see Figure 10), consumed
slightly more memory (see Figure 11) and produced approximately the same number of duplicates (see

Fig. 11: Comparison of our Memory Consumption (Left) with the Literature [23] (Right)
- gSpan ParMol (AID2DA99)

28 Technical Report

Figure 12) compared to gSpan ParMol result found in [22�24]. The di�erence in runtime could not
be completely understood. Although, initially we assumed that the runtime performance is di�erent
due to di�erent machine speci�cation. However, we found that even using a machine with the same
resource speci�cation did not alleviate this di�erence.

Concerning the di�erent versions of ParMol, Thorsten Meinl, one of the authors of ParMol, stated
the following: �We released several versions ... the changes had only minor e�ects on runtime and
memory consumptions since those are mostly determined by the algorithm and not by the implementa-
tion�.

6.3.2 Gaston Comparison Gaston Original: In our experiment, Gaston Original (v1.1, RE v1.1)
generated the same number of frequent subgraphs as in [47, 64] (for PTE and HIV-CA respectively).
It generated a fewer (one less) number of frequent subgraphs than the result in [8] (for 30% MST, DS3
dataset).

Table 28: Gaston Memory Consumption (MB): Comparison
with the Literature [64,66] - PTE

Our experiments Nijssen et
al.

Min
Sup

GO
(L)

GO
(H)

GR
(L)

GR
(H)

GO
(L/H)

GR
(L/H)

2% 38.786 10.421 5.669 5.096 9.1 1.5

3% 7.158 7.062 4.688 4.618 4.4 1.3

4% 6.588 6.354 4.518 4.518 3.4 1.3

5% 5.946 5.946 4.518 4.518 3.0 1.3

6% 5.688 5.598 4.558 4.520 2.7 1.3

7% 5.237 5.088 4.516 4.576 2.1 1.3

8% 5.042 4.945 4.552 4.510 1.9 1.3

Gaston Original (v1.1, RE v1.1) consumed more memory than the version found in [64, 66] (PTE
dataset, see Table 28). Its runtime performance was better than the result in [64, 66] (PTE dataset,

Fig. 12: Comparison of our Number of Duplicates (Left) with the Literature [22�24]
(Right) - gSpan ParMol (AID2DA99)

An updated dashboard of Complete Search FSM Implementations 29

see Table 29) and in [47] (HIV-CA dataset). However, Gaston Original v1.1 has competitive runtime
as in [8] (for the DS3 dataset).

It is worth noting that we used di�erent resource speci�cation including a more powerful processor25

than the one used in [64,66] and di�erent from the ones used in [8, 47].

Table 29: Gaston Runtime: Comparison with the Literature [64,66] - PTE

Our experiments Nijssen et
al.

Min
Sup

GO (L) GO
(H)

GR (L) GR
(H)

GO
(L/H)

GR
(L/H)

2% 6.6275 2.2836 24.0183 9.9545 7.9 39.6

3% 0.4545 0.3635 2.0841 1.6018 1.7 8.5

4% 0.1932 0.1509 0.8405 0.6583 0.6 2.7

5% 0.0959 0.0959 0.3836 0.3836 0.4 1.6

6% 0.0684 0.0599 0.2463 0.2258 0.3 1.0

7% 0.0529 0.0501 0.1915 0.1797 0.3 0.8

8% 0.0426 0.0415 0.1432 0.1213 0.2 0.6

Gaston ParMol: Gaston ParMol generated a number of frequent subgraphs which is di�erent from
the number reported in [22] (for AID2DA99, see Table 30).

Table 30: Number of Frequent Subgraphs - Gaston : Comparison
with the Literature - AID2DA99

Our experiments Gago-Alonso et al.

[22]

Min Sup GP GP

3% 18121 18146
4% 5951 5955
5% 3625 3627
30% 75 75
40% 62 62
50% 37 37

According to our results, Gaston ParMol was faster than the one tested in [22�24] (AID2DA99
and PTE datasets, see Figure 14). However, it consumed slightly lesser memory than the one reported
in [23] (AID2DA99 dataset, see Figure 14).

6.3.3 FSG Comparison In our experiment, FSG Original v1.37 generated di�erent number of fre-
quent subgraphs compared to the version tested by Kuramochi et al. [49] for some threshold values (e.g.
2%, 7.5% for PTE, see Table 34). However, the experiments reported in [8, 47, 62] produced the same
number of subgraphs as in our experiments (for PTE, HIV-CA and DS3 datasets, respectively). The

25 Nijssen et al. used a single processor of a 2GHz Pentium, see Table 12 for our processor characteristics

30 Technical Report

Fig. 13: Gaston Runtime: Comparison with the Literature - PTE

runtime performance in our experiments with FSG Original was close to the performance26 reported
in [8, 47] (for HIV-CA and DS3 datasets, respectively).

However, it showed a better performance (i.e., two or three times) than the FSG evaluated27 in [62]
(for PTE dataset, see Table 32).

FSG had considerably better runtime (up to 50 times less) than the one reported in [38, 89] (for
PTE and HIV-CA datasets, respectively). It is worth noting that we used a more powerful processor
than the ones used in [38, 89]. However, the di�erence in FSG results cannot be only related to the
processor. In fact, gSpan in our experiments did not have such a huge di�erence, with the the same
literature results (less than 2 times slower [38,89]). We relate the di�erence of the FSG results to FSG
version evolution. Since our experiments rely on binary release of FSG, we could not compare memory
consumption with state of the art.

26 It is worth noting that the processor of [47] and [8] are di�erent from our
27 It is worth noting that our processor was more powerful than in [62]

Fig. 14: Gaston Memory Consumption (GB): Comparison with the Literature - AID2DA99

An updated dashboard of Complete Search FSM Implementations 31

Table 31: Number of Frequent Subgraphs - FSG : Comparison
with the Literature - PTE

Min
Sup

Our
experiments

Kuramochi
et al. [49]

F F

2% 136949 136927

3% 22758 22758
4% 5935 5935
5% 3608 3608
6% 2326 2326
7% 1770 1770
7.5% 1459 1590

8% 1323 1323
9% 977 977
10% 844 844

6.3.4 DMTL Comparison We found only one available real dataset tested with DMTL in the
literature (the dense dataset PI [7]). In [7], the basic version of DMTL crashes within few minutes with
a 2 GB of RAM. We left DMTL running for days, it did not complete. We then aborted the execution.

6.3.5 FFSM Comparison The comparison of our results with the ones found in the literature [22]
shows that the number of duplicates generated by FFSM ParMol is the same for the PTE dataset and
a slightly more for the AID2DA99 dataset. This raises a question - if we have less graphs and labels in
our modi�ed28 AID2DA99 dataset than the one in [22], what makes the number of found duplicates
in our result more than the one in [22].

28 This is due to eliminated graphs with parsing errors, see Section 6.1.1

Table 32: FSG Runtime: Comparison with the Literature [62] - PTE

Min
Sup

Our
experiments

Nijssen et
al.

F(L/H) F(L/H)

2% 128.5333 307.4
3% 18 43.9
4% 4.4 11.0
5% 2.5 6.3
6% 1.6 4.0
7% 1.2 2.9
8% 0.9 2.4
9% 0.7 1.8
10% 0.6 1.6
20% 0.2 0.6
30% 0.1 0.3

32 Technical Report

Fig. 15: Comparison of our Runtime (Left) with the Literature [38]
(Right) - FSG Original - PTE

The number of frequent subgraphs is reported only in a graphical form in the literature [74].
Therefore, it was not possible to make a precise conclusion.

Our experiment result show that FFSM ParMol was considerably faster29 than the result reported
in [22] for the PTE dataset with the same number of duplicates. We found competitive runtime with
the result reported in [74] with approximately the same number of frequent subgraphs (graphical
estimation). However, since no information about the system speci�cation was provided in [74], this
makes the conclusion of runtime closeness useless.

No information was reported about FFSM ParMol memory consumption in the literature.

Fig. 16: Comparison of our Runtime (Left) with the Literature [22] (Right) - FFSM ParMol - PTE

6.3.6 MoFa Comparison We were unable to compare our experiment results of MoFa ParMol
with the ones found in the literature. The reasons are: (i) unavailability of the dataset reported in [83],
(ii) lack of su�cient details about the experiment (no information about machine characteristics was
provided in [74]), and (iii) the ambiguity about the used implementation (MoFa or MoSS) [22].

29 The processing power of our resource is better than the one in [22] (Intel Core 2 Duo 2.2 GHz processor)

An updated dashboard of Complete Search FSM Implementations 33

Also, we were not able to compare our results regarding MoFa Original with state of the art
mainly, because of the unavailability of HIV-CM dataset and the lack of e�ciency results30 in state of
the art [12].

6.4 An Inter-Algorithms Performance Study

In this section, we compare the performance between di�erent algorithms implementations. It is im-
portant to note that some algorithms were tested with the (H) strategy and some with the (L) strategy
(see Table 11). We considered the used strategy in our comparative study. In this report, we report
part of the result (e.g., for one dataset) found through our experiments. Additionnally, we present
a summarized comparison between some competitive implementations for all datasets and support
threshold values. It is worth noting that all conclusions in this report are based on all experimental
results31 and not only about the some results shown in this report.

6.4.1 Number of Frequent Subgraphs The Gaston ParMol generated a number of frequent
subgraphs which is di�erent from the other implementations, for the low support threshold values (e.g.,
PTE dataset, see Table 33 and for all datasets, see Table 34). GSpan (Keren Zhou, 2015) produced
a number of frequent subgraphs considerably di�erent from gSpan versions (as mentioned in section
6.2.1). It was also di�erent from Gaston Original for low and medium support threshold values (see
Table 35).

Table 33: Number of Frequent Subgraphs by FSM algorithms - (H strategy) - PTE

Min
Sup

SP
(H)

GP
(H)

GO
(H)

F FF
(H)

D (H) MFP
(H)

MSP
(H)

2% 136981 136513 136949 136949 136981 136949 136981 -
4% 5955 5951 5935 5935 5955 5935 5955 -
5% 3627 3625 3608 3608 3627 3608 3627 -
7% 1786 1786 1770 1770 1786 1770 1786 654
9% 993 993 977 977 993 977 993 464
10% 860 860 844 844 860 844 860 390
20% 199 199 190 190 199 190 199 120
25% 126 126 117 117 126 117 126 76
40% 62 62 58 58 62 58 62 36
50% 37 37 34 58 37 34 37 26

Three ParMol implementations (gSpan, FFSM, MoFa) produced the same number of frequent
subgraphs for all tested datasets (e.g., PTE, see Table 33). Since the number of subgraphs produced
by gSpan ParMol and gSpan Original v.6 were almost the same (1 or 2 more or less, see Table 36), we
conclude that ParMol (gSpan, FFSM, MoFa) and gSpan Original v.6 produce almost the same number
of frequent subgraphs (with a few exceptions).

Typically, the Gaston Original versions and FSG produced the same number of frequent subgraphs,
with some exceptions. For example, for DD dataset under 20% MST there is a di�erence between

30 Experiments were mainly focusing on the quality of results [12]
31 For all results, see https://liris.cnrs.fr/rihab.ayed/DFSM.pdf

34 Technical Report

Table 34: Gaston ParMol vs gSpan ParMol: Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di� Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99 NCI145

5% - 7% GP < SP 151 - 42 2% GP > SP 1 2% - 7%
\{3%}

GP > SP 1435 - 1

8% - 90% GP = SP - 3% - 90% GP = SP - 3% GP < SP 365
PTE CAN2DA99 8% - 90% GP = SP -

1.5% - 5% GP < SP 1575 - 2 2% - 3% GP > SP 2 - 1 Large Datasets

6% - 90% GP = SP - 4% - 90% GP = SP - NCI250

Dense Datasets AIDS 50% - 90% GP = SP -
DD 2% GP < SP 15 DS3M

4% - 90% GP = SP - 3% - 90% GP = SP - 50% - 90% GP = SP -
PS NCI330

80% - 90% GP = SP - 4% - 7% GP > SP 84 - 1
8% - 90% GP = SP -

Gaston Original v1.1, v1.1 RE and FSG Original. Also, for AIDS dataset with 2% MST and NCI330
dataset with 7% MST, we observed a di�erence between Gaston Original v1.1 and FSG (see Table
37). Noticeably, Gaston Original and FSG Original compute di�erently the frequency of subgraphs.
For example, for AIDS with 2% MST, the two implementations generated 27 frequent subgraphs - out
of 17 694 - that are the same but with di�erent frequency values (e.g., one frequent subgraph out of
27 has a frequency by GO equal to 13558 and by F equal to 13553).

DMTL produced signi�cantly a fewer number of frequent subgraphs than the others for the NCI330
and NCI145 datasets. For the other datasets, it produced the same number as Gaston Original versions
(see Table 38).

The number of subgraphs produced by Gaston Original group is generally di�erent from gSpan
Original, MoFa Original (b) and the ParMol (gSpan, FFSM, MoFa). Table 39 shows this di�erence.

This di�erence could be partially justi�ed for some support threshold values due to the fact that
Gaston Original does not include frequent subgraphs with one vertex, unlike gSpan Original (e.g.,
[3%, 50%] for PTE). However, other di�erences (e.g., 1.5% for PTE) cannot be rationalized by the
same fact. In fact, for some cases, Gaston Original produced more frequent subgraphs than gSpan

Table 35: gSpan (Keren Zhou, 2015) vs Gaston Original : Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di�

Small Datasets

HIV-CA

5% - 20% SK < GO 181687 - 17
30% - 60% SK = GO -

PTE

1.5% - 5% SK < GO 22279 - 1
6% - 50% SK = GO -

An updated dashboard of Complete Search FSM Implementations 35

Table 36: Number of Frequent Subgraphs by FSM algorithms - (L strategy) - PTE

Min
Sup

SP (L) SO SK GO (L) F D (L)

1.5% 721249 721196 698934 721213 721213 -
3% 22786 22785 22200 22758 22758 22758
5% 3627 3627 3607 3608 3608 3608
6% 2343 2343 2326 2326 2326 2326
8% 1339 1339 1323 1323 1323 1323
10% 860 860 844 844 844 844
15% 437 437 424 424 424 424
20% 199 199 190 190 190 190
25% 126 126 117 117 117 117
30% 75 75 68 68 68 68
40% 62 62 58 58 58 58
50% 37 37 34 34 58 34

Table 37: FSG Original vs Gaston Original/DMTL : Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di� Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Dense Datasets Large Datasets

HIV-CA, PTE DD NCI250

F = GO 7% - 9% F < GO 24 - 8 2% F < GO 1
Medium Datasets 30% - 90% F = GO - 3% - 90% F = GO -

AID2DA99, CAN2DA99, NCI330, NCI145 PS DS3M

F = GO 80% - 90% F < GO 1733033
- 7415

1% - 2% F < GO 16 - 1

AIDS 4% - 90% F = GO -
1.5% - 2% F > GO 1 - 1
3% - 90% F = GO -

Table 38: DMTL Original vs Gaston Original/FSG Original: Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di� Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99 NCI145

5% - 80% D = GO - 40% - 90% D = GO - 2% - 80% D < GO 449691 - 4
PTE CAN2DA99 90% D = GO -

1.5% -
90%

D = GO - 20% - 90% D = GO - NCI330

Dense Datasets AIDS 4% - 60% D < GO 49081 - 1
DD 80% - 90% D = GO - 70% - 90% D = GO -

3% - 30% D < GO 274 - 1 Dense Datasets
40% - 90% D= GO - PS

70% - 90% D = F -

36 Technical Report

Original. It is also worth noting that the two implementations can compute di�erently the frequency
of subgraphs. For example, for AIDS with 10% MST, they produced 16 frequent subgraphs - out of
510 - that have di�erent frequency values (e.g., 21 759 and 21 761 are the frequency for one graph out
of the 16 by SO and GO, respectively).

Table 39: Gaston Original vs gSpan Original: Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Dense Datasets

HIV-CA DD

4% - 80% SO > GO 8 - 3 2% - 5% SO < GO 1434 - 21
PTE 6% - 90% SO > GO 4 - 18

1.5% - 2% SO < GO 17 - 15 2% SO < GR 75
3% - 90% SO > GO 27 - 1 3% - 90% SO > GR 133 - 18

Medium Datasets PS

AID2DA99/CAN2DA99/AIDS/NCI14532 60% SO < GO 25814977
2% - 90% SO > GO 9 - 3 70% SO > GO 176572

NCI330 80% SO < GO 7399
3% - 90% SO > GO 8 - 1 90% SO > GO 8

Large Datasets 60% SO < GR 25797964
NCI250/DS3/DS3M 70% SO > GR 176572

2% - 90% SO > GO 8 - 1 80% SO < GR 7354
90% SO > GR 8

The MoSS ParMol produced a number of frequent subgraphs which is considerably di�erent from
all implementations for PTE (see Table 36), PS and HIV-CA datasets (see Table 40).

Table 40: MoSS ParMol vs MoFa ParMol : Number of Frequent Subgraphs Comparison

Support
Interval

Comp Di� Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99 NCI330

8% - 90% MSP < MFP 23525 - 1 20% - 90% MSP = MFP - 20% - 90% MSP = MFP -
PTE CAN2DA99 Large Datasets

7% - 50% MSP < MFP 1132 - 11 20% - 80% MSP = MFP - NCI250

70% - 90% MSP = MFP - AIDS 70% - 90% MSP = MFP -
Dense Datasets 10% - 90% MSP = MFP - DS3M

DD NCI145 80% - 90% MSP = MFP -
10% - 90% MSP = MFP - 20% - 90% MSP = MFP -

PS
90% MSP < MFP 8

An updated dashboard of Complete Search FSM Implementations 37

MoFa Original with case b (MOb) produced the same number of frequent subgraphs as MoFa Par-
Mol for the 3 SDF used datasets (e.g., AID2DA99, see Table 41). However, MoFa Original with case a
(MOa) produced signi�cantly di�erent number of frequent subgraphs. This is due to the edge relabeling
strategy of chemical aromatic bonds [12]. According to our results, the 13 FSM implementations can

Table 41: Number of Frequent Subgraphs by MoFa Implementations
- (H strategy) - AID2DA99

Min Sup MFP MSP MOa MOb

2% 25205 - 9741 25205
3% 11531 - 4395 11531
4% 6670 - 2566 6670
5% 4442 - 1763 4442
6% 3162 - 1224 3162
8% 1869 - 695 1869
9% 1484 - 590 1484
10% 1185 - 484 1185
20% 326 326 146 326
30% 133 133 75 133
40% 71 71 37 71
50% 45 45 33 45
70% 19 19 11 19
90% 3 3 2 3

be classi�ed according to their similarity in the number of frequent subgraphs (see Figure 17). This
classi�cation is critical for unbiased comparison analysis of runtime and memory consumption.

We found in state of the art that gSpan, Gaston, FFSM and FSG original implementations produced
the same number of frequent subgraphs (reported in [47,64,66]). Additionally, ParMol implementations
(gSpan, Gaston, FFSM, MoFa) produced the same number of frequent subgraphs (reported in [22�24]).
However, in [8], Gaston, FSG and gSpan original versions generate di�erent33 number of frequent
subgraphs. In our experiments, we found di�erent number of subgraphs (see Figure 17).

6.4.2 Runtime Our experiment shows that DMTL Original was signi�cantly slower than all the
other implementation for the same number of frequent subgraphs. Among all, for all the used datasets
(e.g., PTE, see Figure 18), Gaston Original v1.1 performed the best regarding runtime and Gaston
Original RE the second.

GSpan Original may require a signi�cant runtime for parsing a dataset (e.g., for DS3 dataset, it
consumed 28 seconds), while Gaston is faster in parsing (e.g., for DS3 dataset, less than 0.2 seconds).
Furthermore, gSpan is slower than Gaston for extracting frequent subgraphs.

We observed a competitive performance between gSpan versions, FFSM ParMol and FSG Original
in terms of runtime (see Figures 19, 20). Thus, these three FSM algorithms are investigated futher.
We conducted the following comparison: (i) FSG Original with gSpan versions and (ii) FFSM ParMol
with gSpan versions.

33 Authors tried to explain this di�erence for their tests [9] (French paper)

38 Technical Report

Fig. 17: Classi�cation of FSM Implementation by the Number of Frequent Subgraphs

We compared FSG Original with the fastest versions of gSpan (gSpan ParMol or gSpan Original).
Table 42 displays the results for all the datasets.

The FSG Original is faster than gSpan versions for low support threshold and medium or large
datasets. For small datasets, it is slower than gSpan versions for low support threshold and slightly
faster or close to gSpan versions for high support threshold. For dense datasets, it is slower than gSpan
versions. It is worth noting that the number of subgraphs produced by FSG was less than the result
produced by gSpan versions (see Table 43).

Table 44 shows a runtime comparison between FFSM ParMol and gSpan ParMol. In Table 44, 'F'
stands for Fluctuation. FFSM ParMol was slower than gSpan ParMol for medium (e.g., 10%) and high
support threshold values (e.g., 50%) for medium sized datasets. For low support threshold, it could be
slower or faster depending on the dataset (e.g., AID2DA99, AIDS).

Fig. 18: FSM Algorithms Runtime (PTE) - (H strategy)

An updated dashboard of Complete Search FSM Implementations 39

Table 42: FSG Original vs. gSpan versions (L/H strategy): Runtime Comparison

Support
Interval

Comp Di� (sec) Support
Interval

Comp Di� (sec)

Small Datasets Medium Datasets

HIV-CA AID2DA99

5% - 15% F > SP 256 - 0.4 1.5% - 5% F < SP 510 - 24
20% - 80% F ≈ SP 0.1 6% - 90% F > SP 14 - 7

PTE CAN2DA99

1.5% - 3% F > SP 526 - 3.3 2% - 6% F < SP 398 - 16
4% - 60% F < SP 1 - 0.1 7% - 80% F > SP 15 - 4.5

Large Datasets AIDS

NCI250 1.5% - 4% F < SP 3239 - 12.5
2% - 20% F < SO 4371 - 1 5% - 90% F > SP 2.6 - 10
30% - 90% F > SO 1.4 - 18 NCI145

Dense Datasets 2% - 6% F < SP 5263 - 8
DD 7% - 90% F > SP 22 - 4

7% - 90% F > SO 14234 - 6 NCI330

PS 4% - 90% F > SP 85 - 3
80% - 90% F > SO 0.5 - 12.9

Table 43: FSG Original vs. gSpan versions (L strategy): Number of Frequent Subgraphs

Support
Interval

Comp Di� Support
Interval

Comp Di�

Small Datasets Medium Datasets

HIV-CA AID2DA99

5% - 90% F < SP 9 - 2 1.5% - 90% F < SP 8 - 1
PTE CAN2DA99

1.5% - 90% F < SP 36 - 1 2% - 80% F < SP 8 - 3
Large Datasets AIDS

NCI250 1.5% - 90% F < SP 9 - 2
2% - 90% F < SO 8 - 1 NCI330

Dense Datasets 4% - 90% F < SP 6 - 1
DD NCI145

7% - 90% F < SO 20 - 18 2% - 90% F < SP 8 - 1
PS

80% - 90% F < SO 16 - 13

40 Technical Report

Fig. 19: FSM Algorithms Runtime (PTE) - (L strategy)

FFSM ParMol was faster than gSpan ParMol for dense datasets (see Table 44). However, for large
datasets FFSM ParMol was slower. For small datasets, it was slightly faster or almost equal to gSpan
ParMol except for very low support threshold values where it could be slower (e.g., 5% for HIV-CA,
Table 44).

Our results show that MoFa ParMol was the slowest among gSpan, FFSM and Gaston ParMol,
for all the tested datasets (see Figure 20). Also, we found that MoSS ParMol was the slowest among
ParMol implementations (see Figure 20). The number of subgraphs produced by MoSS ParMol can
be considerably fewer than all the other implementations (e.g., about the half, see Table 39). MoFa
Original (b) was the fastest implementation amongst all ParMol implementations for the two medium
datasets AID2DA99 and CAN2DA99. Also, we observed that it had close runtime to the one reported
for Gaston Original v1.1 with low support threshold values (see Figure 20). However, for the large
dataset NCI250, it was slower than ParMol implementations (gSpan, Gaston, MoFa) with the high
reached support values (90%).

6.4.3 Memory Consumption For low support threshold values, gSpan (Zhou, 2015) consumed
the highest amount of memory among all implementations (see Figure 21). For any support threshold
value, the largest memory was consumed by DMTL implementation (see Figures 21 and 22).

For further comparison, we considered the implementations that were found to be competitive (see
Figure 21). This is the case for gSpan ParMol, Gaston Original versions and FFSM ParMol. We ignored
Gaston ParMol because of substantial di�erence that was observed regarding frequent subgraphs (see
Figure 17).

An updated dashboard of Complete Search FSM Implementations 41

Table 44: gSpan versions vs. FFSM ParMol (L strategy): Runtime Comparison

Support
Interval

Comp Di� (sec) Support
Interval

Comp Di� (sec)

Small Datasets Medium Datasets

HIV-CA AID2DA99

5% FF > SP 756 2% FF (F) SP -
6% - 50% FF < SP 13.7 - 0.06 3% - 8% FF < SP 23 - 3
60% - 80% FF > SP 0.05 - 0.02 9% - 90% FF > SP 33 - 2

PTE CAN2DA99

2% - 40% FF < SP 10 - 0.14 2% - 80% FF > SP 166 - 3.5
50% FF ≈ SP - AIDS

60% - 90% FF < SP 0.06 - 0.1 2% - 70% FF > SP 1238 - 5
Large Datasets 80% - 90% FF < SP 0.1 - 0.05

NCI250 NCI145

30% - 90% FF > SP 1882 - 87 2% - 9% FF < SP 2357 - 11
DS3M 10% - 90% FF > SP 2 - 0.5

40% - 90% FF > SP 2463 - 214 NCI330

Dense Datasets 4% - 6% FF < SP 403 - 5
DD 7% - 90% FF > SP 3.9 - 0.02

4% - 90% FF < SP 4204 - 12
PS

80% - 90% FF < SP 3 - 0.4

Table 45 shows the comparison between gSpan ParMol and Gaston Original versions with respect
to their memory consumption. For small datasets, gSpan ParMol consumed more memory for low
support threshold and lesser for high support threshold than the two Gaston Original versions.

For medium size datasets, gSpan ParMol consumed more memory than Gaston Original RE. How-
ever, it required lesser memory than Gaston Original with low and medium support threshold. For
some cases with low support threshold, it consumed more than Gaston Original (e.g., 3% for NCI145
dataset, see Table 45).

Futhermore, for large datasets, gSpan ParMol consumed lesser memory than Gaston Original for
low support threshold. However, it consumed more memory for high support threshold.

For dense datasets, gSpan ParMol consumed more memory than Gaston Original. Additionally, it
consumed more memory than Gaston Original RE for low support threshold and lesser memory for
high support threshold.

We compared memory consumption of FFSM ParMol and gSpan ParMol (see Table 46). In Table
46, 'F' stands for �uctuation34 of the performance.

For small datasets, FFSM ParMol consumed lesser memory than gSpan ParMol for low support
threshold values. However, its consumption was close to gSpan ParMol for high support threshold
values.

For medium and dense datasets, FFSM ParMol consumed more memory than gSpan ParMol.
Additionally, for large datasets, it consumed signi�cantly more memory than gSpan ParMol.

The FSG Original and gSpan Original are provided as binary codes with no information about
memory consumption. Therefore, we tried to deduce their respective limits regarding memory con-

34 None of solutions performed consistently for more than two successive support threshold values

42 Technical Report

Table 45: gSpan ParMol vs. Gaston Original versions (L strategy): Memory consumption comparison

Support
Interval

Comp Di�
(MB)

Support
Interval

Comp Di�
(MB)

Support
Interval

Comp Di�
(MB)

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99 NCI145

5% - 10% SP > GO 2031 - 17 1.5% - 90% SP > GR 468 - 84 2% - 90% SP > GR 1702 - 53
20% - 80% SP < GO 3.2 - 2.8 1.5% - 15% SP < GO 66 - 10 2% - 3% SP > GO 1324 - 76
7% - 20% SP > GR 105 - 0.7 20% - 90% SP > GO 19 - 39 4% - 50% SP < GO 84 - 10
25% - 80% SP < GR 1.8 - 1.7 CAN2DA99 60% - 90% SP > GO 15 - 6

PTE 2% - 80% SP > GR 369 - 100 NCI330

1.5% - 5% SP > GO 1066 - 1.2 2% - 20% SP < GO 121 - 1.9 4% - 90% SP > GR 392 - 24
6% - 90% SP < GO 2.5 - 1.7 40% - 80% SP > GO 36 - 40 4% - 5% SP > GO 212 - 15
1.5% - 5% SP > GR 1114 - 2.8 AIDS 6% - 20% SP < GO 0.7 - 7.7
6% - 90% SP < GR 1 - 3.1 1.5% - 90% SP > GR 480 - 116 30% - 90% SP > GO 7.5 - 6.7

Dense Datasets 1.5% - 70% SP < GO 429 - 68 Large Datasets

DD 80% - 90% SP > GO 51 - 82 DS3M

4% - 10% SP > GR 1020 - 78 Dense Datasets 2% - 10% SP < GO 908 - 14
20% - 90% SP < GR 24 - 55 PS 20% - 90% SP > GO 196 - 419
4% - 90% SP > GO 1348 - 38 80% SP > GO 26 NCI250

90% SP < GO 1.8 2% - 10% SP < GO 885 - 44
80% SP > GR 25 20% - 90% SP > GO 178 - 386
90% SP < GR 2.9

Table 46: gSpan ParMol vs. FFSM ParMol (L/H strategy): Memory consumption comparison

Support
Interval

Comp Di� (MB) Support
Interval

Comp Di� (MB) Support
Interval

Comp Di� (MB)

Small Datasets Medium Datasets Medium Datasets

HIV-CA AID2DA99 NCI145

5% - 10% FF < SP 502 - 7 2% - 90% FF > SP 512 - 44 2% - 90% FF > SP 211 - 40
15% - 80% FF (F) SP 1.9 - 0.4 CAN2DA99 NCI330

PTE 2% - 80% FF > SP 589 - 84 4% - 90% FF > SP 123 - 18
2% - 3% FF < SP 93 - 5 AIDS Dense Datasets

4% - 90% FF (F) SP 1.8 - 0.1 2% - 90% FF > SP 1101 - 141 DD

Large Datasets Large Datasets 4% - 80% FF > SP 568 - 15
NCI250 DS3M 90% FF < SP 6

30% - 90% FF > SP 1675 - 1377 40% - 90% FF > SP 1592 - 1674 PS
80% FF < SP 12
90% FF ≈ SP -

An updated dashboard of Complete Search FSM Implementations 43

sumption by testing the lowest support threshold values. FSG Original was not able to run with low
support threshold for some datasets (e.g., DD dataset, see Table 47). We conclude that FSG used more
memory than gSpan Original, for low support threshold values.

Table 47: Minimal Support threshold value reached by FSM Algorithms- (L strategy)

Algorithm HIV-CA DD

SP 5% 4%
SO 4% 1%
F 5% 7%
GO 4% 1%

We could not conclude about the memory consumption limit of gSpan Original compared to Gaston
Original. However, it is worth noting that for some datasets (e.g., NCI330) and with low support
thresholds, gSpan Original took a huge time without completing the mining (e.g., 6 days for NCI330
with 2% MST). Gaston Original completed it in a more reasonable time and with a lower support
(e.g., 9 hours for NCI330 with 1% MST).

Summary

Fig. 20: FSM Algorithms Runtime (AID2DA99) - (H strategy)

44 Technical Report

Fig. 21: FSM Algorithms Memory Consumption (PTE) - (H strategy)

� According to our analysis, the gSpan ParMol is more suitable than Gaston Original versions, for
memory bound systems, in the following cases: (i) for large datasets and low support threshold,
(ii) for small datasets and high support threshold values.

Fig. 22: FSM Algorithms Memory Consumption (PTE) - (L strategy

An updated dashboard of Complete Search FSM Implementations 45

� Based on our study, we conclude that for memory bound systems, FFSM ParMol can be used
instead of gSpan ParMol if the dataset is small and the support threshold values are low. However,
it is better to use Gaston Original versions for this case.

� According to our analysis, for memory bound systems, gSpan Original is more suitable to use than
FSG Original for low support threshold values.

Fig. 23: FSM Algorithms Memory Consumption (AID2DA99) - (H strategy)

According to our results for MoFa/MoSS solutions, we observed that MoFa ParMol and FFSM
ParMol consumed the same amount of memory (see Figure 23). MoSS ParMol consumed more memory
with a number of subgraphs potentially lesser than all the other implementations (see Figure 23).
Additionally, MoFa Original (b) consumed about twice (or one half) the memory35 of MoFa ParMol
for the medium (AID2DA99, CAN2DA99) and large (NCI250) datasets (see Table 48).

To sum up, MoFa ParMol was the slowest among Gaston, FFSM and gSpan ParMol implementa-
tions and it consumed an amount of memory close to FFSM ParMol.

6.4.4 Bottleneck experiments Table 50 shows the limits of the Gaston Original implementation
which we experimented using our machine characteristics; with eleven datasets and very low support
threshold values.

We emphasized on Gaston Original because it is the most e�cient solution. The notations we
used in the table are, S : reached support threshold, N : number of frequent subgraphs, M : Max
size of frequent subgraphs (vertices), R: consumed RAM memory (MB), O : output �le size (MB),
U : non-reached support threshold, C : cause of failure. For all tested datasets, Gaston Original was
able to run with 1% MST, except for HIV-CA and PS datasets. In fact, the implementation was not
able to run under 4% MST for HIV-CA due to lack of disk space. For PS with 50% MST, it spent 8

35 We estimated the memory consumption of MoFa Original by the JVM it required

46 Technical Report

Table 48: Memory Consumption (MB) of two MoFa implementations (AID2DA99) - (H strategy)

Min
Sup

MFP MOb

AID2DA99

2% 817]1400 - 1500]
5% 576]1100 - 1200]
10% 462]1000 - 1100]
50% 437]700 - 800]
90% 230]500 - 600]

NCI250

80% 1862 > 3500
90% 1611]2400 - 2500]

Table 49: Minimal Support threshold value reached by FSM Algorithms
- (L) strategy - DS3 vs. DS3M

Implementation DS3 DS3M
SO 1% 1%
SO64 5% 6%
F 1% 1%
GO 1% 1%

days running without completing the experiment, yet an output �le of 3 GB was created. Similarly,
in another experiment, it spent 4 days running without completing for the same support and with a
maximum size of frequent subgraphs (28 vertices).

Table 50: Bottleneck Experiment of Complete Search FSM Algorithms (Gaston)

Dataset Success of Mining Limit
S N M R O

PTE 1% 48732156 42 637.5 21900
HIV-CA 4% 6825303 48 15.4 3400
AID2DA99 1% 107693 20 623.7 19
CAN2DA99 1% 176292 21 586.2 33
AIDS 1% 335483 27 1038.9 9
NCI145 1% 235740772 44 470.05 103000
NCI330 1% 268761360 42 238.5 192000
DD 1% 159820929 15 66.9 20100
PS 60% 63641199 28 5.9 13500
NCI250 1% 70405 21 3033.4 0.00003
DS3 1% 83310 21 3429.5 15.7

An updated dashboard of Complete Search FSM Implementations 47

Table 51: Execution of Implementations with Very Dense Datasets - PI

Algorithms
versions

P SO SO64 GO GR F D

Dataset Pro-
cessing

- - - - + - +

Table 51 displays the scalability of FSM implementations with a very dense dataset (PI). Only
Gaston Original RE and DMTL were able to process36 the PI dataset without generating an error.
We did not experiment DMTL any further for mining frequent subgraphs since it performs only a
complete search, rather we experimented Gaston RE which is able to reduce the mining set.

Table 52 shows the limits of Gaston Original RE in mining PI dataset, whereMSF,Min Sup, R, RM,
DM, NF denote the maximum size of frequent subgraphs (vertices), the minimum support threshold,
runtime, the used RAM memory, the used disk memory, and the number of frequent subgraphs,
respectively.

Gaston RE was able to �nd frequent subgraphs of maximum size 5 with 100% MST. However, it
was not able to complete the mining with the same support for maximum size 10. The same applies
for the cases of 70% MST and max size 3 or 50% MST and max size 2. These �ndings approve the
results of [7, 73] about the limits of complete search algorithms with dense datasets.

Table 52: Mining Performance of Gaston RE with Very Dense Datasets - PI (Incomplete Search)

MSF Min
Sup

R
(sec)

RM
(GB)

DM
(MB)

NF

2 70% -
100%

1.017 2.21 0.0079 256

50% - Segmentation
fault

0.0041 -

3 100% 1.578 2.21 0.0852 1928
70% - Aborted 0.0011 -

5 100% 873.745 2.84 12 1578086
10 100% - Killed 3300 -

6.5 Discussion

According to our observations, the sources of results ambiguities in state of the art (see Section 4.2)
are as follows: di�erent style of implementating the FSM algorithm (e.g., ParMol or Original), the
used dataset (small, large, dense), and the support threshold values (e.g., [2%, 50%], [10%, 90%]). For
example, Gaston ParMol was the highest memory consumer among gSpan ParMol and FFSM ParMol.
However, Gaston Original consumed lesser memory than gSpan ParMol and FFSM ParMol.

The experimental study we conducted allowed to alleviate some of the ambiguities and specify
some cases of FSM implementations performance. According to our results, eight implementations

36 No abortion in the beginning of the execution

48 Technical Report

Table 53: FSM Algorithms with performance drawbacks

Algorithm
version

Performance Characteristics

DMTL (-) Huge time and memory consumption
(+) Able to process very dense datasets

MoFa
ParMol

(-) Huge time and memory consumption
(+) Extra mining options for biochemical data

MoSS (-) Very small Number of FS compared to others
ParMol (-) Huge consumption of Memory
MoFa Origi-
nal

(+) Comparable runtime with Gaston Original v1.1 at
low support values and medium datasets
(-) Bad memory consumption
(+) Extra mining options for biochemical data

Gaston (-) Number of FS di�erent
ParMol (-) Important consumption of memory
gSpan-64bit (-) Slower than Gaston Original for high support values
Original v.6
(2009)

(-) For Low support values, it consumes a lot of memory
compared to gSpan Original, gSpan ParMol and Gaston
Original

gSpan (-) Number of FS di�erent
(Zhou, (-) Huge consumption of memory
2015) (-) Dedicated for small datasets
FFSM Par-
Mol

(-) More memory consumption than gSpan ParMol and
Gaston Original.
(-) It is always slower than Gaston Original versions.

among thirteen (see Table 53) are not adequately e�cient due to : (i) their high memory and/or time
consumption, (ii) a number of frequent subgraphs di�erent from the other implementations, (iii) their
inability to handle relatively large datasets or run for low support thresholds.

We selected �ve implementations out of thirteen as e�cient, including Gaston Original, gSpan
ParMol, gSpan Original, FSG Original and Gaston Original RE. The �rst four implementations (see
Table 54) were selected based on the following criteria : (i) they consumed the least amount of memory,
among all the thirteen FSM implementations, (ii) they are relatively fast (Gaston Original is the
fastest), (iii) they were able to complete the mining with relatively large datasets or for low support
threshold values. Gaston Original RE was chosen due its ability to process very dense datasets unlike
the four others and its good performance with medium datasets.

Then we �lter the four selected implementations (Gaston Original, gSpan ParMol, gSpan Original
and FSG Original) to two usable implementations (Gaston Original and gSpan Original) for two general
cases : (i) applications that need to save memory, and (ii) applications where runtime is critical. Both
Gaston Original and gSpan Original are suitable for the former and Gaston Original is suitable for the
latter.

During our experiments, we realized that the size of the dataset and the minimum support in�u-
enced the performance of the tested FSM solutions. Therefore, we changed some other variables of
experiment environment in order to observe their impact on the performance. In the next section, we
discuss our results.

An updated dashboard of Complete Search FSM Implementations 49

Table 54: FSM Algorithms with performance advantages

Algorithm
version

Performance Characteristics

Gaston (+) Second/Third in memory consumption
Original (+) The fastest

(+) Able to run with relatively large datasets or very low support values
gSpan
ParMol

(+) Third/Fourth best memory consumption for medium, large datasets or for
low support values
(+) Third fastest for small or medium datasets and not low support threshold
values
(-) Unable to run for very low support values reached by gSpan Original

gSpan (+) Able to run for some very low support threshold values or for relatively
large datasets

Original (+) First/Second best memory consumption for low support threshold
(+) Third fastest for dense datasets or for high support values and large
datasets
(-) Unable to �nish in a reasonable time for some very low support threshold
values unlike Gaston Original

FSG (+) Able to run for low support threshold or relatively large datasets
Original (-) Requiring more memory than gSpan Original and gSpan ParMol for low

support values
(+) Third fastest for medium, large datasets and for low support values

Gaston (+) Second in Runtime
Original (+) First/Second in memory consumption with medium datasets
RE (-) Not to be used with Large datasets or very low support threshold values

(+) Able to process very dense datasets (e.g., PI)

6.5.1 Impacts of the Environment variations on the results The variation impact of the
experimental environment on the performance of FSM implementations are discussed in the following.
The environment variables include the dataset size, the operating system, the used IDE, the imple-
mentations arguments, the input data format and the labelling strategy of data.

Dataset variation We studied the impact of tested datasets37 on the runtime, memory and the
number of frequent subgraphs. We considered two variables for datasets : size and density. These
parameters are the same as de�ned in Section 6.1.1. We discuss our results of experiments with Gaston
Original, gSpan ParMol and gSpan Original. Runtime: According to our observation, experiments with
small datasets required typically the lowest runtime among all datasets (e.g., PTE, see Figure 24).
However, the experiments with low support threshold over the small datasets (e.g., HIV-CA) required
more or equal time than the other datasets (e.g., DS3) to complete the execution.

Medium datasets had similar runtime performance (e.g., NCI330 and CAN2DA99, see Figure 24).
However, for experiments with low support threshold, two medium datasets (NCI330 and NCI145)
were considerably slower than the other medium datasets (e.g., AID2DA99).

Typically, large datasets (e.g., DS3) required more time than small and medium datasets (e.g.,
CAN2DA99), except with very low support threshold values.

37 The used datasets were de�ned in Section 6.1.1

50 Technical Report

Dense datasets (e.g., DD) required similar amount of time compared to medium datasets (e.g.,
CAN2DA99) with high support thresholds (e.g., 30%, see Figure 24). However, with low support
threshold (e.g., 3%), they required more time than large datasets (e.g. DS3).

Memory Consumption: Our experiments with Gaston Original and small datasets consumed the
lowest amount of memory (e.g., PTE, see Figure 25). They are followed by dense (e.g., DD), medium
(e.g. NCI330) and large (e.g. DS3) datasets experiments, respectively (see Figure 25).

Our experiments with gSpan ParMol and dense datasets consumed lesser memory than medium
datasets with high support values. However, with low support values, they consumed more memory
than medium datasets.

The consumption of memory for all datasets was typically linear (see Figure 25). However, we
observed some exceptions for small datasets and low support threshold values where there was an
important increase of memory (e.g., PTE with Gaston or gSpan ParMol, HIV-CA with gSpan ParMol).
The memory consumption for this case (e.g., 1% PTE, see Figure 25) was similar or more than the
memory consumed by medium and large datasets.

Number of Frequent Subgraphs: Di�erent sizes of datasets produced typically close number of fre-
quent subgraphs (e.g., DS3 and CAN2DA99, see Figure 26). However, our experiment with the dense
dataset DD produced a considerably larger number than the other datasets (e.g., DS3). Additionally,
with low support values (lower than 6% MST), experiments with small (HIV-CA, PTE) and some
medium datasets (NCI330, NCI145) produced signifcantly a larger number than the one produced by
all the other datasets (see Figure 26).

OS and IDE variation We used the ParMol framework to test this e�ect. We conducted experi-
ments using two IDEs : Eclipse with two versions (Mars 4.5.1, Neon 4.6) and Netbeans 8.2. We also
experimented ParMol on a terminal. We used the JDK version 1.8_77. The same machine was used
as previous experiments (see Table 12, Section 6.1.2). In �gures 27 and 28, Eclipse N, Eclipse M, Net-
beans and Terminal + denote the use of IDE Eclipse Neon, Eclipse Mars, Netbeans and the Terminal,
respectively. The results show that using the same OS (Windows or Linux) and di�erent IDEs (e.g.,
Eclipse or Netbeans) did not a�ect the runtime (see Figure 27) or memory consumption performance
(see Figure 28). However, changing the OS (Linux to Windows) did have an impact on the runtime
performance. This is due to the use of the argument 'memoryStatistics' in ParMol that calculates the

Fig. 24: Dataset Variation E�ect on the Runtime - Gaston Original (L)

An updated dashboard of Complete Search FSM Implementations 51

Fig. 25: Dataset Variation E�ect on the Memory - Gaston Original (L)

memory consumption. With this argument, the Windows OS had worse runtime performance than
Linux (see Figure 27) and the same memory consumption (see Figure 28). In case this argument
(memoryStatistics) is set to false, we found no impact of OS variation on the performance (see Figure
29, the Windows and Linux Terminal - results).

Argument variation We performed experiments with ParMol to study the impact of changing its
arguments on performance. Among ParMol arguments, 'memoryStatistics' is the one that had an
impact on runtime performance (see Figure 29). In Figure 29, Terminal + denotes for experiments
performed on a terminal with the argument 'memoryStatistics' set to true and Terminal - denotes for
experiments with the argument 'memoryStatistics' set to false.

File Format variation We performed experiments over datasets serialized in di�erent formats in-
cluding TXT and SDF. No noticeable change in runtime performance or memory consumption was
observed.

Fig. 26: Dataset Variation E�ect on the Number of FS - Gaston Original (L)

52 Technical Report

Fig. 27: gSpan ParMol Runtime performance by OS and IDE - AID2DA99 dataset

Fig. 28: gSpan ParMol Memory Consumption performance by OS and IDE - AID2DA99 dataset

Labeling strategy variation In our experiments, we modi�ed the DS3 dataset38 that contains
vertices labeled with integer and string (e.g., '1', '1u', '2f', '36'). The modi�cation resulted in a dataset
labeled with integer only which we named DS3M. Only FSG Original is able to parse integer and string
labeled TXT datasets. Hence, this experiment was performed with FSG Original.

The labeling strategy did not a�ect the performance of FSG Original regarding the number of
frequent subgraphs (see Table 55) and the runtime (see Table 56).

38 Please refer to Section 6.1.1 for DS3 characteristics

An updated dashboard of Complete Search FSM Implementations 53

Fig. 29: gSpan ParMol Runtime performance by argument variation and OS - AID2DA99 dataset

Table 55: Number of Frequent Subgraphs for FSG Original - DS3 vs. DS3M

Min F
Sup DS3 DS3M
1% 80722 80722
3% 6534 6534
5% 2651 2651
7% 1414 1414
10% 725 725
30% 93 93
50% 35 35
80% 4 4

6.5.2 Reducing the set of Frequent Subgraphs and other options of FSM Implementa-
tions It is possible to perform incomplete search (see Section 3.3.2) using the complete search FSM
available implementations (see Table 57). This optional setting is important because the search space
of complete FSM mining is rich but it is exponential [3, 71]. There is a need to reduce the set by
eliminating the redundancy of subgraph isomorphism [78]. The proposed settings include the follow-
ing : (i) specifying the maximum and minimum size of frequent subgraphs to return (gSpan ParMol,
Gaston Original), (ii) specifying the minimum and maximum support threshold (gSpan ParMol), (iii)
returning only supergraphs (i.e., closed or maximal Subgraphs) (gSpan ParMol, FSG Original) (see
Table 57).

Also, other options are available such as using multi-threads to perform the mining faster (see Table
57).

54 Technical Report

Table 56: SG Original Runtime - DS3 vs. DS3M

Min F
Sup DS3 DS3M
1% 13657.7 13666.2
3% 1463.1 1459.4
5% 891.8 891.8
7% 678 678.6
10% 505.7 505.7
30% 201.633 201.6
50% 130.266 130.2
80% 70.8 70.4

7 Conclusion

This report presented a comprehensive study of complete search FSM implementations in centralized
graph transaction databases. We studied all the algorithms found in literature and outlined their merits
and demerits. Additionally, we presented the results of an experimental study with the selected and
available FSM implementations. We investigated the di�erence between the algorithms in a quantita-

Table 57: Optional settings for FSM Implementations

FSM solution P SO,
SO64

GO GR F D

Incomplete Search Options

Min and Max Support threshold x
Min of Frequent Subgraphs Size x x x
Max of Frequent Subgraphs Size x x x x
Closed Frequent Subgraphs x
Maximal Frequent Subgraphs x
Trees x x x
Paths x x x
Maximum number of subgraph iso-
morphisms

x

Input Options

String labeled datasets x x
Output Options

Dataset statistics x x
TXT format x x x x x
DFS code Format x x x
TID List x x x x
PC List x

Other Options

Multi-threading x x
Signi�cant/Discriminative Patterns x
Weighted graphs x

An updated dashboard of Complete Search FSM Implementations 55

tive manner (e.g., gSpan takes X time more than FFSM for a support threshold interval Y), instead
of an abstract way (e.g., gSpan is slower than FFSM in general). Our study unearthed the di�erences
and similarities between di�erent implementations of one single algorithm and between di�erent imple-
mentations of algorithms. Also, we experimented the FSM solutions regarding di�erent datasets and
di�erent thresholds. Such a comparison will provide the readers a detailed and comprehensive view
about these implementations. Hence, it could assist them to make decision regarding the selection of
an implementation for a speci�c context. This work could be seen as an updated observation of existing
FSM implementations.

Several future work are lined up including analysis and explanations that should be linked to this
work about the di�erence between results (number of frequent subgraphs, runtime and memory). We
plan to conduct a rigorous experiment with FSM algorithms over large and/or dense datasets. Also,
this study has been performed only on the literature datasets, we will conduct another study with
generic datasets.

8 Acknowledgments

This work has been elaborated as a part of the CAIR39 project. Special thanks are addressed to FSM
authors especially to Xifeng Yan, Thorsten Meinl, Andrés Gago-Alonso, Christian Borgelt, Mohammad
Al Hasan and Sabeur Aridhi for sending us software, datasets, also for providing clari�cations and for
their availability.

References

1. Parmol. http://en.verysource.com/parmol_1346_2006-08--100787.html. [Online; accessed 2016-05-
30].

2. N. Acosta-Mendoza, A. Gago-Alonso, and J. E. Medina-Pagola. Frequent approximate subgraphs as fea-
tures for graph-based image classi�cation. Knowledge-Based Systems, 27:381�392, Mar. 2012.

3. C. C. Aggarwal, H. Wang, and others. Managing and mining graph data, volume 40. Springer, 2010.
4. M. Al Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. ORIGAMI: Mining Representative Orthogonal

Graph Patterns. In Seventh IEEE International Conference on Data Mining (ICDM 2007), pages 153�162,
Oct. 2007.

5. M. Al Hasan, V. Chaoji, S. Salem, N. Parimi, and M. J. Zaki. DMTL: A Generic Data Mining Template
Library.

6. M. Al Hasan and M. Zaki. Musk: Uniform Sampling of k Maximal Patterns. In Proceedings of the 2009
SIAM International Conference on Data Mining, Proceedings, pages 650�661. Society for Industrial and
Applied Mathematics, 2009.

7. M. Al Hasan and M. J. Zaki. Output Space Sampling for Graph Patterns. Proc. VLDB Endow., 2(1):730�
741, Aug. 2009.

8. S. Aridhi, L. d'Orazio, M. Maddouri, and E. Mephu Nguifo. Density-based data partitioning strategy to
approximate large-scale subgraph mining. Information Systems, 48:213�223, Mar. 2015.

9. S. Aridhi, L. d'Orazio, M. Maddouri, and E. M. Nguifo. Un partitionnement basé sur la densité de graphe
pour approcher la fouille distribuée de sous-graphes fréquents. Technique et Science Informatiques, 33(9-
10):711�737, 2014.

10. H. Arimura, T. Uno, and S. Shimozono. Time and Space E�cient Discovery of Maximal Geometric Graphs.
In V. Corruble, M. Takeda, and E. Suzuki, editors, Discovery Science, number 4755 in Lecture Notes in
Computer Science, pages 42�55. Springer Berlin Heidelberg, Oct. 2007. DOI: 10.1007/978-3-540-75488-6_6.

39 https://www.irit.fr/CAIR/fr/

56 Technical Report

11. C. Borgelt. Moss - molecular substructure miner. http://www.borgelt.net/moss.html. [Online; accessed
2016-05-30].

12. C. Borgelt and M. R. Berthold. Mining molecular fragments: �nding relevant substructures of molecules.
In 2002 IEEE International Conference on Data Mining, 2002. ICDM 2003. Proceedings, pages 51�58,
2002.

13. C. Chen, C. X. Lin, X. Yan, and J. Han. On E�ective Presentation of Graph Patterns: A Structural
Representative Approach. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management, CIKM '08, pages 299�308, New York, NY, USA, 2008. ACM.

14. M. Cohen and E. Gudes. Diagonally Subgraphs Pattern Mining. In Proceedings of the 9th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD '04, pages 51�58, New
York, NY, USA, 2004. ACM.

15. D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description Length and Background
Knowledge. J. Artif. Int. Res., 1(1):231�255, 1994.

16. R. de Sousa Gomide, C. D. de Aguiar Ciferri, R. R. Ciferri, and M. T. P. Vieira. ADI-Minebio: A Graph
Mining Algorithm for Biomedical Data. Journal of Information and Data Management, 2(3):433, Sept.
2011.

17. L. Dehaspe, H. Toivonen, and R. D. King. Finding Frequent Substructures in Chemical Compounds. pages
30�36. AAAI Press, 1998.

18. C. Desrosiers, P. Galinier, P. Hansen, and A. Hertz. Sygma: Reducing symmetry in graph mining. Technical
report, Les Cahiers du GERAD, 2007.

19. B. Douar, M. Liquiere, C. Latiri, and Y. Slimani. LC-mine: a framework for frequent subgraph mining
with local consistency techniques. Knowledge and Information Systems, 44(1):1�25, July 2014.

20. M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. GraMi: Frequent Subgraph and Pattern Mining
in a Single Large Graph. Proc. VLDB Endow., 7(7):517�528, Mar. 2014.

21. H. Fei. Fast frequent subgraph mining (�sm). https://sourceforge.net/projects/ffsm/. [Online;
accessed 2016-05-30].

22. A. Gago-Alonso and J. A. Carrasco-Ochoa. Full Duplicate Candidate Pruning for Frequent Connected
Subgraph Mining. Integrated Computer-Aided Engineering, 17(3):211�225, 2010.

23. A. Gago-Alonso, J. E. M. Pagola, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad. Mining Frequent
Connected Subgraphs Reducing the Number of Candidates. In W. Daelemans, B. Goethals, and K. Morik,
editors, Machine Learning and Knowledge Discovery in Databases, number 5211 in Lecture Notes in Com-
puter Science, pages 365�376. Springer Berlin Heidelberg, Sept. 2008. DOI: 10.1007/978-3-540-87479-9_42.

24. A. Gago-Alonso, A. Puentes-Luberta, J. A. Carrasco-Ochoa, J. E. Medina-Pagola, and J. F. Martínez-
Trinidad. A New Algorithm for Mining Frequent Connected Subgraphs based on Adjacency Matrices.
Intelligent Data Analysis, 14(3):385�403, Aug. 2010.

25. Z. Gao, L. Shang, and Y. Jian. Frequent subgraph mining based on the automorphism mapping. In 2012
2nd International Conference on Computer Science and Network Technology (ICCSNT), pages 1518�1522,
2012.

26. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, June 1985.
27. E. Gudes, S. E. Shimony, and N. Vanetik. Discovering Frequent Graph Patterns Using Disjoint Paths.

IEEE Transactions on Knowledge and Data Engineering, 18(11):1441�1456, Nov. 2006.
28. J. Han, J. Pei, and M. Kamber. Data Mining: Concepts and Techniques. Elsevier, June 2011.
29. S. Han, W. K. Ng, and Y. Yu. FSP: Frequent Substructure Pattern mining. In 2007 6th International

Conference on Information, Communications Signal Processing, pages 1�5, 2007.
30. T. Henderson. Parsemis. https://github.com/timtadh/parsemis. [Online; accessed 2016-05-30].
31. M. Hong, H. Zhou, W. Wang, and B. Shi. An E�cient Algorithm of Frequent Connected Subgraph

Extraction. In K.-Y. Whang, J. Jeon, K. Shim, and J. Srivastava, editors, Advances in Knowledge Discovery
and Data Mining, number 2637 in Lecture Notes in Computer Science, pages 40�51. Springer Berlin
Heidelberg, Apr. 2003. DOI: 10.1007/3-540-36175-8_5.

32. H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs across massive
biological networks for functional discovery. Bioinformatics, 21(suppl 1):i213�i221, June 2005.

An updated dashboard of Complete Search FSM Implementations 57

33. J. Huan, W. Wang, and J. Prins. E�cient mining of frequent subgraphs in the presence of isomorphism.
In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages 549�552. IEEE, 2003.

34. J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: Mining Maximal Frequent Subgraphs from Graph
Databases. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD '04, pages 581�586, New York, NY, USA, 2004. ACM.

35. A. Inokuchi. Acgm. kwansei gakuin university. http://ist.ksc.kwansei.ac.jp/~inokuchi/acgm.zip.
[Online; accessed 2016-05-30].

36. A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based Algorithm for Mining Frequent Substructures
from Graph Data. pages 13�23, 2000.

37. A. Inokuchi, T. Washio, and H. Motoda. Complete Mining of Frequent Patterns from Graphs: Mining
Graph Data. Machine Learning, 50(3):321�354, Mar. 2003.

38. A. Inokuchi, T. Washio, and H. Motoda. A general framework for mining frequent subgraphs from labeled
graphs. Fundamenta Informaticae, 66(1-2):53�82, 2005.

39. A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm for mining frequent connected
subgraphs. Technical report, IBM, 2002.

40. Y. Jia, J. Zhang, and J. Huan. An e�cient graph-mining method for complicated and noisy data with
real-world applications. Knowledge and Information Systems, 28(2):423�447, Feb. 2011.

41. C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algorithms. The Knowledge
Engineering Review, 28(01):75�105, Mar. 2013.

42. R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and G. Agrawal. Discovering Frequent Topological
Structures from Graph Datasets. In Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, KDD '05, pages 606�611, New York, NY, USA, 2005. ACM.

43. G. Karypis. Pa� software package for �nding frequent patterns in diverse datasets. Karypis Lab. http:

//glaros.dtc.umn.edu/gkhome/project/dm/software?q=pafi/overview. [Online; accessed 2016-05-30].
44. Y. Ke and J. Cheng. E�cient Correlation Search from Graph Databases. IEEE Trans. Knowl. Data Eng.,

20(12):1601�1615, 2008.
45. M. R. Keyvanpour and F. Azizani. Classi�cation and Analysis of Frequent Subgraphs Mining Algorithms.

ResearchGate, 7(1):220�227, Jan. 2012.
46. S. Kramer, L. De Raedt, and C. Helma. Molecular Feature Mining in HIV Data. In Proceedings of the

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '01,
pages 136�143, New York, NY, USA, 2001. ACM.

47. V. Krishna, N. R. Suri, and G. Athithan. A comparative survey of algorithms for frequent subgraph
discovery. CURRENT SCIENCE, 100(2):190, 2011.

48. M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In Proceedings of the 2001 IEEE In-
ternational Conference on Data Mining, ICDM '01, pages 313�320, Washington, DC, USA, 2001. IEEE
Computer Society.

49. M. Kuramochi and G. Karypis. Discovering frequent geometric subgraphs. In 2002 IEEE International
Conference on Data Mining, 2002. ICDM 2003. Proceedings, pages 258�265, 2002.

50. M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large Sparse Graph. Data Min. Knowl.
Discov., 11(3):243�271, Nov. 2005.

51. M. Lalmas. Aggregated Search. In M. Melucci and R. Baeza-Yates, editors, Advanced Topics in Information
Retrieval, number 33 in The Information Retrieval Series, pages 109�123. Springer Berlin Heidelberg, 2011.
DOI: 10.1007/978-3-642-20946-8_5.

52. G. Lee and U. Yun. An E�cient Approach for Mining Frequent Sub-graphs with Support A�nities, pages
525�532. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

53. Y. Li, Q. Lin, G. Zhong, D. Duan, Y. Jin, and W. Bi. A Directed Labeled Graph Frequent Pattern Mining
Algorithm Based on Minimum Code. In Third International Conference on Multimedia and Ubiquitous
Engineering, 2009. MUE '09, pages 353�359, June 2009.

54. W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent subgraph mining in mapreduce. In 2014 IEEE 30th
International Conference on Data Engineering, pages 844�855. IEEE, 2014.

58 Technical Report

55. B. D. McKay et al. Practical graph isomorphism. Department of Computer Science, Vanderbilt University
Tennessee, US, 1981.

56. T. Meinl, M. WÃ¶rlein, O. Urzova, I. Fischer, and M. Philippsen. The ParMol Package for Frequent
Subgraph Mining. Electronic Communications of the EASST, 1(0), July 2007.

57. N. A. Mendoza, J. A. Carrasco-Ochoa, A. Gago-Alonso, J. F. Martinez-Trinidad, and J. E. Medina-Pagola.
Representative Frequent Approximate Subgraph Mining in Multi-Graph Collections. 2015.

58. M. H. Nadimi-Shahraki, M. Taki, and M. Naderi. IDFP-TREE: An E�cient Tree for interactive mining
of frequent subgraph patterns. Journal of Theoretical and Applied Information Technology, 74(3), 2015.

59. P. C. Nguyen, T. Washio, K. Ohara, and H. Motoda. Using a Hash-Based Method for Apriori-Based Graph
Mining. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Knowledge Discovery in
Databases: PKDD 2004, number 3202 in Lecture Notes in Computer Science, pages 349�361. Springer
Berlin Heidelberg, Sept. 2004. DOI: 10.1007/978-3-540-30116-5_33.

60. M. C. Nicklaus. Downloadable structure �les of nci open database compounds. national cancer institute.
https://cactus.nci.nih.gov/download/nci/index.html. [Online; accessed 2016-05-30].

61. S. Nijssen. Gaston - download. http://liacs.leidenuniv.nl/~nijssensgr/gaston/download.html. [On-
line; accessed 2016-05-30].

62. S. Nijssen. Performance comparison of graph mining algorithms on pte. http://liacs.leidenuniv.nl/

~nijssensgr/farmer/results.html, 2003. [Online; accessed 2016-05-30].
63. S. Nijssen and J. Kok. Faster association rules for multiple relations. In In International Joint Conference

on Arti�cial Intelligence, pages 891�896. Morgan Kaufmann, 2001.
64. S. Nijssen and J. N. Kok. A Quickstart in Frequent Structure Mining Can Make a Di�erence. In Proceedings

of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
'04, pages 647�652, New York, NY, USA, 2004. ACM.

65. S. Nijssen and J. N. Kok. The Gaston Tool for Frequent Subgraph Mining. Electronic Notes in Theoretical
Computer Science, 127(1):77�87, Mar. 2005.

66. S. Nijssen and J. N. Kok. Frequent subgraph miners: Runtime dont say everything. In Proceedings of the
International Workshop on Mining and Learning with Graphs (MLG 2006, pages 173�180, 2006.

67. S. Nowozin. gboost graph boosting toolbox for matlab. http://www.nowozin.net/sebastian/gboost/

#intro. [Online; accessed 2016-05-30].
68. S. Nowozin and K. Tsuda. Frequent Subgraph Retrieval in Geometric Graph Databases. In 2008 Eighth

IEEE International Conference on Data Mining, pages 953�958, Dec. 2008.
69. H. J. Patel, R. Prajapati, M. Panchal, and M. Patel. A Survey of Graph Pattern Mining Algorithm and

Techniques. International Journal of Application or Innovation in Engineering & Management, 2(1):125�
129, 2013.

70. M. Philippsen. Parsemis - the parallel and sequential mining suite. https://www2.cs.fau.de/EN/

research/zold/ParSeMiS/index.html. [Online; accessed 2016-05-30].
71. S. Ranu and A. K. Singh. GraphSig: A Scalable Approach to Mining Signi�cant Subgraphs in Large Graph

Databases. In 2009 IEEE 25th International Conference on Data Engineering, pages 844�855, Mar. 2009.
72. S. U. Rehman, S. Asghar, Y. Zhuang, and S. Fong. Performance Evaluation of Frequent Subgraph Dis-

covery Techniques. Mathematical Problems in Engineering, Mathematical Problems in Engineering, 2014,
2014:e869198, Aug. 2014.

73. T. K. Saha and M. A. Hasan. FS^3: A Sampling based method for top-k Frequent Subgraph Mining.
arXiv:1409.1152 [cs], Sept. 2014. arXiv: 1409.1152.

74. �. Skonieczny. Mining for Unconnected Frequent Graphs with Direct Subgraph Isomorphism Tests. In K. A.
Cyran, S. Kozielski, J. F. Peters, U. Sta«czyk, and A. Wakulicz-Deja, editors, Man-Machine Interactions,
number 59 in Advances in Intelligent and Soft Computing, pages 523�531. Springer Berlin Heidelberg,
2009. DOI: 10.1007/978-3-642-00563-3_55.

75. I. Takigawa and H. Mamitsuka. E�ciently mining tolerance closed frequent subgraphs. Machine Learning,
82(2):95�121, Sept. 2010.

76. A. Termier, Y. Tamada, K. Numata, S. Imoto, T. Washio, and T. Higuchi. Digdag, a �rst algorithm to
mine closed frequent embedded sub-dags. In Mining and Learning with Graphs, MLG 2007, Firence, Italy,
August 1-3, 2007, Proceedings, 2007.

An updated dashboard of Complete Search FSM Implementations 59

77. M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola, L. Song, P. S. Yu,
X. Yan, and K. M. Borgwardt. Discriminative frequent subgraph mining with optimality guar-
antees. http://www.dbs.ifi.lmu.de/cms/Publications/Discriminative_Frequent_Subgraph_Mining_

with_Optimality_Guarantees. [Online; accessed 2016-05-30].
78. J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31�42, Jan. 1976.
79. N. Vijayalakshmi. FP-GraphMiner - A Fast Frequent Pattern Mining Algorithm for Network Graphs.

Journal of Graph Algorithms and Applications, 15(6):753�776, 2011.
80. C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable Mining of Large Disk-based Graph Databases.

In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD '04, pages 316�325, New York, NY, USA, 2004. ACM.

81. J. Wang, Z. Zeng, and L. Zhou. CLAN: An Algorithm for Mining Closed Cliques from Large Dense Graph
Databases. In 22nd International Conference on Data Engineering (ICDE'06), pages 73�73, Apr. 2006.

82. W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan, and J. Han. GraphMiner: A Structural Pattern-mining
System for Large Disk-based Graph Databases and Its Applications. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, SIGMOD '05, pages 879�881, New York,
NY, USA, 2005. ACM.

83. M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A Quantitative Comparison of the Subgraph Miners
MoFa, gSpan, FFSM, and Gaston. In A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors,
Knowledge Discovery in Databases: PKDD 2005, number 3721 in Lecture Notes in Computer Science, pages
392�403. Springer Berlin Heidelberg, Oct. 2005. DOI: 10.1007/11564126_39.

84. J. Wu and L. Chen. A Fast Frequent Subgraph Mining Algorithm. In Young Computer Scientists, 2008.
ICYCS 2008. The 9th International Conference for, pages 82�87, Nov. 2008.

85. X. Yan. Software - gspan: Frequent graph mining package. http://www.cs.ucsb.edu/~xyan/software/

gSpan.htm. [Online; accessed 2016-05-30].
86. X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining Signi�cant Graph Patterns by Leap Search. In Proceedings

of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD '08, pages 433�
444, New York, NY, USA, 2008. ACM.

87. X. Yan and J. Han. gSpan : Graph-Based Substructure Pattern Mining. Technical report, UIUC,
UIUCDCS-R-2002-2296, 2002.

88. X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In 2002 IEEE International Con-
ference on Data Mining, 2002. ICDM 2003. Proceedings, pages 721�724, 2002.

89. X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pages 286�295,
New York, NY, USA, 2003. ACM.

90. X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-based Approach. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD '04, pages 335�346,
New York, NY, USA, 2004. ACM.

91. X. Yan, X. J. Zhou, and J. Han. Mining Closed Relational Graphs with Connectivity Constraints. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, KDD '05, pages 324�333, New York, NY, USA, 2005. ACM.

92. M. J. Zaki. Data mining template library (dmtl). http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/
Software/Software. [Online; accessed 2016-05-30].

93. Z. Zeng, J. Wang, J. Zhang, and L. Zhou. FOGGER: An Algorithm for Graph Generator Discovery. In
Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database
Technology, EDBT '09, pages 517�528, New York, NY, USA, 2009. ACM.

94. Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent Closed Quasi-clique Discovery from Large Dense
Graph Databases. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '06, pages 797�802, New York, NY, USA, 2006. ACM.

95. S. Zhang and J. Yang. RAM: Randomized Approximate Graph Mining. In B. Luduscher and N. Mamoulis,
editors, Scienti�c and Statistical Database Management, number 5069 in Lecture Notes in Computer Sci-
ence, pages 187�203. Springer Berlin Heidelberg, July 2008. DOI: 10.1007/978-3-540-69497-7_14.

60 Technical Report

96. S. Zhang, J. Yang, and V. Cheedella. Monkey: Approximate Graph Mining Based on Spanning Trees. In
2007 IEEE 23rd International Conference on Data Engineering, pages 1247�1249, Apr. 2007.

97. K. Zhou. gspan algorithm in data mining. https://github.com/Jokeren/DataMining-gSpan. [Online;
accessed 2016-05-30].

98. Z. Zou, J. Li, H. Gao, and S. Zhang. Frequent Subgraph Pattern Mining on Uncertain Graph Data. In
Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM '09, pages
583�592, New York, NY, USA, 2009. ACM.

99. Z. Zou, J. Li, H. Gao, and S. Zhang. Mining Frequent Subgraph Patterns from Uncertain Graph Data.
IEEE Transactions on Knowledge and Data Engineering, 22(9):1203�1218, Sept. 2010.

