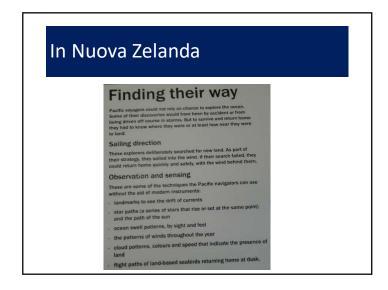


Chi sono?

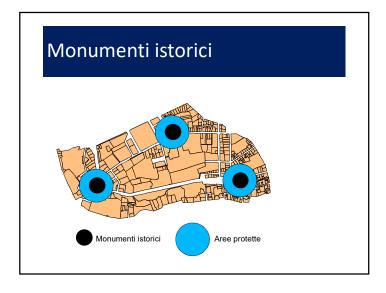
- Già professore distinto presso l'INSA di Lione
- Professore Emerito al "Knowledge Systems Institute"
- Ho lavorato in Francia, UK, USA, Italia, Messico ed Argentina
- Francese, inglese, italiano, spagnolo
- Specialista nei SIT
- Tutore di 44 PhD
- Commissario di tesi di dottorato in 17 paesi
- Vice-president dell'UDMS
- Presidente di "Academic Without Borders"

Obbiettivi

- Applicazioni mirate
 - Intelligenza territoriale
 - Città intelligenti
- Identificare le conoscenze geografiche
- Proporre un modo per formalizzarle
- Identificare i componenti per un'infrastruttura di conoscenze geografiche


CONTENUTO (1/2)

- 1 Dai geodati alle conoscenze geografiche
- 2 Rappresentazione della conoscenza
- 3 Verso i sistemi di conoscenza geografica
- 4 Oggetti geografici
- 5 Relazioni geografiche
- 6 Ontologie geografiche


CONTENUTO (2/2)

- 7 Repertori toponimici e multilinguismo
- 8 Regole geografiche applicative
- 9 Geovisualizzazione e Coremi
- 10 Conoscenze come infrastruttura per la smart governance

1. Dai geodati alle conoscenze geografiche

- 1.1. Intelligenza territoriale, Smart Cities e Smart planning
- 1.2. Promesse delle conoscenze geografiche
- 1.3. Per le infrastrutture della conoscenza geografica

1.1. Intelligenza territoriale, Smart Cities e Smart planning

- Smart Cities
- Intelligenza Territoriale
- Smart Urban Planning

Smart Cities

- Varie definizioni
- Studio di alcuni di esse
- Caratteristiche principali

Definizione di Carlo Ratti

- Dr. Carlo Ratti, directore del Senseable City Lab del MIT, dice che una città puo' dirsi smart o intelligente se è
 - · tecnologica ed interconnessa,
 - pulita, attrattiva,
 - rassicurante, efficiente,
 - · aperta, collaborativa,
 - creativa, digitale
 - e green

Caratteristiche più comuni delle Smart Cities:

- un'infrastruttura di rete della città che consente l'efficienza politica e lo sviluppo sociale e culturale
- un'enfasi sullo sviluppo urbano orientato al business e le attività creative per la promozione della crescita urbana
- inclusione sociale di vari residenti urbani e capitale sociale nello sviluppo urbano
- l'ambiente naturale come componente strategico per il futuro.

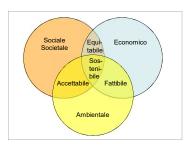
Diamante di Mathew Smart Governance Smart Citizens Smart Healthcare Smart Smart Smart Healthcare Smart Smart

Intelligenza Territoriale

- · Definizione di Bertacchini
- "L'intelligenza territoriale può essere confrontata con la territorialità che deriva dal fenomeno dell'appropriazione delle risorse di un territorio; e consiste nelle trasmissioni di know-how tra categorie di attori locali di culture diverse."

Intelligenza Territoriale

Intelligenza territoriale
=
(Territorio
+
Intelligenza collettiva umana
+


Intelligenza artificiale)

Sviluppo sostenibile)

Questione

 "Come l'intelligenza artificiale e in particolare ingegneria della conoscenza può aiutare non solo i decisori locali per pianificare una città, ma anche i cittadini a dare la loro opinione sul futuro della loro città?"

I tre pilastri per l'intelligenza territoriale

Cittadini come sensori

- Goodchild "i cittadini come sensori, volontariamente o involontariamente"
- Crowdsourcing
- Partecipazione pubblica
- I cittadini possono esporre le loro conoscenze geografiche o localizzare le buone pratiche
- Integrare i cittadini nel processo di pianificazione

1.2. Ragionamento geografico

- Secondo Carsten Braun, ecco i componenti principali del ragionamento geografico:
 - Misurare e mappare le distribuzioni geografiche (dove si trova la roba?)
 - Identificare i modelli e cluster (la roba di solito non si verifica in modo casuale sulla terra!)
 - Identificare percorsi e flussi (pensate alle strade e al traffico!)
 - Analizzare queste relazioni geografiche (nel tempo, se applicabile).
- Plus: analisi delle conseguenze nella pianificazione urbana o regionale

1.3. Promesse delle conoscenze geografiche

- Secondo Reginald Golledge, le conoscenze geografiche sono utili per due ragioni fondamentali:
- (1) stabilire dove le cose sono, e
- (2) ricordare dove le cose sono per aiutarci nel processo di prendere decisioni e risolvere i problemi sociali e ambientali.

Questioni sui ragionamenti geografici

- Come possono le conoscenze geografiche contribuire alla comprensione e alla soluzione dei problemi coinvolti nelle relazioni società-spaziali?
- Quale ruolo futuro possono svolgere le conoscenze geografiche nell'instaurare una politica globale internazionale, nazionale, regionale e locale?
- Quali conoscenze geografiche possiamo creare per migliorare la comprensione delle società, delle culture, delle economie e delle strutture politiche e informative globali?

Definizione della conoscenza geografica

- La conoscenza geografica corrisponde alle informazioni potenzialmente utili per
 - spiegare,
 - gestire,
 - monitorare,
 - simulare il futuro,
 - e pianificare un territorio.

CG per spiegare

- I sinonimi possono essere di capire, di esplorare, di valutare il contesto e di rilevare i problemi.
 - I libri e le monografie esistenti possono aiutare molto da un punto di vista storico.
- Tecniche
 - · come il text-mining geografico
 - e, quando i database sono esistenti, il data mining spaziale può essere l'origine di questo tipo di conoscenza geografica.

CG per gestire

- Uno degli obiettivi delle autorità locali è quello di gestire il territorio sotto la loro giurisdizione.
- La gestione potrebbe variare dalle riparazioni delle reti stradali, alle scuole ed altri servizi pubblici come la raccolta dei rifiuti.
- La conoscenza che devono usare essenzialmente proviene dalle leggi e dalle migliori pratiche.
- La conoscenza è conosciuta in un certo linguaggio naturale e deve essere trasformata per i computer.
- Spesso, qui può la conoscenza essere vista come un'estensione di business intelligence applicata alle autorità locali?

CG per monitorare

- Questi tipi di conoscenze possono essere visti come un'estensione delle precedenti, ma la loro natura è totalmente diversa.
- Infatti, le autorità locali al fine di ridurre l'inquinamento o regolare il traffico, installano i sensori per ottenere i dati grezzi che vengono trasformati in conoscenze da data mining in tempo reale.

CG per pianificare

- L'obiettivo finale delle conoscenze geografiche, in ingegneria, è pianificare le città o i territori intelligenti.
- Questo significa progettare scenari di evoluzione, studiare alternative e prendere in considerazione i pareri dei cittadini nel contesto di uno sviluppo sostenibile

CG per simulare il futuro

- L'obbietivo finale è di visualizzare le conseguenze o gli effetti
 - della dinamica geofisica del paesaggio (inondazioni, invecchiamento delle infrastrutture, ecc.)
 - delle decisioni
- Anche ricostruire il passato

Due tipi di conoscenze

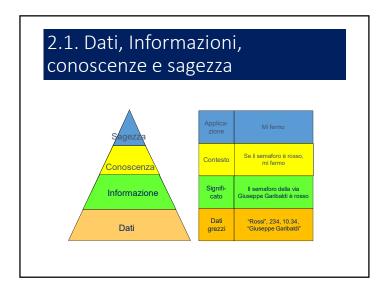
- Le conoscenze di basso livello riguardano la trasformazione dei dati grezzi in oggetti geografici e le relazioni tra di loro.
- Le conoscenze di alto livello riguardano le leggi fisiche (idrologia, demografia, inquinamento, ecc.), le leggi giuridiche, le migliori pratiche, legate alle applicazioni e anche ai documenti.

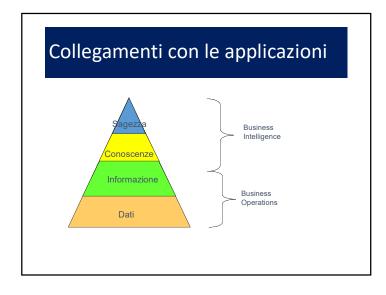
Conoscenze di basso livello

- Comprendono anche
 - · controllo qualità,
 - conoscenze provenienti dal data mining spaziale,
 - Indipendenza da
 - Strutture dei dati.
 - · tecniche di acquisizione dati,
 - · scale e risoluzione
 - dalle rappresentazioni geografiche e dagli algoritmi di base,
 - Integrazione degli aspetti del multilinguismo.

1.5. Conclusione: verso una infrastruttura di conoscenze geografiche

- Michel Serres:
- "la conoscenza è desso l'infrastruttura della società della conoscenza".
- Secondo Edwards ed altri:
- le infrastrutture della conoscenza sono definite come "reti di persone, artefatti e istituzioni che generano, condividono e gestiscono conoscenze specifiche sui mondi umani e naturali".


di data spaziali



2. Representazioni delle conoscenze

ollettiva umana

- 2.1. Dati, informazioni, conoscenze, e sagezza
- 2.2. RDF (struttura di descrizione delle risorse)
- 2.3. Regole di modellazione
- 2.4. Conclusione: che cosa è speciale per le conoscenze geografiche?

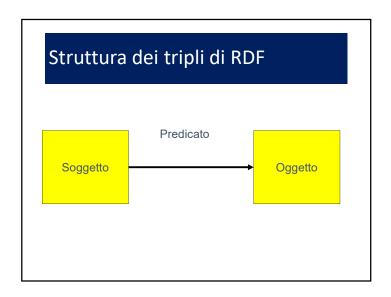
La metafora della torta (Gurteen)

Dati: componenti molecolari

Informazioni: ingredienti

Conoscenze: ricetta (know-how)

Sagezza: scegliere per chi fare la t


(know-why)

Logica e spazio

- Le rappresentazioni delle conoscenze sono basate generalmente sulle logiche matematiche
 - Pero', integrazione della topologia e geometria computazionale
- Nella robotica, il ragionamento è 3D e procedurale,
 - · cioè basato su algoritmi.
 - · Non un modo dichiarativo
- In intelligenza territoriale, principalmente 2D

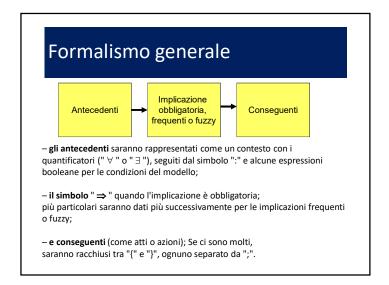
2.2. RDF (Resource Description Framework)

- RDF come modello standard per l'interscambio di dati su Internet, è, tra le altre cose, un modello di dati costruito su un grafo.
- Ogni collegamento in questo grafo è costituito da tre elementi:
 - Soggetto (o nodo iniziale, istanza, entità e funzionalità) è una risorsa;
 - Predicato (o verbo, proprietà, attributo, relazione, membro, collegamento, riferimento) è una relazione binaria; i tipi di predicati sono identificati nel Web;
 - Oggetto (o nodo finale) è un valore o una rappresentazione formale.

2.3. Modellazione delle regole

- Regole e logiche classiche
- Alberi e tabelle di decisione
- Regole e logica fuzzy
- Modello generico di regole

Regole e logiche classiche


- Due tipi di regole [Ros 11].
 - IF-THEN-Fatto
 - Valore di un attributo
 - Creazione, aggiornamento o cancellazione di un dato di fatto
 - IF-THEN-Azione
 - Esecuzione di una o più azioni
- Alcune regole possono avere entrambe le forme (IF-THEN-Fatto and IF-THEN-Azione)

Modello generico di regola

• In XML (Bol 10)

2.4. Conclusione: che cosa è speciale per le conoscenze geografiche?

- Oltre alla logica
 - Geometria computazionale (2D o 3D)
 - Topologia
 - Equazioni differenziali
 - Vari dispositivi di acquisizione (incertezze, errori, ecc.)
 - Varie lingue umane
 - · Vari attori interessati
- Importanza delle regole

3 – Sistemi di conoscenze geografiche

- 3.1. Lezioni apprese dai GIS
- 3.2. Struttura di un GKS (GKS = Geographic Knowledge Systems)
- 3.3. Verso l'integrazione delle conoscenze esterne
- 3.4. Prime conclusioni sui GKS

3.1. Lezioni apprese dai GIS

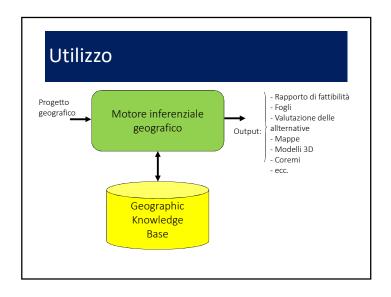
- · Visioni matematiche del mondo
- Modellazione e memorizzazione dei Geo-oggetti
- Qualità dei dati e omologie
- Informazioni su più rappresentazioni e granularità di interesse
- Requisiti per i GKS

Sulle visioni matematiche del mondo

- Datemi un punto sulla terra?
- Un fiume, è una linea o una zona?
- Secondo quali criteri, dobbiamo considerare le mappe planari della terra?
- Come considerare intelligentemente gli errori e le incertezze nei modelli?

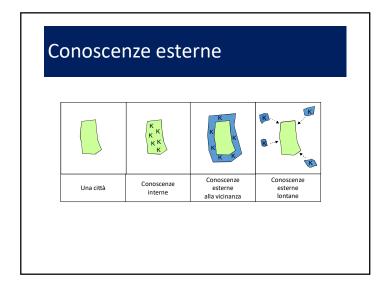
Granularità di interesse

- Secondo la scala, esistono due soglie nella mappatura:
- < 0,1 mm
 - Gli oggetti scompariranno
- Tra 1mm e 0,1 m
 - · Oggetti lineari


Componenti di un GKB Base di Conoscenze Geografiche Strutture Relazioni Oggetti geografiche geografiche geografici Regole geografiche Ontologie Modelli Repertorio geografiche fisico-matematici di toponimi Conoscenze esterne

3.2. Struttura di un GKS

- Requisiti
 - Offrire una rappresentazione pertinente e possibilmente completa della realtà,
 - Offrire una rappresentazione robusta e accurata per qualsiasi granularità di interesse,
 - Memorizzare conoscenze coerenti e convalidate
 - · Aggiornare regolarmente,
 - · Sostenere il ragionamento geografico,
 - Rappresentare le logiche delle parti interessate,
 - · Combinare GKS provenienti da fonti diverse,
 - Definire di progetti di pianificazione e valutazione.


Progetti geografici

- Dove mettere un nuovo aeroporto, un nuovo ospedale, un nuovo stadio, ecc?
- Questo nuovo progetto di costruzione è conforme alle regole di pianificazione?
- Qual è la modalità migliore o il modo migliore per andare da A a B?
- Come organizzare un piano per spazi verdi in una città?
- Come riorganizzare i trasporti pubblici?
- ecc.

3.3. Integrazione delle conoscenze esterne

- In GIS, solitamente copertura = estensione spaziale della giurisdizione dell'entità proprietaria
- Importanza della vicinanza
- Due tipi di conoscenze esterne
 - · Nelle vicinanze della giurisdizione
 - Osservazione tecnologica e sociologica
- Conoscenze "intra muros" e "extra muros"

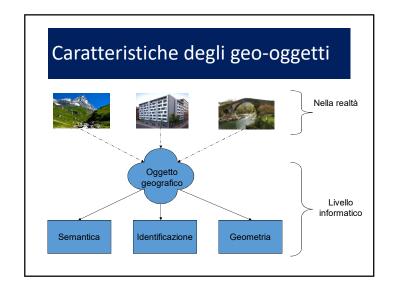
3.4. Prime conclusioni sui GKS

- Le conoscenze geografiche come infrastruttura
- Formalizzazione

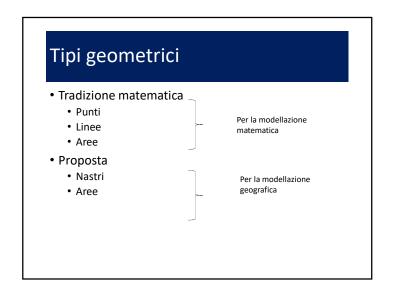
Oggetti geografici

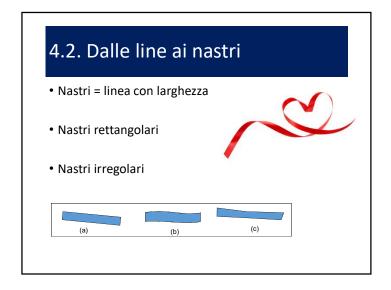
- 4.1. Sulla semantica degli oggetti geografici
- 4.2. Dalle linee ai nastri
- 4.3. Mutazione dei tipi geometrici degli oggetti
- 4.4. Oggetti e progetti geografici
- 4.5. Considerazioni conclusive sugli oggetti geografici

4.1. Sulla semantica degli oggetti geografici

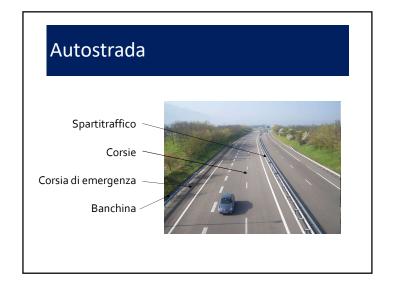

- Categorie o classi
- Nomi di luogo ed identificatori
- Tipi geometrici

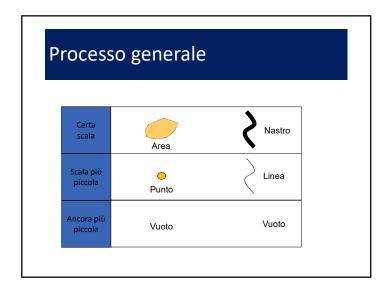
Oggetti geometrici

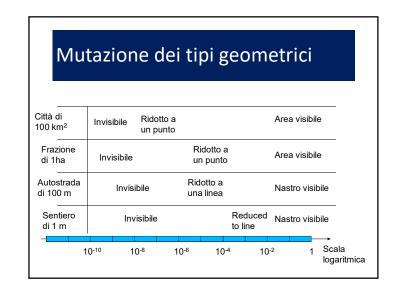

- Dimensioni
 - OD, 1D, 2D, 3D
- Geometria dominante
 - 2D, ma gli occhi sono nella 3a dimensione
- Piano-sfera
- Importanza dei poligoni non connessi
 - ex. «Italia»
- Scala di importanza/risoluzione
 - multi-rappresentazioni

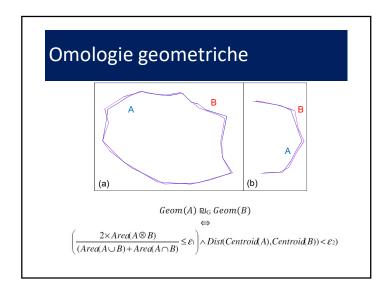

Tipi di oggetti geografici

- Oggetti geodetici
- Oggetti amministrativi
- Oggetti artificiali (confini nitidi)
- Oggetti naturali
- Con confini fuzzy
- Geometria frattale
- Campi continui







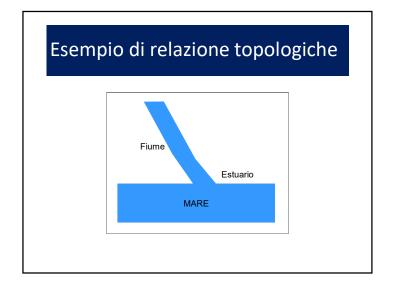


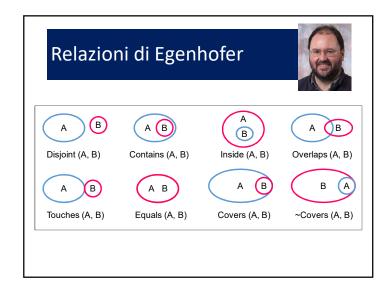
4.3. Mutazione dei tipi geometrici di oggetti

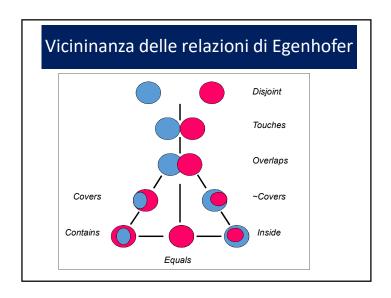
- Processo generale
- Regole dell'acuità visuale applicate agli oggetti geografici

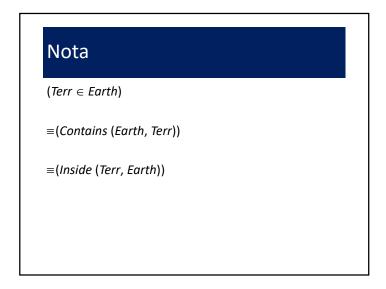
4.4. Oggetti geografici e progetti

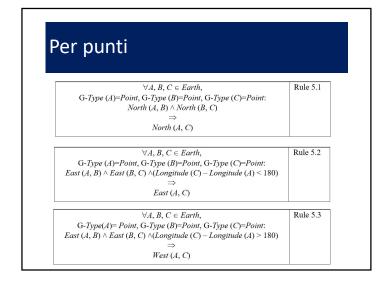
- Pianificazione = > nuovi oggetti
 - Nuova strada, nuovo ospedale
 - Rinnovazione del palazzo municipale
- Oggetti proiettati
 - Durante un certo tempo, come oggetti proiettati
 - Dopo, se approvato = > Geo oggetto reale

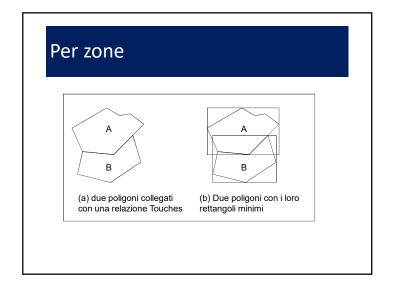


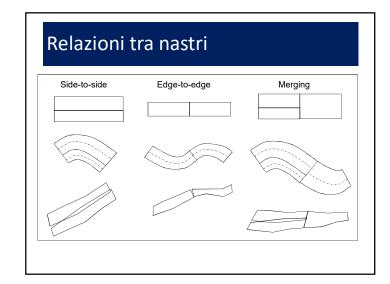

5 – Relazioni geografiche

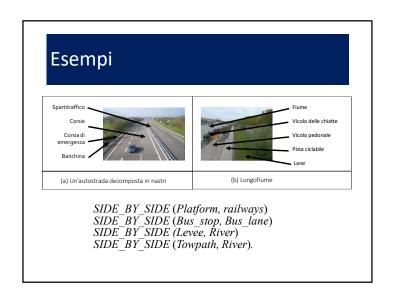

- 5.1. Relazioni spaziali
- 5.2. Relazioni spaziali nello spazio urbano
- 5.3. Operazioni e relazioni tra nastri
- 5.4. Mutazione delle relazioni topologiche
- 5.5. Altre relazioni geografiche
- 5.6. Conclusione relativa alle relazioni geografiche


5.1. Relazioni spaziali


- Relazioni topologiche
- Progetti e altre relazioni spaziali
- Relazioni tra rettangoli




$\forall A, B \in Earth, \\ \text{G-Type } (A) = Area, \text{G-Type } (B) = Area; \\ Touches (MBR (A), MBR (B)) \land North (Centroid (A), Centroid (B)) \\ \Rightarrow \\ North (A, B)$	Rule 5.6
$\forall A, B \in Earth,$ $G\text{-}Type\ (A) = Area,\ G\text{-}Type\ (B) = Area;$ $Touches\ (MBR\ (A),\ MBR\ (B)) \land South\ (Centroid\ (A),\ Centroid\ (B))$ \Rightarrow $South\ (A,\ B)$	Rule 5.7
$\forall A, B \in Earth, \\ \text{G-Type } (A) = Area, \text{G-Type } (B) = Area: \\ Touches (MBR (A), MBR (B)) \wedge West (Centroid (A), Centroid (B)) \\ \Rightarrow \\ West (A, B)$	Rule 5.8
$\forall A, B \in Earth,$ $G\text{-}Type\ (A) = Area,\ G\text{-}Type\ (B) = Area:$ $Touches\ (MBR\ (A),\ MBR\ (B)) \land East\ (Centroid\ (A),\ Centroid\ (B)) \Rightarrow \\ East\ (A,\ B)$	Rule 5.9


5.2. Relazioni spaziali nello spazio urbano

- Altre relazioni topologiche binari
 - on (street, pedestrian_zebra)
 - underneath (street, sewerage)
 - above (street, traffic_light)
 - along (sidewalk, street)
 - on (sewerage_grid, street).
- Relazioni tra oggetti urbani e luoghi
 - host (barrack, army)
 - host (hospital, health_activity).

5.3. Relazioni tra nastri

- Operazioni e Relazioni semplici
- Orientamento
- Relazioni 3D fra i nastri
- Concatenamento di nastri

5.4. Mutazione delle relazioni topologiche

- Esempio di mutazione topologica dovuta alla granularità degli interessi
- Tabella di mutazione delle relazioni di Egenhofer
- Mutazione delle relazioni tra nastri

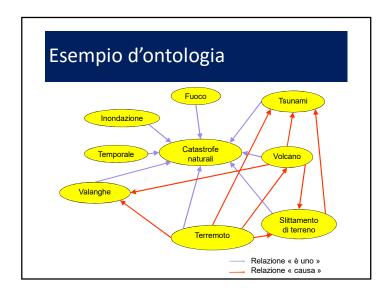
• According to scale, relations vary • Touches o Disjoint?

Avanti la generalizzazione Scala 1 Dopo la generalizzazion e Scala 2 Scala 2 Il più piccolo scompare Scala 3 Null Entrambi scompaiono

5.5. Altre relazioni geografiche

- Tra 2 oggetti dello stesso tipo
 - Fiumi: affluente, a valle, a monte, estuario
 - Strade: incrocio, bivio, parallela
 - Città: near, Twin Cities

Tra oggetti di vari tipi


- Città e paese: appartenenza, capitale
- All'interno delle città, servizi sociali, scuole, trasporti, energia, linee di bus, ecc.
- Qualsiasi territorio: vicino
- Vegetazione, biotopi,
- Ingegneria civile sui ponti, gallerie, reti sottoterranee,
- ecc.

5.6. Conclusioni sulle relazioni geografiche

- Non solo le relazioni spaziali
- Molti tipi di relazioni
- Mutazione delle relazioni in base alla granularità di interesse
- Archiviazione
 - Estensionale
 - Stoccaggio diretto
 - Intensionale
 - Può essere dedotta direttamente

6 – Ontologie geografiche

- 6.1. Definizioni
- 6.2. Generalità sull'ontologia
- 6.3. Caratteristiche delle ontologie geografiche
- 6.4. Esempi di ontologia geografica
- 6.5. Conclusione e sfide relative alle ontologie geografiche

6.1 – Definizioni

- Dal greco antico:
 - οντος = essendo
 - λογια = discorso
- **DEF1**: teoria degli oggetti e delle loro relazioni
- **Def2**: teoria sulle entità, e soprattutto sule entità esistenti nelle lingue
- DEF3: un'ontologia è una specifica esplicita di una concettualizzazione (Gruber)

Differenze

- Ontologia ("o" maiuscola):
 - una disciplina filosofica
- Un'ontologia ("o" minuscola):
 - un artefatto inventato per descrivere il significato del vocabolario

Definizione di Guarino

 Nicola Guarino: "in IA, un'ontologia rappresenta un artefatto d'ingegneria costituta da un vocabolario utilizzato per costruire una realtà, accompagnata da un insieme d'ipotesi implicite concernente il significato delle parole e del vocabolario"

Concetti

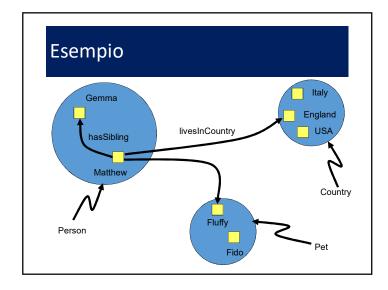
- Distinguere termini e concetti
- Al livello matematico :

Ontologia = grafo tra concetti = rete semantica

Classificazioni differenti (Kavouras)

Ontology	Category_type	
	Peat bog	
CORINE Land Cover	Water course	
	Water body	
MEGRIN	Bog	
	Canal	
	Lake/ pond	
	Salt marsh	
	Salt pan	
	Watercourse	
WordNet	Body of water	
	Bog	
	Canal	
	Lake	
	Pond	
	Salt pan	
	Watercourse	
	Watercourse	

Sulle ontologie per il territorio


- Organizzazioni degli oggetti geografici
- Oltre ai rapporti "*Is_a*", "Has_a", "*Whole_part*"
 - Necessità di relazioni spaziali

6.2. Generalità sulle ontologie

- Categorie di ontologie
- Approcci per il disegno delle ontologie
- Esempi di ontologia
- Componenti ontologia
- Linguaggi di ontologia
- Ontologia convenzionale applicata alla geografia

Relazioni usuali

- Sinonimi ed antonimi
- **Iponimi:** relazione *is a* tra i concetti.
 - Ereditarietà delle proprietà, da sopraconcetti a sottoconcetti.
- Meronimia:
 - Part_whole rapporto tra i concetti.
- Possesso:
 - has_a per attributi concettuali

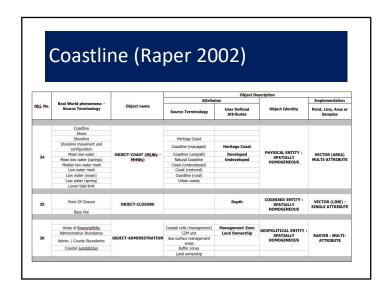
Componenti delle ontologie

- Concetti
- Istanze
- Relazioni
- Attributi

Concetti

- Concetti, chiamati anche classi, tipi, sono un componente principale della maggior parte delle ontologie.
- Un concetto rappresenta un gruppo di individui diversi che condividono caratteristiche comuni, che possono essere più o meno specifici.
- Esistono sottoconcetti

Istanze


- Gli individui conosciuti anche come istanze o particolari sono l'unità base di un'ontologia.
- Sono le cose che l'ontologia descrive o potenzialmente potrebbe descrivere.
- Gli individui possono modellare oggetti concreti come persone o macchine; possono anche modellare oggetti più astratti come i paesi, il lavoro della persona o una funzione.

Relazioni

- Le relazioni in un'ontologia descrivono il modo in cui gli individui si relazionano tra di loro.
- Le relazioni possono normalmente essere espresse direttamente tra individui, ad esempio la relazione hasSibling

Attributi

- A volte, chiamati proprietà
- I concetti sono caratterizzati da attributi che possono avere valori
- Un attributo importante è l'identificatore

6.3. Caratteristiche delle ontologie geografiche

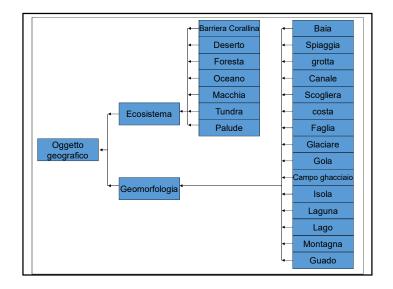
- Rappresentazione e gestione dello spazio
- Collegamenti con la linguistica

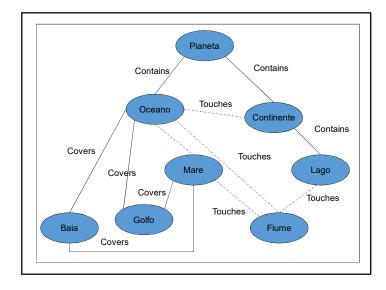
Collegamenti con la linguistica

- Alcuni concetti non esistono in altri paesi
 - Neve per eschimesi
 - Rambla di Barcellona

Collegamenti con la linguistica

 A Venezia, "rioterà" è un tipo speciale di corsia pedonale, mentre altre denominazioni sono usate come salizada, sottoportego, ramo, fondamenta, campiello, corte, calle, riva, etc.




Esempio di ambiguità

French	Picture	English	Spanish	Italian
		Warf	Muelle	Molo
Quai		Riverside	Avenida a lo largo de un río	Lungofiume
		Platform	Andén	Binario

6.4. Esempio di ontologie geografiche

- Ontologia di oggetti geografici
- Ontologie con relazioni convenzionali
 - Scarsa modellazione geometrica
- Ontologie con relazioni spaziali

6.5. Conclusioni e sfide sulle ontologie geografiche

- Importanza delle relazioni spaziali
- Concetti multimediali
 - Rumore
 - Foto, immagini, ecc.
- Questioni linguistiche

Sfide

- Quale potrebbe essere il ruolo delle ontologie geografiche per il ragionamento geografico, per esempio nella pianificazione ambientale?
- Come utilizzare efficacemente le ontologie geografiche per il reperimento di informazioni geografiche su Internet, per esempio per il turismo?
- Cosa includere nelle ontologie? Potrebbe essere di interesse anche per definire gli attributi, ed i vincoli tra concetti?

8 - Repertori toponimici e multilinguismo

- 7.1. Generalità
- 7.2. Sistemi esistenti
- 7.3. Conclusione

7.1. Generalità

- Toponimi/nomi di luogo
- Possono cambiare nel tempo
- Traduzioni multipli
- Luoghi diversi possono avere lo stesso nome

Problemi sui toponimi (1/2)

- "Mississippi" può essere il nome di un fiume o di uno stato.
- La città, "Venezia» è anche conosciuta come "Venise", "Venice", "Venedig", rispettivamente, in francese, inglese e tedesco.
- Bolzano/Bozen
- Il nome locale della città greca di "Atene" è "A θ ήνα"; Leggere [a' Θ ina].
- "Istanbul" era conosciuto come "Bisanzio" e "Costantinopoli" nel passato.
- La città moderna di Roma è molto più grande del tempo di Romolo.

Problemi sui toponimi (2/2)

- Ci sono due Georgia, uno negli Stati Uniti e un altro in Caucasia.
- Il toponimo «Potenza" può corrispondere alla città di Potenza o alla provincia di Potenza.
- A volte, i nomi dei luoghi possono essere anche nomi di qualcos'altro; Ad esempio "Washington" può riferirsi anche a George Washington o a chiunque con questo nome o cognome.
- Nel Regno Unito, ci sono diversi fiumi di nome Avon.

Il caso del Danubio

- Il fiume "Danubio" attraversa diversi paesi europei; Praticamente in ogni paese, ha un nome diverso,
 - "Donau" in Germania e Austria,
 - · "Dunaj" in Slovacchia,
 - · "duna" in Ungheria,
 - "Dunav" in Croazia e Serbia,
 - "Dunav" е "Дунав" in Bulgaria,
 - "Dunărea" in Romania e in Moldova
 - "Dunarea" in Romania e in Moldov
 e "Dunaj" e "Дунай" in Ucraina.
- · Si chiama anche
 - "Danube" francese e inglese
 - «Tonava" in finlandese
 - e "Δούναβης" in greco.
- c Boovapily ingreco.

• Inoltre, il suo nome è femminile in tedesco e maschile in alcune altre lingue.

Sulle strade (1/2)

- Alcune strade sono lunghe di poche decine di metri, mentre altri diversi chilometri;
- In alcuni insediamenti umani, le strade non hanno nomi;
- A volte, ci sono variazioni sul modo di scrivere alcuni nomi di strada; Per esempio "3rd Street", "Third street", "Third St"; Le parole "Avenue"e "Boulevard" sono comunemente semplificate in "Ave" e anche "Blvd" o "Bd";

Sulle strade (2/2)

- In alcuni paesi, soprattutto nei paesi di lingua spagnola, l'equivalente delle parole "strada", "Corso", ecc, sono di solito rimossi;
- In alcuni luoghi, le strade possono avere diversi nomi; Per esempio, a New York City, "Sixth Avenue" è anche conosciuto come "Avenue of the Americas"

Altri toponimi

- I famosi punti di riferimento
 - Colosseo
 - Torre Eiffel
 - Torre di Pisa
 - · Lady Liberty
 - · Casa Bianca
- · Altri luoghi
 - Bars
 - Teatri
 - Aeroporto
 - Musei
 - Ecc.

7.2. Sistemi esistenti

- GeoNames
- GeoSPARQL
- OntoGazetteer
- Metagazetteer

GeoNames (1/2)

- Il database GeoNames contiene oltre 10 milioni nomi geografici corrispondenti a oltre 7,5 milioni caratteristiche uniche.
- Tutti gli oggetti sono categorizzati in una delle nove classi e ulteriormente sottocategorizzati in uno dei 645 codici.
- Oltre ai nomi dei luoghi in varie lingue, i dati memorizzati includono latitudine, longitudine, elevazione, popolazione, suddivisioni amministrative e codici postali.

GEONAMES (2/2)

- GeoNames utilizza un modo speciale per modellare tassellazioni gerarchiche:
 - Children, cioè l'elenco delle divisioni amministrative (primo sottolivello relativo);
 - Hierarchy, cioè, l'elenco dei toponimi più in alto nella gerarchia di un nome di luogo;
 - Contains, cioè, l'elenco di tutti gli oggetti all'interno;
 - Contains, cioè la lista di tutti i fratelli/sorelle di un toponimo allo stesso livello.

Esempio per la Sicilia

<geoname>

<toponymName>Sicilia</toponymName>

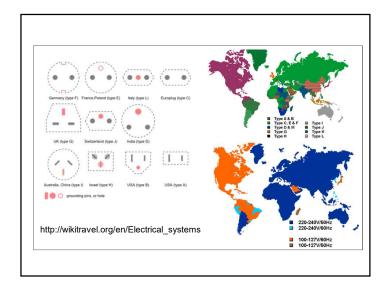
<name>Sicily</name>

<lat>37.75</lat><lng>14.25</lng>

<geonameId>2523119</geonameId>

<countryCode>IT</countryCode>

<countryName>Italy</countryName>


<numberOfChildren>9</numberOfChildren>

</geoname>

7.3. Conclusione

- Importanza dei repertori per il ragionamento geografico pratico
- Repertori multimediali
 - Bandiere per i paesi e territori che hanno uno,
 - Emblemi, sigilli o loghi,
 - · Immagini di importanti punti di riferimento,
 - Inni nazionali.
- Multilinguismo

8 – Regole geografiche per le applicazioni

- 8.1. Sulle regole nell'Information Technology
- 8.2. Studio della semantica delle regole geografiche
- 8.3. Verso la modellazione delle regole geografiche applicative
- 8.4. Conclusione sulle regole geografiche applicative

8.1. Sulle regole in Information Technology

- Ross: "le regole devono essere considerate come cittadini di prima classe in IT".
- Regole usuali
- Vocabolario standardizzato
- Formalismo logico
 - IF-THEN fatto
 - IF-THEN azione
- Regole geografiche
 - Necessità di geometria, topologia, ecc.

Codificazione delle regole

- [Boley et al. 10] fornisce diverse estensioni XML
- Il più semplice di questi è il seguente:

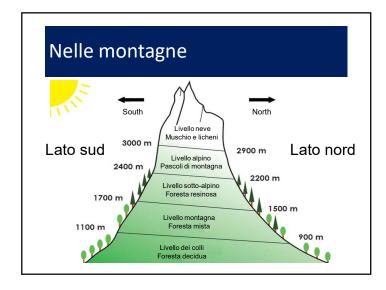
8.2. Semantica delle regole geografiche

- Regole globali
- Regole locali
- Regole generiche o di basso livello
- Regole e pluralità dei luoghi
- Regole e logiche delle parti interessate
- Gestione delle eccezioni

Esempi di regole geografiche (1/3)

- Nel Regno Unito, si guida a sinistra;
- In Canada, la maggior parte della popolazione vive lungo il confine con gli Stati Uniti;
- Ogni città capitale ha un aeroporto internazionale nelle vicinanze:
- Tra due città capitali, in generale, ci sono voli diretti;
- Nell'emisfero nord, più si sta andando a nord, più fa freddo (ma localmente questo non è sempre vero).

Esempi di regole geografiche (2/3)


- Più si sale una montagna, più fa freddo;
- Pioggia pesante a Monte, allagamento a valle.
- Le moschee sono orientate verso la Mecca;
- Se una zona è una palude, è necessario vietare le costruzioni;
- Se c'è disoccupazione, deve essere incoraggiata la creazione di imprese o di aree industriali;

Esempi di regole geografiche (3/3)

- Se un appezzamento è adiacente ad un aeroporto, è necessario limitare l'altezza degli edifici;
- È vietato aprire un nuovo negozio di tabacchi entro 500 metri da un altro già esistente;
- Nelle aree inquinate e ventilate, il vento diffonde inquinanti atmosferici;
- Quando si desidera installare una linea di metropolitana sotto una strada, spostare le reti sotterranee in un altro luogo;
- Una buona pratica in Messico è quello di utilizzare un autobus per andare da Puebla a Oaxaca.

8.3. Verso la modellazione delle regole geografiche applicative

- Analisi di alcune regole applicative
- Modellazione

Codificazione

Due modi

IF Lichen THEN Altitud	e > 3000;	Rule 10.6
IF Altitude > 3000 THE	N Lichen.	Rule 10.7

Regole in ingegneria civile

- Regole per il bacino idrico e l'approvvigionamento,
- Norme per la pulizia delle acque reflue,
- Norme per la distribuzione di gas ed elettricità, approvvigionamento energetico e teleriscaldamento,
- Regole per l'organizzazione dei trasporti pubblici,
- Regole per l'organizzazione di reti di sensori,
- Regole per la raccolta e la gestione dei rifiuti.
- e per qualsiasi tipo di utilità pubblica.

Regole per i servizi pubblici

- Scuola elementare
- Servizi sociali
- Stadio sportivo
- Ospedale

Regola sulle tabaccherie in Francia Tabaccaio. Dove è vietato aprire una nuova tabaccheria Dove è autorizzato

Determinazione della zone

 $\forall \ F_i \in GO, \ \exists \ Z \in Terr, \\ G\text{-}Type \ (F_i) = Point, \ G\text{-}Type \ (Z) = Area, \\ \Omega\text{-}Type \ (F_i) = \text{``Tobacconist''}, \\ Geom \ (F_i) \in Terr$

 \Rightarrow Geom(Z)= Terr – Union (Buffer (F_i, 500))

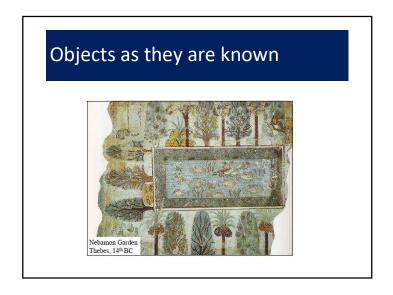
Rule 10.8

Esempio di regola socioeconomica

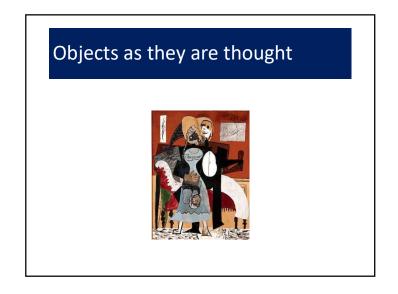
Proggetti territoriali

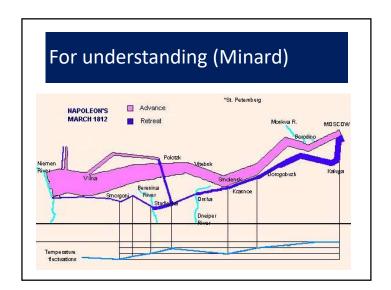
- Dove mettere un nuovo aeroporto, un nuovo ospedale, un nuovo stadio, ecc?
- Questa costruzione è conforme alle regole di pianificazione?
- Modo migliore per andare da A a B
- Decidere se la decisione è prioritaria
- Organizzare una politica per gli spazi verdi
- Politiche di transito
- Programmare un tour
- Ecc.

8.3. Conclusione sulle regole applicative


Dist (Sea, HouseA) < Dist (Sea, HouseB)

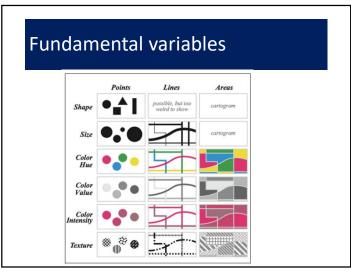
• Importanza delle conoscenze e delle regole geografiche

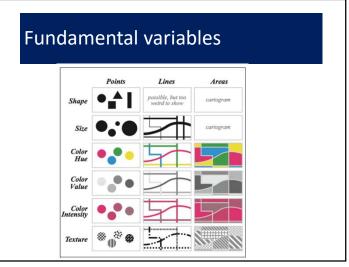

Price (HouseA) > Price (HouseB)


- Modellazione delle regole geografiche
- Più esempi sono la necessari per catturare la semantica
- Modello preliminare
- Prototipo
- Necessità di una lingua di regola con un'alta potenza espressiva
- Primi passi nel ragionamento geografico

Visualization as a language for understanding and controlling Visual Knowledge

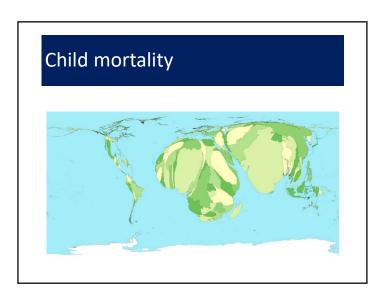
A geometric representation - of a planet (Earth, etc.) - with relative positions A constructed model implying - with non-spatial attributes - down-scaling - selection - generalization What is a map? An iconic, graphic model - scientific using signs - subjective Implying - visual - empirical - auditory - haptic With Through Specific goals A medium A given time t - present and transmit information together with a context - permanent (paper) - provide localizations - historic temporary (screen) - explore distributions - social virtual reveal visible or non-visible relations technical - exchange, participate - scientific

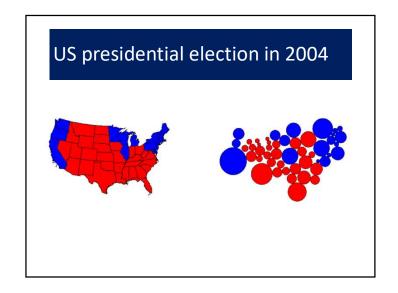

9 - Geovisualization and Chorems

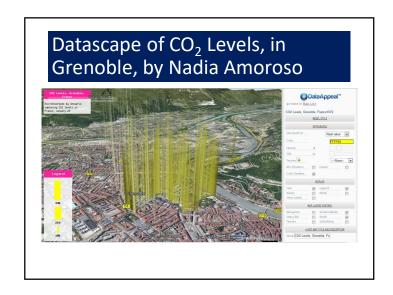

- Graphics Semiology
- Chorems
- Dashboards for Smart Cities
- Conclusions

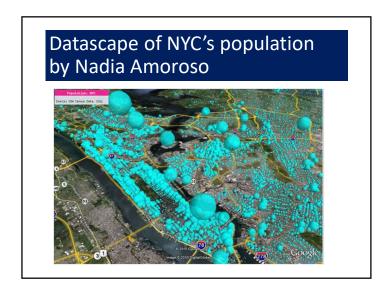
Graphics Semiology

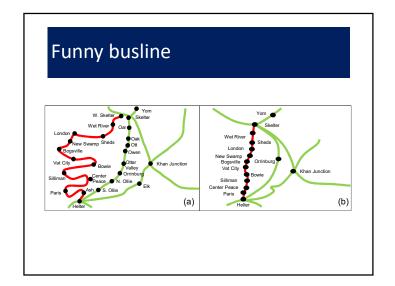
- Jacques Bertin, French geographer:
- "the set of rules of a graphic sign system for the transmission of information".
- Valid for any domain
 - Highway
 - Marketing
- 6 fundamental variables

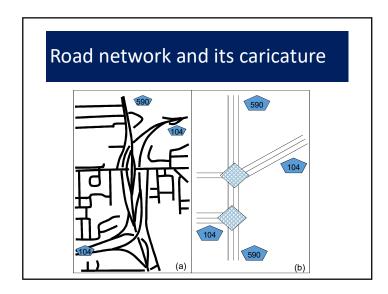


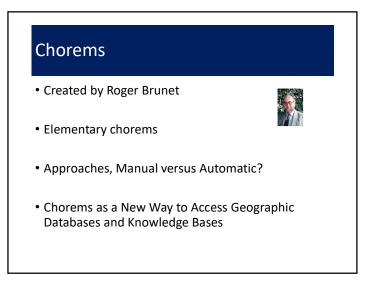

Gross domestic product


Three rules of Graphic Semiology

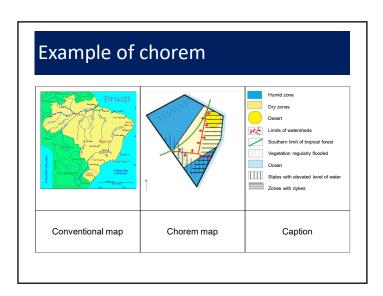

- Readability: it facilitates the understanding of the map.
 - important to "detach the shape from the background".
- Generalization: it reduces the level of details in order to simplify the data to adjust to a new level.
- Identification: for an easier reading of the map it is important to incorporate some elements:
 - the title to quickly identify the contents of the map;
 - the caption includes all the symbols and color codes used; the scale concept of actual size; source; author: authenticate the contents of the map;
 - the orientation.

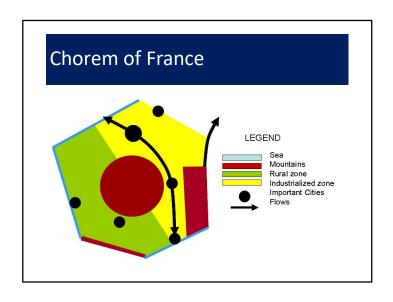


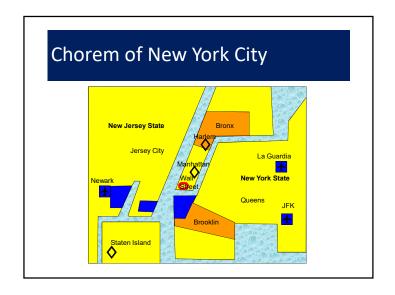

How to Lie with Maps

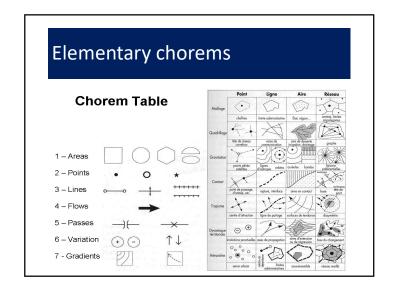

- Some deformations should be made to enlighten local authority decision-makers,
- it is nevertheless important not to produce fraudulent maps.
- In 1991, Monmonnier produced a very exciting book entitled "How to lie with map"

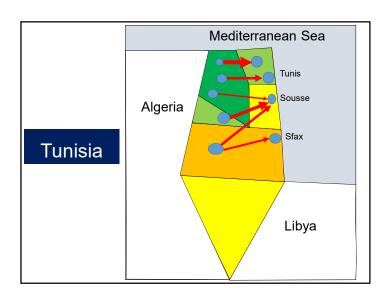
Definition

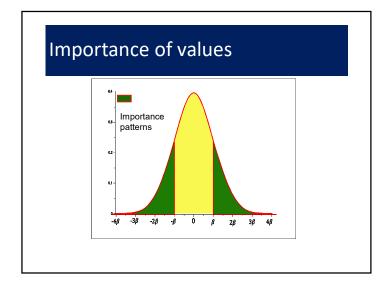

- "a schematic representation of a territory"
- This word comes from the Greek χώρα which means space, territory.
- It is not a raw simplification of the reality, but rather aims at representing the whole complexity with simple geometric shapes.
- Even if it looks a simplification, the chorem tries to represent the structure and the evolution of a territory with a rigorous manner.
- Show important features

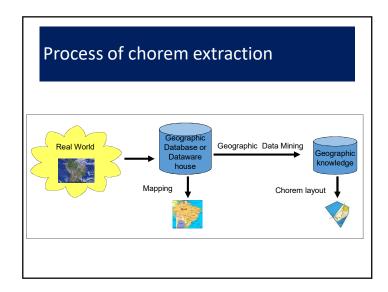

Importance


- salient political, economic and demographic problems,
- salient features in environment and climatology,
- interesting places in geomarketing,
- · main evolution in epidemiology,
- natural and technological risks or disasters,


Domains of application


- Relief and climatology,
- Ecosystems, environment,
- History, population and demography,
- Rural and urban dynamics,
- · Communication networks,
- Economy and international relationships
- Geomarketing
- Sensors




What is important?

- A phenomenon is important when it is the cause of other phenomena
 - Causality $B \Rightarrow A$
- An attribute is important when its value is outside common value

•
$$\beta = \frac{|x-\mu|}{\sigma}$$

- If $0 \le \beta \le 1$ Then the value is of a trivial importance;
- If $1 \le \beta \le 2$ Then the value is of moderately importance;
- If $2 \le \beta \le 3$ Then the value is of remarkable importance;
- If $3 \le \beta \le 4$ Then the value is of exceptional importance;
- If $\beta \le 5$ Then the value is of historical importance and very rare.

Towards new defintions of chorems

- Chorems are a map generalization both geometrically and semantically;
- Chorems can be a way to represent geographic knowledge, as visual summaries coming from spatial data mining;
- Chorems can be a new way to enter geographic databases as a global vision.

Dashboards for Smart Cities

- On-the-fly visualization from sensors
 - traffic management,
 - · pollution control,
 - · meteorology,
 - disaster management, etc.

Two types of dashboards

- Multi-thematic dashboards, i.e. in which several indicators are shown simultaneously, maybe thousands on maps;
- Chorem-based dashboards, i.e. in which only the salient aspects, usually named hotspots are recognized and laid-out.

Dashboard for electricity in Tokyo

9. Conclusions

- More than conventional cartography
- Visual analytics
- Geovisualization
- Chorem
 - Visualization of more salient features
 - As a novel access way to GKS

10 – Conoscenze come infrastruttura per la governance intelligente

- 10.1. Business Intelligence
- 10.2. Business Intelligence geospaziale o Geointelligence
- 10.3. Strumenti per l'intelligence territoriale
- 10.4. Conoscenze come infrastruttura per la governance intelligente
- 10.5. Verso la saggezza nella governance territoriale

10.3. Strumenti per intelligenza territoriale

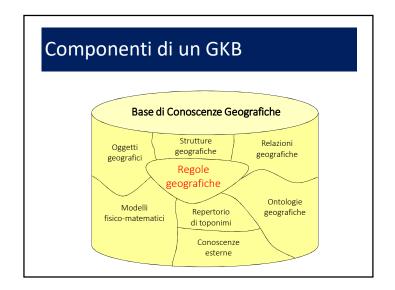
- "l'intelligenza territoriale può essere definita come un approccio che copre un territorio (forse una città) che è pianificato e gestito dalla fecondazione incrociata dell'intelligenza collettiva umana e dell'intelligenza artificiale per il suo sviluppo sostenibile".
- -
 - Partecipazione pubblica
 - Smart People e Smart governance
 - Coinvolgimento intelligente delle persone

Smart People, Smart Governance

- Tre categorie possono essere identificate,
 - · cittadini.
 - · funzionari dell'autorità locale
 - e politici.
- Impotenziamento dei cittadini suppone
 - che hanno accesso non solo alle informazioni, ma in generale al sistema in grado di schizzare il futuro,
 - che possano esprimere la loro opinione,
 - e che il loro parere è preso in considerazione nel processo decisionale

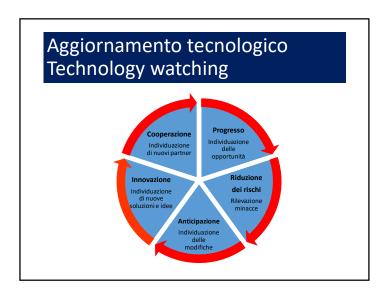
Sull'interesse generale

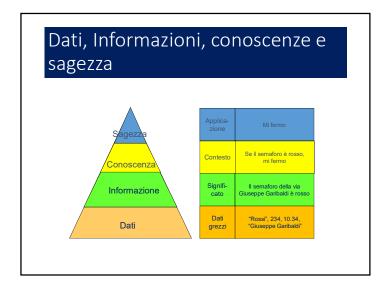
- Chi è responsabile della definizione di interesse generale?
 - Poichè gli interessi NIMBY possono essere assegnati facilmente, è più difficile per l' interesse generale: la gente differente può definirla diversamente.
 - Per alcuni politici, questa nozione è vaga in modo che il loro interesse sia rieletto; di conseguenza, essi propongono ciò che pensano utile per essere rieletti e assumere questo è l'interesse generale.
 - Un altro aspetto di questa nozione riguarda la copertura territoriale: l'interesse generale locale può essere in contraddizione con qualche interesse generale a livello più elevato; per esempio considerare i conflitti dovuto i problemi internazionali del trasporto.


10.4. Conoscenze come infrastruttura per la governance intelligente

- Identificazione ed organizzazione delle conoscenze geografiche ed urbane
- Accessibilità delle conoscenze
- Conoscenza geografica in movimento

Michel Serres:


"La conoscenza è adesso una nuova infrastuttura"


Altri componenti

- Documenti e relazioni in cui spesso non solo le informazioni, ma anche le conoscenze sono nascoste
- Conoscenza esterna
 - · conoscenza alla vicinanza
- Progetti in corso di sviluppo; devono essere memorizzati i diversi passi, le diverse alternative, i criteri,
- le opinioni delle parti interessate

Osservazioni sociologiche

- In altre città, non solo simili
 - Esperienze umane
 - Reazione pubblica di fronte a nuovi progetti
 - Democrazia locale
 - Politiche di trasporto
 - Criminalità
 - Ecc
- Come importare le esperienze consigliate?
- Come valutarle?

10.5. Verso la sagezza nella governance territoriale

- Integrazione nella knowledge society
- Raccolta di conoscenze in vari domini
 - Scriverle in un linguaggio informatico
- La logica più importante delle parti interessate deve essere identificata
 - e devono essere scritte regole specifiche.
- I sistemi di arbitrato o di ricerca del consenso devono essere elaborati e integrati.
- Incapsulamento di tutti i modelli matematici
- Specifiche di un motore di inferenza geografica

"È arrivata una nuova era per le città e territori?"

Roberto.Laurini@gmail.com

Si puo' scaricare da http://www.laurini.net/ftp/P4.pdf

